251
|
Lavie L, Si-On E, Hoffman A. Markers of Carotid Plaque Destabilization in Patients With Sleep-Disordered Breathing. Front Neurol 2022; 13:811916. [PMID: 35250817 PMCID: PMC8888822 DOI: 10.3389/fneur.2022.811916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep-disordered breathing (SDB) is a nightly respiratory condition characterized by intermittent hypoxia, leading to oxidative stress, inflammation, and atherosclerosis. However, most cellular markers of human carotid plaques in SDB have not yet been assessed. We aimed at characterizing the cellular, inflammatory, and nitro-oxidative stress markers in carotid plaques obtained from 25 patients undergoing endarterectomy and screened for SDB. Sleep studies were performed during their preoperative hospitalization night using the Watch-PAT 100 device. Oxygen desaturation index (ODI) was used for dividing patients into two groups. Fourteen patients with ODI >5 were designated as SDB and 11 patients with ODI ≤ 5 as non-SDB. Demographics, comorbidities, cardiovascular risk factors, and medications were recorded. Cellular markers in plaques were analyzed by immunofluorescence using confocal microscopy. The expression of neutrophils was identified by CD66b+ and neutrophil elastase, macrophage-foam cells were identified by CD163+, and scavenger receptors by CD68+ and CD36+ expression. Additional markers included 3-nitrotyrosine, endothelial CD31, and smooth muscle cell-actin (SMC-actin). Plaques' lipids were determined by immunohistochemistry with Oil Red O staining. Notably, significantly higher values were found for SDB as compared to patients with non-SDB for 3-nitrotyrosine (p <0.004) and intracellular lipids' content (p <0.02), whereas SMC-actin was lower (p <0.006). There were no significant differences between patients with carotid-associated symptoms (symptomatic) and patients without carotid-associated symptoms (asymptomatic). However, a sub-group of symptomatic patients with co-existent SDB expressed the highest 3-nitrotyrosin, and intracellular lipids levels, and the lowest SMC-actin levels, whereas non-SDB/asymptomatic patients expressed the lowest 3-nitrotyrosin and lipids levels and the highest SMS-actin levels among all patients. Accordingly, ODI was lowest in non-SDB/asymptomatic patients and highest in SDB/symptomatic. In conclusion, plaques of patients with SDB were characterized by markedly increased levels of 3-nitrotyrosine and intracellular lipids content. Conversely, SMC-actin levels were significantly lower. These three markers, such as increased 3-nitrotyrosine and intracellular lipids and decreased SMC-actin are associated with plaque vulnerability and instability. These findings are in line with earlier reports demonstrating increased intima-media thickness in large cohorts of sleep apnea and patients with SDB, and thus, may indicate a higher susceptibility to plaque vulnerability and rapture in patients with SDB.
Collapse
Affiliation(s)
- Lena Lavie
- Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- *Correspondence: Lena Lavie
| | - Erez Si-On
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Hoffman
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
252
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
253
|
The Effects of αvβ3 Integrin Blockage in Breast Tumor and Endothelial Cells under Hypoxia In Vitro. Int J Mol Sci 2022; 23:ijms23031745. [PMID: 35163668 PMCID: PMC8835904 DOI: 10.3390/ijms23031745] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvβ3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01′s inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvβ3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvβ3 integrin during tumor progression.
Collapse
|
254
|
Mirzaei Bavil F, Karimi-Sales E, Alihemmati A, Alipour MR. Effect of ghrelin on hypoxia-related cardiac angiogenesis: involvement of miR-210 signalling pathway. Arch Physiol Biochem 2022; 128:270-275. [PMID: 31596148 DOI: 10.1080/13813455.2019.1675712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia is the main stimulus for angiogenesis. Hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and miR-210 are involved in the hypoxia-induced angiogenesis. This study examined the effects of hypoxia and/or ghrelin on miR-210, HIF-1α, and VEGF levels in the heart of rats. METHODS Wistar rats were randomly divided into 4 groups (n = 6): control; ghrelin, received daily intraperitoneal injections of ghrelin; hypoxia, was exposed to hypoxic condition; hypoxia + ghrelin, was exposed to hypoxic condition and received intraperitoneal injections of ghrelin, for 2 weeks. Myocardial angiogenesis, the expression level of miR-210, and protein levels of HIF-1α and VEGF were assayed in the heart samples. RESULTS Hypoxia increased myocardial angiogenesis and cardiac levels of miR-210, HIF-1α, and VEGF. However, ghrelin inhibited these hypoxia-induced changes. Interestingly, ghrelin had no significant effect on miR-210, HIF-1α, and VEGF levels in normoxic condition. CONCLUSION Ghrelin may be useful as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
255
|
Wen Y, Chelariu-Raicu A, Umamaheswaran S, Nick AM, Stur E, Hanjra P, Jiang D, Jennings NB, Chen X, Corvigno S, Glassman D, Lopez-Berestein G, Liu J, Hung MC, Sood AK. Endothelial p130cas confers resistance to anti-angiogenesis therapy. Cell Rep 2022; 38:110301. [PMID: 35081345 PMCID: PMC8860355 DOI: 10.1016/j.celrep.2022.110301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Anti-angiogenic therapies, such as anti-VEGF antibodies (AVAs), have shown promise in clinical settings. However, adaptive resistance to such therapies occurs frequently. We use orthotopic ovarian cancer models with AVA-adaptive resistance to investigate the underlying mechanisms. Genomic profiling of AVA-resistant tumors guides us to endothelial p130cas. We find that bevacizumab induces cleavage of VEGFR2 in endothelial cells by caspase-10 and that VEGFR2 fragments internalize into the nucleus and autophagosomes. Nuclear VEGFR2 and p130cas fragments, together with TNKS1BP1 (tankyrase-1-binding protein), initiate endothelial cell death. Blockade of autophagy in AVA-resistant endothelial cells retains VEGFR2 at the membrane with bevacizumab treatment. Targeting host p130cas with RGD (Arg-Gly-Asp)-tagged nanoparticles or genomic ablation of vascular p130cas in p130casflox/floxTie2Cre mice significantly extends the survival of mice with AVA-resistant ovarian tumors. Higher vascular p130cas is associated with shorter survival of individuals with ovarian cancer. Our findings identify opportunities for new strategies to overcome adaptive resistance to AVA therapy.
Collapse
Affiliation(s)
- Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA.
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Alpa M Nick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Pahul Hanjra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
256
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
257
|
van Santen VJB, Bastidas Coral AP, Hogervorst JMA, Klein-Nulend J, Bakker AD. Biologically Relevant In Vitro 3D-Model to Study Bone Regeneration Potential of Human Adipose Stem Cells. Biomolecules 2022; 12:biom12020169. [PMID: 35204670 PMCID: PMC8961519 DOI: 10.3390/biom12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Standard cell cultures may not predict the proliferation and differentiation potential of human mesenchymal stromal cells (MSCs) after seeding on a scaffold and implanting this construct in a bone defect. We aimed to develop a more biologically relevant in vitro 3D-model for preclinical studies on the bone regeneration potential of MSCs. Human adipose tissue-derived mesenchymal stromal cells (hASCs; five donors) were seeded on biphasic calcium phosphate (BCP) granules and cultured under hypoxia (1% O2) for 14 days with pro-inflammatory TNFα, IL4, IL6, and IL17F (10 mg/mL each) added during the first three days, simulating the early stages of repair (bone construct model). Alternatively, hASCs were cultured on plastic, under 20% O2 and without cytokines for 14 days (standard cell culture). After two days, the bone construct model decreased total DNA (3.9-fold), COL1 (9.8-fold), and RUNX2 expression (19.6-fold) and metabolic activity (4.6-fold), but increased VEGF165 expression (38.6-fold) in hASCs compared to standard cultures. After seven days, the bone construct model decreased RUNX2 expression (64-fold) and metabolic activity (2.3-fold), but increased VEGF165 (54.5-fold) and KI67 expression (5.7-fold) in hASCs compared to standard cultures. The effect of the bone construct model on hASC proliferation and metabolic activity could be largely mimicked by culturing on BCP alone (20% O2, no cytokines). The effect of the bone construct model on VEGF165 expression could be mimicked by culturing hASCs under hypoxia alone (plastic, no cytokines). In conclusion, we developed a new, biologically relevant in vitro 3D-model to study the bone regeneration potential of MSCs. Our model is likely more suitable for the screening of novel factors to enhance bone regeneration than standard cell cultures.
Collapse
|
258
|
Filippi L, Cammalleri M, Amato R, Ciantelli M, Pini A, Bagnoli P, Dal Monte M. Decoupling Oxygen Tension From Retinal Vascularization as a New Perspective for Management of Retinopathy of Prematurity. New Opportunities From β-adrenoceptors. Front Pharmacol 2022; 13:835771. [PMID: 35126166 PMCID: PMC8814365 DOI: 10.3389/fphar.2022.835771] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Retinopathy of prematurity (ROP) is an evolutive and potentially blinding eye disease that affects preterm newborns. Unfortunately, until now no conservative therapy of active ROP with proven efficacy is available. Although ROP is a multifactorial disease, premature exposition to oxygen concentrations higher than those intrauterine, represents the initial pathogenetic trigger. The increase of oxygenation in a retina still incompletely vascularized promotes the downregulation of proangiogenic factors and finally the interruption of vascularization (ischemic phase). However, the increasing metabolic requirement of the ischemic retina induces, over the following weeks, a progressive hypoxia that specularly increases the levels of proangiogenic factors finally leading to proliferative retinopathy (proliferative phase). Considering non-modifiable the coupling between oxygen levels and vascularization, so far, neonatologists and ophthalmologists have "played defense", meticulously searching the minimum necessary concentration of oxygen for individual newborns, refining their diagnostic ability, adopting a careful monitoring policy, ready to decisively intervene only in a very advanced stage of disease progression. However, recent advances have demonstrated the possibility to pharmacologically modulate the relationship between oxygen and vascularization, opening thus the perspective for new therapeutic or preventive opportunities. The perspective of a shift from a defensive towards an attack strategy is now at hand.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
259
|
Almeida C, Teixeira AL, Dias F, Machado V, Morais M, Martins G, Palmeira C, Sousa ME, Godinho I, Batista S, Costa-Silva B, Medeiros R. Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. BIOLOGY 2022; 11:biology11010145. [PMID: 35053143 PMCID: PMC8773288 DOI: 10.3390/biology11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5410)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Gabriela Martins
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Carlos Palmeira
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
- Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Maria Emília Sousa
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Inês Godinho
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Sílvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
260
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
261
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
262
|
Abstract
Hypoxia is defined as a cellular stress condition caused by a decrease in oxygen below physiologically normal levels. Cells in the core of a rapidly growing solid tumor are faced with the challenge of inadequate supply of oxygen through the blood, owing to improper vasculature inside the tumor. This hypoxic microenvironment inside the tumor initiates a gene expression program that alters numerous signaling pathways, allowing the cancer cell to eventually evade adverse conditions and attain a more aggressive phenotype. A multitude of studies covering diverse aspects of gene regulation has tried to uncover the mechanisms involved in hypoxia-induced tumorigenesis. The role of epigenetics in executing widespread and dynamic changes in gene expression under hypoxia has been gaining an increasing amount of support in recent years. This chapter discusses, in detail, various epigenetic mechanisms driving the cellular response to hypoxia in cancer.
Collapse
Affiliation(s)
- Deepak Pant
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Srinivas Abhishek Mutnuru
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
263
|
The essential role for endothelial cell sprouting in coronary collateral growth. J Mol Cell Cardiol 2022; 165:158-171. [PMID: 35074317 PMCID: PMC8940680 DOI: 10.1016/j.yjmcc.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
Abstract
RATIONALE Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease. OBJECTIVE To develop a murine model of coronary collateral growth by repetitive ischemia and investigate whether capillary endothelial cells could contribute to the coronary collateral formation in an adult mouse heart after repetitive ischemia by lineage tracing. METHODS AND RESULTS A murine model of coronary collateral growth was developed using short episodes of repetitive ischemia. Repetitive ischemia stimulation resulted in robust collateral growth in adult mouse hearts, validated by high-resolution micro-computed tomography. Repetitive ischemia-induced collateral formation compensated ischemia caused by occlusion of the left anterior descending artery. Cardiac function improved during ischemia after repetitive ischemia, suggesting the improvement of coronary blood flow. A capillary-specific Cre driver (Apln-CreER) was used for lineage tracing capillary endothelial cells. ROSA mT/mG reporter mice crossed with the Apln-CreER transgene mice underwent a 17 days' repetitive ischemia protocol for coronary collateral growth. Two-photon and confocal microscopy imaging of heart slices revealed repetitive ischemia-induced coronary collateral growth initiated from sprouting Apelin+ endothelial cells. Newly formed capillaries in the collateral-dependent zone expanded in diameter upon repetitive ischemia stimulation and arterialized with smooth muscle cell recruitment, forming mature coronary arteries. Notably, pre-existing coronary arteries and arterioles were not Apelin+, and all Apelin+ collaterals arose from sprouting capillaries. Cxcr4, Vegfr2, Jag1, Mcp1, and Hif1⍺ mRNA levels in the repetitive ischemia-induced hearts were also upregulated at the early stage of coronary collateral growth, suggesting angiogenic signaling pathways are activated for coronary collaterals formation during repetitive ischemia. CONCLUSIONS We developed a murine model of coronary collateral growth induced by repetitive ischemia. Our lineage tracing study shows that sprouting endothelial cells contribute to coronary collateral growth in adult mouse hearts. For the first time, sprouting angiogenesis is shown to give rise to mature coronary arteries in response to repetitive ischemia in the adult mouse hearts.
Collapse
|
264
|
Jacobsen NL, Norton CE, Shaw RL, Cornelison DDW, Segal SS. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. J Physiol 2022; 600:41-60. [PMID: 34761825 PMCID: PMC8965732 DOI: 10.1113/jp282292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Injury to skeletal muscle disrupts myofibres and their microvascular supply. While the regeneration of myofibres is well described, little is known of how the microcirculation is affected by skeletal muscle injury or its recovery during regeneration. Nevertheless, the microvasculature must also recover to restore skeletal muscle function. We aimed to define the nature of microvascular damage and time course of repair during muscle injury and regeneration induced by the myotoxin BaCl2 . To test the hypothesis that microvascular disruption occurred secondary to myofibre injury, isolated microvessels were exposed to BaCl2 or the myotoxin was injected into the gluteus maximus (GM) muscle of mice. In isolated microvessels, BaCl2 depolarized smooth muscle cells (SMCs) and endothelial cells while increasing intracellular calcium in SMCs but did not elicit death of either cell type. At 1 day post-injury (dpi) of the GM, capillary fragmentation coincided with myofibre degeneration while arteriolar and venular networks remained intact; neutrophil depletion before injury did not prevent capillary damage. Perfused capillary networks reformed by 5 dpi in association with more terminal arterioles and were dilated through 10 dpi. With no change in microvascular area or branch point number in regenerating capillary networks, fewer capillaries aligned with myofibres and were no longer organized into microvascular units. By 21 dpi, capillary orientation and microvascular unit organization were no longer different from uninjured GM. We conclude that following their disruption secondary to myofibre damage, capillaries regenerate as disorganized networks that remodel into microvascular units as regenerated myofibres mature. KEY POINTS: Skeletal muscle regenerates after injury; however, the nature of microvascular damage and repair is poorly understood. Here, the myotoxin BaCl2 , a standard experimental method of acute skeletal muscle injury, was used to investigate the response of the microcirculation to local injury of intact muscle. Intramuscular injection of BaCl2 induced capillary fragmentation with myofibre degeneration; arteriolar and venular networks remained intact. Direct exposure to BaCl2 did not kill microvascular endothelial cells or smooth muscle cells. Dilated capillary networks reformed by 5 days post-injury (dpi) in association with more terminal arterioles. Capillary orientation remained disorganized through 10 dpi. Capillaries realigned with myofibres and reorganized into microvascular units by 21 dpi, which coincides with the recovery of vasomotor control and maturation of nascent myofibres. Skeletal muscle injury disrupts its capillary supply secondary to myofibre degeneration. Reorganization of regenerating microvascular networks accompanies the recovery of blood flow regulation.
Collapse
Affiliation(s)
- Nicole L. Jacobsen
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca L. Shaw
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - D. D. W. Cornelison
- Biological Sciences, University of Missouri, Columbia, MO, USA,Christopher S. Bond Life Sciences Center, University of MO, Columbia, MO, USA
| | - Steven S. Segal
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
265
|
Xu C, Yan L, An Q, Zhang S, Guan X, Wang Z, Lv A, Liu D, Liu F, Dong B, Zhao M, Tian X, Hao C. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: an ideal model for preclinical study. Int J Med Sci 2022; 19:1241-1253. [PMID: 35928724 PMCID: PMC9346387 DOI: 10.7150/ijms.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiming An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
266
|
Wu L, Liu J, Wang S, Bai M, Wu M, Gao Z, Li J, Yu J, Liu J, Meng X. Negative Correlation Between 18F-RGD Uptake via PET and Tumoral PD-L1 Expression in Non-Small Cell Lung Cancer. Front Endocrinol (Lausanne) 2022; 13:913631. [PMID: 35846323 PMCID: PMC9279559 DOI: 10.3389/fendo.2022.913631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We investigated the correlation of 18F-AlF-NOTAPRGD2 (18F-RGD) uptake during positron emission tomography (PET) with tumoral programmed death-ligand 1 (PD-L1) expression and explored its potential in immune checkpoint inhibitor treatment. METHODS Forty-two mice were subcutaneously injected with CMT-167 lung carcinoma cells. A total of 30 mice with good growth tumor and good general condition were selected. 18F-RGD PET scanning was performed on days 0, 2, 4, 6, 9, and 11 with five mice per day. Immunohistochemistry (IHC) for PD-L1 was performed on each specimen obtained from tumors. Thirty patients with advanced non-small cell lung cancer (NSCLC) were scanned using 18F-RGD PET/CT, and Milliplex multifactor detection analyzed serum PD-1/PD-L1 expression of twenty-eight of them. Thirteen of them were analyzed immunohistochemically using core needle biopsy samples obtained from primary tumors. RESULTS Thirty mice were scanned by 18F-RGD PET/CT and analyzed for PD-L1 expression in tumor cells by IHC finally. Maximum standard uptake value (SUVmax) and mean SUV (SUVmean) were significantly lower in relatively-higher-PD-L1-expression tumors than in relatively-low-PD-L1-expression tumors (P < 0.05). In patients, the SUVmax was significantly negatively correlated with tumoral PD-L1 expression by IHC (P=0.014). SUVmean, peak SUV (SUVpeak), and gross tumor volume (GTV) were also negatively correlated with PD-L1, but without significance (P > 0.05). SUVmax, SUVmean, SUVpeak, and GTV were negatively correlated with serum PD-1 and PD-L1, but not significantly. According to the receiver operating characteristic curve analysis, significant correlations between SUVmax and tumoral PD-L1 expression in both mice and patients were present (P < 0.05). CONCLUSION Higher 18F-RGD uptake is correlated with depressed PD-L1 expression in tumor cells, and SUVmax is the best parameter to display tumoral expression of PD-L1. 18F-RGD PET may be useful for reflecting the immune status of NSCLC.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shasha Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Jie Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| |
Collapse
|
267
|
Gulati N, Gupta S, Shetty D, Juneja S, Jain A. Potentiated action on the progression of OSMF by hypoxia mediated signaling pathway by the epithelial mesenchymal transition and angiogenic apparatus. J Cancer Res Ther 2022; 19:S0. [PMID: 37147960 DOI: 10.4103/jcrt.jcrt_502_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a complex process, in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Aim The aim of the study was to ascertain the role of hypoxia-mediated signaling pathways influencing EMT and angiogenesis in progression of oral submucous fibrosis (OSMF). Materials and Methods Evaluation of the immunoexpression of alpha-smooth muscle actin (α-SMA), E-cadherin, vimentin, and factor VIII receptor antigen in OSMF and oral squamous cell carcinoma (OSCC) arising from OSMF was done. Differences between the different variables were analyzed using ANOVA test and Pearson's Chi-square test, and Mann-Whitney test was also calculated. Results The mean α-SMA positive myofibroblasts increased from Group 1 (OSMF) to Group 2 (OSCC), especially those in the deeper connective tissue stroma. The mean labeling index of vimentin and mean vessel density immunoexpression was more in Group 2 (OSCC) as compared to Group 1 (OSMF). Mean α-SMA correlated negatively with E-cadherin expression and positively with vimentin and factor VIII immunoexpression. E-cadherin expression correlated negatively with factor VIII and positively with Vimentin expression. Conclusions The molecular mechanisms responsible for the development of OSCC in patients with OSMF require unification of multiple progressive pathogenetic mechanisms involved in the progression of the disease.
Collapse
|
268
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
269
|
The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases. Antioxidants (Basel) 2022; 11:antiox11010106. [PMID: 35052610 PMCID: PMC8773163 DOI: 10.3390/antiox11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress (OS) plays a pivotal role in placental development; however, abnormal loads in oxidative stress molecules may overwhelm the placental defense mechanisms and cause pathological situations. The environment in which the mother evolves triggers an exposure of the placental tissue to chemical, physical, and biological agents of OS, with potential pathological consequences. Here we shortly review the physiological and developmental functions of OS in the placenta, and present a series of environmental pollutants inducing placental oxidative stress, for which some insights regarding the underlying mechanisms have been proposed, leading to a recapitulation of the noxious effects of OS of environmental origin upon the human placenta.
Collapse
|
270
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
271
|
Zhao C, Heuslein JL, Zhang Y, Annex BH, Popel AS. Dynamic Multiscale Regulation of Perfusion Recovery in Experimental Peripheral Arterial Disease: A Mechanistic Computational Model. JACC Basic Transl Sci 2022; 7:28-50. [PMID: 35128207 PMCID: PMC8807862 DOI: 10.1016/j.jacbts.2021.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
In peripheral arterial disease (PAD), the degree of endogenous capacity to modulate revascularization of limb muscle is central to the management of leg ischemia. To characterize the multiscale and multicellular nature of revascularization in PAD, we have developed the first computational systems biology model that mechanistically incorporates intracellular, cellular, and tissue-level features critical for the dynamic reconstitution of perfusion after occlusion-induced ischemia. The computational model was specifically formulated for a preclinical animal model of PAD (mouse hindlimb ischemia [HLI]), and it has gone through multilevel model calibration and validation against a comprehensive set of experimental data so that it accurately captures the complex cellular signaling, cell-cell communication, and function during post-HLI perfusion recovery. As an example, our model simulations generated a highly detailed description of the time-dependent spectrum-like macrophage phenotypes in HLI, and through model sensitivity analysis we identified key cellular processes with potential therapeutic significance in the pathophysiology of PAD. Furthermore, we computationally evaluated the in vivo effects of different targeted interventions on post-HLI tissue perfusion recovery in a model-based, data-driven, virtual mouse population and experimentally confirmed the therapeutic effect of a novel model-predicted intervention in real HLI mice. This novel multiscale model opens up a new avenue to use integrative systems biology modeling to facilitate translational research in PAD.
Collapse
Key Words
- ARG1, arginase-1
- EC, endothelial cell
- HLI, hindlimb ischemia
- HMGB1, high-mobility group box 1
- HUVEC, human umbilical vein endothelial call
- IFN, interferon
- IL, interleukin
- MLKL, mixed lineage kinase domain-like protein
- PAD, peripheral arterial disease
- RT-PCR, reverse transcriptase polymerase chain reaction
- TLR4, Toll-like receptor 4
- TNF, tumor necrosis factor
- VEGF, vascular endothelial growth factor
- VMP, virtual mouse population
- hindlimb ischemia
- macrophage polarization
- mathematical modeling
- necrosis/necroptosis
- perfusion recovery
- peripheral arterial disease
- systems biology
- virtual mouse population
Collapse
Affiliation(s)
- Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua L. Heuslein
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian H. Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
272
|
Tiwari R, Kapitsinou PP. Role of Endothelial Prolyl-4-Hydroxylase Domain Protein/Hypoxia-Inducible Factor Axis in Acute Kidney Injury. Nephron Clin Pract 2022; 146:243-248. [PMID: 34515168 PMCID: PMC8885783 DOI: 10.1159/000518632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) results from a cessation or restriction of blood supply to an organ followed by reestablishment of perfusion and reoxygenation. In the kidney, IRI due to transplantation, cardiac surgery with cardiopulmonary bypass, and other major vascular surgeries contributes to acute kidney injury (AKI), a clinical condition associated with significant morbidity and mortality in hospitalized patients. In the postischemic kidney, endothelial damage promotes inflammatory responses and leads to persistent hypoxia of the renal tubular epithelium. Like other cell types, endothelial cells respond to low oxygen tension by multiple hypoxic signaling mechanisms. Key mediators of adaptation to hypoxia are hypoxia-inducible factors (HIF)-1 and -2, transcription factors whose activity is negatively regulated by prolyl-hydroxylase domain proteins 1 to 3 (PHD1 to PHD3). The PHD/HIF axis controls several processes determining injury outcome, including ATP generation, cell survival, proliferation, and angiogenesis. Here, we discuss recent advances in our understanding of the endothelial-derived PHD/HIF signaling and its effects on postischemic AKI.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Address correspondence and Lead contact: Dr. Pinelopi P. Kapitsinou, Division of Nephrology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, SQBRC 8-408, Chicago, IL 60611.
| |
Collapse
|
273
|
Ryan AR, Cleaver O. Plumbing our organs: Lessons from vascular development to instruct lab generated tissues. Curr Top Dev Biol 2022; 148:165-194. [DOI: 10.1016/bs.ctdb.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
274
|
Zhang Y, Wang H, Oliveira RHM, Zhao C, Popel AS. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech Dis 2021; 14:e1550. [PMID: 34970866 PMCID: PMC9243197 DOI: 10.1002/wsbm.1550] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place in normal growth, development, exercise, and wound healing, while its dysregulation is critically linked to many major human diseases such as cancer, cardiovascular diseases, and ocular disorders; it is also crucial in regenerative medicine. Although huge efforts have been devoted to drug development for these diseases by investigation of angiogenesis‐targeted therapies, only a few therapeutics and targets have proved effective in humans due to the innate multiscale complexity and nonlinearity in the process of angiogenic signaling. As a promising approach that can help better address this challenge, systems biology modeling allows the integration of knowledge across studies and scales and provides a powerful means to mechanistically elucidate and connect the individual molecular and cellular signaling components that function in concert to regulate angiogenesis. In this review, we summarize and discuss how systems biology modeling studies, at the pathway‐, cell‐, tissue‐, and whole body‐levels, have advanced our understanding of signaling in angiogenesis and thereby delivered new translational insights for human diseases. This article is categorized under:Cardiovascular Diseases > Computational Models Cancer > Computational Models
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
275
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
276
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
277
|
Luiz RDS, Rampaso RR, Dos Santos AAC, Convento MB, Barbosa DA, da Fonseca CD, de Oliveira AS, Caires A, Furlan A, Schor N, Borges FT. BM-MSC-derived small extracellular vesicles (sEV) from trained animals presented nephroprotective potential in unilateralureteral obstruction model. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200187. [PMID: 34925478 PMCID: PMC8650265 DOI: 10.1590/1678-9199-jvatitd-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.
Collapse
Affiliation(s)
- Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodolfo Rosseto Rampaso
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alef Aragão Carneiro Dos Santos
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Dulce Aparecida Barbosa
- Paulista School of Nursing, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Andréia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Agnaldo Caires
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrei Furlan
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.,Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| |
Collapse
|
278
|
Shi Y, Wu M, Liu Y, Hu L, Wu H, Xie L, Liu Z, Wu A, Chen L, Xu C. ITGA5 Predicts Dual-Drug Resistance to Temozolomide and Bevacizumab in Glioma. Front Oncol 2021; 11:769592. [PMID: 34976814 PMCID: PMC8719456 DOI: 10.3389/fonc.2021.769592] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Anti-angiotherapy (Bevacizumab) is currently regarded as a promising option for glioma patients who are resistant to temozolomide (TMZ) treatment. But ongoing clinical research failed to meet therapeutic expectations. This study aimed to explore the pivotal genetic feature responsible for TMZ and Bevacizumab resistance in glioma patients. METHODS We downloaded the transcriptomic and methylation data of glioma patients from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases and grouped these patients into resistant and non-resistant groups based on their clinical profiles. Differentially expressed genes and pathways were identified and exhibited with software in R platform. A TMZ-resistant cell line was constructed for validating the expression change of the candidate gene, ITGA5. An ITGA5-overexpressing cell line was also constructed to investigate its biological function using the CCK8 assay, Western blot, periodic acid-Schiff (PAS) staining, and transcriptional sequencing. RESULTS Change of the cell morphology and polarity was closely associated with TMZ mono-resistance and TMZ/Bevacizumab dual resistance in glioma patients. The expression level of ITGA5 was effective in determining drug resistance and the outcome of glioma patients, which is regulated by methylation on two distinct sites. ITGA5 was augmented in TMZ-resistant glioma cells, while overexpressing ITGA5 altered the cell-promoted TMZ resistance through enhancing vascular mimicry (VM) formation correspondingly. CONCLUSIONS Both the epigenetic and transcriptional levels of ITGA5 are effective in predicting TMZ and Bevacizumab resistance, indicating that ITGA5 may serve as a predictor of the treatment outcomes of glioma patients.
Collapse
Affiliation(s)
- Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Yuyang Liu
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Lanlin Hu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Lei Xie
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Liu
- The Center for Advanced Semiconductor & Integrated Micro-System, University of Electronic Science and Technology of China, Chengdu, China
| | - Anhua Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|
279
|
Taohong Siwu-Containing Serum Enhances Angiogenesis in Rat Aortic Endothelial Cells by Regulating the VHL/HIF-1 α/VEGF Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6610116. [PMID: 34853600 PMCID: PMC8629617 DOI: 10.1155/2021/6610116] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 07/27/2021] [Accepted: 10/01/2021] [Indexed: 01/15/2023]
Abstract
Background The incidence of bone fracture and bone-related diseases is increasing every year. Angiogenesis plays a vital role in fracture healing and bone repair. This study assessed the benefits of Taohong Siwu (TSW) decoction on angiogenesis in isolated rat aortic endothelial cells (RAEC) treated with TSW-containing serum. Methods The components of TSW decoction were analyzed by liquid chromatography-mass spectrometry (LC-MS). TSW-containing serum was prepared by gavage of TSW decoction to Sprague-Dawley (SD) rats. The effects of TSW-containing serum on the viability, migration, wound healing, and angiogenesis of RAEC were detected by the MTT, transwell, wound healing, and Matrigel lumen formation assays, respectively. In addition, the effects of an HIF-1α inhibitor on TSW-containing serum-induced RAEC were also assessed. The effects of TSW-containing serum on the expression of the HIF-1α signaling pathway were evaluated by qRT-PCR and western blot analysis. Results LC-MS revealed that TSW decoction primarily contained isomaltulose, choline, D-gluconic acid, L-pipecolic acid, hypotaurine, albiflorin, and tryptophan. TSW-containing serum significantly increased the viability, migration, wound healing, and angiogenesis of RAEC in a dose-dependent manner. Furthermore, our results demonstrated that HIF-1α and VEGF expressions were increased in the cells of TSW-containing serum groups, whereas VHL expression was decreased. The effects of TSW-containing serum were reversed by treatment with an HIF-1α inhibitor. Conclusion These results suggested that TSW decoction enhanced angiogenesis by regulating the VHL/HIF-1α/VEGF signaling pathway.
Collapse
|
280
|
O'Connell F, O'Sullivan J. Help or hindrance: The obesity paradox in cancer treatment response. Cancer Lett 2021; 522:269-280. [PMID: 34534616 DOI: 10.1016/j.canlet.2021.09.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Obesity is a rising epidemic, the influence of which on cancer development, progression as well as its impact on current standard of care cancer treatments is profound with many facets. Obesity is emerging as a modulating factor in many cancer therapies, such as chemotherapy, radiotherapy, immunotherapy and combination therapies. It has been reported to diminish the efficacy of some treatments but has also been alluded to being protective in terms of reduced treatment toxicities, thus the evolution of the obesity paradox. The obese tumour microenvironment influences treatment response through modulation of a series of aspects, including altered adipocyte secretome, angiogenesis, hypoxia, fibrosis, free fatty acid uptake as well as a modulated immune landscape. However, the influence of these underlying mechanisms on cancer treatment response and the biological action of adipose tissue is still largely unknown. Elucidation of these facets may lead to the enhanced efficacy of current treatment options or the identification of novel methods to combat cancer in the obese tumour microenvironment.
Collapse
Affiliation(s)
- Fiona O'Connell
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland
| | - Jacintha O'Sullivan
- Trinity St. James's Cancer Institute, Trinity Translational Medicine Institute, Department of Surgery, Trinity College Dublin, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
281
|
Orlacchio A, Mazzone P. The Role of Toll-like Receptors (TLRs) Mediated Inflammation in Pancreatic Cancer Pathophysiology. Int J Mol Sci 2021; 22:12743. [PMID: 34884547 PMCID: PMC8657588 DOI: 10.3390/ijms222312743] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal forms of cancer, characterized by its aggressiveness and metastatic potential. Despite significant improvements in PC treatment and management, the complexity of the molecular pathways underlying its development has severely limited the available therapeutic opportunities. Toll-like receptors (TLRs) play a pivotal role in inflammation and immune response, as they are involved in pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs). Activation of TLRs initiates a signaling cascade, which in turn, leads to the transcription of several genes involved in inflammation and anti-microbial defense. TLRs are also deregulated in several cancers and can be used as prognostic markers and potential targets for cancer-targeted therapy. In this review we discuss the current knowledge about the role of TLRs in PC progression, focusing on the available TLRs-targeting compounds and their possible use in PC therapy.
Collapse
Affiliation(s)
- Arturo Orlacchio
- NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Pellegrino Mazzone
- Biogem Scarl, Istituto di Ricerche Genetiche Gaetano Salvatore, 83031 Ariano Irpino, Italy
| |
Collapse
|
282
|
An overview of current therapeutic strategies for glioblastoma and the role of CD73 as an alternative curative approach. Clin Transl Oncol 2021; 24:742-756. [PMID: 34792724 DOI: 10.1007/s12094-021-02732-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a complicated and heterogeneous brain tumor with short-term survival outcomes. Commercial therapies are not practical due to cell infiltration capacity, high proliferative rate, and blood-brain barrier. In this context, recognition of the molecular mechanism of tumor progression might help the development of new cancer therapeutics. Recently, more evidence has supported CD73 and downstream adenosine A2A/A2B receptor signaling playing a crucial role in glioblastoma pathogenesis; therefore, targeting CD73 in murine tumor models can reduce tumor development. CD73 is an ecto-enzyme inducing tumor metastasis, angiogenesis, and immune escape via the production of extracellular adenosine in the tumor microenvironment. In this review, we provided information about clinical characteristics as well as the therapeutic management of glioblastoma. Then, we focused on newly available experimental evidence distinguishing between the essential role of CD73 on this tumor growth and a new method for the treatment of GBM patients.
Collapse
|
283
|
El-Houjeiri L, Biondini M, Paquette M, Kuasne H, Pacis A, Park M, Siegel PM, Pause A. Folliculin impairs breast tumor growth by repressing TFE3-dependent induction of the Warburg effect and angiogenesis. J Clin Invest 2021; 131:144871. [PMID: 34779410 DOI: 10.1172/jci144871] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Growing tumors exist in metabolically compromised environments that require activation of multiple pathways to scavenge nutrients to support accelerated rates of growth. The folliculin (FLCN) tumor suppressor complex (FLCN, FNIP1, FNIP2) is implicated in the regulation of energy homeostasis via 2 metabolic master kinases: AMPK and mTORC1. Loss-of-function mutations of the FLCN tumor suppressor complex have only been reported in renal tumors in patients with the rare Birt-Hogg-Dube syndrome. Here, we revealed that FLCN, FNIP1, and FNIP2 are downregulated in many human cancers, including poor-prognosis invasive basal-like breast carcinomas where AMPK and TFE3 targets are activated compared with the luminal, less aggressive subtypes. FLCN loss in luminal breast cancer promoted tumor growth through TFE3 activation and subsequent induction of several pathways, including autophagy, lysosomal biogenesis, aerobic glycolysis, and angiogenesis. Strikingly, induction of aerobic glycolysis and angiogenesis in FLCN-deficient cells was dictated by the activation of the PGC-1α/HIF-1α pathway, which we showed to be TFE3 dependent, directly linking TFE3 to Warburg metabolic reprogramming and angiogenesis. Conversely, FLCN overexpression in invasive basal-like breast cancer models attenuated TFE3 nuclear localization, TFE3-dependent transcriptional activity, and tumor growth. These findings support a general role of a deregulated FLCN/TFE3 tumor suppressor pathway in human cancers.
Collapse
Affiliation(s)
| | | | | | | | | | - Morag Park
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and.,Department of Pathology, McGill University, Montréal, Canada
| | - Peter M Siegel
- Goodman Cancer Institute.,Department of Biochemistry.,Department of Medicine, and
| | - Arnim Pause
- Goodman Cancer Institute.,Department of Biochemistry
| |
Collapse
|
284
|
Schwartz MR, Debski AC, Price RJ. Ultrasound-targeted nucleic acid delivery for solid tumor therapy. J Control Release 2021; 339:531-546. [PMID: 34655678 PMCID: PMC8599656 DOI: 10.1016/j.jconrel.2021.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022]
Abstract
Depending upon multiple factors, malignant solid tumors are conventionally treated by some combination of surgical resection, radiation, chemotherapy, and immunotherapy. Despite decades of research, therapeutic responses remain poor for many cancer indications. Further, many current therapies in our armamentarium are either invasive or accompanied by toxic side effects. In lieu of traditional pharmaceutics and invasive therapeutic interventions, gene therapies offer more flexible and potentially more durable approaches for new anti-cancer therapies. Nonetheless, many current gene delivery approaches suffer from low transfection efficiency due to physiological barriers limiting extravasation and uptake of genetic material. Additionally, systemically administered gene therapies may lack target-specificity, which can lead to off-target effects. To overcome these challenges, many preclinical studies have shown the utility of focused ultrasound (FUS) to increase macromolecule uptake in cells and tissue under image guidance, demonstrating promise for improved delivery of therapeutics to solid tumors. As FUS-based drug delivery is now being tested in several clinical trials around the world, FUS-targeted gene therapy for solid tumor therapy may not be far behind. In this review, we comprehensively cover the literature pertaining to preclinical attempts to more efficiently deliver therapeutic genetic material with FUS and offer perspectives for future studies and clinical translation.
Collapse
Affiliation(s)
- Mark R Schwartz
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Anna C Debski
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA; Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
285
|
Jønsson LH, Larsen M, Olsen EM, Skovgaard AM, Munch IC. Incidence of cilioretinal arteries in 11- to 12-year-old children and association with maternal smoking during pregnancy: the Copenhagen Child Cohort 2000 Eye Study. Acta Ophthalmol 2021; 99:e1162-e1167. [PMID: 33576174 DOI: 10.1111/aos.14780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/13/2021] [Indexed: 12/01/2022]
Abstract
PURPOSE To estimate the incidence of cilioretinal arteries in a Danish child cohort and associations with birth parameters. METHODS The population-based Copenhagen Child Cohort 2000 Eye Study examined 1406 children aged 11-12 years. Colour fundus images of both eyes were graded for cilioretinal arteries in the three categories large temporal (defined as supplying the central macula), small temporal and nasal. Data on maternal smoking during pregnancy, gestational ageand birth weight were obtained from the Danish Medical Birth Registry. RESULTS A total of 463/1338 (35%) children were found to have one or more cilioretinal arteries per child. Large temporal cilioretinal arteries were present in 280/1338 (21%) of children and were associated with tobacco smoking during pregnancy, being present in 70/246 (28%) of children with mothers who were smoking during pregnancy, but only in 191/990 (19%) of children whose mothers did not smoke during pregnancy (p = 0.0022). After adjustments for potential confounders, the odds ratio of having one or more large temporal cilioretinal arteries was 1.72 (CI95% 1.19-2.47; p = 0.0035) in the smoking versus none smoking category. No other associations with birth parameters were found. CONCLUSION Cilioretinal arteries were present in more than one third of 11- to 12-year-old Danish children. Large temporal cilioretinal arteries were found in one fifth of children and were associated with maternal smoking during pregnancy. This finding suggests that the intrauterine environment may have an impact on the development of retinal vessels during foetal life.
Collapse
Affiliation(s)
- Lise Halmø Jønsson
- Institute of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Michael Larsen
- Institute of Clinical Medicine Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Department of Ophthalmology Rigshospitalet Copenhagen Denmark
| | - Else Marie Olsen
- Institute of Public Health Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Centre for Clinical Research and Prevention Bispebjerg and Frederiksberg Hospital Frederiksberg Denmark
| | - Anne Mette Skovgaard
- National Institute of Public Health University of Southern Denmark Copenhagen Denmark
| | - Inger Christine Munch
- Centre for Clinical Research and Prevention Bispebjerg and Frederiksberg Hospital Frederiksberg Denmark
| |
Collapse
|
286
|
Hirose S, Rieu JP, Anjard C, Cochet-Escartin O, Kikuchi H, Funamoto K. Aerotaxis and aerokinesis of Dictyostelium discoideum under hypoxic microenvironments. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:1187-1190. [PMID: 34891499 DOI: 10.1109/embc46164.2021.9629752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although spatiotemporal changes of oxygen in a microenvironment are known to affect the cellular dynamics of various eukaryotes, the details are not fully understood. Here, we describe the aerotaxis and aerokinesis of Dictyostelium discoideum (Dd), which has long been employed as a model organism for eukaryotic cells. We developed a microfluidic device capable of time-lapse observation of cultured cells while controlling oxygen concentrations in microchannels. Migratory behaviors of Dd were observed and quantitatively evaluated under an oxygen concentration gradient from 0% to 21% O2, as well as in various uniform oxygen conditions. In a hypoxic region within the oxygen concentration gradient, Dd migrated toward regions of higher oxygen concentration at increased velocity, which was independent of cell density. Observed under uniform oxygen concentrations of 1%, 2%, 3%, and 21%, the migration velocity of Dd increased significantly in hypoxic environments of 2% O2 or less. Thus, Dd shows aerotaxis, directed by the oxygen concentration gradient, and simultaneously shows aerokinesis, changing the migration velocity according to the oxygen concentration itself.
Collapse
|
287
|
Le N, Hufford TM, Park JS, Brewster RM. Differential expression and hypoxia-mediated regulation of the N-myc downstream regulated gene family. FASEB J 2021; 35:e21961. [PMID: 34665878 PMCID: PMC8573611 DOI: 10.1096/fj.202100443r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023]
Abstract
Many organisms rely on oxygen to generate cellular energy (adenosine triphosphate or ATP). During severe hypoxia, the production of ATP decreases, leading to cell damage or death. Conversely, excessive oxygen causes oxidative stress that is equally damaging to cells. To mitigate pathological outcomes, organisms have evolved mechanisms to adapt to fluctuations in oxygen levels. Zebrafish embryos are remarkably hypoxia-tolerant, surviving anoxia (zero oxygen) for hours in a hypometabolic, energy-conserving state. To begin to unravel underlying mechanisms, we analyze here the distribution of the N-myc Downstream Regulated Gene (ndrg) family, ndrg1-4, and their transcriptional response to hypoxia. These genes have been primarily studied in cancer cells and hence little is understood about their normal function and regulation. We show here using in situ hybridization that ndrgs are expressed in metabolically demanding organs of the zebrafish embryo, such as the brain, kidney, and heart. To investigate whether ndrgs are hypoxia-responsive, we exposed embryos to different durations and severity of hypoxia and analyzed transcript levels. We observed that ndrgs are differentially regulated by hypoxia and that ndrg1a has the most robust response, with a ninefold increase following prolonged anoxia. We further show that this treatment resulted in de novo expression of ndrg1a in tissues where the transcript is not observed under normoxic conditions and changes in Ndrg1a protein expression post-reoxygenation. These findings provide an entry point into understanding the role of this conserved gene family in the adaptation of normal cells to hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Nguyet Le
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Timothy M. Hufford
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jong S. Park
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Rachel M. Brewster
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| |
Collapse
|
288
|
Aboulgheit A, Karbasiafshar C, Zhang Z, Sabra M, Shi G, Tucker A, Sodha N, Abid MR, Sellke FW. Lactobacillus plantarum probiotic induces Nrf2-mediated antioxidant signaling and eNOS expression resulting in improvement of myocardial diastolic function. Am J Physiol Heart Circ Physiol 2021; 321:H839-H849. [PMID: 34506225 PMCID: PMC8616611 DOI: 10.1152/ajpheart.00278.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Yorkshire swine were fed standard diet (n = 7) or standard diet containing applesauce rich in caffeic acid with Lactobacillus plantarum (n = 7) for 3 wk. An ameroid constrictor was next placed around the left coronary circumflex artery, and the dietary regimens were continued. At 14 wk, cardiac function, myocardial perfusion, vascular density, and molecular signaling in ischemic myocardium were evaluated. The L. plantarum-applesauce augmented NF-E2-related factor 2 (Nrf2) in the ischemic myocardium and induced Nrf2-regulated antioxidant enzymes heme oxygenase-1 (HO-1), NADPH dehydrogenase quinone 1 (NQO-1), and thioredoxin reductase (TRXR-1). Improved left ventricular diastolic function and decreased myocardial collagen expression were seen in animals receiving the L. plantarum-applesauce supplements. The expression of endothelial nitric oxide synthase (eNOS) was increased in ischemic myocardial tissue of the treatment group, whereas levels of asymmetric dimethyl arginine (ADMA), hypoxia inducible factor 1α (HIF-1α), and phosphorylated MAPK (pMAPK) were decreased. Collateral-dependent myocardial perfusion was unaffected, whereas arteriolar and capillary densities were reduced as determined by α-smooth muscle cell actin and CD31 immunofluorescence in ischemic myocardial tissue. Dietary supplementation with L. plantarum-applesauce is a safe and effective method of enhancing Nrf2-mediated antioxidant signaling cascade in ischemic myocardium. Although this experimental diet was associated with a reduction in hypoxic stimuli, decreased vascular density, and without any change in collateral-dependent perfusion, the net effect of an increase in antioxidant activity and eNOS expression resulted in improvement in diastolic function.NEW & NOTEWORTHY Colonization of the gut microbiome with certain strains of L. Plantarum has been shown to convert caffeic acid readily available in applesauce to 4-vinyl-catechol, a potent activator of the Nrf2 antioxidant defense pathway. In this exciting study, we show that simple dietary supplementation with L. Plantarum-applesauce-mediated Nrf2 activation supports vascular function, ameliorates myocardial ischemic diastolic dysfunction, and upregulates expression of eNOS.
Collapse
Affiliation(s)
- Ahmed Aboulgheit
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Catherine Karbasiafshar
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Zhiqi Zhang
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Mohamed Sabra
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Guangbin Shi
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Aja Tucker
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Neel Sodha
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - M Ruhul Abid
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| | - Frank W Sellke
- Division of Cardiothoracic Surgery, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
| |
Collapse
|
289
|
Sandech N, Jangchart R, Komolkriengkrai M, Boonyoung P, Khimmaktong W. Efficiency of Gymnema sylvestre-derived gymnemic acid on the restoration and improvement of brain vascular characteristics in diabetic rats. Exp Ther Med 2021; 22:1420. [PMID: 34707702 PMCID: PMC8543180 DOI: 10.3892/etm.2021.10855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
Abstract
The brain is a vital organ that requires a constant blood supply. Stroke occurs when the blood supply to specific parts of the brain is reduced; diabetes is an autonomous risk factor for stroke. The present study aimed to investigate the potential vascular protective effect of gymnemic acid (GM) by assessing the morphological changes of microvasculature, along with VEGFA and angiopoietin-1 (Ang-1) protein expression in the brains of diabetic rats. Rats were divided into five groups, including control, gymnemic control rats (CGM), rats that were rendered diabetic by single injection of 60 mg/kg streptozotocin (STZ), diabetic rats treated with 400 mg/kg GM (STZ + GM) and diabetic rats treated with 4 mg/kg glibenclamide (GL; STZ + GL). After 8 weeks, brain tissues were collected to examine the three-dimensional morphology of the anterior cerebral arteries by vascular corrosion casting. Western blotting was performed to determine VEGFA and Ang-1 expression. Cerebral arteries, arterioles and capillaries were depicted the diameter, thickness and collagen accumulation of the wall, and the results demonstrated narrow diameters, thickened walls and collagen accumulation in the STZ group. After receiving GM, the histopathological changes were similar to that of the control group. Through vascular corrosion casting and microscopy, signs of vessel restoration and improvement were exhibited by increased diameters, and healthy and nourished arterioles and capillaries following treatment with GM. Furthermore, VEGF expression and Ang-1 secretion decreased in the STZ + GM group compared with STZ rats. The results of the present study revealed that GM treatment decreased blood vessel damage in the brain, suggesting that it may be used as a therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Nichawadee Sandech
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rawipa Jangchart
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Manaras Komolkriengkrai
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Piyakorn Boonyoung
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Wipapan Khimmaktong
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
290
|
Kniotek M, Roszczyk A, Zych M, Wrzosek M, Szafarowska M, Zagożdżon R, Jerzak M. Sildenafil Citrate Downregulates PDE5A mRNA Expression in Women with Recurrent Pregnancy Loss without Altering Angiogenic Factors-A Preliminary Study. J Clin Med 2021; 10:jcm10215086. [PMID: 34768607 PMCID: PMC8584603 DOI: 10.3390/jcm10215086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/16/2022] Open
Abstract
In our previous study, we showed that sildenafil citrate (SC), a selective PDE5A blocker, modulated NK cell activity in patients with recurrent pregnancy loss, which correlated with positive pregnancy outcomes. It was found that NK cells had a pivotal role in decidualization, angiogenesis, spiral artery remodeling, and the regulation of trophoblast invasion. Thus, in the current study, we determined the effects of SC on angiogenic factor expression and production, as well as idNK cell activity in the presence of nitric synthase blocker L-NMMA. Methods: NK cells (CD56+) were isolated from the peripheral blood of 15 patients and 15 fertile women on MACS columns and cultured in transformation media containing IL-15, TGF-β, and AZA—a methylation agent—for 7 days in hypoxia (94% N2, 1% O2, 5% CO2). Cultures were set up in four variants: (1) with SC, (2) without SC, (3) with NO, a synthase blocker, and (4) with SC and NO synthase blocker. NK cell activity was determined after 7 days of culturing as CD107a expression after an additional 4h of stimulation with K562 erythroleukemia cells. The expression of the PDE5A, VEGF-A, PIGF, IL-8, and RENBP genes was determined with quantitative real-time PCR (qRT-PCR) using TaqMan probes and ELISA was used to measure the concentrations of VEGF-A, PLGF, IL-8, Ang-I, Ang-II, IFN–γ proteins in culture supernatants after SC supplementation. Results: SC downregulated PDE5A expression and had no effect on other studied angiogenic factors. VEGF-A expression was increased in RPL patients compared with fertile women. Similarly, VEGF production was enhanced in RPL patients’ supernatants and SC increased the concentration of PIGF in culture supernatants. SC did not affect the expression or concentration of other studied factors, nor idNK cell activity, regardless of NO synthase blockade.
Collapse
Affiliation(s)
- Monika Kniotek
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Aleksander Roszczyk
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Michał Zych
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Laboratory of Biochemistry and Clinical Chemistry, Preclinical Research Center, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- Correspondence:
| | - Monika Szafarowska
- Department of Gynecology and Oncological Gynecology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland;
| | - Radosław Zagożdżon
- Department of Clinical Immunology, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland; (M.K.); (A.R.); (M.Z.); (R.Z.)
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, 59 Nowogrodzka St., 02-006 Warsaw, Poland
| | - Małgorzata Jerzak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Laboratory of Biochemistry and Clinical Chemistry, Preclinical Research Center, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland
- m-CLINIC 77/U9 Pulawska St., 02-595 Warsawa, Poland
| |
Collapse
|
291
|
Corsale AM, Di Simone M, Lo Presti E, Picone C, Dieli F, Meraviglia S. Metabolic Changes in Tumor Microenvironment: How Could They Affect γδ T Cells Functions? Cells 2021; 10:2896. [PMID: 34831116 PMCID: PMC8616133 DOI: 10.3390/cells10112896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
The metabolic changes that occur in tumor microenvironment (TME) can influence not only the biological activity of tumor cells, which become more aggressive and auto sustained, but also the immune response against tumor cells, either producing ineffective responses or polarizing the response toward protumor activity. γδ T cells are a subset of T cells characterized by a plasticity that confers them the ability to differentiate towards different cell subsets according to the microenvironment conditions. On this basis, we here review the more recent studies focused on altered tumor metabolism and γδ T cells, considering their already known antitumor role and the possibility of manipulating their effector functions by in vitro and in vivo approaches. γδ T cells, thanks to their unique features, are themselves a valid alternative to overcome the limits associated with the use of conventional T cells, such as major histocompatibility complex (MHC) restriction, costimulatory signal and specific tumor-associated antigen recognition. Lipids, amino acids, hypoxia, prostaglandins and other metabolic changes inside the tumor microenvironment could reduce the efficacy of this important immune population and polarize γδ T cells toward IL17 producing cells that play a pro tumoral role. A deeper knowledge of this phenomenon could be helpful to formulate new immunotherapeutic approaches that target tumor metabolisms.
Collapse
Affiliation(s)
- Anna Maria Corsale
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Marta Di Simone
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Elena Lo Presti
- National Research Council (CNR), Institute for Biomedical Research and Innovation (IRIB), 90146 Palermo, Italy;
| | - Carmela Picone
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| | - Serena Meraviglia
- Department of Biomedicine, Neurosciences and Advanced Diagnosis, University of Palermo, 90133 Palermo, Italy; (A.M.C.); (M.D.S.); (C.P.); (F.D.)
- Central Laboratory of Advanced Diagnosis and Biomedical Research (CLADIBIOR), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
292
|
Abstract
Metastases represent a major cause of cancer-associated deaths. Despite extensive research, targeting metastasis remains the main obstacle in cancer therapy. Therefore, it is of tremendous importance to elucidate the mechanisms that impinge on the different steps of the metastatic cascade. Metabolic plasticity is a cornerstone of the tumorigenic process that not only enables cancer cells to rapidly proliferate but also thrive and retain vitality. Plasticity of the metabolic networks that wire cancer cells is of utmost importance during the metastatic cascade when cancer cells are at their most vulnerable and have to survive in a panoply of inhospitable environments as they make their journey to form metastatic lesions. Here, we highlight which metabolic processes are known to power metastasis formation and lay the foundation for additional work aimed at discovering regulatory nodes of metabolic plasticity that can be used to target metastatic disease.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
293
|
Ahmad F, Cherukuri MK, Choyke PL. Metabolic reprogramming in prostate cancer. Br J Cancer 2021; 125:1185-1196. [PMID: 34262149 PMCID: PMC8548338 DOI: 10.1038/s41416-021-01435-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/21/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Although low risk localised prostate cancer has an excellent prognosis owing to effective treatments, such as surgery, radiation, cryosurgery and hormone therapy, metastatic prostate cancer remains incurable. Existing therapeutic regimens prolong life; however, they are beset by problems of resistance, resulting in poor outcomes. Treatment resistance arises primarily from tumour heterogeneity, altered genetic signatures and metabolic reprogramming, all of which enable the tumour to serially adapt to drugs during the course of treatment. In this review, we focus on alterations in the metabolism of prostate cancer, including genetic signatures and molecular pathways associated with metabolic reprogramming. Advances in our understanding of prostate cancer metabolism might help to explain many of the adaptive responses that are induced by therapy, which might, in turn, lead to the attainment of more durable therapeutic responses.
Collapse
Affiliation(s)
- Fahim Ahmad
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA ,grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Murali Krishna Cherukuri
- grid.48336.3a0000 0004 1936 8075Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Peter L. Choyke
- grid.48336.3a0000 0004 1936 8075Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
294
|
Perugini V, Santin M. A Substrate-Mimicking Basement Membrane Drives the Organization of Human Mesenchymal Stromal Cells and Endothelial Cells Into Perivascular Niche-Like Structures. Front Cell Dev Biol 2021; 9:701842. [PMID: 34650967 PMCID: PMC8507467 DOI: 10.3389/fcell.2021.701842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/10/2021] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix-derived products (e.g. Matrigel) are widely used for in vitro cell cultures both as two-dimensional (2D) substrates and as three-dimensional (3D) encapsulation gels because of their ability to control cell phenotypes through biospecific cues. However, batch-to-batch variations, poor stability, cumbersome handling, and the relatively high costs strictly limit their use. Recently, a new substrate known as PhenoDrive-Y has been used as 2D coating of tissue culture plastic showing to direct the bone marrow mesenchymal stromal cells (MSCs) toward the formation of 3D spheroids. When organized into 3D spheroids, the MSCs expressed levels of pluripotency markers and of paracrine angiogenic activity higher than those of the MSCs adhering as fibroblast-like colonies on tissue culture plastic. The formation of the spheroids was attributed to the properties of this biomaterial that resemble the main features of the basement membrane by mimicking the mesh structure of collagen IV and by presenting the cells with orderly spaced laminin bioligands. In this study, PhenoDrive-Y was compared to Matrigel for its ability to drive the formation of perivascular stem cell niche-like structures in 2D co-culture conditions of human endothelial cells and adult bone marrow MSCs. Morphological analyses demonstrated that, when compared to Matrigel, PhenoDrive-Y led endothelial cells to sprout into a more consolidated tubular network and that the MSCs nestled as compact spheroids above the anastomotic areas of this network resemble more closely the histological features of the perivascular stem cell niche. A study of the expressions of relevant markers led to the identification of the pathways linking the PhenoDrive-Y biomimicking properties to the acquired histological features, demonstrating the enhanced levels of stemness, renewal potential, predisposition to migration, and paracrine activities of the MSCs.
Collapse
Affiliation(s)
- Valeria Perugini
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Matteo Santin
- Centre for Regenerative Medicine and Devices, School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| |
Collapse
|
295
|
Zhou C, Zhang H, Lu L. Identification and Validation of Hypoxia-Related lncRNA Signature as a Prognostic Model for Hepatocellular Carcinoma. Front Genet 2021; 12:744113. [PMID: 34650600 PMCID: PMC8505699 DOI: 10.3389/fgene.2021.744113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most general malignant tumors. Hypoxia is a critical clinical characteristic and acts as a significant part in the development and cancers’ prognosis. The prognostic value and biological functions of hypoxia-related lncRNAs in hepatocellular carcinoma is little known. Thus, we aim to establish a hypoxia-related lncRNA signature to predict the HCC patients’ survival. First, we extracted the hypoxia-related genes and expression of lncRNAs from the MSigDB and TCGA database, respectively. The co-expression analysis among hypoxia-related mRNAs and lncRNAs was employed to identify hypoxia-related lncRNAs. Then, comprehensive analyses of lncRNAs expression level and survival data were applied to establish the signature. We built a prognostic signature on the foundation of the three differently expressed hypoxia-related lncRNAs. Kaplan-Meier curves indicated the low-risk group is associated with better survival. The 1−, 3−, and 5 years AUC values of the signature were 0.805, 0.672 and 0.63 respectively. The test set performed consistent outcomes. A nomogram was built grounded on the risk score and clinicopathological features. GSEA showed the immune-related pathways in high-risk group, while metabolism-related pathways in low-risk group. Besides, we found this model was correlated with the clinical features, tumor immune cell infiltration, immune checkpoints, and m6A-related genes. Finally, a novel signature based on hypoxia-related lncRNAs was established and validated for predicting HCC patients’ survival and may offer some useful information for immunotherapies.
Collapse
Affiliation(s)
- Chenghui Zhou
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China.,Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Huajun Zhang
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Lu
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
296
|
Knoepp F, Wahl J, Andersson A, Kraut S, Sommer N, Weissmann N, Ramser K. A Microfluidic System for Simultaneous Raman Spectroscopy, Patch-Clamp Electrophysiology, and Live-Cell Imaging to Study Key Cellular Events of Single Living Cells in Response to Acute Hypoxia. SMALL METHODS 2021; 5:e2100470. [PMID: 34927935 DOI: 10.1002/smtd.202100470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Indexed: 06/14/2023]
Abstract
The ability to sense changes in oxygen availability is fundamentally important for the survival of all aerobic organisms. However, cellular oxygen sensing mechanisms and pathologies remain incompletely understood and studies of acute oxygen sensing, in particular, have produced inconsistent results. Current methods cannot simultaneously measure the key cellular events in acute hypoxia (i.e., changes in redox state, electrophysiological properties, and mechanical responses) at controlled partial pressures of oxygen (pO2 ). The lack of such a comprehensive method essentially contributes to the discrepancies in the field. A sealed microfluidic system that combines i) Raman spectroscopy, ii) patch-clamp electrophysiology, and iii) live-cell imaging under precisely controlled pO2 have therefore been developed. Merging these modalities allows label-free and simultaneous observation of oxygen-dependent alterations in multiple cellular redox couples, membrane potential, and cellular contraction. This technique is adaptable to any cell type and allows in-depth insight into acute oxygen sensing processes underlying various physiologic and pathologic conditions.
Collapse
Affiliation(s)
- Fenja Knoepp
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Joel Wahl
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Anders Andersson
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| | - Simone Kraut
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Natascha Sommer
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary Institute (CPI), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig-University, Giessen, D-35392, Giessen, Germany
| | - Kerstin Ramser
- Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå, SE-97187, Sweden
| |
Collapse
|
297
|
A vascularized tumoroid model for human glioblastoma angiogenesis. Sci Rep 2021; 11:19550. [PMID: 34599235 PMCID: PMC8486855 DOI: 10.1038/s41598-021-98911-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.
Collapse
|
298
|
Parra-Izquierdo I, Sánchez-Bayuela T, López J, Gómez C, Pérez-Riesgo E, San Román JA, Sánchez Crespo M, Yacoub M, Chester AH, García-Rodríguez C. Interferons Are Pro-Inflammatory Cytokines in Sheared-Stressed Human Aortic Valve Endothelial Cells. Int J Mol Sci 2021; 22:ijms221910605. [PMID: 34638942 PMCID: PMC8508640 DOI: 10.3390/ijms221910605] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 02/07/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is an athero-inflammatory process. Growing evidence supports the inflammation-driven calcification model, mediated by cytokines such as interferons (IFNs) and tumor necrosis factor (TNF)-α. Our goal was investigating IFNs' effects in human aortic valve endothelial cells (VEC) and the potential differences between aortic (aVEC) and ventricular (vVEC) side cells. The endothelial phenotype was analyzed by Western blot, qPCR, ELISA, monocyte adhesion, and migration assays. In mixed VEC populations, IFNs promoted the activation of signal transducers and activators of transcription-1 and nuclear factor-κB, and the subsequent up-regulation of pro-inflammatory molecules. Side-specific VEC were activated with IFN-γ and TNF-α in an orbital shaker flow system. TNF-α, but not IFN-γ, induced hypoxia-inducible factor (HIF)-1α stabilization or endothelial nitric oxide synthase downregulation. Additionally, IFN-γ inhibited TNF-α-induced migration of aVEC. Also, IFN-γ triggered cytokine secretion and adhesion molecule expression in aVEC and vVEC. Finally, aVEC were more prone to cytokine-mediated monocyte adhesion under multiaxial flow conditions as compared with uniaxial flow. In conclusion, IFNs promote inflammation and reduce TNF-α-mediated migration in human VEC. Moreover, monocyte adhesion was higher in inflamed aVEC sheared under multiaxial flow, which may be relevant to understanding the initial stages of CAVD.
Collapse
Affiliation(s)
- Iván Parra-Izquierdo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Tania Sánchez-Bayuela
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Javier López
- ICICOR, Hospital Clínico Universitario, 47005 Valladolid, Spain; (J.L.); (J.A.S.R.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Cristina Gómez
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Enrique Pérez-Riesgo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - J. Alberto San Román
- ICICOR, Hospital Clínico Universitario, 47005 Valladolid, Spain; (J.L.); (J.A.S.R.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Mariano Sánchez Crespo
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
| | - Magdi Yacoub
- National Heart & Lung Institute, Imperial College London, London SW3 6LR, UK;
- Magdi Yacoub Institute, Harefield UB9 6JH, UK
| | - Adrian H. Chester
- National Heart & Lung Institute, Imperial College London, London SW3 6LR, UK;
- Magdi Yacoub Institute, Harefield UB9 6JH, UK
- Correspondence: (A.H.C.); (C.G.-R.); Tel.: +44-(0)1895-760732 (A.H.C.); +34-983-184841 (C.G.-R.)
| | - Carmen García-Rodríguez
- Instituto de Biología y Genética Molecular, Spanish National Research Council (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain; (I.P.-I.); (T.S.-B.); (C.G.); (E.P.-R.); (M.S.C.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Correspondence: (A.H.C.); (C.G.-R.); Tel.: +44-(0)1895-760732 (A.H.C.); +34-983-184841 (C.G.-R.)
| |
Collapse
|
299
|
Rajendran S, Sundaresan L, Venkatachalam G, Rajendran K, Behera J, Chatterjee S. Temporal dynamics of nitric oxide wave in early vasculogenesis. Vasc Med 2021; 27:3-12. [PMID: 34570637 DOI: 10.1177/1358863x211035445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Endothelium-derived nitric oxide (NO) is a mediator of angiogenesis. However, NO-mediated regulation of vasculogenesis remains largely unknown. In the present study, we show that the inhibition of NO significantly attenuated endothelial migration, ring formation, and tube formation. The contribution of nitric oxide synthase (NOS) enzymes during early vasculogenesis was assessed by evaluating endothelial NOS (eNOS) and inducible NOS (iNOS) mRNA expression during HH10-HH13 stages of chick embryo development. iNOS but not eNOS was expressed at HH12 and HH13 stages. We hypothesized that vasculogenic events are controlled by NOS-independent reduction of nitrite to NO under hypoxia during the very early phases of development. Semi-quantitative polymerase chain reaction analysis of hypoxia-inducible factor-1α (HIF-1α) showed higher expression at HH10 stage, after which a decrease was observed. This observation was in correlation with the nitrite reductase (NR) activity at HH10 stage. We observed a sodium nitrite-induced increase in NO levels at HH10, reaching a gradual decrease at HH13. The possible involvement of a HIF/NF-κB/iNOS signaling pathway in the process of early vasculogenesis is suggested by the inverse relationship observed between nitrite reduction and NOS activation between HH10 and HH13 stages. Further, we detected that NR-mediated NO production was inhibited by several NR inhibitors at the HH10 stage, whereas the inhibitors eventually became less effective at later stages. These findings suggest that the temporal dynamics of the NO source switches from NR to NOS in the extraembryonic area vasculosa, where both nitrite reduction and NOS activity are defined by hypoxia.
Collapse
Affiliation(s)
- Saranya Rajendran
- Vascular Biology Laboratory, AU-KBC Research Centre, Chennai, TN, India
| | - Lakshmikirupa Sundaresan
- Vascular Biology Laboratory, AU-KBC Research Centre, Chennai, TN, India.,Department of Biotechnology, Anna University, Chennai, TN, India
| | | | | | - Jyotirmaya Behera
- Vascular Biology Laboratory, AU-KBC Research Centre, Chennai, TN, India
| | - Suvro Chatterjee
- Vascular Biology Laboratory, AU-KBC Research Centre, Chennai, TN, India.,Department of Biotechnology, Anna University, Chennai, TN, India
| |
Collapse
|
300
|
Aspriţoiu VM, Stoica I, Bleotu C, Diaconu CC. Epigenetic Regulation of Angiogenesis in Development and Tumors Progression: Potential Implications for Cancer Treatment. Front Cell Dev Biol 2021; 9:689962. [PMID: 34552922 PMCID: PMC8451900 DOI: 10.3389/fcell.2021.689962] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
Angiogenesis is a multi-stage process of new blood vessel development from pre-existing vessels toward an angiogenic stimulus. The process is essential for tissue maintenance and homeostasis during embryonic development and adult life as well as tumor growth. Under normal conditions, angiogenesis is involved in physiological processes, such as wound healing, cyclic regeneration of the endometrium, placental development and repairing certain cardiac damage, in pathological conditions, it is frequently associated with cancer development and metastasis. The control mechanisms of angiogenesis in carcinogenesis are tightly regulated at the genetic and epigenetic level. While genetic alterations are the critical part of gene silencing in cancer cells, epigenetic dysregulation can lead to repression of tumor suppressor genes or oncogene activation, becoming an important event in early development and the late stages of tumor development, as well. The global alteration of the epigenetic spectrum, which includes DNA methylation, histone modification, chromatin remodeling, microRNAs, and other chromatin components, is considered one of the hallmarks of cancer, and the efforts are concentrated on the discovery of molecular epigenetic markers that identify cancerous precursor lesions or early stage cancer. This review aims to highlight recent findings on the genetic and epigenetic changes that can occur in physiological and pathological angiogenesis and analyze current knowledge on how deregulation of epigenetic modifiers contributes to tumorigenesis and tumor maintenance. Also, we will evaluate the clinical relevance of epigenetic markers of angiogenesis and the potential use of "epi-drugs" in modulating the responsiveness of cancer cells to anticancer therapy through chemotherapy, radiotherapy, immunotherapy and hormone therapy as anti-angiogenic strategies in cancer.
Collapse
Affiliation(s)
| | - Ileana Stoica
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Coralia Bleotu
- Faculty of Biology, University of Bucharest, Bucharest, Romania.,Romanian Academy, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | | |
Collapse
|