251
|
The Synergistic Cooperation between TGF-β and Hypoxia in Cancer and Fibrosis. Biomolecules 2022; 12:biom12050635. [PMID: 35625561 PMCID: PMC9138354 DOI: 10.3390/biom12050635] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/10/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGF-β) is a multifunctional cytokine regulating homeostasis and immune responses in adult animals and humans. Aberrant and overactive TGF-β signaling promotes cancer initiation and fibrosis through epithelial–mesenchymal transition (EMT), as well as the invasion and metastatic growth of cancer cells. TGF-β is a key factor that is active during hypoxic conditions in cancer and is thereby capable of contributing to angiogenesis in various types of cancer. Another potent role of TGF-β is suppressing immune responses in cancer patients. The strong tumor-promoting effects of TGF-β and its profibrotic effects make it a focus for the development of novel therapeutic strategies against cancer and fibrosis as well as an attractive drug target in combination with immune regulatory checkpoint inhibitors. TGF-β belongs to a family of cytokines that exert their function through signaling via serine/threonine kinase transmembrane receptors to intracellular Smad proteins via the canonical pathway and in combination with co-regulators such as the adaptor protein and E3 ubiquitin ligases TRAF4 and TRAF6 to promote non-canonical pathways. Finally, the outcome of gene transcription initiated by TGF-β is context-dependent and controlled by signals exerted by other growth factors such as EGF and Wnt. Here, we discuss the synergistic cooperation between TGF-β and hypoxia in development, fibrosis and cancer.
Collapse
|
252
|
Ng CJ, Liu A, Venkataraman S, Ashworth KJ, Baker CD, O'Rourke R, Vibhakar R, Jones KL, Di Paola J. Single-cell transcriptional analysis of human endothelial colony-forming cells from patients with low VWF levels. Blood 2022; 139:2240-2251. [PMID: 35143643 PMCID: PMC8990376 DOI: 10.1182/blood.2021010683] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022] Open
Abstract
von Willebrand factor (VWF) plays a key role in normal hemostasis, and deficiencies of VWF lead to clinically significant bleeding. We sought to identify novel modifiers of VWF levels in endothelial colony-forming cells (ECFCs) using single-cell RNA sequencing (scRNA-seq). ECFCs were isolated from patients with low VWF levels (plasma VWF antigen levels between 30 and 50 IU/dL) and from healthy controls. Human umbilical vein endothelial cells were used as an additional control cell line. Cells were characterized for their Weibel Palade body (WPB) content and VWF release. scRNA-seq of all cell lines was performed to evaluate for gene expression heterogeneity and for candidate modifiers of VWF regulation. Candidate modifiers identified by scRNA-seq were further characterized with small-interfering RNA (siRNA) experiments to evaluate for effects on VWF. We observed that ECFCs derived from patients with low VWF demonstrated alterations in baseline WPB metrics and exhibit impaired VWF release. scRNA-seq analyses of these endothelial cells revealed overall decreased VWF transcription, mosaicism of VWF expression, and genes that are differentially expressed in low VWF ECFCs and control endothelial cells (control ECs). An siRNA screen of potential VWF modifiers provided further evidence of regulatory candidates, and 1 such candidate, FLI1, alters the transcriptional activity of VWF. In conclusion, ECFCs from individuals with low VWF demonstrate alterations in their baseline VWF packaging and release compared with control ECs. scRNA-seq revealed alterations in VWF transcription, and siRNA screening identified multiple candidate regulators of VWF.
Collapse
Affiliation(s)
- Christopher J Ng
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Alice Liu
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Katrina J Ashworth
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| | - Christopher D Baker
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rebecca O'Rourke
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado and Children's Hospital Colorado, Aurora, CO
- University of Colorado, Anschutz Medical Campus, Aurora, CO
| | - Kenneth L Jones
- Department of Cell Biology and
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Jorge Di Paola
- Division of Hematology Oncology, Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO; and
| |
Collapse
|
253
|
Jazwiec PA, Patterson VS, Ribeiro TA, Yeo E, Kennedy KM, Mathias PCF, Petrik JJ, Sloboda DM. Paternal obesity induces placental hypoxia and sex-specific impairments in placental vascularization and offspring metabolism. Biol Reprod 2022; 107:574-589. [PMID: 35377412 PMCID: PMC9382389 DOI: 10.1093/biolre/ioac066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Paternal obesity predisposes offspring to metabolic dysfunction, but the underlying mechanisms remain unclear. We investigated whether this metabolic dysfunction is associated with changes in placental vascular development and is fueled by endoplasmic reticulum (ER) stress-mediated changes in fetal hepatic development. We also determined whether paternal obesity indirectly affects the in utero environment by disrupting maternal metabolic adaptations to pregnancy. Male mice fed a standard chow or high fat diet (60%kcal fat) for 8–10 weeks were time-mated with female mice to generate pregnancies and offspring. Glucose tolerance was evaluated in dams at mid-gestation (embryonic day (E) 14.5) and late gestation (E18.5). Hypoxia, angiogenesis, endocrine function, macronutrient transport, and ER stress markers were evaluated in E14.5 and E18.5 placentae and/or fetal livers. Maternal glucose tolerance was assessed at E14.5 and E18.5. Metabolic parameters were assessed in offspring at ~60 days of age. Paternal obesity did not alter maternal glucose tolerance but induced placental hypoxia and altered placental angiogenic markers, with the most pronounced effects in female placentae. Paternal obesity increased ER stress-related protein levels (ATF6 and PERK) in the fetal liver and altered hepatic expression of gluconeogenic factors at E18.5. Offspring of obese fathers were glucose intolerant and had impaired whole-body energy metabolism, with more pronounced effects in female offspring. Metabolic deficits in offspring due to paternal obesity may be mediated by sex-specific changes in placental vessel structure and integrity that contribute to placental hypoxia and may lead to poor fetal oxygenation and impairments in fetal metabolic signaling pathways in the liver.
Collapse
Affiliation(s)
- Patrycja A Jazwiec
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Violet S Patterson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada
| | - Tatiane A Ribeiro
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Erica Yeo
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Katherine M Kennedy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada
| | - Paulo C F Mathias
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Paraná 87020-900, Brazil
| | - Jim J Petrik
- Department of Biomedical Sciences, University of Guelph, Guelph N1G 2W1, Canada
| | - Deborah M Sloboda
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton L8S 4L8, Canada.,Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton L8S 4L8, Canada.,Department of Pediatrics, McMaster University, Hamilton L8S 4L8, Canada.,Department of Obstetrics and Gynecology, McMaster University, Hamilton L8S 4L8, Canada
| |
Collapse
|
254
|
Nangole FW, Agak G. The effects of negative pressure wound therapy on wounds with cerebrospinal fluid leakages. J Wound Care 2022; 31:348-351. [DOI: 10.12968/jowc.2022.31.4.348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Objective: Negative pressure wound therapy (NPWT) has been widely used for a variety of wounds with good outcomes. However, it is contraindicated in the management of wounds with cerebrospinal fluid (CSF) leakages. The reason is the fear of a sudden shift of CSF fluid as a result of suction leading to brain herniation or coning. There is a paucity of data to either support or negate such claims. We aimed to determine the effect of NPWT in the management of patients with wounds with CSF leakages. Method: This was a longitudinal prospective study of patients having wounds with CSF leakages managed with NPWT in our institute. Outcome measures evaluated were changes in the level of consciousness, Glasgow Coma Scale (GCS) score, length of hospital stay, mean effluent collected, time taken for the wounds to heal/close and complications related to NPWT. Results: A total of 12 patients with wounds that had CSF leakage were managed with NPWT over two years. Of the patients, nine had wounds in communication with the brain, with three patients having spinal cord wounds. The average effluent collected on the first day of applying NPWT was 510ml, and by the third day this had fallen to approximately 200ml. The mean time taken for wounds to close was 12.3 days. There was no evidence of herniation nor any other morbidities or mortalities reported in any of our patients. Conclusion: NPWT, as indicated in this series, had a beneficial effect in the management of wounds with CSF leakage. NPWT, once applied to the wound, caused a tamponade effect that resulted in stoppage of the leakage of the CSF and did not lead to suction of the fluid, as previously thought. The dressings ensured an airtight system, preventing communication between the wound and the external environment, thus reducing sepsis while awaiting definitive wound closure.
Collapse
Affiliation(s)
| | - George Agak
- Division of Dermatology, David Geffen School of Medicine, University of California, Los Angeles, CA, US
| |
Collapse
|
255
|
Park J, Cho HG, Park J, Lee G, Kim HS, Paeng K, Song S, Park G, Ock CY, Chae YK. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:701-711. [PMID: 35339231 DOI: 10.1016/j.ajpath.2022.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/26/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The tumor microenvironment can be classified into three immune phenotypes: inflamed, immune excluded, and immune-desert. Immunotherapy efficacy has been shown to vary by phenotype; yet, the mechanisms are poorly understood and demand further investigation. This study unveils the mechanisms using an artificial intelligence-powered software called Lunit SCOPE. Artificial intelligence was used to classify 965 samples of non-small-cell lung carcinoma from The Cancer Genome Atlas into the three immune phenotypes. The immune and mutational profiles that shape each phenotype using xCell, gene set enrichment analysis with RNA-sequencing data, and cBioportal were described. In the inflamed subtype, which showed higher cytolytic score, the enriched pathways were generally associated with immune response and immune-related cell types were highly expressed. In the immune excluded subtype, enriched glycolysis, fatty acid, and cholesterol metabolism pathways were observed. The KRAS mutation, BRAF mutation, and MET splicing variant were mostly observed in the inflamed subtype. The two prominent mutations found in the immune excluded subtype were EGFR and PIK3CA mutations. This study is the first to report the distinct immunologic and mutational landscapes of immune phenotypes, and demonstrates the biological relevance of the classification. In light of these findings, the study offers insights into potential treatment options tailored to each immune phenotype.
Collapse
Affiliation(s)
- Jonghanne Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hyung-Gyo Cho
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jewel Park
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Grace Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hye Sung Kim
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | | | | | | | - Young Kwang Chae
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois.
| |
Collapse
|
256
|
Shoari A, Tahmasebi M, Khodabakhsh F, Cohan RA, Oghalaie A, Behdani M. Angiogenic biomolecules specific nanobodies application in cancer imaging and therapy; review and updates. Int Immunopharmacol 2022; 105:108585. [DOI: 10.1016/j.intimp.2022.108585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 11/05/2022]
|
257
|
Kumar R, Rao GN. Novel Role of Prereplication Complex Component Cell Division Cycle 6 in Retinal Neovascularization. Arterioscler Thromb Vasc Biol 2022; 42:407-427. [PMID: 35236105 PMCID: PMC8957605 DOI: 10.1161/atvbaha.121.317182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The major aim of this study is to investigate whether CDC6 (cell division cycle 6), a replication origin recognition complex component, plays a role in retinal neovascularization, and if so, to explore the underlying mechanisms. METHODS In this study, we used a variety of approaches including cellular and moleculer biological methodologies as well as global and tissue-specific knockout mice in combination with an oxygen-induced retinopathy model to study the role of CDC6 in retinal neovascularization. RESULTS VEGFA (vascular endothelial growth factor A)-induced CDC6 expression in a time-dependent manner in human retinal microvascular endothelial cells. In addition, VEGFA-induced CDC6 expression was dependent on PLCβ3 (phospholipase Cβ3)-mediated NFATc1 (nuclear factor of activated T cells c1) activation. Furthermore, while siRNA-mediated depletion of PLCβ3, NFATc1, or CDC6 levels blunted VEGFA-induced human retinal microvascular endothelial cell angiogenic events such as proliferation, migration, sprouting, and tube formation, CDC6 overexpression rescued these effects in NFATc1-deficient mouse retinal microvascular endothelial cells. In accordance with these observations, global knockdown of PLCβ3 or endothelial cell-specific deletion of NFATc1 or siRNA-mediated depletion of CDC6 levels substantially inhibited oxygen-induced retinopathy-induced retinal sprouting and neovascularization. In addition, retroviral-mediated overexpression of CDC6 rescued oxygen-induced retinopathy-induced retinal neovascularization from inhibition in PLCβ3 knockout mice and in endothelial cell-specific NFATc1-deficient mice. CONCLUSIONS The above observations clearly reveal that PLCβ3-mediated NFATc1 activation-dependent CDC6 expression plays a crucial role in VEGFA/oxygen-induced retinopathy-induced retinal neovascularization.
Collapse
Affiliation(s)
- Raj Kumar
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| | - Gadiparthi N Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
258
|
Valdoz JC, Franks NA, Cribbs CG, Jacobs DJ, Dodson EL, Knight CJ, Poulson PD, Garfield SR, Johnson BC, Hemeyer BM, Sudo MT, Saunooke JA, Kartchner BC, Saxton A, Vallecillo-Zuniga ML, Santos M, Chamberlain B, Christensen KA, Nordin GP, Narayanan AS, Raghu G, Van Ry PM. Soluble ECM promotes organotypic formation in lung alveolar model. Biomaterials 2022; 283:121464. [DOI: 10.1016/j.biomaterials.2022.121464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/15/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
|
259
|
Hakim M, Kermanshah L, Abouali H, Hashemi HM, Yari A, Khorasheh F, Alemzadeh I, Vossoughi M. Unraveling Cancer Metastatic Cascade Using Microfluidics-based Technologies. Biophys Rev 2022; 14:517-543. [PMID: 35528034 PMCID: PMC9043145 DOI: 10.1007/s12551-022-00944-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/14/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer has long been a leading cause of death. The primary tumor, however, is not the main cause of death in more than 90% of cases. It is the complex process of metastasis that makes cancer deadly. The invasion metastasis cascade is the multi-step biological process of cancer cell dissemination to distant organ sites and adaptation to the new microenvironment site. Unraveling the metastasis process can provide great insight into cancer death prevention or even treatment. Microfluidics is a promising platform, that provides a wide range of applications in metastasis-related investigations. Cell culture microfluidic technologies for in vitro modeling of cancer tissues with fluid flow and the presence of mechanical factors have led to the organ-on-a-chip platforms. Moreover, microfluidic systems have also been exploited for capturing and characterization of circulating tumor cells (CTCs) that provide crucial information on the metastatic behavior of a tumor. We present a comprehensive review of the recent developments in the application of microfluidics-based systems for analysis and understanding of the metastasis cascade from a wider perspective.
Collapse
Affiliation(s)
- Maziar Hakim
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Leyla Kermanshah
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hesam Abouali
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Hanieh Mohammad Hashemi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Alireza Yari
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Farhad Khorasheh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Iran Alemzadeh
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Manouchehr Vossoughi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
260
|
Abou Khouzam R, Zaarour RF, Brodaczewska K, Azakir B, Venkatesh GH, Thiery J, Terry S, Chouaib S. The Effect of Hypoxia and Hypoxia-Associated Pathways in the Regulation of Antitumor Response: Friends or Foes? Front Immunol 2022; 13:828875. [PMID: 35211123 PMCID: PMC8861358 DOI: 10.3389/fimmu.2022.828875] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/19/2022] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is an environmental stressor that is instigated by low oxygen availability. It fuels the progression of solid tumors by driving tumor plasticity, heterogeneity, stemness and genomic instability. Hypoxia metabolically reprograms the tumor microenvironment (TME), adding insult to injury to the acidic, nutrient deprived and poorly vascularized conditions that act to dampen immune cell function. Through its impact on key cancer hallmarks and by creating a physical barrier conducive to tumor survival, hypoxia modulates tumor cell escape from the mounted immune response. The tumor cell-immune cell crosstalk in the context of a hypoxic TME tips the balance towards a cold and immunosuppressed microenvironment that is resistant to immune checkpoint inhibitors (ICI). Nonetheless, evidence is emerging that could make hypoxia an asset for improving response to ICI. Tackling the tumor immune contexture has taken on an in silico, digitalized approach with an increasing number of studies applying bioinformatics to deconvolute the cellular and non-cellular elements of the TME. Such approaches have additionally been combined with signature-based proxies of hypoxia to further dissect the turbulent hypoxia-immune relationship. In this review we will be highlighting the mechanisms by which hypoxia impacts immune cell functions and how that could translate to predicting response to immunotherapy in an era of machine learning and computational biology.
Collapse
Affiliation(s)
- Raefa Abou Khouzam
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Rania Faouzi Zaarour
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Klaudia Brodaczewska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Bilal Azakir
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Goutham Hassan Venkatesh
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Jerome Thiery
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France
| | - Stéphane Terry
- INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France.,Faculty of Medicine, University Paris Sud, Le Kremlin Bicêtre, France.,Research Department, Inovarion, Paris, France
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates.,INSERM U1186, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
261
|
Ravichandran R, PriyaDharshini LC, Sakthivel KM, Rasmi RR. Role and regulation of autophagy in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166400. [PMID: 35341960 DOI: 10.1016/j.bbadis.2022.166400] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/07/2023]
Abstract
Autophagy is an intracellular self-degradative mechanism which responds to cellular conditions like stress or starvation and plays a key role in regulating cell metabolism, energy homeostasis, starvation adaptation, development and cell death. Numerous studies have stipulated the participation of autophagy in cancer, but the role of autophagy either as tumor suppressor or tumor promoter is not clearly understood. However, mechanisms by which autophagy promotes cancer involves a diverse range of modifications of autophagy associated proteins such as ATGs, Beclin-1, mTOR, p53, KRAS etc. and autophagy pathways like mTOR, PI3K, MAPK, EGFR, HIF and NFκB. Furthermore, several researches have highlighted a context-dependent, cell type and stage-dependent regulation of autophagy in cancer. Alongside this, the interaction between tumor cells and their microenvironment including hypoxia has a great potential in modulating autophagy response in favour to substantiate cancer cell metabolism, self-proliferation and metastasis. In this review article, we highlight the mechanism of autophagy and their contribution to cancer cell proliferation and development. In addition, we discuss about tumor microenvironment interaction and their consequence on selective autophagy pathways and the involvement of autophagy in various tumor types and their therapeutic interventions concentrated on exploiting autophagy as a potential target to improve cancer therapy.
Collapse
Affiliation(s)
- Rakesh Ravichandran
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | | | - Kunnathur Murugesan Sakthivel
- Department of Biochemistry, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India
| | - Rajan Radha Rasmi
- Department of Biotechnology, PSG College of Arts and Science, Civil Aerodrome Post, Coimbatore 641 014, Tamil Nadu, India.
| |
Collapse
|
262
|
Sarogni P, Mapanao AK, Gonnelli A, Ermini ML, Marchetti S, Kusmic C, Paiar F, Voliani V. Chorioallantoic membrane tumor models highlight the effects of cisplatin compounds in oral carcinoma treatment. iScience 2022; 25:103980. [PMID: 35310338 PMCID: PMC8924639 DOI: 10.1016/j.isci.2022.103980] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 12/12/2022] Open
Abstract
The European Society for Medical Oncology (ESMO) suggests the use of chemotherapy as neoadjuvant, adjuvant, and concomitant to surgery and radiotherapy for the treatment of oral carcinoma by depending on the cancer stage. The usual drug of choice belongs to the platinum compounds. In this context, the evaluation of the cancer behavior associated with the administration of standard or emerging cisplatin compounds supports the establishment of optimal cancer management. Here, we have assessed and compared the performance of cisplatin alone and contained in biodegradable nanocapsules on standardized chorioallantoic membrane (CAM) tumor models. The vascularized environment and optimized grafting procedure allowed the establishment of solid tumors. The treatments showed antitumor and anti-angiogenic activities together with deregulation of pivotal genes responsible of treatment resistance and tumor aggressiveness. This study further supports the significance of CAM tumor models in oncological research for the comprehension of the molecular mechanisms involved in tumor treatment response.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Maria Laura Ermini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| | - Sabrina Marchetti
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Claudia Kusmic
- Institute of Clinical Physiology, CNR, Via G. Moruzzi 1, Pisa, Italy
| | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital, Via Roma 67, Pisa, Italy
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, Italy
| |
Collapse
|
263
|
Kaku M, Izumino J, Yamamoto T, Yashima Y, Shimoe S, Tanimoto K. Functional regulation of osteoblastic MC3T3E-1 cells by hyperbaric oxygen treatment. Arch Oral Biol 2022; 138:105410. [PMID: 35305478 DOI: 10.1016/j.archoralbio.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The purpose of the present study was to examine the influence of hyperbaric oxygen (HBO) on the function of osteoblastic MC3T3-E1 cells. DESIGN Murine MC3T3-E1 cells were exposed to HBO treatment (at 2.5 absolute atmospheric pressure with 100% oxygen, 90 min per day) for 28 days. Alkaline phosphatase (ALP) staining, activity, and calcium (Ca) content were measured. Gene expression of vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), hypoxia-inducible factor-1α (HIF-1α), type 1 collagen (COL1), and osteocalcin (OCN) was assessed using real-time quantitative polymerase chain reaction after a single HBO exposure for 1.5, 6, and 12 h. Furthermore, adenosine triphosphate (ATP) levels were measured using a luminescent cell viability assay. RESULTS ALP activity and Ca content were higher in the HBO group compared to those in the control group. Gene expression of bFGF, COL1, and OCN was upregulated in the HBO group; however, that of VEGF and HIF-1α significantly decreased in the HBO group in comparison with that in the control group. ATP levels were significantly higher in the HBO group compared to those in the control group. CONCLUSIONS These findings suggest that HBO accelerates bone formation by increasing the ATP levels of osteoblasts, and bFGF can act as a substitute for VEGF in vascularization by HBO application.
Collapse
Affiliation(s)
- Masato Kaku
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan.
| | - Jin Izumino
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Taeko Yamamoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Yuka Yashima
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Saiji Shimoe
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| |
Collapse
|
264
|
Egger D, Lavrentieva A, Kugelmeier P, Kasper C. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products. Eng Life Sci 2022; 22:361-372. [PMID: 35382547 PMCID: PMC8961040 DOI: 10.1002/elsc.202100097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
The utilization of mesenchymal stem/stromal cells raises new hopes in treatment of diseases and pathological conditions, while at the same time bringing immense challenges for researchers, manufacturers and physicians. It is essential to consider all steps along the in vitro fabrication of cell-based products in order to reach efficient and reproducible treatment outcomes. Here, the optimal protocols for isolation, cultivation and differentiation of mesenchymal stem cells are required. In this review we discuss these aspects and their influence on the final cell-based product quality. We demonstrate that physiological in vitro cell cultivation conditions play a crucial role in therapeutic functionalities of cultivated cells. We show that three-dimensional cell culture, dynamic culture conditions and physiologically relevant in vitro oxygen concentrations during isolation and expansion make a decisive contribution towards the improvement of cell-based products in regenerative medicine.
Collapse
Affiliation(s)
- Dominik Egger
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| | | | | | - Cornelia Kasper
- Department of BiotechnologyUniversity of Natural Resources and Life ScienceViennaAustria
| |
Collapse
|
265
|
The role of MLC901 in reducing VEGF as a vascular permeability marker in rats with spinal cord injury. Ann Med Surg (Lond) 2022; 75:103344. [PMID: 35386787 PMCID: PMC8977894 DOI: 10.1016/j.amsu.2022.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022] Open
|
266
|
Krzyspiak J, Yan J, Ghosh HS, Galinski B, Lituma PJ, Alvina K, Quezada A, Kee S, Grońska-Pęski M, Tai YD, McDermott K, Gonçalves JT, Zukin RS, Weiser DA, Castillo PE, Khodakhah K, Hébert JM. Donor-derived vasculature is required to support neocortical cell grafts after stroke. Stem Cell Res 2022; 59:102642. [PMID: 34971934 PMCID: PMC11495404 DOI: 10.1016/j.scr.2021.102642] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Neural precursor cells (NPCs) transplanted into the adult neocortex generate neurons that synaptically integrate with host neurons, supporting the possibility of achieving functional tissue repair. However, poor survival and functional neuronal recovery of transplanted NPCs greatly limits engraftment. Here, we test the hypothesis that combining blood vessel-forming vascular cells with neuronal precursors improves engraftment. By transplanting mixed embryonic neocortical cells into adult mice with neocortical strokes, we show that transplant-derived neurons synapse with appropriate targets while donor vascular cells form vessels that fuse with the host vasculature to perfuse blood within the graft. Although all grafts became vascularized, larger grafts had greater contributions of donor-derived vessels that increased as a function of their distance from the host-graft border. Moreover, excluding vascular cells from the donor cell population strictly limited graft size. Thus, inclusion of vessel-forming vascular cells with NPCs is required for more efficient engraftment and ultimately for tissue repair.
Collapse
Affiliation(s)
- Joanna Krzyspiak
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jingqi Yan
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Hiyaa S Ghosh
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Basia Galinski
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pablo J Lituma
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Karina Alvina
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexandra Quezada
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Samantha Kee
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marta Grońska-Pęski
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi De Tai
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; University of Rochester, Rochester, NY, USA
| | - Kelsey McDermott
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - J Tiago Gonçalves
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Suzanne Zukin
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel A Weiser
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pablo E Castillo
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamran Khodakhah
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jean M Hébert
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA; Stem Cell Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
267
|
Giordo R, Wehbe Z, Paliogiannis P, Eid AH, Mangoni AA, Pintus G. Nano-targeting vascular remodeling in cancer: Recent developments and future directions. Semin Cancer Biol 2022; 86:784-804. [DOI: 10.1016/j.semcancer.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/16/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
268
|
Taghizadeh E, Tazik K, Taheri F, Shayankia G, Gheibihayat SM, Saberi A. Abnormal angiogenesis associated with HIF-1α/VEGF signaling pathway in recurrent miscarriage along with therapeutic goals. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
269
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
270
|
Efficacy of High-Ozonide Oil in Prevention of Cancer Relapses Mechanisms and Clinical Evidence. Cancers (Basel) 2022; 14:cancers14051174. [PMID: 35267482 PMCID: PMC8909345 DOI: 10.3390/cancers14051174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Cancer tissue is characterized by low oxygen availability triggering neo angiogenesis and metastatisation. Accordingly, oxidation is a possible strategy for counteracting cancer progression and relapses. Previous studies used ozone gas, administered by invasive methods, both in experimental animals and clinical studies, transiently decreasing cancer growth. This study evaluated the effect of ozonized oils (administered either topically or orally) on cancer, exploring triggered molecular mechanisms. Methods: In vitro, in lung and glioblastoma cancer cells, ozonized oils having a high ozonide content suppressed cancer cell viability by triggering mitochondrial damage, intracellular calcium release, and apoptosis. In vivo, a total of 115 cancer patients (age 58 ± 14 years; 44 males, 71 females) were treated with ozonized oil as complementary therapy in addition to standard chemo/radio therapeutic regimens for up to 4 years. Results: Cancer diagnoses were brain glioblastoma, pancreas adenocarcinoma, skin epithelioma, lung cancer (small and non-small cell lung cancer), colon adenocarcinoma, breast cancer, prostate adenocarcinoma. Survival rate was significantly improved in cancer patients receiving HOO as integrative therapy as compared with those receiving standard treatment only. Conclusions: These results indicate that ozonized oils at high ozonide may represent an innovation in complementary cancer therapy worthy of further clinical studies.
Collapse
|
271
|
Ren Z, Liang H, Galbo PM, Dharmaratne M, Kulkarni AS, Fard AT, Aoun ML, Martinez-Lopez N, Suyama K, Benard O, Zheng W, Liu Y, Albanese J, Zheng D, Mar JC, Singh R, Prystowsky MB, Norton L, Hazan RB. Redox signaling by glutathione peroxidase 2 links vascular modulation to metabolic plasticity of breast cancer. Proc Natl Acad Sci U S A 2022; 119:e2107266119. [PMID: 35193955 PMCID: PMC8872779 DOI: 10.1073/pnas.2107266119] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
In search of redox mechanisms in breast cancer, we uncovered a striking role for glutathione peroxidase 2 (GPx2) in oncogenic signaling and patient survival. GPx2 loss stimulates malignant progression due to reactive oxygen species/hypoxia inducible factor-α (HIF1α)/VEGFA (vascular endothelial growth factor A) signaling, causing poor perfusion and hypoxia, which were reversed by GPx2 reexpression or HIF1α inhibition. Ingenuity Pathway Analysis revealed a link between GPx2 loss, tumor angiogenesis, metabolic modulation, and HIF1α signaling. Single-cell RNA analysis and bioenergetic profiling revealed that GPx2 loss stimulated the Warburg effect in most tumor cell subpopulations, except for one cluster, which was capable of oxidative phosphorylation and glycolysis, as confirmed by coexpression of phosphorylated-AMPK and GLUT1. These findings underscore a unique role for redox signaling by GPx2 dysregulation in breast cancer, underlying tumor heterogeneity, leading to metabolic plasticity and malignant progression.
Collapse
Affiliation(s)
- Zuen Ren
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Ameya S Kulkarni
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Marie Louise Aoun
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Nuria Martinez-Lopez
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Kimita Suyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Wei Zheng
- Department of Hematology and Medical Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Yang Liu
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Joseph Albanese
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, 4072 QLD, Australia
| | - Rajat Singh
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY 10461
| | | | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461;
| |
Collapse
|
272
|
Lavie L, Si-On E, Hoffman A. Markers of Carotid Plaque Destabilization in Patients With Sleep-Disordered Breathing. Front Neurol 2022; 13:811916. [PMID: 35250817 PMCID: PMC8888822 DOI: 10.3389/fneur.2022.811916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Sleep-disordered breathing (SDB) is a nightly respiratory condition characterized by intermittent hypoxia, leading to oxidative stress, inflammation, and atherosclerosis. However, most cellular markers of human carotid plaques in SDB have not yet been assessed. We aimed at characterizing the cellular, inflammatory, and nitro-oxidative stress markers in carotid plaques obtained from 25 patients undergoing endarterectomy and screened for SDB. Sleep studies were performed during their preoperative hospitalization night using the Watch-PAT 100 device. Oxygen desaturation index (ODI) was used for dividing patients into two groups. Fourteen patients with ODI >5 were designated as SDB and 11 patients with ODI ≤ 5 as non-SDB. Demographics, comorbidities, cardiovascular risk factors, and medications were recorded. Cellular markers in plaques were analyzed by immunofluorescence using confocal microscopy. The expression of neutrophils was identified by CD66b+ and neutrophil elastase, macrophage-foam cells were identified by CD163+, and scavenger receptors by CD68+ and CD36+ expression. Additional markers included 3-nitrotyrosine, endothelial CD31, and smooth muscle cell-actin (SMC-actin). Plaques' lipids were determined by immunohistochemistry with Oil Red O staining. Notably, significantly higher values were found for SDB as compared to patients with non-SDB for 3-nitrotyrosine (p <0.004) and intracellular lipids' content (p <0.02), whereas SMC-actin was lower (p <0.006). There were no significant differences between patients with carotid-associated symptoms (symptomatic) and patients without carotid-associated symptoms (asymptomatic). However, a sub-group of symptomatic patients with co-existent SDB expressed the highest 3-nitrotyrosin, and intracellular lipids levels, and the lowest SMC-actin levels, whereas non-SDB/asymptomatic patients expressed the lowest 3-nitrotyrosin and lipids levels and the highest SMS-actin levels among all patients. Accordingly, ODI was lowest in non-SDB/asymptomatic patients and highest in SDB/symptomatic. In conclusion, plaques of patients with SDB were characterized by markedly increased levels of 3-nitrotyrosine and intracellular lipids content. Conversely, SMC-actin levels were significantly lower. These three markers, such as increased 3-nitrotyrosine and intracellular lipids and decreased SMC-actin are associated with plaque vulnerability and instability. These findings are in line with earlier reports demonstrating increased intima-media thickness in large cohorts of sleep apnea and patients with SDB, and thus, may indicate a higher susceptibility to plaque vulnerability and rapture in patients with SDB.
Collapse
Affiliation(s)
- Lena Lavie
- Unit of Anatomy and Cell Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- *Correspondence: Lena Lavie
| | - Erez Si-On
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aaron Hoffman
- Department of Vascular Surgery and Transplantation, Rambam Health Care Campus, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
273
|
Yang L, Yang S, Ren C, Liu S, Zhang X, Sui A. Deciphering the roles of miR-16-5p in Malignant Solid Tumorsmalignant solid tumors. Pharmacotherapy 2022; 148:112703. [PMID: 35149384 DOI: 10.1016/j.biopha.2022.112703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 11/02/2022]
Abstract
MiR-16-5p, a member of the miR-16 family, has been reported to be abnormal expression in tumor tissues and blood of tumor patients, and also downregulated in most cancer cell lines. Aberrant expression of miR-16-5p promotes tumor cell proliferation, invasion, metastasis, angiogenesis, and can also affect the treatment sensitivity, such as radiotherapy and chemotherapy. Generally, miR-16-5p plays an anti-tumor role and these diverse functions of miR-16-5p in tumors collectively indicate that miR-16-5p may become an attractive target for novel anticancer therapies and a powerful diagnostic and prognostic biomarker for early tumor detection and population risk screening. Herein we review the role and utilization of miR-16-5p in malignant tumor in detail.
Collapse
Affiliation(s)
- Liuyi Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Sen Yang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of North China University of Science and Technology, Tangshan, Hebei, China
| | - Congcong Ren
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Shihua Liu
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Xiaopei Zhang
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China; Graduate School of Hebei North University, Zhangjiakou, Hebei, China
| | - Aixia Sui
- Department of Oncology, Hebei General Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
274
|
The Effects of αvβ3 Integrin Blockage in Breast Tumor and Endothelial Cells under Hypoxia In Vitro. Int J Mol Sci 2022; 23:ijms23031745. [PMID: 35163668 PMCID: PMC8835904 DOI: 10.3390/ijms23031745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is characterized by a hypoxic microenvironment inside the tumor mass, contributing to cell metastatic behavior. Hypoxia induces the expression of hypoxia-inducible factor (HIF-1α), a transcription factor for genes involved in angiogenesis and metastatic behavior, including the vascular endothelial growth factor (VEGF), matrix metalloproteinases (MMPs), and integrins. Integrin receptors play a key role in cell adhesion and migration, being considered targets for metastasis prevention. We investigated the migratory behavior of hypoxia-cultured triple-negative breast cancer cells (TNBC) and endothelial cells (HUVEC) upon αvβ3 integrin blocking with DisBa-01, an RGD disintegrin with high affinity to this integrin. Boyden chamber, HUVEC transmigration, and wound healing assays in the presence of DisBa-01 were performed in hypoxic conditions. DisBa-01 produced similar effects in the two oxygen conditions in the Boyden chamber and transmigration assays. In the wound healing assay, hypoxia abolished DisBa-01′s inhibitory effect on cell motility and decreased the MMP-9 activity of conditioned media. These results indicate that αvβ3 integrin function in cell motility depends on the assay and oxygen levels, and higher inhibitor concentrations may be necessary to achieve the same inhibitory effect as in normoxia. These versatile responses add more complexity to the role of the αvβ3 integrin during tumor progression.
Collapse
|
275
|
Mirzaei Bavil F, Karimi-Sales E, Alihemmati A, Alipour MR. Effect of ghrelin on hypoxia-related cardiac angiogenesis: involvement of miR-210 signalling pathway. Arch Physiol Biochem 2022; 128:270-275. [PMID: 31596148 DOI: 10.1080/13813455.2019.1675712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Hypoxia is the main stimulus for angiogenesis. Hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), and miR-210 are involved in the hypoxia-induced angiogenesis. This study examined the effects of hypoxia and/or ghrelin on miR-210, HIF-1α, and VEGF levels in the heart of rats. METHODS Wistar rats were randomly divided into 4 groups (n = 6): control; ghrelin, received daily intraperitoneal injections of ghrelin; hypoxia, was exposed to hypoxic condition; hypoxia + ghrelin, was exposed to hypoxic condition and received intraperitoneal injections of ghrelin, for 2 weeks. Myocardial angiogenesis, the expression level of miR-210, and protein levels of HIF-1α and VEGF were assayed in the heart samples. RESULTS Hypoxia increased myocardial angiogenesis and cardiac levels of miR-210, HIF-1α, and VEGF. However, ghrelin inhibited these hypoxia-induced changes. Interestingly, ghrelin had no significant effect on miR-210, HIF-1α, and VEGF levels in normoxic condition. CONCLUSION Ghrelin may be useful as an anti-angiogenic factor.
Collapse
Affiliation(s)
- Fariba Mirzaei Bavil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Karimi-Sales
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Alihemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Alipour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
276
|
Wen Y, Chelariu-Raicu A, Umamaheswaran S, Nick AM, Stur E, Hanjra P, Jiang D, Jennings NB, Chen X, Corvigno S, Glassman D, Lopez-Berestein G, Liu J, Hung MC, Sood AK. Endothelial p130cas confers resistance to anti-angiogenesis therapy. Cell Rep 2022; 38:110301. [PMID: 35081345 PMCID: PMC8860355 DOI: 10.1016/j.celrep.2022.110301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/02/2021] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
Anti-angiogenic therapies, such as anti-VEGF antibodies (AVAs), have shown promise in clinical settings. However, adaptive resistance to such therapies occurs frequently. We use orthotopic ovarian cancer models with AVA-adaptive resistance to investigate the underlying mechanisms. Genomic profiling of AVA-resistant tumors guides us to endothelial p130cas. We find that bevacizumab induces cleavage of VEGFR2 in endothelial cells by caspase-10 and that VEGFR2 fragments internalize into the nucleus and autophagosomes. Nuclear VEGFR2 and p130cas fragments, together with TNKS1BP1 (tankyrase-1-binding protein), initiate endothelial cell death. Blockade of autophagy in AVA-resistant endothelial cells retains VEGFR2 at the membrane with bevacizumab treatment. Targeting host p130cas with RGD (Arg-Gly-Asp)-tagged nanoparticles or genomic ablation of vascular p130cas in p130casflox/floxTie2Cre mice significantly extends the survival of mice with AVA-resistant ovarian tumors. Higher vascular p130cas is associated with shorter survival of individuals with ovarian cancer. Our findings identify opportunities for new strategies to overcome adaptive resistance to AVA therapy.
Collapse
Affiliation(s)
- Yunfei Wen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA.
| | - Anca Chelariu-Raicu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sujanitha Umamaheswaran
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Alpa M Nick
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Elaine Stur
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Pahul Hanjra
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Dahai Jiang
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas B Jennings
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Sara Corvigno
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Deanna Glassman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA
| | - Gabriel Lopez-Berestein
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jinsong Liu
- Department of Pathology/Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Center for Molecular Medicine, China Medical University, Taichung, Taiwan
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, 1155 Herman Pressler Boulevard, Houston, TX 77030, USA; Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
277
|
Lappano R, Todd LA, Stanic M, Cai Q, Maggiolini M, Marincola F, Pietrobon V. Multifaceted Interplay between Hormones, Growth Factors and Hypoxia in the Tumor Microenvironment. Cancers (Basel) 2022; 14:539. [PMID: 35158804 PMCID: PMC8833523 DOI: 10.3390/cancers14030539] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hormones and growth factors (GFs) are signaling molecules implicated in the regulation of a variety of cellular processes. They play important roles in both healthy and tumor cells, where they function by binding to specific receptors on target cells and activating downstream signaling cascades. The stages of tumor progression are influenced by hormones and GF signaling. Hypoxia, a hallmark of cancer progression, contributes to tumor plasticity and heterogeneity. Most solid tumors contain a hypoxic core due to rapid cellular proliferation that outgrows the blood supply. In these circumstances, hypoxia-inducible factors (HIFs) play a central role in the adaptation of tumor cells to their new environment, dramatically reshaping their transcriptional profile. HIF signaling is modulated by a variety of factors including hormones and GFs, which activate signaling pathways that enhance tumor growth and metastatic potential and impair responses to therapy. In this review, we summarize the role of hormones and GFs during cancer onset and progression with a particular focus on hypoxia and the interplay with HIF proteins. We also discuss how hypoxia influences the efficacy of cancer immunotherapy, considering that a hypoxic environment may act as a determinant of the immune-excluded phenotype and a major hindrance to the success of adoptive cell therapies.
Collapse
Affiliation(s)
- Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Lauren A. Todd
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Mia Stanic
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada;
| | - Qi Cai
- Kite Pharma Inc., Santa Monica, CA 90404, USA; (Q.C.); (F.M.)
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | | | | |
Collapse
|
278
|
van Santen VJB, Bastidas Coral AP, Hogervorst JMA, Klein-Nulend J, Bakker AD. Biologically Relevant In Vitro 3D-Model to Study Bone Regeneration Potential of Human Adipose Stem Cells. Biomolecules 2022; 12:biom12020169. [PMID: 35204670 PMCID: PMC8961519 DOI: 10.3390/biom12020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/16/2022] Open
Abstract
Standard cell cultures may not predict the proliferation and differentiation potential of human mesenchymal stromal cells (MSCs) after seeding on a scaffold and implanting this construct in a bone defect. We aimed to develop a more biologically relevant in vitro 3D-model for preclinical studies on the bone regeneration potential of MSCs. Human adipose tissue-derived mesenchymal stromal cells (hASCs; five donors) were seeded on biphasic calcium phosphate (BCP) granules and cultured under hypoxia (1% O2) for 14 days with pro-inflammatory TNFα, IL4, IL6, and IL17F (10 mg/mL each) added during the first three days, simulating the early stages of repair (bone construct model). Alternatively, hASCs were cultured on plastic, under 20% O2 and without cytokines for 14 days (standard cell culture). After two days, the bone construct model decreased total DNA (3.9-fold), COL1 (9.8-fold), and RUNX2 expression (19.6-fold) and metabolic activity (4.6-fold), but increased VEGF165 expression (38.6-fold) in hASCs compared to standard cultures. After seven days, the bone construct model decreased RUNX2 expression (64-fold) and metabolic activity (2.3-fold), but increased VEGF165 (54.5-fold) and KI67 expression (5.7-fold) in hASCs compared to standard cultures. The effect of the bone construct model on hASC proliferation and metabolic activity could be largely mimicked by culturing on BCP alone (20% O2, no cytokines). The effect of the bone construct model on VEGF165 expression could be mimicked by culturing hASCs under hypoxia alone (plastic, no cytokines). In conclusion, we developed a new, biologically relevant in vitro 3D-model to study the bone regeneration potential of MSCs. Our model is likely more suitable for the screening of novel factors to enhance bone regeneration than standard cell cultures.
Collapse
|
279
|
Filippi L, Cammalleri M, Amato R, Ciantelli M, Pini A, Bagnoli P, Dal Monte M. Decoupling Oxygen Tension From Retinal Vascularization as a New Perspective for Management of Retinopathy of Prematurity. New Opportunities From β-adrenoceptors. Front Pharmacol 2022; 13:835771. [PMID: 35126166 PMCID: PMC8814365 DOI: 10.3389/fphar.2022.835771] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/20/2022] Open
Abstract
Retinopathy of prematurity (ROP) is an evolutive and potentially blinding eye disease that affects preterm newborns. Unfortunately, until now no conservative therapy of active ROP with proven efficacy is available. Although ROP is a multifactorial disease, premature exposition to oxygen concentrations higher than those intrauterine, represents the initial pathogenetic trigger. The increase of oxygenation in a retina still incompletely vascularized promotes the downregulation of proangiogenic factors and finally the interruption of vascularization (ischemic phase). However, the increasing metabolic requirement of the ischemic retina induces, over the following weeks, a progressive hypoxia that specularly increases the levels of proangiogenic factors finally leading to proliferative retinopathy (proliferative phase). Considering non-modifiable the coupling between oxygen levels and vascularization, so far, neonatologists and ophthalmologists have "played defense", meticulously searching the minimum necessary concentration of oxygen for individual newborns, refining their diagnostic ability, adopting a careful monitoring policy, ready to decisively intervene only in a very advanced stage of disease progression. However, recent advances have demonstrated the possibility to pharmacologically modulate the relationship between oxygen and vascularization, opening thus the perspective for new therapeutic or preventive opportunities. The perspective of a shift from a defensive towards an attack strategy is now at hand.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Rosario Amato
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
280
|
Almeida C, Teixeira AL, Dias F, Machado V, Morais M, Martins G, Palmeira C, Sousa ME, Godinho I, Batista S, Costa-Silva B, Medeiros R. Extracellular Vesicles Derived-LAT1 mRNA as a Powerful Inducer of Colorectal Cancer Aggressive Phenotype. BIOLOGY 2022; 11:biology11010145. [PMID: 35053143 PMCID: PMC8773288 DOI: 10.3390/biology11010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/31/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer in the world and represents the third most deadly tumor worldwide. About 15–25% of patients present metastasis in the moment of diagnosis, the liver being the most common site of metastization. Therefore, the development of new therapeutic agents is needed, to improve the patients’ prognosis. Amino acids transporters, LAT1 and ASCT2, are described as upregulated in CRC, being associated with a poor prognosis. Extracellular vesicles have emerged as key players in cell-to-cell communication due to their ability to transfer biomolecules between cells, with a phenotypic impact on the recipient cells. Thus, this study analyzes the presence of LAT1 and ASCT2 mRNAs in CRC-EVs and evaluates their role in phenotype modulation in a panel of four recipient cell lines (HCA-7, HEPG-2, SK-HEP-1, HKC-8). We found that HCT 116-EVs carry LAT1, ASCT2 and other oncogenic mRNAs being taken up by recipient cells. Moreover, the HCT 116-EVs’ internalization was associated with the increase of LAT1 mRNA in SK-HEP-1 cells. We also observed that HCT 116-EVs induce a higher cell migration capacity and proliferation of SK-HEP-1 and HKC-8 cells. The present study supports the LAT1-EVs’ mRNA involvement in cell phenotype modulation, conferring advantages in cell migration and proliferation.
Collapse
Affiliation(s)
- Cristina Almeida
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Correspondence: ; Tel.: +351-225-084-000 (ext. 5410)
| | - Francisca Dias
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Vera Machado
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Mariana Morais
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
| | - Gabriela Martins
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Carlos Palmeira
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
- Pathology and Experimental Therapeutic Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
| | - Maria Emília Sousa
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Inês Godinho
- Immunology Department, Portuguese Oncology Institute of Porto (IPO Porto), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (G.M.); (C.P.); (M.E.S.); (I.G.)
| | - Sílvia Batista
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Bruno Costa-Silva
- Systems Oncology Group, Champalimaud Research, Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal; (S.B.); (B.C.-S.)
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Rua Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.A.); (F.D.); (V.M.); (M.M.); (R.M.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), Estrada da Circunvalação 6657, 4200-177 Porto, Portugal
- ICBAS School of Medicine and Biomedical Sciences, University of Porto (UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
- Fernando Pessoa Research, Innovation and Development Institute (I3ID FFP), Fernando Pessoa University (UFP), Praça 9 de Abril 349, 4249-004 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
281
|
Vyas D, Patel M, Wairkar S. Strategies for active tumor targeting-an update. Eur J Pharmacol 2022; 915:174512. [PMID: 34555395 DOI: 10.1016/j.ejphar.2021.174512] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 01/26/2023]
Abstract
A complete cure for cancer is still the holy grail for scientists. The existing treatment of cancer is primarily focused on surgery, radiation and conventional chemotherapy. However, chemotherapeutic agents also affect healthy tissues or organs due to a lack of specificity. While passive targeting is studied for anticancer drugs focused on the enhanced permeability and retention effect, it failed to achieve drug accumulation at the tumor site and desired therapeutic efficacy. This review presents an outline of the current significant targets for active tumor drug delivery systems and provides insight into the direction of active tumor-targeting strategies. For this purpose, a systematic understanding of the physiological factors, tumor microenvironment and its components, overexpressed receptor and associated proteins are covered here. We focused on angiogenesis mediated targeting, receptor-mediated targeting and peptide targeting. This active targeting along with integration with nano delivery systems helps in achieving specific action, thus reducing the associated adverse effects to healthy tissues. Although the tumor-targeting methods and possibilities explored so far seem revolutionary in cancer treatment, in-depth clinical studies data is required for its commercial translation.
Collapse
Affiliation(s)
- Darshan Vyas
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Mital Patel
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L.Mehta Road, Vile Parle (W), Mumbai, Maharashtra, 400056, India.
| |
Collapse
|
282
|
Ray SK, Mukherjee S. Directing hypoxic tumor microenvironment and HIF to illuminate cancer immunotherapy's existing prospects and challenges in drug targets. Curr Drug Targets 2022; 23:471-485. [PMID: 35021970 DOI: 10.2174/1389450123666220111114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/22/2022]
Abstract
Cancer is now also reflected as a disease of the tumor microenvironment, primarily supposed to be a decontrolled genetic and cellular expression disease. Over the past two decades, significant and rapid progress has been made in recognizing the dynamics of the tumor's microenvironment and its contribution to influencing the response to various anti-cancer therapies and drugs. Modulations in the tumor microenvironment and immune checkpoint blockade are interesting in cancer immunotherapy and drug targets. Simultaneously, the immunotherapeutic strategy can be done by modulating the immune regulatory pathway; however, the tumor microenvironment plays an essential role in suppressing the antitumor's immunity by its substantial heterogeneity. Hypoxia inducible factor (HIF) is a significant contributor to solid tumor heterogeneity and a key stressor in the tumor microenvironment to drive adaptations to prevent immune surveillance. Checkpoint inhibitors here halt the ability of cancer cells to stop the immune system from activating, and in turn, amplify your body's immune system to help destroy cancer cells. Common checkpoints that these inhibitors affect are the PD-1/PD-L1 and CTLA-4 pathways and important drugs involved are Ipilimumab and Nivolumab, mainly along with other drugs in this group. Targeting the hypoxic tumor microenvironment may provide a novel immunotherapy strategy, break down traditional cancer therapy resistance, and build the framework for personalized precision medicine and cancer drug targets. We hope that this knowledge can provide insight into the therapeutic potential of targeting Hypoxia and help to develop novel combination approaches of cancer drugs to increase the effectiveness of existing cancer therapies, including immunotherapy.
Collapse
Affiliation(s)
| | - Sukhes Mukherjee
- Department of Biochemistry. All India Institute of Medical Sciences. Bhopal, Madhya pradesh-462020. India
| |
Collapse
|
283
|
The essential role for endothelial cell sprouting in coronary collateral growth. J Mol Cell Cardiol 2022; 165:158-171. [PMID: 35074317 PMCID: PMC8940680 DOI: 10.1016/j.yjmcc.2022.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022]
Abstract
RATIONALE Coronary collateral growth is a natural bypass for ischemic heart diseases. It offers tremendous therapeutic benefit, but the process of coronary collateral growth isincompletely understood due to limited preclinical murine models that would enable interrogation of its mechanisms and processes via genetic modification and lineage tracing. Understanding the processes by which coronary collaterals develop can unlock new therapeutic strategies for ischemic heart disease. OBJECTIVE To develop a murine model of coronary collateral growth by repetitive ischemia and investigate whether capillary endothelial cells could contribute to the coronary collateral formation in an adult mouse heart after repetitive ischemia by lineage tracing. METHODS AND RESULTS A murine model of coronary collateral growth was developed using short episodes of repetitive ischemia. Repetitive ischemia stimulation resulted in robust collateral growth in adult mouse hearts, validated by high-resolution micro-computed tomography. Repetitive ischemia-induced collateral formation compensated ischemia caused by occlusion of the left anterior descending artery. Cardiac function improved during ischemia after repetitive ischemia, suggesting the improvement of coronary blood flow. A capillary-specific Cre driver (Apln-CreER) was used for lineage tracing capillary endothelial cells. ROSA mT/mG reporter mice crossed with the Apln-CreER transgene mice underwent a 17 days' repetitive ischemia protocol for coronary collateral growth. Two-photon and confocal microscopy imaging of heart slices revealed repetitive ischemia-induced coronary collateral growth initiated from sprouting Apelin+ endothelial cells. Newly formed capillaries in the collateral-dependent zone expanded in diameter upon repetitive ischemia stimulation and arterialized with smooth muscle cell recruitment, forming mature coronary arteries. Notably, pre-existing coronary arteries and arterioles were not Apelin+, and all Apelin+ collaterals arose from sprouting capillaries. Cxcr4, Vegfr2, Jag1, Mcp1, and Hif1⍺ mRNA levels in the repetitive ischemia-induced hearts were also upregulated at the early stage of coronary collateral growth, suggesting angiogenic signaling pathways are activated for coronary collaterals formation during repetitive ischemia. CONCLUSIONS We developed a murine model of coronary collateral growth induced by repetitive ischemia. Our lineage tracing study shows that sprouting endothelial cells contribute to coronary collateral growth in adult mouse hearts. For the first time, sprouting angiogenesis is shown to give rise to mature coronary arteries in response to repetitive ischemia in the adult mouse hearts.
Collapse
|
284
|
Abstract
Hypoxia is defined as a cellular stress condition caused by a decrease in oxygen below physiologically normal levels. Cells in the core of a rapidly growing solid tumor are faced with the challenge of inadequate supply of oxygen through the blood, owing to improper vasculature inside the tumor. This hypoxic microenvironment inside the tumor initiates a gene expression program that alters numerous signaling pathways, allowing the cancer cell to eventually evade adverse conditions and attain a more aggressive phenotype. A multitude of studies covering diverse aspects of gene regulation has tried to uncover the mechanisms involved in hypoxia-induced tumorigenesis. The role of epigenetics in executing widespread and dynamic changes in gene expression under hypoxia has been gaining an increasing amount of support in recent years. This chapter discusses, in detail, various epigenetic mechanisms driving the cellular response to hypoxia in cancer.
Collapse
Affiliation(s)
- Deepak Pant
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Srinivas Abhishek Mutnuru
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Lab (ERPL), Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
285
|
Jacobsen NL, Norton CE, Shaw RL, Cornelison DDW, Segal SS. Myofibre injury induces capillary disruption and regeneration of disorganized microvascular networks. J Physiol 2022; 600:41-60. [PMID: 34761825 PMCID: PMC8965732 DOI: 10.1113/jp282292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/09/2021] [Indexed: 01/03/2023] Open
Abstract
Injury to skeletal muscle disrupts myofibres and their microvascular supply. While the regeneration of myofibres is well described, little is known of how the microcirculation is affected by skeletal muscle injury or its recovery during regeneration. Nevertheless, the microvasculature must also recover to restore skeletal muscle function. We aimed to define the nature of microvascular damage and time course of repair during muscle injury and regeneration induced by the myotoxin BaCl2 . To test the hypothesis that microvascular disruption occurred secondary to myofibre injury, isolated microvessels were exposed to BaCl2 or the myotoxin was injected into the gluteus maximus (GM) muscle of mice. In isolated microvessels, BaCl2 depolarized smooth muscle cells (SMCs) and endothelial cells while increasing intracellular calcium in SMCs but did not elicit death of either cell type. At 1 day post-injury (dpi) of the GM, capillary fragmentation coincided with myofibre degeneration while arteriolar and venular networks remained intact; neutrophil depletion before injury did not prevent capillary damage. Perfused capillary networks reformed by 5 dpi in association with more terminal arterioles and were dilated through 10 dpi. With no change in microvascular area or branch point number in regenerating capillary networks, fewer capillaries aligned with myofibres and were no longer organized into microvascular units. By 21 dpi, capillary orientation and microvascular unit organization were no longer different from uninjured GM. We conclude that following their disruption secondary to myofibre damage, capillaries regenerate as disorganized networks that remodel into microvascular units as regenerated myofibres mature. KEY POINTS: Skeletal muscle regenerates after injury; however, the nature of microvascular damage and repair is poorly understood. Here, the myotoxin BaCl2 , a standard experimental method of acute skeletal muscle injury, was used to investigate the response of the microcirculation to local injury of intact muscle. Intramuscular injection of BaCl2 induced capillary fragmentation with myofibre degeneration; arteriolar and venular networks remained intact. Direct exposure to BaCl2 did not kill microvascular endothelial cells or smooth muscle cells. Dilated capillary networks reformed by 5 days post-injury (dpi) in association with more terminal arterioles. Capillary orientation remained disorganized through 10 dpi. Capillaries realigned with myofibres and reorganized into microvascular units by 21 dpi, which coincides with the recovery of vasomotor control and maturation of nascent myofibres. Skeletal muscle injury disrupts its capillary supply secondary to myofibre degeneration. Reorganization of regenerating microvascular networks accompanies the recovery of blood flow regulation.
Collapse
Affiliation(s)
- Nicole L. Jacobsen
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Charles E. Norton
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Rebecca L. Shaw
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - D. D. W. Cornelison
- Biological Sciences, University of Missouri, Columbia, MO, USA,Christopher S. Bond Life Sciences Center, University of MO, Columbia, MO, USA
| | - Steven S. Segal
- Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, USA
| |
Collapse
|
286
|
Xu C, Yan L, An Q, Zhang S, Guan X, Wang Z, Lv A, Liu D, Liu F, Dong B, Zhao M, Tian X, Hao C. Establishment and evaluation of retroperitoneal liposarcoma patient-derived xenograft models: an ideal model for preclinical study. Int J Med Sci 2022; 19:1241-1253. [PMID: 35928724 PMCID: PMC9346387 DOI: 10.7150/ijms.70706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/18/2022] [Indexed: 11/08/2022] Open
Abstract
Retroperitoneal liposarcoma (RLPS) is one of the most common subtypes of retroperitoneal soft tissue sarcomas. It is characterized by poor sensitivity to radiotherapy and chemotherapy and a low success rate of complete surgical resection. However, there are few reliable preclinical RLPS models for target discovery and therapy research. In this study, we aimed to establish RLPS patient-derived xenograft (PDX) models that are useful for biological research and preclinical drug trials. A total of 56 freshly resected RLPS tissues were subcutaneously transplanted into non-obese diabetic-severe combined immune deficient (NOD-SCID) mice, with subsequent xenotransplantation into second-generation mice. The tumor engraftment rate of first generation PDXs was 44.64%, and higher success rates were obtained from implantations of dedifferentiated, myxous, pleomorphic, high-grade liposarcomas and those with retroperitoneal organ infiltration. The first- and second- generation PDX models preserved the histopathological morphology, gene mutation profiles and MDM2 amplification of the primary tissues. PDX models can also provide the benefit of retaining original tumor biology and microenvironment characteristics, such as abnormal adipose differentiation, elevated Ki67 levels, high microvessel density, cancer-associated fibroblast presence, and tumor-associated macrophage infiltration. Overall survival (OS) and disease-free survival (DFS) of patients with successful first-generation PDX engraftment were significantly poorer than those with failed engraftment. Treatment with MDM2 inhibitor RG7112 significantly suppressed tumor growth of DDLPS PDX in mice. In conclusion, we successfully established RLPS PDX models that were histologically, genetically, and molecularly consistent with the original tissues. These models might provide opportunities for advancing RLPS tumor biology research, facilitating the development of novel drugs, particularly those targeting MDM2 amplification, adipose differentiation process, angiogenesis, cancer-associated fibroblasts, and so on.
Collapse
Affiliation(s)
- Chang Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Liang Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Qiming An
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Gastrointestinal Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Sha Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China.,Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoya Guan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhen Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ang Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Daoning Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Faqiang Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Bin Dong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - Min Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Pathology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiuyun Tian
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| | - Chunyi Hao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
287
|
Gulati N, Gupta S, Shetty D, Juneja S, Jain A. Potentiated action on the progression of OSMF by hypoxia mediated signaling pathway by the epithelial mesenchymal transition and angiogenic apparatus. J Cancer Res Ther 2022; 19:S0. [PMID: 37147960 DOI: 10.4103/jcrt.jcrt_502_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) is a complex process, in which epithelial cells acquire the characteristics of invasive mesenchymal cells. EMT has been implicated in cancer progression and metastasis as well as the formation of many tissues and organs during development. Aim The aim of the study was to ascertain the role of hypoxia-mediated signaling pathways influencing EMT and angiogenesis in progression of oral submucous fibrosis (OSMF). Materials and Methods Evaluation of the immunoexpression of alpha-smooth muscle actin (α-SMA), E-cadherin, vimentin, and factor VIII receptor antigen in OSMF and oral squamous cell carcinoma (OSCC) arising from OSMF was done. Differences between the different variables were analyzed using ANOVA test and Pearson's Chi-square test, and Mann-Whitney test was also calculated. Results The mean α-SMA positive myofibroblasts increased from Group 1 (OSMF) to Group 2 (OSCC), especially those in the deeper connective tissue stroma. The mean labeling index of vimentin and mean vessel density immunoexpression was more in Group 2 (OSCC) as compared to Group 1 (OSMF). Mean α-SMA correlated negatively with E-cadherin expression and positively with vimentin and factor VIII immunoexpression. E-cadherin expression correlated negatively with factor VIII and positively with Vimentin expression. Conclusions The molecular mechanisms responsible for the development of OSCC in patients with OSMF require unification of multiple progressive pathogenetic mechanisms involved in the progression of the disease.
Collapse
|
288
|
Wu L, Liu J, Wang S, Bai M, Wu M, Gao Z, Li J, Yu J, Liu J, Meng X. Negative Correlation Between 18F-RGD Uptake via PET and Tumoral PD-L1 Expression in Non-Small Cell Lung Cancer. Front Endocrinol (Lausanne) 2022; 13:913631. [PMID: 35846323 PMCID: PMC9279559 DOI: 10.3389/fendo.2022.913631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
PURPOSE We investigated the correlation of 18F-AlF-NOTAPRGD2 (18F-RGD) uptake during positron emission tomography (PET) with tumoral programmed death-ligand 1 (PD-L1) expression and explored its potential in immune checkpoint inhibitor treatment. METHODS Forty-two mice were subcutaneously injected with CMT-167 lung carcinoma cells. A total of 30 mice with good growth tumor and good general condition were selected. 18F-RGD PET scanning was performed on days 0, 2, 4, 6, 9, and 11 with five mice per day. Immunohistochemistry (IHC) for PD-L1 was performed on each specimen obtained from tumors. Thirty patients with advanced non-small cell lung cancer (NSCLC) were scanned using 18F-RGD PET/CT, and Milliplex multifactor detection analyzed serum PD-1/PD-L1 expression of twenty-eight of them. Thirteen of them were analyzed immunohistochemically using core needle biopsy samples obtained from primary tumors. RESULTS Thirty mice were scanned by 18F-RGD PET/CT and analyzed for PD-L1 expression in tumor cells by IHC finally. Maximum standard uptake value (SUVmax) and mean SUV (SUVmean) were significantly lower in relatively-higher-PD-L1-expression tumors than in relatively-low-PD-L1-expression tumors (P < 0.05). In patients, the SUVmax was significantly negatively correlated with tumoral PD-L1 expression by IHC (P=0.014). SUVmean, peak SUV (SUVpeak), and gross tumor volume (GTV) were also negatively correlated with PD-L1, but without significance (P > 0.05). SUVmax, SUVmean, SUVpeak, and GTV were negatively correlated with serum PD-1 and PD-L1, but not significantly. According to the receiver operating characteristic curve analysis, significant correlations between SUVmax and tumoral PD-L1 expression in both mice and patients were present (P < 0.05). CONCLUSION Higher 18F-RGD uptake is correlated with depressed PD-L1 expression in tumor cells, and SUVmax is the best parameter to display tumoral expression of PD-L1. 18F-RGD PET may be useful for reflecting the immune status of NSCLC.
Collapse
Affiliation(s)
- Leilei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jingru Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shasha Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Menglin Bai
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Min Wu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenhua Gao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jianing Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong University Cancer Center, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Jie Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| | - Xue Meng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Jinming Yu, ; Jie Liu, ; Xue Meng,
| |
Collapse
|
289
|
Nellaiappan K, Preeti K, Khatri DK, Singh SB. Diabetic Complications: An Update on Pathobiology and Therapeutic Strategies. Curr Diabetes Rev 2022; 18:e030821192146. [PMID: 33745424 DOI: 10.2174/1573399817666210309104203] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/28/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Despite the advent of novel therapies which manage and control diabetes well, the increased risk of morbidity and mortality in diabetic subjects is associated with the devastating secondary complications it produces. Long-standing diabetes majorly drives cellular and molecular alterations, which eventually damage both small and large blood vessels. The complications are prevalent both in type I and type II diabetic subjects. The microvascular complications include diabetic neuropathy, diabetic nephropathy, diabetic retinopathy, while the macrovascular complications include diabetic heart disease and stroke. The current therapeutic strategy alleviates the complications to some extent but does not cure or prevent them. Also, the recent clinical trial outcomes in this field are disappointing. Success in the drug discovery of diabetic complications may be achieved by a better understanding of the underlying pathophysiology and by recognising the crucial factors contributing to the development and progression of the disease. In this review, we discuss the well-studied cellular mechanisms leading to the development and progression of diabetic complications. In addition, we also highlight the various therapeutic paradigms currently in clinical practice.
Collapse
Affiliation(s)
- Karthika Nellaiappan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Kumari Preeti
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana-500037,India
| |
Collapse
|
290
|
The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases. Antioxidants (Basel) 2022; 11:antiox11010106. [PMID: 35052610 PMCID: PMC8773163 DOI: 10.3390/antiox11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress (OS) plays a pivotal role in placental development; however, abnormal loads in oxidative stress molecules may overwhelm the placental defense mechanisms and cause pathological situations. The environment in which the mother evolves triggers an exposure of the placental tissue to chemical, physical, and biological agents of OS, with potential pathological consequences. Here we shortly review the physiological and developmental functions of OS in the placenta, and present a series of environmental pollutants inducing placental oxidative stress, for which some insights regarding the underlying mechanisms have been proposed, leading to a recapitulation of the noxious effects of OS of environmental origin upon the human placenta.
Collapse
|
291
|
Quaas CE, Long DT. Targeting (de)acetylation: A Diversity of Mechanism and Disease. COMPREHENSIVE PHARMACOLOGY 2022:469-492. [DOI: 10.1016/b978-0-12-820472-6.00076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
292
|
Zhao C, Heuslein JL, Zhang Y, Annex BH, Popel AS. Dynamic Multiscale Regulation of Perfusion Recovery in Experimental Peripheral Arterial Disease: A Mechanistic Computational Model. JACC Basic Transl Sci 2022; 7:28-50. [PMID: 35128207 PMCID: PMC8807862 DOI: 10.1016/j.jacbts.2021.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 01/29/2023]
Abstract
In peripheral arterial disease (PAD), the degree of endogenous capacity to modulate revascularization of limb muscle is central to the management of leg ischemia. To characterize the multiscale and multicellular nature of revascularization in PAD, we have developed the first computational systems biology model that mechanistically incorporates intracellular, cellular, and tissue-level features critical for the dynamic reconstitution of perfusion after occlusion-induced ischemia. The computational model was specifically formulated for a preclinical animal model of PAD (mouse hindlimb ischemia [HLI]), and it has gone through multilevel model calibration and validation against a comprehensive set of experimental data so that it accurately captures the complex cellular signaling, cell-cell communication, and function during post-HLI perfusion recovery. As an example, our model simulations generated a highly detailed description of the time-dependent spectrum-like macrophage phenotypes in HLI, and through model sensitivity analysis we identified key cellular processes with potential therapeutic significance in the pathophysiology of PAD. Furthermore, we computationally evaluated the in vivo effects of different targeted interventions on post-HLI tissue perfusion recovery in a model-based, data-driven, virtual mouse population and experimentally confirmed the therapeutic effect of a novel model-predicted intervention in real HLI mice. This novel multiscale model opens up a new avenue to use integrative systems biology modeling to facilitate translational research in PAD.
Collapse
Key Words
- ARG1, arginase-1
- EC, endothelial cell
- HLI, hindlimb ischemia
- HMGB1, high-mobility group box 1
- HUVEC, human umbilical vein endothelial call
- IFN, interferon
- IL, interleukin
- MLKL, mixed lineage kinase domain-like protein
- PAD, peripheral arterial disease
- RT-PCR, reverse transcriptase polymerase chain reaction
- TLR4, Toll-like receptor 4
- TNF, tumor necrosis factor
- VEGF, vascular endothelial growth factor
- VMP, virtual mouse population
- hindlimb ischemia
- macrophage polarization
- mathematical modeling
- necrosis/necroptosis
- perfusion recovery
- peripheral arterial disease
- systems biology
- virtual mouse population
Collapse
Affiliation(s)
- Chen Zhao
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua L. Heuslein
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brian H. Annex
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Aleksander S. Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
293
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
294
|
Ryan AR, Cleaver O. Plumbing our organs: Lessons from vascular development to instruct lab generated tissues. Curr Top Dev Biol 2022; 148:165-194. [DOI: 10.1016/bs.ctdb.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
295
|
Tiwari R, Kapitsinou PP. Role of Endothelial Prolyl-4-Hydroxylase Domain Protein/Hypoxia-Inducible Factor Axis in Acute Kidney Injury. Nephron Clin Pract 2022; 146:243-248. [PMID: 34515168 PMCID: PMC8885783 DOI: 10.1159/000518632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/21/2021] [Indexed: 01/03/2023] Open
Abstract
Ischemia reperfusion injury (IRI) results from a cessation or restriction of blood supply to an organ followed by reestablishment of perfusion and reoxygenation. In the kidney, IRI due to transplantation, cardiac surgery with cardiopulmonary bypass, and other major vascular surgeries contributes to acute kidney injury (AKI), a clinical condition associated with significant morbidity and mortality in hospitalized patients. In the postischemic kidney, endothelial damage promotes inflammatory responses and leads to persistent hypoxia of the renal tubular epithelium. Like other cell types, endothelial cells respond to low oxygen tension by multiple hypoxic signaling mechanisms. Key mediators of adaptation to hypoxia are hypoxia-inducible factors (HIF)-1 and -2, transcription factors whose activity is negatively regulated by prolyl-hydroxylase domain proteins 1 to 3 (PHD1 to PHD3). The PHD/HIF axis controls several processes determining injury outcome, including ATP generation, cell survival, proliferation, and angiogenesis. Here, we discuss recent advances in our understanding of the endothelial-derived PHD/HIF signaling and its effects on postischemic AKI.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Pinelopi P. Kapitsinou
- Department of Medicine and Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL.,Address correspondence and Lead contact: Dr. Pinelopi P. Kapitsinou, Division of Nephrology and Feinberg Cardiovascular and Renal Research Institute, Feinberg School of Medicine, Northwestern University, 303 East Superior Street, SQBRC 8-408, Chicago, IL 60611.
| |
Collapse
|
296
|
Zhang Y, Wang H, Oliveira RHM, Zhao C, Popel AS. Systems biology of angiogenesis signaling: Computational models and omics. WIREs Mech Dis 2021; 14:e1550. [PMID: 34970866 PMCID: PMC9243197 DOI: 10.1002/wsbm.1550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Angiogenesis is a highly regulated multiscale process that involves a plethora of cells, their cellular signal transduction, activation, proliferation, differentiation, as well as their intercellular communication. The coordinated execution and integration of such complex signaling programs is critical for physiological angiogenesis to take place in normal growth, development, exercise, and wound healing, while its dysregulation is critically linked to many major human diseases such as cancer, cardiovascular diseases, and ocular disorders; it is also crucial in regenerative medicine. Although huge efforts have been devoted to drug development for these diseases by investigation of angiogenesis‐targeted therapies, only a few therapeutics and targets have proved effective in humans due to the innate multiscale complexity and nonlinearity in the process of angiogenic signaling. As a promising approach that can help better address this challenge, systems biology modeling allows the integration of knowledge across studies and scales and provides a powerful means to mechanistically elucidate and connect the individual molecular and cellular signaling components that function in concert to regulate angiogenesis. In this review, we summarize and discuss how systems biology modeling studies, at the pathway‐, cell‐, tissue‐, and whole body‐levels, have advanced our understanding of signaling in angiogenesis and thereby delivered new translational insights for human diseases. This article is categorized under:Cardiovascular Diseases > Computational Models Cancer > Computational Models
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hanwen Wang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Rebeca Hannah M Oliveira
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chen Zhao
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
297
|
Filippi L, Pini A, Cammalleri M, Bagnoli P, Dal Monte M. β3-Adrenoceptor, a novel player in the round-trip from neonatal diseases to cancer: Suggestive clues from embryo. Med Res Rev 2021; 42:1179-1201. [PMID: 34967048 PMCID: PMC9303287 DOI: 10.1002/med.21874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/29/2021] [Accepted: 12/15/2021] [Indexed: 01/19/2023]
Abstract
The role of the β-adrenoceptors (β-ARs) in hypoxia-driven diseases has gained visibility after the demonstration that propranolol promotes the regression of infantile hemangiomas and ameliorates the signs of retinopathy of prematurity (ROP). Besides the role of β2-ARs, preclinical studies in ROP have also revealed that β3-ARs are upregulated by hypoxia and that they are possibly involved in retinal angiogenesis. In a sort of figurative round trip, peculiarities typical of ROP, where hypoxia drives retinal neovascularization, have been then translated to cancer, a disease equally characterized by hypoxia-driven angiogenesis. In this step, investigating the role of β3-ARs has taken advantage of the assumption that cancer growth uses a set of strategies in common with embryo development. The possibility that hypoxic induction of β3-ARs may represent one of the mechanisms through which primarily embryo (and then cancer, as an astute imitator) adapts to grow in an otherwise hostile environment, has grown evidence. In both cancer and embryo, β3-ARs exert similar functions by exploiting a metabolic shift known as the Warburg effect, by acquiring resistance against xenobiotics, and by inducing a local immune tolerance. An additional potential role of β3-AR as a marker of stemness has been suggested by the finding that its antagonism induces cancer cell differentiation evoking that β3-ARs may help cancer to grow in a nonhospital environment, a strategy also exploited by embryos. From cancer, the round trip goes back to neonatal diseases for which new possible interpretative keys and potential pharmacological perspectives have been suggested.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, Neonatology and Neonatal Intensive Care UnitUniversity of PisaPisaItaly
| | - Alessandro Pini
- Department of Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
| | - Maurizio Cammalleri
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Paola Bagnoli
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| | - Massimo Dal Monte
- Department of Biology, Unit of General PhysiologyUniversity of PisaPisaItaly
| |
Collapse
|
298
|
Czajka-Francuz P, Cisoń-Jurek S, Czajka A, Kozaczka M, Wojnar J, Chudek J, Francuz T. Systemic Interleukins' Profile in Early and Advanced Colorectal Cancer. Int J Mol Sci 2021; 23:124. [PMID: 35008550 PMCID: PMC8745135 DOI: 10.3390/ijms23010124] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 02/05/2023] Open
Abstract
Tumor microenvironment (TME) is characterized by mutual interactions of the tumor, stromal and immune cells. Early and advanced colorectal tumors differ in structure and present altered serum cytokine levels. Mutual crosstalk among TME infiltrating cells may shift the balance into immune suppressive or pro-inflammatory, antitumor response this way influencing patients' prognosis. Cancer-related inflammation affects all the body and this way, the systemic level of cytokines could reflect TME processes. Despite numerous studies, it is still not known how systemic cytokines levels change during colorectal cancer (CRC) tumor development. Better understanding tumor microenvironment processes could help in planning therapeutic interventions and more accurate patient prognosis. To contribute to the comprehension of these processes within TME, we reviewed cytokines levels from clinical trials in early and advanced colorectal cancer. Presented data were analyzed in the context of experimental studies and studies analyzing tumor infiltration with immune cells. The review summarizes clinical data of cytokines secreted by tumor microenvironment cells: lymphocytes T helper 1 (Th1), lymphocytes T helper 2 (Th2), lymphocytes T helper 17 (Th17), regulatory T cells (Treg cells), regulatory T cells (Breg cells), M1/M2 macrophages, N1/N2 neutrophils, myeloid-derived suppressor cells (MDSC), dendritic cells (DC), innate lymphoid cells (ILC) natural killer (NK) cells and tumor cells.
Collapse
Affiliation(s)
- Paulina Czajka-Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Sylwia Cisoń-Jurek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Aleksander Czajka
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-635 Katowice, Poland;
| | - Maciej Kozaczka
- Department of Radiotherapy and Chemotherapy, National Institute of Oncology, Public Research Institute in Gliwice, 44-101 Gliwice, Poland;
| | - Jerzy Wojnar
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Jerzy Chudek
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
| | - Tomasz Francuz
- Department of Internal Medicine and Oncological Chemotherapy, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-027 Katowice, Poland; (S.C.-J.); (J.W.); (J.C.); (T.F.)
- Department of Biochemistry, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland
| |
Collapse
|
299
|
Luiz RDS, Rampaso RR, Dos Santos AAC, Convento MB, Barbosa DA, da Fonseca CD, de Oliveira AS, Caires A, Furlan A, Schor N, Borges FT. BM-MSC-derived small extracellular vesicles (sEV) from trained animals presented nephroprotective potential in unilateralureteral obstruction model. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200187. [PMID: 34925478 PMCID: PMC8650265 DOI: 10.1590/1678-9199-jvatitd-2020-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/21/2021] [Indexed: 12/03/2022] Open
Abstract
Background: The efficacy of bone marrow mesenchymal stromal cells (BM-MSC) and its extracellular vesicles has been demonstrated for a broad spectrum of indications, including kidney diseases. However, BM-MSC donor characteristics and their potential are not usually considered. Therefore, the present work aims to evaluate the nephroprotective capacity of sEV secreted by BM-MSC from trained rats inunilateral ureteral obstruction (UUO) model. Methods: BM-MSC was characterized by their differentiation potential and immunophenotypic markers. The sEV were isolated by ultracentrifugation and characterized by nanoparticle tracking analysis and western blot. Its miRNA cargo was examined by quantitative PCR analysis for miR-26a, 126a, and 296. Wistar rats were submitted to UUO procedure and concomitantly treated with sEV secreted by BM-MSC from the untrained andtrained rats. The kidney tissue from all groups was evaluated for fibrosis mediators (transforming growth factor beta1 and collagen), CD34-angiogenesis marker, and hypoxia-inducible factor 1 alpha (HIF-1α). Results: Treadmill training stimulated in BM-MSC the production of sEV loaded with pro-angiogenic miR-296. The treatment with this sEVin UUO-rats was able to attenuate collagen accumulation and increase CD34 and HIF-1α in the kidney tissue when compared to untrained ones. Tubular proximal cells under hypoxia and exposed to BM-MSC sEV demonstrate accumulation in HIF-1α and NFR-2 (nuclear factor erythroid 2-related factor 2), possibly to mediate the response to hypoxia and oxidative stress, under these conditions. Conclusion: The BM-MSC sEV from trained animals presented an increased nephroprotective potential compared to untrained vesicles by carrying 296-angiomiR and contributing to angiogenesis in UUO model.
Collapse
Affiliation(s)
- Rafael da Silva Luiz
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Rodolfo Rosseto Rampaso
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Alef Aragão Carneiro Dos Santos
- Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| | - Marcia Bastos Convento
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Dulce Aparecida Barbosa
- Paulista School of Nursing, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Andréia Silva de Oliveira
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Agnaldo Caires
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Andrei Furlan
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Nestor Schor
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernanda Teixeira Borges
- Nephrology Division, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil.,Interdisciplinary Program in Health Sciences, Institute of Physical Activity and Sport Sciences, Cruzeiro do Sul University, São Paulo, SP, Brazil
| |
Collapse
|
300
|
Shi Y, Wu M, Liu Y, Hu L, Wu H, Xie L, Liu Z, Wu A, Chen L, Xu C. ITGA5 Predicts Dual-Drug Resistance to Temozolomide and Bevacizumab in Glioma. Front Oncol 2021; 11:769592. [PMID: 34976814 PMCID: PMC8719456 DOI: 10.3389/fonc.2021.769592] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Anti-angiotherapy (Bevacizumab) is currently regarded as a promising option for glioma patients who are resistant to temozolomide (TMZ) treatment. But ongoing clinical research failed to meet therapeutic expectations. This study aimed to explore the pivotal genetic feature responsible for TMZ and Bevacizumab resistance in glioma patients. METHODS We downloaded the transcriptomic and methylation data of glioma patients from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) databases and grouped these patients into resistant and non-resistant groups based on their clinical profiles. Differentially expressed genes and pathways were identified and exhibited with software in R platform. A TMZ-resistant cell line was constructed for validating the expression change of the candidate gene, ITGA5. An ITGA5-overexpressing cell line was also constructed to investigate its biological function using the CCK8 assay, Western blot, periodic acid-Schiff (PAS) staining, and transcriptional sequencing. RESULTS Change of the cell morphology and polarity was closely associated with TMZ mono-resistance and TMZ/Bevacizumab dual resistance in glioma patients. The expression level of ITGA5 was effective in determining drug resistance and the outcome of glioma patients, which is regulated by methylation on two distinct sites. ITGA5 was augmented in TMZ-resistant glioma cells, while overexpressing ITGA5 altered the cell-promoted TMZ resistance through enhancing vascular mimicry (VM) formation correspondingly. CONCLUSIONS Both the epigenetic and transcriptional levels of ITGA5 are effective in predicting TMZ and Bevacizumab resistance, indicating that ITGA5 may serve as a predictor of the treatment outcomes of glioma patients.
Collapse
Affiliation(s)
- Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Yuyang Liu
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Lanlin Hu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Hong Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| | - Lei Xie
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhiwei Liu
- The Center for Advanced Semiconductor & Integrated Micro-System, University of Electronic Science and Technology of China, Chengdu, China
| | - Anhua Wu
- Department of Neurosurgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ling Chen
- Chinese People’s Liberation Army (PLA) Institute of Neurosurgery, Chinese PLA General Hospital and PLA Medical College, Beijing, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu, China
| |
Collapse
|