251
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
252
|
Hong Y, Liang X, Gilhus NE. AChR antibodies show a complex interaction with human skeletal muscle cells in a transcriptomic study. Sci Rep 2020; 10:11230. [PMID: 32641696 PMCID: PMC7343820 DOI: 10.1038/s41598-020-68185-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 06/17/2020] [Indexed: 01/26/2023] Open
Abstract
Acetylcholine receptor (AChR) antibodies are the most important pathogenic marker in patients with myasthenia gravis (MG). The antibodies bind to AChRs on the postsynaptic membrane, and this leads to receptor degradation, destruction, or functional blocking with impaired signal at the neuromuscular junction. In this study, we have explored the effects of AChR antibodies binding to mature human myotubes with agrin-induced AChR clusters and pathways relevant for AChR degradation using bulk RNA sequencing. Protein-coding RNAs and lncRNAs were examined by RNA sequencing analysis. AChR antibodies induced marked changes of the transcriptomic profiles, with over 400 genes differentially expressed. Cholesterol metabolic processes and extracellular matrix organization gene sets were influenced and represent AChR-trafficking related pathways. Muscle contraction and cellular homeostasis gene sets were also affected, and independently of AChR trafficking. Furthermore, we found changes in a protein-coding RNA and lncRNA network, where expression of lncRNA MEG3 correlated closely with protein-coding genes for cellular homeostasis. We conclude that AChR antibodies induce an active response in human skeletal muscle cells which affects key intra- and extracellular pathways.
Collapse
Affiliation(s)
- Yu Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| | - Xiao Liang
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Nils Erik Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
253
|
Harikrishnan K, Joshi O, Madangirikar S, Balasubramanian N. Cell Derived Matrix Fibulin-1 Associates With Epidermal Growth Factor Receptor to Inhibit Its Activation, Localization and Function in Lung Cancer Calu-1 Cells. Front Cell Dev Biol 2020; 8:522. [PMID: 32719793 PMCID: PMC7348071 DOI: 10.3389/fcell.2020.00522] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022] Open
Abstract
Epidermal Growth Factor Receptor (EGFR) is a known promoter of tumor progression and is overexpressed in lung cancers. Growth factor receptors (including EGFR) are known to interact with extracellular matrix (ECM) proteins, which regulate their activation and function. Fibulin-1 (FBLN1) is a major component of the ECM in lung tissue, and its levels are known to be downregulated in non-small cell lung cancers (NSCLC). To test the possible role FBLN1 isoforms could have in regulating EGFR signaling and function in lung cancer, we performed siRNA mediated knockdown of FBLN1C and FBLN1D in NSCLC Calu-1 cells. Their loss significantly increased basal (with serum) and EGF (Epidermal Growth Factor) mediated EGFR activation without affecting net EGFR levels. Overexpression of FBLN1C and FBLN1D also inhibits EGFR activation confirming their regulatory crosstalk. Loss of FBLN1C and FBLN1D promotes EGFR-dependent cell migration, inhibited upon Erlotinib treatment. Mechanistically, both FBLN1 isoforms interact with EGFR, their association not dependent on its activation. Notably, cell-derived matrix (CDM) enriched FBLN1 binds EGFR. Calu-1 cells plated on CDM derived from FBLN1C and FBLN1D knockdown cells show a significant increase in EGF mediated EGFR activation. This promotes cell adhesion and spreading with active EGFR enriched at membrane ruffles. Both adhesion and spreading on CDMs is significantly reduced by Erlotinib treatment. Together, these findings show FBLN1C/1D, as part of the ECM, can bind and regulate EGFR activation and function in NSCLC Calu-1 cells. They further highlight the role tumor ECM composition could have in influencing EGFR dependent lung cancers.
Collapse
Affiliation(s)
| | - Omkar Joshi
- Indian Institute of Science Education and Research, Pune, India
| | | | | |
Collapse
|
254
|
Marini JJ, Rocco PRM, Gattinoni L. Static and Dynamic Contributors to Ventilator-induced Lung Injury in Clinical Practice. Pressure, Energy, and Power. Am J Respir Crit Care Med 2020; 201:767-774. [PMID: 31665612 PMCID: PMC7124710 DOI: 10.1164/rccm.201908-1545ci] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Ventilation is inherently a dynamic process. The present-day clinical practice of concentrating on the static inflation characteristics of the individual tidal cycle (plateau pressure, positive end-expiratory pressure, and their difference [driving pressure, the ratio of Vt to compliance]) does not take into account key factors shown experimentally to influence ventilator-induced lung injury (VILI). These include rate of airway pressure change (influenced by flow amplitude, inspiratory time fraction, and inspiratory inflation contour) and cycling frequency. Energy must be expended to cause injury, and the product of applied stress and resulting strain determines the energy delivered to the lungs per breathing cycle. Understanding the principles of VILI energetics may provide valuable insights and guidance to intensivists for safer clinical practice. In this interpretive review, we highlight that the injuring potential of the inflation pattern depends upon tissue vulnerability, the number of intolerable high-energy cycles applied in unit time (mechanical power), and the duration of that exposure. Yet, as attractive as this energy/power hypothesis for encapsulating the drivers of VILI may be for clinical applications, we acknowledge that even these all-inclusive and measurable ergonomic parameters (energy per cycle and power) are still too bluntly defined to pinpoint the precise biophysical link between ventilation strategy and tissue injury.
Collapse
Affiliation(s)
- John J Marini
- University of Minnesota and Regions Hospital, Minneapolis/St. Paul, Minnesota
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Luciano Gattinoni
- Department of Anaesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| |
Collapse
|
255
|
Wang Q, Sundar IK, Li D, Lucas JH, Muthumalage T, McDonough SR, Rahman I. E-cigarette-induced pulmonary inflammation and dysregulated repair are mediated by nAChR α7 receptor: role of nAChR α7 in SARS-CoV-2 Covid-19 ACE2 receptor regulation. Respir Res 2020; 21:154. [PMID: 32552811 PMCID: PMC7301079 DOI: 10.1186/s12931-020-01396-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/14/2020] [Indexed: 12/13/2022] Open
Abstract
Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanisms that mediate toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChRα7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lung tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased SARS-Cov-2 Covid-19 ACE2 receptor, whereas nAChRα7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8 and MMP9, were altered both at the protein and mRNA transcript levels in female and male KO mice, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChRα7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin, significantly in a sex-dependent manner, but without the direct role of nAChRα7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChRα7 in a sex-dependent manner.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Joseph H Lucas
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Thivanka Muthumalage
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Samantha R McDonough
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Box 850, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
256
|
Elastic power but not driving power is the key promoter of ventilator-induced lung injury in experimental acute respiratory distress syndrome. Crit Care 2020; 24:284. [PMID: 32493362 PMCID: PMC7271482 DOI: 10.1186/s13054-020-03011-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/20/2020] [Indexed: 11/26/2022] Open
Abstract
Background We dissected total power into its primary components to resolve its relative contributions to tissue damage (VILI). We hypothesized that driving power or elastic (dynamic) power offers more precise VILI risk indicators than raw total power. The relative correlations of these three measures of power with VILI-induced histologic changes and injury biomarkers were determined using a rodent model of acute respiratory distress syndrome (ARDS). Herein, we have significantly extended the scope of our previous research. Methods Data analyses were performed in male Wistar rats that received endotoxin intratracheally to induce ARDS. After 24 h, they were randomized to 1 h of volume-controlled ventilation with low VT = 6 ml/kg and different PEEP levels (3, 5.5, 7.5, 9.5, and 11 cmH2O). Applied levels of driving power, dynamic power inclusive of PEEP, and total power were correlated with VILI indicators [lung histology and biological markers associated with inflammation (interleukin-6), alveolar stretch (amphiregulin), and epithelial (club cell protein (CC)-16) and endothelial (intercellular adhesion molecule-1) cell damage in lung tissue]. Results Driving power was higher at PEEP-11 than other PEEP levels. Dynamic power and total power increased progressively from PEEP-5.5 and PEEP-7.5, respectively, to PEEP-11. Driving power, dynamic power, and total power each correlated with the majority of VILI indicators. However, when correlations were performed from PEEP-3 to PEEP-9.5, no relationships were observed between driving power and VILI indicators, whereas dynamic power and total power remained well correlated with CC-16 expression, alveolar collapse, and lung hyperinflation. Conclusions In this mild-moderate ARDS model, dynamic power, not driving power alone, emerged as the key promoter of VILI. Moreover, hazards from driving power were conditioned by the requirement to pass a tidal stress threshold. When estimating VILI hazard from repeated mechanical strains, PEEP must not be disregarded as a major target for modification.
Collapse
|
257
|
Wang Q, Sundar I, Li D, Lucas J, Muthumalage T, McDonough S, Rahman I. E-cigarette-Induced Pulmonary Inflammation and Dysregulated Repair are Mediated by nAChR α7 Receptor: Role of nAChR α7 in ACE2 Covid-19 receptor regulation. RESEARCH SQUARE 2020:rs.2.23829. [PMID: 32702718 PMCID: PMC7336696 DOI: 10.21203/rs.2.23829/v2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Electronic cigarette (e-cig) vaping is increasing rapidly in the United States, as e-cigs are considered less harmful than combustible cigarettes. However, limited research has been conducted to understand the possible mechanism that mediate, toxicity and pulmonary health effects of e-cigs. We hypothesized that sub-chronic e-cig exposure induces inflammatory response and dysregulated repair/extracellular matrix (ECM) remodeling, which occur through the α7 nicotinic acetylcholine receptor (nAChR α7). Adult wild-type (WT), nAChRα7 knockout (KO), and lung epithelial cell-specific KO (nAChRα7 CreCC10) mice were exposed to e-cig aerosol containing propylene glycol (PG) with or without nicotine. Bronchoalveolar lavage fluids (BALF) and lungs tissues were collected to determine e-cig induced inflammatory response and ECM remodeling, respectively. Sub-chronic e-cig exposure with nicotine increased the inflammatory cellular influx of macrophages and T-lymphocytes including increased pro-inflammatory cytokines in BALF and increased ACE2 Covid-19 receptor, whereas nAChR α7 KO mice show reduced inflammatory responses associated with decreased ACE2 receptor. Interestingly, matrix metalloproteinases (MMPs), such as MMP2, MMP8, and MMP9 were altered both at the protein and mRNA transcript levels in female and male, but WT mice exposed to PG alone showed a sex-dependent phenotype. Moreover, MMP12 was increased significantly in male mice exposed to PG with or without nicotine in a nAChR α7-dependent manner. Additionally, sub-chronic e-cig exposure with or without nicotine altered the abundance of ECM proteins, such as collagen and fibronectin significantly in a sex-dependent manner, but without the direct role of nAChR α7 gene. Overall, sub-chronic e-cig exposure with or without nicotine affected lung inflammation and repair responses/ECM remodeling, which were mediated by nAChR α7 in a sex-dependent manner.
Collapse
|
258
|
A viscoelastic two-dimensional network model of the lung extracellular matrix. Biomech Model Mechanobiol 2020; 19:2241-2253. [PMID: 32410075 DOI: 10.1007/s10237-020-01336-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/28/2020] [Indexed: 12/21/2022]
Abstract
The extracellular matrix (ECM) comprises a large proportion of the lung parenchymal tissue and is an important contributor to the mechanical properties of the lung. The lung tissue is a biologically active scaffold with a complex ECM matrix structure and composition that provides physical support to the surrounding cells. Nearly all respiratory pathologies result in changes in the structure and composition of the ECM; however, the impact of these alterations on the mechanical properties of the tissue is not well understood. In this study, a novel network model was developed to incorporate the combinatorial effect of lung tissue ECM constituents such as collagen, elastin and proteoglycans (PGs) and used to mimic the experimentally derived length-tension response of the tissue to uniaxial loading. By modelling the effect of collagen elasticity as an exponential function with strain, and in concert with the linear elastic response of elastin, the network model's mechanical response matched experimental stress-strain curves from the literature. In addition, by incorporating spring-dashpot viscoelastic elements, to represent the PGs, the hysteresis response was also simulated. Finally, by selectively reducing volume fractions of the different ECM constituents, we were able to gain insight into their relative mechanical contribution to the larger scale tissue mechanical response.
Collapse
|
259
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
260
|
Dimori M, Heard-Lipsmeyer ME, Byrum SD, Mackintosh SG, Kurten RC, Carroll JL, Morello R. Respiratory defects in the CrtapKO mouse model of osteogenesis imperfecta. Am J Physiol Lung Cell Mol Physiol 2020; 318:L592-L605. [PMID: 32022592 PMCID: PMC7191481 DOI: 10.1152/ajplung.00313.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Respiratory disease is a leading cause of mortality in patients with osteogenesis imperfecta (OI), a connective tissue disease that causes severely reduced bone mass and is most commonly caused by dominant mutations in type I collagen genes. Previous studies proposed that impaired respiratory function in OI patients was secondary to skeletal deformities; however, recent evidence suggests the existence of a primary lung defect. Here, we analyzed the lung phenotype of Crtap knockout (KO) mice, a mouse model of recessive OI. While we confirm changes in the lung parenchyma that are reminiscent of emphysema, we show that CrtapKO lung fibroblasts synthesize type I collagen with altered posttranslation modifications consistent with those observed in bone and skin. Unrestrained whole body plethysmography showed a significant decrease in expiratory time, resulting in an increased ratio of inspiratory time over expiratory time and a concomitant increase of the inspiratory duty cycle in CrtapKO compared with WT mice. Closed-chest measurements using the forced oscillation technique showed increased respiratory system elastance, decreased respiratory system compliance, and increased tissue damping and elasticity in CrtapKO mice compared with WT. Pressure-volume curves showed significant differences in lung volumes and in the shape of the curves between CrtapKO mice and WT mice, with and without adjustment for body weight. This is the first evidence that collagen defects in OI cause primary changes in lung parenchyma and several respiratory parameters and thus negatively impact lung function.
Collapse
Affiliation(s)
- Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Melissa E Heard-Lipsmeyer
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Stephanie D Byrum
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Arkansas Children's Research Institute, Little Rock, Arkansas
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Richard C Kurten
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - John L Carroll
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
261
|
A Staphylococcus pro-apoptotic peptide induces acute exacerbation of pulmonary fibrosis. Nat Commun 2020; 11:1539. [PMID: 32210242 PMCID: PMC7093394 DOI: 10.1038/s41467-020-15344-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 03/03/2020] [Indexed: 11/08/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal disease of unknown etiology; however, apoptosis of lung alveolar epithelial cells plays a role in disease progression. This intractable disease is associated with increased abundance of Staphylococcus and Streptococcus in the lungs, yet their roles in disease pathogenesis remain elusive. Here, we report that Staphylococcus nepalensis releases corisin, a peptide conserved in diverse staphylococci, to induce apoptosis of lung epithelial cells. The disease in mice exhibits acute exacerbation after intrapulmonary instillation of corisin or after lung infection with corisin-harboring S. nepalensis compared to untreated mice or mice infected with bacteria lacking corisin. Correspondingly, the lung corisin levels are significantly increased in human IPF patients with acute exacerbation compared to patients without disease exacerbation. Our results suggest that bacteria shedding corisin are involved in acute exacerbation of IPF, yielding insights to the molecular basis for the elevation of staphylococci in pulmonary fibrosis.
Collapse
|
262
|
|
263
|
Zheng Y, Cui B, Sun W, Wang S, Huang X, Gao H, Gao F, Cheng Q, Lu L, An Y, Li X, Sun N. Potential Crosstalk between Liver and Extra-liver Organs in Mouse Models of Acute Liver Injury. Int J Biol Sci 2020; 16:1166-1179. [PMID: 32174792 PMCID: PMC7053327 DOI: 10.7150/ijbs.41293] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/18/2020] [Indexed: 12/26/2022] Open
Abstract
Carbon tetrachloride (CCl4), Concanavalin A (ConA), bile duct ligation (BDL), and liver resection (LR) are four types of commonly used mouse models of acute liver injury. However, these four models belong to different types of liver cell damage while their application situations are often confounded. In addition, the systematic changes of multiple extra-liver organs after acute liver injury and the crosstalk between liver and extra-liver organs remain unclear. Here, we aim to map the morphological, metabolomic and transcriptomic changes systematically after acute liver injury and search for the potential crosstalk between the liver and the extra-liver organs. Significant changes of transcriptome were observed in multiple extra-liver organs after different types of acute liver injury despite dramatic morphological damage only occurred in lung tissues of the ConA/BDL models and spleen tissues in the ConA model. Liver transcriptomic changes initiated the serum metabolomic alterations which correlated to transcriptomic variation in lung, kidney, and brain tissues of BDL and LR models. The potential crosstalk might lead to pulmonary damage and development of hepatorenal syndrome (HRS) and hepatic encephalopathy (HE) during liver injury. Serum derived from acute liver injury mice damaged alveolar epithelial cells and human podocytes in vitro. Our data indicated that different types of acute liver injury led to different transcriptomic changes within extra-liver organs. Integration of serum metabolomics and transcriptomics from multiple tissues can improve our understanding of acute liver injury and its effect on the other organs.
Collapse
Affiliation(s)
- Yufan Zheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Baiping Cui
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenrui Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Sining Wang
- Department of Pathology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xu Huang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Han Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Fei Gao
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qian Cheng
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Limin Lu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yanpeng An
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Metabolomics and Systems Biology Laboratory, Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Department of Cardiology, Huashan Hospital, Fudan University, Shanghai 200032, China.,Department of Internal Medicine, Huashan Hospital West Campus, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200032, China
| |
Collapse
|
264
|
Sychugov G, Azizova T, Osovets S, Kazachkov E, Revina V, Grigoryeva E. Morphological features of pulmonary fibrosis in workers occupationally exposed to alpha radiation. Int J Radiat Biol 2020; 96:448-460. [PMID: 31985334 DOI: 10.1080/09553002.2020.1721601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Purpose: The article reports on a comparative analysis of biological specimens of lung tissues collected from workers with pulmonary fibrosis induced by internal exposure to plutonium alpha-particles (plutonium-induced pulmonary fibrosis [PuPF]) and with etiologically different pulmonary fibrosis (non-PuPF) that developed as an outcome of a chronic obstructive pulmonary disease (COPD).Materials and methods: To perform histological examinations, lung tissues were sampled during autopsy. Six samples of various lung regions (the apical region, the lingula of the left lung and the inferior lobe) were collected from each donor. The resected tissue samples were fixed in 10% neutral-buffered formalin during 24 h and embedded into paraffin blocks (FFPE). FFPE blocks with lung tissue specimens collected from 56 workers with PuPF, 34 workers with non-PuPF and 35 workers without any lung disease were used in the study. To perform microscopic examination, lung tissue specimens were hematoxylin and eosin stained. To examine the connective-tissue scaffold of lung stroma and identify foci of pulmonary fibrosis, the cut sections of paraffin blocks were stained by Van Gizon's method (to assess the total volume of fibrosis-affected tissues), Gomori's technique (to define the reticular scaffold of lung stroma) and Weigert's technique (to examine elastic fibers). Morphological patterns of all biological specimens were studied using immunohistochemistry. To fit the empirical data, the Weibull's model was used.Results and conclusions: The study found qualitative and quantitative morphological features specific for PuPF compared to non-PuPF. The study demonstrated that hyper-production of collagen type V plays a key role in PuPF. The collagen type V content in fibrotic foci in lung tissue specimens from workers with PuPF was found to be increased.
Collapse
Affiliation(s)
- Gleb Sychugov
- State Educational Institution of Higher Professional Education, South Ural State Medical University at the Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - Tamara Azizova
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorsk, Russia
| | - Sergey Osovets
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorsk, Russia
| | - Evgeny Kazachkov
- State Educational Institution of Higher Professional Education, South Ural State Medical University at the Ministry of Health of the Russian Federation, Chelyabinsk, Russia
| | - Valentina Revina
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorsk, Russia
| | - Evgeniya Grigoryeva
- Federal State Unitary Enterprise "Southern Urals Biophysics Institute" at the Federal Medical Biological Agency of the Russian Federation, Ozyorsk, Russia
| |
Collapse
|
265
|
Xu P, Wang L, Chen D, Feng M, Lu Y, Chen R, Qiu C, Li J. The application of proteomics in the diagnosis and treatment of bronchial asthma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:132. [PMID: 32175425 DOI: 10.21037/atm.2020.02.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bronchial asthma is a common chronic inflammatory disease of the airways. Although its pathogenic mechanism remains unknown, it is influenced by both genetic and environmental factors. The emergence and application of proteomic technologies can help to facilitate analysis of the changes in transcription factors, inflammatory mediators, chemokines, cytokines, and cell apoptosis-and proliferation-related proteins in the pathological processes of asthma. Proteomic technologies can unearth prospects and theoretical bases for improved understanding of the biological mechanism of asthma and effective identification of diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peng Xu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Lingwei Wang
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Dandan Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Mengjie Feng
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Yongzhen Lu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Rongchang Chen
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Chen Qiu
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| | - Jie Li
- Key Laboratory of Shenzhen Respiratory Disease, Shenzhen Institute of Respiratory Disease, Shenzhen People's Hospital (The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University), Shenzhen 518006, China
| |
Collapse
|
266
|
Mereness JA, Bhattacharya S, Ren Y, Wang Q, Anderson CS, Donlon K, Dylag AM, Haak J, Angelin A, Bonaldo P, Mariani TJ. Collagen VI Deficiency Results in Structural Abnormalities in the Mouse Lung. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:426-441. [PMID: 31837950 PMCID: PMC7013274 DOI: 10.1016/j.ajpath.2019.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/16/2019] [Accepted: 10/11/2019] [Indexed: 01/14/2023]
Abstract
Collagen VI (COL6) is known for its role in a spectrum of congenital muscular dystrophies, which are often accompanied by respiratory dysfunction. However, little is known regarding the function of COL6 in the lung. We confirmed the presence of COL6 throughout the basement membrane region of mouse lung tissue. Lung structure and organization were studied in a previously described Col6a1-/- mouse, which does not produce detectable COL6 in the lung. The Col6a1-/- mouse displayed histopathologic alveolar and airway abnormalities. The airspaces of Col6a1-/- lungs appeared simplified, with larger (29%; P < 0.01) and fewer (31%; P < 0.001) alveoli. These airspace abnormalities included reduced isolectin B4+ alveolar capillaries and surfactant protein C-positive alveolar epithelial type-II cells. Alterations in lung function consistent with these histopathologic changes were evident. Col6a1-/- mice also displayed multiple airway changes, including increased branching (59%; P < 0.001), increased mucosal thickness (34%; P < 0.001), and increased epithelial cell density (13%; P < 0.001). Comprehensive transcriptome analysis revealed that the loss of COL6 is associated with reductions in integrin-paxillin-phosphatidylinositol 3-kinase signaling in vivo. In vitro, COL6 promoted steady-state phosphorylated paxillin levels and reduced cell density (16% to 28%; P < 0.05) at confluence. Inhibition of phosphatidylinositol 3-kinase, or its downstream effectors, resulted in increased cell density to a level similar to that seen on matrices lacking COL6.
Collapse
Affiliation(s)
- Jared A Mereness
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York
| | - Soumyaroop Bhattacharya
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Yue Ren
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Qian Wang
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Christopher S Anderson
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Kathy Donlon
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Andrew M Dylag
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Jeannie Haak
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
| | - Paolo Bonaldo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Thomas J Mariani
- Division of Neonatology and Pediatric Molecular and Personalized Medicine Program, Department of Pediatrics, University of Rochester, Rochester, New York; Department of Biomedical Genetics, University of Rochester, Rochester, New York.
| |
Collapse
|
267
|
Park JS, Burckhardt CJ, Lazcano R, Solis LM, Isogai T, Li L, Chen CS, Gao B, Minna JD, Bachoo R, DeBerardinis RJ, Danuser G. Mechanical regulation of glycolysis via cytoskeleton architecture. Nature 2020; 578:621-626. [PMID: 32051585 PMCID: PMC7210009 DOI: 10.1038/s41586-020-1998-1] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/17/2020] [Indexed: 12/21/2022]
Abstract
The mechanics of the cellular microenvironment continuously modulates cell functions such as growth, survival, apoptosis, differentiation and morphogenesis via cytoskeletal remodelling and actomyosin contractility1-3. Although all of these processes consume energy4,5, it is unknown whether and how cells adapt their metabolic activity to variable mechanical cues. Here we report that the transfer of human bronchial epithelial cells from stiff to soft substrates causes a downregulation of glycolysis via proteasomal degradation of the rate-limiting metabolic enzyme phosphofructokinase (PFK). PFK degradation is triggered by the disassembly of stress fibres, which releases the PFK-targeting E3 ubiquitin ligase tripartite motif (TRIM)-containing protein 21 (TRIM21). Transformed non-small-cell lung cancer cells, which maintain high glycolytic rates regardless of changing environmental mechanics, retain PFK expression by downregulating TRIM21, and by sequestering residual TRIM21 on a stress-fibre subset that is insensitive to substrate stiffness. Our data reveal a mechanism by which glycolysis responds to architectural features of the actomyosin cytoskeleton, thus coupling cell metabolism to the mechanical properties of the surrounding tissue. These processes enable normal cells to tune energy production in variable microenvironments, whereas the resistance of the cytoskeleton in response to mechanical cues enables the persistence of high glycolytic rates in cancer cells despite constant alterations of the tumour tissue.
Collapse
Affiliation(s)
- Jin Suk Park
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Christoph J Burckhardt
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Rossana Lazcano
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis
- Department of Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Linqing Li
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Christopher S Chen
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Boning Gao
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robert Bachoo
- Annette G. Strauss Center for Neuro-Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Research Institute and Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, UT Southwestern Medical Center, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, UT Southwestern Medical Center, Dallas, TX, USA.
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
268
|
Abstract
Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world's population will be over the age of 60 - the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
269
|
Abstract
Recently, respiratory systems are increasingly threatened by high levels of environmental pollution. Organ-on-a-chip technology has the advantage of enabling more accurate preclinical experiments by reproducing in vivo organ physiology. To investigate disease mechanisms and treatment options, respiratory-physiology-on-a-chip systems have been studied for the last decade. Here, we delineate the strategic approaches to develop respiratory-physiology-on-a-chip that can recapitulate respiratory system in vitro. The state-of-the-art biofabrication methods and biomaterials are considered as key contributions to constructing the chips. We also explore the vascularization strategies to investigate complicated pathophysiological phenomena including inflammation and immune responses, which are the critical aggravating factors causing the complications in the respiratory diseases. In addition, challenges and future research directions are delineated to improve the mimicry of respiratory systems in terms of both structural and biological behaviors.
Collapse
|
270
|
Wang L, Zhao Y, Yang F, Feng M, Zhao Y, Chen X, Mi J, Yao Y, Guan D, Xiao Z, Chen B, Dai J. Biomimetic collagen biomaterial induces in situ lung regeneration by forming functional alveolar. Biomaterials 2020; 236:119825. [PMID: 32044576 DOI: 10.1016/j.biomaterials.2020.119825] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/02/2023]
Abstract
In situ restoration of severely damaged lung remains difficult due to its limited regeneration capacity after injury. Artificial lung scaffolds are emerging as potential substitutes, but it is still a challenge to reconstruct lung regeneration microenvironment in scaffold after lung resection injury. Here, a 3D biomimetic porous collagen scaffold with similar structure characteristics as lung is fabricated, and a novel collagen binding hepatocyte growth factor (CBD-HGF) is tethered on the collagen scaffold for maintaining the biomimetic function of HGF to improve the lung regeneration microenvironment. The biomimetic scaffold was implanted into the operative region of a rat partial lung resection model. The results revealed that vascular endothelial cells and endogenous alveolar stem cells entered the scaffold at the early stage of regeneration. At the later stage, inflammation and fibrosis were attenuated, the microvascular and functional alveolar-like structures were formed, and the general morphology of the injured lung was restored. Taken together, the functional 3D biomimetic collagen scaffold facilitates recovery of the injured lung, alveolar regeneration, and angiogenesis after acute lung injury. Particularly, this is the first study of lung regeneration in vivo guided by biomimetic collagen scaffold materials, which supports the concept that tissue engineering is an effective strategy for alveolar regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yannan Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xi Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junwei Mi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanjiang Yao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dongwei Guan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhifeng Xiao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
271
|
Uhl FE, Zhang F, Pouliot RA, Uriarte JJ, Rolandsson Enes S, Han X, Ouyang Y, Xia K, Westergren-Thorsson G, Malmström A, Hallgren O, Linhardt RJ, Weiss DJ. Functional role of glycosaminoglycans in decellularized lung extracellular matrix. Acta Biomater 2020; 102:231-246. [PMID: 31751810 PMCID: PMC8713186 DOI: 10.1016/j.actbio.2019.11.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 11/09/2019] [Accepted: 11/12/2019] [Indexed: 01/17/2023]
Abstract
Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. Using a commonly utilized detergent-based decellularization approach in human autopsy lungs resulted in disproportionate losses of GAGs with depletion of chondroitin sulfate/dermatan sulfate (CS/DS) > heparan sulfate (HS) > hyaluronic acid (HA). Specific changes in disaccharide composition of remaining GAGs were observed with disproportionate loss of NS and NS2S for HS groups and of 4S for CS/DS groups. No significant influence of smoking history, sex, time to autopsy, or age was observed in native vs. decellularized lungs. Notably, surface plasmon resonance demonstrated that GAGs remaining in decellularized lungs were unable to bind key matrix-associated growth factors FGF2, HGF, and TGFβ1. Growth of lung epithelial, pulmonary vascular, and stromal cells cultured on the surface of or embedded within gels derived from decellularized human lungs was differentially and combinatorially enhanced by replenishing specific GAGs and FGF2, HGF, and TGFβ1. In summary, lung decellularization results in loss and/or dysfunction of specific GAGs or side chains significantly affecting matrix-associated growth factor binding and lung cell metabolism. GAG and matrix-associated growth factor replenishment thus needs to be incorporated into schemes for investigations utilizing gels and other materials produced from decellularized human lungs. STATEMENT OF SIGNIFICANCE: Despite progress in use of decellularized lung scaffolds in ex vivo lung bioengineering schemes, including use of gels and other materials derived from the scaffolds, the detailed composition and functional role of extracellular matrix (ECM) proteoglycans (PGs) and their glycosaminoglycan (GAG) chains remaining in decellularized lungs, is poorly understood. In the current studies, we demonstrate that glycosaminoglycans (GAGs) are significantly depleted during decellularization and those that remain are dysfunctional and unable to bind matrix-associated growth factors critical for cell growth and differentiation. Systematically repleting GAGs and matrix-associated growth factors to gels derived from decellularized human lung significantly and differentially affects cell growth. These studies highlight the importance of considering GAGs in decellularized lungs and their derivatives.
Collapse
Affiliation(s)
- Franziska E Uhl
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Robert A Pouliot
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Juan J Uriarte
- University of Vermont, Larner College of Medicine, Burlington, VT, United States
| | - Sara Rolandsson Enes
- University of Vermont, Larner College of Medicine, Burlington, VT, United States; Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Xiaorui Han
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Yilan Ouyang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Ke Xia
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Anders Malmström
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oskar Hallgren
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Daniel J Weiss
- University of Vermont, Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|
272
|
Cunningham PS, Meijer P, Nazgiewicz A, Anderson SG, Borthwick LA, Bagnall J, Kitchen GB, Lodyga M, Begley N, Venkateswaran RV, Shah R, Mercer PF, Durrington HJ, Henderson NC, Piper-Hanley K, Fisher AJ, Chambers RC, Bechtold DA, Gibbs JE, Loudon AS, Rutter MK, Hinz B, Ray DW, Blaikley JF. The circadian clock protein REVERBα inhibits pulmonary fibrosis development. Proc Natl Acad Sci U S A 2020; 117:1139-1147. [PMID: 31879343 PMCID: PMC6969503 DOI: 10.1073/pnas.1912109117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Pulmonary inflammatory responses lie under circadian control; however, the importance of circadian mechanisms in the underlying fibrotic phenotype is not understood. Here, we identify a striking change to these mechanisms resulting in a gain of amplitude and lack of synchrony within pulmonary fibrotic tissue. These changes result from an infiltration of mesenchymal cells, an important cell type in the pathogenesis of pulmonary fibrosis. Mutation of the core clock protein REVERBα in these cells exacerbated the development of bleomycin-induced fibrosis, whereas mutation of REVERBα in club or myeloid cells had no effect on the bleomycin phenotype. Knockdown of REVERBα revealed regulation of the little-understood transcription factor TBPL1. Both REVERBα and TBPL1 altered integrinβ1 focal-adhesion formation, resulting in increased myofibroblast activation. The translational importance of our findings was established through analysis of 2 human cohorts. In the UK Biobank, circadian strain markers (sleep length, chronotype, and shift work) are associated with pulmonary fibrosis, making them risk factors. In a separate cohort, REVERBα expression was increased in human idiopathic pulmonary fibrosis (IPF) lung tissue. Pharmacological targeting of REVERBα inhibited myofibroblast activation in IPF fibroblasts and collagen secretion in organotypic cultures from IPF patients, thus suggesting that targeting of REVERBα could be a viable therapeutic approach.
Collapse
Affiliation(s)
- Peter S Cunningham
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Peter Meijer
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Alicja Nazgiewicz
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Simon G Anderson
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- The George Alleyne Chronic Disease Research Centre, The University of the West Indies, Bridgetown. Barbados BB11000
| | - Lee A Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - James Bagnall
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Gareth B Kitchen
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Monika Lodyga
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - Nicola Begley
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Rajamiyer V Venkateswaran
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Rajesh Shah
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Paul F Mercer
- Centre for Inflammation and Tissue Repair, Faculty of Medical Sciences, University College London, London WC1E 6JJ, United Kingdom
| | - Hannah J Durrington
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, University of Edinburgh, EH16 4TJ Edinburgh, United Kingdom
| | - Karen Piper-Hanley
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andrew J Fisher
- Institute of Transplantation, Freeman Hospital, The Newcastle upon Tyne Hospitals National Health Service Foundation Trust, Newcastle upon Tyne NE7 7DN, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Faculty of Medical Sciences, University College London, London WC1E 6JJ, United Kingdom
| | - David A Bechtold
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Julie E Gibbs
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andrew S Loudon
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Martin K Rutter
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada
| | - David W Ray
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, United Kingdom
| | - John F Blaikley
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, United Kingdom;
- Manchester University National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, United Kingdom
| |
Collapse
|
273
|
Tetrandrine Ameliorates Airway Remodeling of Chronic Asthma by Interfering TGF- β1/Nrf-2/HO-1 Signaling Pathway-Mediated Oxidative Stress. Can Respir J 2019; 2019:7930396. [PMID: 31781316 PMCID: PMC6875008 DOI: 10.1155/2019/7930396] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/24/2019] [Accepted: 09/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Imbalanced oxidative stress and antioxidant defense are involved in airway remodeling in asthma. It has been demonstrated that Tetrandrine has a potent role in antioxidant defense in rheumatoid arthritis and hypertension. However, the correlation between Tetrandrine and oxidative stress in asthma is utterly blurry. This study aimed to investigate the role of Tetrandrine on oxidative stress-mediated airway remolding. Materials and Methods Chronic asthma was established by ovalbumin (OVA) administration in male Wistar rats. Histopathology was determined by HE staining. Immunofluorescence was employed to detect the expression of α-SMA and Nrf-2. Level of oxidative stress and matrix metalloproteinases were examined by ELISA kits. Cell viability and cell cycle of primary airway smooth muscle cells (ASMCs) were evaluated by CCK8 and flow cytometry, respectively. Signal molecules were detected using western blot. Results Tetrandrine effectively impairs OVA-induced airway inflammatory and airway remodeling by inhibiting the expression of CysLT1 and CysLTR1. The increase of oxidative stress and subsequent enhancement of MMP9 and TGF-β1 expression were rescued by the administration of Tetrandrine in the rat model of asthma. In in vitro experiments, Tetrandrine markedly suppressed TGF-β1-evoked cell viability and cell cycle promotion of ASMCs in a dose-dependent manner. Furthermore, Tetrandrine promoted Nrf-2 nuclear transcription and activated its downstream HO-1 in vivo and in vitro. Conclusion Tetrandrine attenuates airway inflammatory and airway remodeling in rat model of asthma and TGF-β1-induced cell proliferation of ASMCs by regulating oxidative stress in primary ASMCs, suggesting that Tetrandrine possibly is an effective candidate therapy for asthma.
Collapse
|
274
|
Blazquez R, Sparrer D, Wendl C, Evert M, Riemenschneider MJ, Krahn MP, Erez N, Proescholdt M, Pukrop T. The macro-metastasis/organ parenchyma interface (MMPI) - A hitherto unnoticed area. Semin Cancer Biol 2019; 60:324-333. [PMID: 31647982 DOI: 10.1016/j.semcancer.2019.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023]
Abstract
The macro-metastasis/organ parenchyma interface (MMPI) was previously considered an inert anatomical border which sharply separates the affected organ parenchyma from the macro-metastatic tissue. Recently, infiltrative growth of macro-metastases from various primary tumors was described in the brain, liver and lung, with significant impact on survival. Strikingly, the MMPI patterns differed between entities, so that at least nine different patterns were described. The MMPI patterns could be further classified into three major groups: displacing, epithelial and diffuse infiltrating. Additionally, macro-metastases are a source of further tumor cell dissemination in the affected organ; and these intra-organ metastatic dissemination tracks starting from the MMPI also vary depending on the anatomical structures of the colonized organ and influence disease outcome. In spite of their relevance, MMPIs and organ-specific dissemination tracks are still largely overlooked by many clinicians, pathologists and/or researchers. In this review, we aim to address this important issue and enhance our current understanding of the different MMPI patterns and dissemination tracks in the brain, liver and lung.
Collapse
Affiliation(s)
- R Blazquez
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - D Sparrer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - C Wendl
- Department of Radiology, Center of Neuroradiology, University Hospital Regensburg, 93053 Regensburg, Germany
| | - M Evert
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053 Regensburg, Germany
| | - M P Krahn
- Department of Internal Medicine D, University Hospital of Münster, 48149 Münster, Germany
| | - N Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, 69978 Tel Aviv, Israel
| | - M Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - T Pukrop
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
275
|
Pandolfi L, Frangipane V, Bocca C, Marengo A, Tarro Genta E, Bozzini S, Morosini M, D'Amato M, Vitulo S, Monti M, Comolli G, Scupoli MT, Fattal E, Arpicco S, Meloni F. Hyaluronic Acid-Decorated Liposomes as Innovative Targeted Delivery System for Lung Fibrotic Cells. Molecules 2019; 24:molecules24183291. [PMID: 31509965 PMCID: PMC6766933 DOI: 10.3390/molecules24183291] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/19/2022] Open
Abstract
Collagen Tissue Disease-associated Interstitial Lung Fibrosis (CTD-ILDs) and Bronchiolitis Obliterans Syndrome (BOS) represent severe lung fibrogenic disorders, characterized by fibro-proliferation with uncontrolled extracellular matrix deposition. Hyaluronic acid (HA) plays a key role in fibrosis with its specific receptor, CD44, overexpressed by CTD-ILD and BOS cells. The aim is to use HA-liposomes to develop an inhalatory treatment for these diseases. Liposomes with HA of two molecular weights were prepared and characterized. Targeting efficiency was assessed toward CTD-ILD and BOS cells by flow cytometry and confocal microscopy and immune modulation by RT-PCR and ELISA techniques. HA-liposomes were internalized by CTD-ILD and BOS cells expressing CD44, and this effect increased with higher HA MW. In THP-1 cells, HA-liposomes decreased pro-inflammatory cytokines IL-1β, IL-12, and anti-fibrotic VEGF transcripts but increased TGF-β mRNA. However, upon analyzing TGF-β release from healthy donors-derived monocytes, we found liposomes did not alter the release of active pro-fibrotic cytokine. All liposomes induced mild activation of neutrophils regardless of the presence of HA. HA liposomes could be also applied for lung fibrotic diseases, being endowed with low pro-inflammatory activity, and results confirmed that higher MW HA are associated to an increased targeting efficiency for CD44 expressing LFs-derived from BOS and CTD-ILD patients.
Collapse
Affiliation(s)
- Laura Pandolfi
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Vanessa Frangipane
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Claudia Bocca
- Department of Clinical and Biological Sciences, University of Turin, 10125 Turin, Italy.
| | - Alessandro Marengo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Erika Tarro Genta
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Sara Bozzini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Monica Morosini
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maura D'Amato
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Simone Vitulo
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Manuela Monti
- Laboratory of Biotechnology, Center of Regenerative Medicine Research, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
| | - Giuditta Comolli
- Experimental Research Laboratories, Biotechnology Area, IRCCS San Matteo Foundation, 27100 Pavia, Italy.
- Molecular Virology Unit, Microbiology and Virology Department, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
| | - Maria Teresa Scupoli
- Research Center LURM, Interdepartmental Laboratory of Medical Research, University of Verona, 37134 Verona, Italy.
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy.
| | - Elias Fattal
- Institut Galien Paris-Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, 922996 Châtenay-Malabry, France.
| | - Silvia Arpicco
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy.
| | - Federica Meloni
- Research Laboratory of Lung Diseases, Section of Cell Biology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy.
- Department of Internal Medicine, University of Pavia, 27100 Pavia, Italy.
| |
Collapse
|
276
|
Shao M, Wen ZB, Yang HH, Zhang CY, Xiong JB, Guan XX, Zhong WJ, Jiang HL, Sun CC, Luo XQ, He XF, Zhou Y, Guan CX. Exogenous angiotensin (1-7) directly inhibits epithelial-mesenchymal transformation induced by transforming growth factor-β1 in alveolar epithelial cells. Biomed Pharmacother 2019; 117:109193. [DOI: 10.1016/j.biopha.2019.109193] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/22/2019] [Accepted: 06/28/2019] [Indexed: 12/19/2022] Open
|
277
|
Exploring the extracellular matrix in health and disease using proteomics. Essays Biochem 2019; 63:417-432. [DOI: 10.1042/ebc20190001] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023]
Abstract
Abstract
The extracellular matrix (ECM) is a complex assembly of hundreds of proteins that constitutes the scaffold of multicellular organisms. In addition to providing architectural and mechanical support to the surrounding cells, it conveys biochemical signals that regulate cellular processes including proliferation and survival, fate determination, and cell migration. Defects in ECM protein assembly, decreased ECM protein production or, on the contrary, excessive ECM accumulation, have been linked to many pathologies including cardiovascular and skeletal diseases, cancers, and fibrosis. The ECM thus represents a potential reservoir of prognostic biomarkers and therapeutic targets. However, our understanding of the global protein composition of the ECM and how it changes during pathological processes has remained limited until recently.
In this mini-review, we provide an overview of the latest methodological advances in sample preparation and mass spectrometry-based proteomics that have permitted the profiling of the ECM of now dozens of normal and diseased tissues, including tumors and fibrotic lesions.
Collapse
|
278
|
Ong JWJ, Tan KS, Ler SG, Gunaratne J, Choi H, Seet JE, Chow VTK. Insights into Early Recovery from Influenza Pneumonia by Spatial and Temporal Quantification of Putative Lung Regenerating Cells and by Lung Proteomics. Cells 2019; 8:cells8090975. [PMID: 31455003 PMCID: PMC6769472 DOI: 10.3390/cells8090975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 08/21/2019] [Indexed: 12/26/2022] Open
Abstract
During influenza pneumonia, the alveolar epithelial cells of the lungs are targeted by the influenza virus. The distal airway stem cells (DASCs) and proliferating alveolar type II (AT2) cells are reported to be putative lung repair cells. However, their relative spatial and temporal distribution is still unknown during influenza-induced acute lung injury. Here, we investigated the distribution of these cells, and concurrently performed global proteomic analysis of the infected lungs to elucidate and link the cellular and molecular events during influenza pneumonia recovery. BALB/c mice were infected with a sub-lethal dose of influenza H1N1 virus. From 5 to 25 days post-infection (dpi), mouse lungs were subjected to histopathologic and immunofluorescence analysis to probe for global distribution of lung repair cells (using P63 and KRT5 markers for DASCs; SPC and PCNA markers for AT2 cells). At 7 and 15 dpi, infected mouse lungs were also subjected to protein mass spectrometry for relative protein quantification. DASCs appeared only in the damaged area of the lung from 7 dpi onwards, reaching a peak at 21 dpi, and persisted until 25 dpi. However, no differentiation of DASCs to AT2 cells was observed by 25 dpi. In contrast, AT2 cells began proliferating from 7 dpi to replenish their population, especially within the boundary area between damaged and undamaged areas of the infected lungs. Mass spectrometry and gene ontology analysis revealed prominent innate immune responses at 7 dpi, which shifted towards adaptive immune responses by 15 dpi. Hence, proliferating AT2 cells but not DASCs contribute to AT2 cell regeneration following transition from innate to adaptive immune responses during the early phase of recovery from influenza pneumonia up to 25 dpi.
Collapse
Affiliation(s)
- Joe Wee Jian Ong
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| | - Kai Sen Tan
- Department of Otolaryngology, National University of Singapore, Singapore 119228, Singapore
| | - Siok Ghee Ler
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
| | | | - Hyungwon Choi
- Institute of Molecular and Cell Biology, Singapore 138673, Singapore
- Department of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Ju Ee Seet
- Department of Pathology, National University of Singapore, Singapore 119074, Singapore
| | - Vincent Tak-Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore
- Correspondence: (J.W.J.O.); (V.T.-K.C.); Tel.: +65-6516-3691 (J.W.J.O.)
| |
Collapse
|
279
|
Glycation-induced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim Biophys Acta Gen Subj 2019; 1863:129411. [PMID: 31400438 DOI: 10.1016/j.bbagen.2019.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Glycation driven generation of advanced glycation end products (AGEs) and their patho-physiological role in human degenerative diseases has remained one of the thrust areas in the mainstream of disease biology. Glycation of extracellular matrix (ECM) proteins have deleterious effect on the mechanical and functional properties of tissues. Owing to the adverse pathophysiological concerns of glycation, there is a need to decipher the underlying mechanisms. SCOPE OF REVIEW AGE-modified ECM proteins affect the cell in the vicinity by altering protein structure-function, matrix-matrix or matrix-cell interaction and by activating signalling pathway through receptor for AGE. This review is intended for addressing the AGE-induced modification of tissue-specific ECM proteins and its implication in the pathogenesis of various organ-specific human ailments. MAJOR CONCLUSIONS The glycation affects the canonical cell behaviour due to alteration in the interaction of glycated ECM with receptors like integrins and discodin domain, and the signalling cues generated subsequently affect the downstream signalling pathways. Consequently, the variation of structural and functional properties of tissues due to matrix glycation helps in the initiation or progression of the disease condition. GENERAL SIGNIFICANCE This review offers comprehensive knowledge about the remodelling of glycation induced ECM and tissue-specific pathological concerns. As glycation of ECM affects the normal tissues and cell behaviour, the scientific discourse may also provide cues for developing candidate drugs that may help in attenuating the adverse effects of AGEs and perhaps open a research window of tailoring novel strategies for the management of glycation induced human degenerative diseases.
Collapse
|
280
|
Chronic Obstructive Pulmonary Disease and Lung Cancer: Underlying Pathophysiology and New Therapeutic Modalities. Drugs 2019; 78:1717-1740. [PMID: 30392114 DOI: 10.1007/s40265-018-1001-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are major lung diseases affecting millions worldwide. Both diseases have links to cigarette smoking and exert a considerable societal burden. People suffering from COPD are at higher risk of developing lung cancer than those without, and are more susceptible to poor outcomes after diagnosis and treatment. Lung cancer and COPD are closely associated, possibly sharing common traits such as an underlying genetic predisposition, epithelial and endothelial cell plasticity, dysfunctional inflammatory mechanisms including the deposition of excessive extracellular matrix, angiogenesis, susceptibility to DNA damage and cellular mutagenesis. In fact, COPD could be the driving factor for lung cancer, providing a conducive environment that propagates its evolution. In the early stages of smoking, body defences provide a combative immune/oxidative response and DNA repair mechanisms are likely to subdue these changes to a certain extent; however, in patients with COPD with lung cancer the consequences could be devastating, potentially contributing to slower postoperative recovery after lung resection and increased resistance to radiotherapy and chemotherapy. Vital to the development of new-targeted therapies is an in-depth understanding of various molecular mechanisms that are associated with both pathologies. In this comprehensive review, we provide a detailed overview of possible underlying factors that link COPD and lung cancer, and current therapeutic advances from both human and preclinical animal models that can effectively mitigate this unholy relationship.
Collapse
|
281
|
Chemokines in COPD: From Implication to Therapeutic Use. Int J Mol Sci 2019; 20:ijms20112785. [PMID: 31174392 PMCID: PMC6600384 DOI: 10.3390/ijms20112785] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
: Chronic Obstructive Pulmonary Disease (COPD) represents the 3rd leading cause of death in the world. The underlying pathophysiological mechanisms have been the focus of extensive research in the past. The lung has a complex architecture, where structural cells interact continuously with immune cells that infiltrate into the pulmonary tissue. Both types of cells express chemokines and chemokine receptors, making them sensitive to modifications of concentration gradients. Cigarette smoke exposure and recurrent exacerbations, directly and indirectly, impact the expression of chemokines and chemokine receptors. Here, we provide an overview of the evidence regarding chemokines involvement in COPD, and we hypothesize that a dysregulation of this tightly regulated system is critical in COPD evolution, both at a stable state and during exacerbations. Targeting chemokines and chemokine receptors could be highly attractive as a mean to control both chronic inflammation and bronchial remodeling. We present a special focus on the CXCL8-CXCR1/2, CXCL9/10/11-CXCR3, CCL2-CCR2, and CXCL12-CXCR4 axes that seem particularly involved in the disease pathophysiology.
Collapse
|
282
|
Burrowes KS, Iravani A, Kang W. Integrated lung tissue mechanics one piece at a time: Computational modeling across the scales of biology. Clin Biomech (Bristol, Avon) 2019; 66:20-31. [PMID: 29352607 DOI: 10.1016/j.clinbiomech.2018.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/05/2017] [Accepted: 01/09/2018] [Indexed: 02/07/2023]
Abstract
The lung is a delicately balanced and highly integrated mechanical system. Lung tissue is continuously exposed to the environment via the air we breathe, making it susceptible to damage. As a consequence, respiratory diseases present a huge burden on society and their prevalence continues to rise. Emergent function is produced not only by the sum of the function of its individual components but also by the complex feedback and interactions occurring across the biological scales - from genes to proteins, cells, tissue and whole organ - and back again. Computational modeling provides the necessary framework for pulling apart and putting back together the pieces of the body and organ systems so that we can fully understand how they function in both health and disease. In this review, we discuss models of lung tissue mechanics spanning from the protein level (the extracellular matrix) through to the level of cells, tissue and whole organ, many of which have been developed in isolation. This is a vital step in the process but to understand the emergent behavior of the lung, we must work towards integrating these component parts and accounting for feedback across the scales, such as mechanotransduction. These interactions will be key to unlocking the mechanisms occurring in disease and in seeking new pharmacological targets and improving personalized healthcare.
Collapse
Affiliation(s)
- Kelly S Burrowes
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand; Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| | - Amin Iravani
- Department of Chemical and Materials Engineering, University of Auckland, 2-6 Park Avenue, Auckland 1023, New Zealand.
| | - Wendy Kang
- Auckland Bioengineering Institute, University of Auckland, 70 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
283
|
Hollenbach J, Lopez-Rodriguez E, Mühlfeld C, Schipke J. Voluntary Activity Modulates Sugar-Induced Elastic Fiber Remodeling in the Alveolar Region of the Mouse Lung. Int J Mol Sci 2019; 20:ijms20102438. [PMID: 31108840 PMCID: PMC6567106 DOI: 10.3390/ijms20102438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 01/11/2023] Open
Abstract
Diabetes and respiratory diseases are frequently comorbid conditions. However, the mechanistic links between hyperglycemia and lung dysfunction are not entirely understood. This study examined the effects of high sucrose intake on lung mechanics and alveolar septal composition and tested voluntary activity as an intervention strategy. C57BL/6N mice were fed a control diet (CD, 7% sucrose) or a high sucrose diet (HSD, 35% sucrose). Some animals had access to running wheels (voluntary active; CD-A, HSD-A). After 30 weeks, lung mechanics were assessed, left lungs were used for stereological analysis and right lungs for protein expression measurement. HSD resulted in hyperglycemia and higher static compliance compared to CD. Lung and septal volumes were increased and the septal ratio of elastic-to-collagen fibers was decreased despite normal alveolar epithelial volumes. Elastic fibers appeared more loosely arranged accompanied by an increase in elastin protein expression. Voluntary activity prevented hyperglycemia in HSD-fed mice. The parenchymal airspace volume, but not the septal volume, was increased. The septal extracellular matrix (ECM) composition together with the protein expression of ECM components was similar to control levels in the HSD-A-group. In conclusion, HSD was associated with elastic fiber remodeling and reduced pulmonary elasticity. Voluntary activity alleviated HSD-induced ECM alterations, possibly by preventing hyperglycemia.
Collapse
Affiliation(s)
- Julia Hollenbach
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
| | - Elena Lopez-Rodriguez
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany.
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), 30625 Hannover, Germany.
- Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), 30625 Hannover, Germany.
| |
Collapse
|
284
|
Birzle AM, Hobrack SMK, Martin C, Uhlig S, Wall WA. Constituent-specific material behavior of soft biological tissue: experimental quantification and numerical identification for lung parenchyma. Biomech Model Mechanobiol 2019; 18:1383-1400. [PMID: 31053928 DOI: 10.1007/s10237-019-01151-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
In this study, we present a method to experimentally quantify and numerically identify the constituent-specific material behavior of soft biological tissues. This allows the clear identification of the individual contributions of major load-bearing constituents and their interactions in the constitutive law. While the overall approach is applicable for many tissues, here it will be presented for the identification of a sophisticated constituent-specific material model of viable lung parenchyma. This material model will help to better model the effects of various lung diseases that feature altered fiber content in the lungs, such as emphysema or fibrosis. To experimentally quantify the mechanical properties of collagen, elastin, collagen-elastin-fiber interactions, and ground substance, we examined 18 collagenase and elastase treated rat lung parenchymal slices. The mechanical contributions of the collagen and elastin fibers in the living tissue were inferred from uniaxial tension tests comparing the behavior before and after the selective digestion of the respective fibers. In order to also obtain the mechanical influence of the ground substance, we consecutively treated the samples with both proteases. Collagen and elastin fibers are morphologically interconnected. Thus, a mechanical interaction between these fibers appears likely, but has not yet been experimentally verified. In this paper, we propose an experimental method to quantitatively assess the mechanical behavior of these collagen-elastin-fiber interactions. Based on our experiments, we have identified individual material models within a nonlinear continuum mechanics framework for each load-bearing component via an inverse analysis. The proposed constituent-specific material law can be incorporated into computational models of the respiratory system to simulate and even predict the behavior and alteration of the individual constituents and their effect on the whole respiratory system during normal and artificial breathing, in particular in the case of diseases that alter the fibers in the tissue.
Collapse
Affiliation(s)
- Anna M Birzle
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany.
| | - Sophie M K Hobrack
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany.,Munich University of Applied Sciences, Lothstr. 34, 80335, Munich, Germany
| | - Christian Martin
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Stefan Uhlig
- Institute of Pharmacology and Toxicology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Wolfgang A Wall
- Institute for Computational Mechanics, Technical University of Munich, Boltzmannstr. 15, 85748, Garching b. Munich, Germany
| |
Collapse
|
285
|
Kumawat K, Geerdink RJ, Hennus MP, Roda MA, van Ark I, Leusink-Muis T, Folkerts G, van Oort-Jansen A, Mazharian A, Watson SP, Coenjaerts FE, Bont L, Meyaard L. LAIR-1 Limits Neutrophilic Airway Inflammation. Front Immunol 2019; 10:842. [PMID: 31080449 PMCID: PMC6497752 DOI: 10.3389/fimmu.2019.00842] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/01/2019] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are crucial to antimicrobial defense, but excessive neutrophilic inflammation induces immune pathology. The mechanisms by which neutrophils are regulated to prevent injury and preserve tissue homeostasis are not completely understood. We recently identified the collagen receptor leukocyte-associated immunoglobulin-like receptor (LAIR)-1 as a functional inhibitory receptor on airway-infiltrated neutrophils in viral bronchiolitis patients. In the current study, we sought to examine the role of LAIR-1 in regulating airway neutrophil responses in vivo. LAIR-1-deficient (Lair1-/-) and wild-type mice were infected with respiratory syncytial virus (RSV) or exposed to cigarette smoke as commonly accepted models of neutrophil-driven lung inflammation. Mice were monitored for cellular airway influx, weight loss, cytokine production, and viral loads. After RSV infection, Lair1-/- mice show enhanced airway inflammation accompanied by increased neutrophil and lymphocyte recruitment to the airways, without effects on viral loads or cytokine production. LAIR-1-Fc administration in wild type mice, which blocks ligand induced LAIR-1 activation, augmented airway inflammation recapitulating the observations in Lair1-/- mice. Likewise, in the smoke-exposure model, LAIR-1 deficiency enhanced neutrophil recruitment to the airways and worsened disease severity. Intranasal CXCL1-mediated neutrophil recruitment to the airways was enhanced in mice lacking LAIR-1, supporting an intrinsic function of LAIR-1 on neutrophils. In conclusion, the immune inhibitory receptor LAIR-1 suppresses neutrophil tissue migration and acts as a negative regulator of neutrophil-driven airway inflammation during lung diseases. Following our recent observations in humans, this study provides crucial in-vivo evidence that LAIR-1 is a promising target for pharmacological intervention in such pathologies.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Ruben J. Geerdink
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marije P. Hennus
- Department of Pediatric Intensive Care, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Mojtaba Abdul Roda
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ingrid van Ark
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Thea Leusink-Muis
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Anita van Oort-Jansen
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Alexandra Mazharian
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Centre for Cardiovascular Sciences, Institute for Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre of Membrane Proteins and Receptors, Universities of Birmingham and Nottingham, Birmingham, United Kingdom
| | - Frank E. Coenjaerts
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Louis Bont
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, Netherlands
| | - Linde Meyaard
- Laboratory for Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Oncode Institute, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
286
|
Ito JT, Lourenço JD, Righetti RF, Tibério IFLC, Prado CM, Lopes FDTQS. Extracellular Matrix Component Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells 2019; 8:E342. [PMID: 30979017 PMCID: PMC6523091 DOI: 10.3390/cells8040342] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/09/2023] Open
Abstract
Changes in extracellular matrix (ECM) components in the lungs are associated with the progression of respiratory diseases, such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory distress syndrome (ARDS). Experimental and clinical studies have revealed that structural changes in ECM components occur under chronic inflammatory conditions, and these changes are associated with impaired lung function. In bronchial asthma, elastic and collagen fiber remodeling, mostly in the airway walls, is associated with an increase in mucus secretion, leading to airway hyperreactivity. In COPD, changes in collagen subtypes I and III and elastin, interfere with the mechanical properties of the lungs, and are believed to play a pivotal role in decreased lung elasticity, during emphysema progression. In ARDS, interstitial edema is often accompanied by excessive deposition of fibronectin and collagen subtypes I and III, which can lead to respiratory failure in the intensive care unit. This review uses experimental models and human studies to describe how inflammatory conditions and ECM remodeling contribute to the loss of lung function in these respiratory diseases.
Collapse
Affiliation(s)
- Juliana T Ito
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Juliana D Lourenço
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Renato F Righetti
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
- Rehabilitation service, Sírio-Libanês Hospital, Sao Paulo 01308-050, Brazil.
| | - Iolanda F L C Tibério
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| | - Carla M Prado
- Department of Bioscience, Laboratory of Studies in Pulmonary Inflammation, Federal University of Sao Paulo, Santos 11015-020, Brazil.
| | - Fernanda D T Q S Lopes
- Department of Clinical Medicine, Laboratory of Experimental Therapeutics/LIM-20, School of Medicine of University of Sao Paulo, Sao Paulo 01246-903, Brazil.
| |
Collapse
|
287
|
Zhao WC, Li G, Huang CY, Jiang JL. Asymmetric dimethylarginine: An crucial regulator in tissue fibrosis. Eur J Pharmacol 2019; 854:54-61. [PMID: 30951718 DOI: 10.1016/j.ejphar.2019.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Fibrosis is a reparative process with very few therapeutic options to prevent its progression to organ dysfunction. Chronic fibrotic diseases contribute to an estimated 45% of all death in the industrialized world. Asymmetric dimethylarginine (ADMA), an endothelial nitric oxide synthase inhibitor, plays a crucial role in the pathogenesis of various cardiovascular diseases associated with endothelial dysfunction. Recent reports have focused on ADMA in the pathogenesis of tissue fibrosis. This review discusses the current knowledge about ADMA biology, its association with risk factors of established fibrotic diseases and the potential pathophysiological mechanisms implicating ADMA in the process of tissue fibrosis.
Collapse
Affiliation(s)
- Wei-Chen Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Faculty of Medical Public Courses, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong, 510520, China
| | - Chu-Yi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Jun-Lin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
288
|
Transcriptomic Sequencing of Airway Epithelial Cell NCI-H292 Induced by Synthetic Cationic Polypeptides. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3638469. [PMID: 31058187 PMCID: PMC6463615 DOI: 10.1155/2019/3638469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/13/2019] [Accepted: 02/26/2019] [Indexed: 01/06/2023]
Abstract
Eosinophil asthma is characterized by the infiltration of eosinophils to the bronchial epithelium. The toxic cationic protein released by eosinophils, mainly major basic protein (MBP), is one of the most important causative factors of epithelium damage. Poly-L-Arginine (PLA) is a kind of synthetic cationic polypeptides, which is widely used to mimic the effects of MBP on epithelial cells in vitro. However, little is known about the changes of differentially expressed genes (DEGs) and transcriptome profiles in cationic protein stimulated epithelial cells. In this study, we compared the expression of DEGs and transcriptome profiles between PLA-treated airway epithelial cells NCI-H292 and control. The results showed that there were a total of 230 DEGs, of which 86 were upregulated and 144 were downregulated. These DEGs were further analyzed using gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The results showed that the upregulated DEGs were involved in cholesterol synthesis, protein binding, and composition of cellular membranes, mainly enriched in metabolic and biosynthesis pathways. While downregulated DEGs were implicated in cell adhesion, extracellular matrix (ECM) composition and cytoskeleton and were enriched in ECM pathway. In conclusion, our research provided the mechanism of the cationic polypeptides acting on the airway epithelial cells on the basis of transcriptomic profile, and this could be regarded as important indications in unveiling the pathologic role of natural cationic proteins in the damage to epithelial cells of asthmatics.
Collapse
|
289
|
Engle ML, Monk JN, Jania CM, Martin JR, Gomez JC, Dang H, Parker JS, Doerschuk CM. Dynamic changes in lung responses after single and repeated exposures to cigarette smoke in mice. PLoS One 2019; 14:e0212866. [PMID: 30818335 PMCID: PMC6395068 DOI: 10.1371/journal.pone.0212866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 02/11/2019] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoke is well recognized to cause injury to the airways and the alveolar walls over time. This injury usually requires many years of exposure, suggesting that the lungs may rapidly develop responses that initially protect it from this repetitive injury. Our studies tested the hypotheses that smoke induces an inflammatory response and changes in mRNA profiles that are dependent on sex and the health status of the lung, and that the response of the lungs to smoke differs after 1 day compared to 5 days of exposure. Male and female wildtype (WT) and Scnn1b-transgenic (βENaC) mice, which have chronic bronchitis and emphysematous changes due to dehydrated mucus, were exposed to cigarette smoke or sham air conditions for 1 or 5 days. The inflammatory response and gene expression profiles were analyzed in lung tissue. Overall, the inflammatory response to cigarette smoke was mild, and changes in mediators were more numerous after 1 than 5 days. βENaC mice had more airspace leukocytes than WT mice, and smoke exposure resulted in additional significant alterations. Many genes and gene sets responded similarly at 1 and 5 days: genes involved in oxidative stress responses were upregulated while immune response genes were downregulated. However, certain genes and biological processes were regulated differently after 1 compared to 5 days. Extracellular matrix biology genes and gene sets were upregulated after 1 day but downregulated by 5 days of smoke compared to sham exposure. There was no difference in the transcriptional response to smoke between WT and βENaC mice or between male and female mice at either 1 or 5 days. Taken together, these studies suggest that the lungs rapidly alter gene expression after only one exposure to cigarette smoke, with few additional changes after four additional days of repeated exposure. These changes may contribute to preventing lung damage.
Collapse
Affiliation(s)
- Michelle L. Engle
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Justine N. Monk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Pathobiology and Translational Science Graduate Program, University of North Carolina, Chapel Hill, NC, United States of America
| | - Corey M. Jania
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jessica R. Martin
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - John C. Gomez
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Hong Dang
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
| | - Joel S. Parker
- Department of Genetics, University of North Carolina, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, United States of America
| | - Claire M. Doerschuk
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, United States of America
- Division of Pulmonary Diseases and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, United States of America
- Department of Medicine, University of North Carolina, Chapel Hill, NC, United States of America
| |
Collapse
|
290
|
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM, Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019; 10:963. [PMID: 30814501 PMCID: PMC6393476 DOI: 10.1038/s41467-019-08831-9] [Citation(s) in RCA: 374] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/01/2019] [Indexed: 12/30/2022] Open
Abstract
Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung. Aging impacts lung functionality and makes it more susceptible to chronic diseases. Combining proteomics and single cell transcriptomics, the authors chart molecular and cellular changes in the aging mouse lung, discover aging hallmarks, and predict the cellular sources of regulated proteins.
Collapse
Affiliation(s)
- Ilias Angelidis
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Lukas M Simon
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Isis E Fernandez
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Flavia R Greiffo
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - George Tsitsiridis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Meshal Ansari
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.,Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Elisabeth Graf
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Tim-Matthias Strom
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Monica Nagendran
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Tushar Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Oliver Eickelberg
- Department of Medicine, Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, 80045, CO, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany. .,Department of Mathematics, Technische Universität München, Munich, 85748, Germany.
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.
| |
Collapse
|
291
|
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM, Nagendran M, Desai T, Eickelberg O, Mann M, Theis FJ, Schiller HB. An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 2019; 10:963. [PMID: 30814501 DOI: 10.1101/351353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 02/01/2019] [Indexed: 05/28/2023] Open
Abstract
Aging promotes lung function decline and susceptibility to chronic lung diseases, which are the third leading cause of death worldwide. Here, we use single cell transcriptomics and mass spectrometry-based proteomics to quantify changes in cellular activity states across 30 cell types and chart the lung proteome of young and old mice. We show that aging leads to increased transcriptional noise, indicating deregulated epigenetic control. We observe cell type-specific effects of aging, uncovering increased cholesterol biosynthesis in type-2 pneumocytes and lipofibroblasts and altered relative frequency of airway epithelial cells as hallmarks of lung aging. Proteomic profiling reveals extracellular matrix remodeling in old mice, including increased collagen IV and XVI and decreased Fraser syndrome complex proteins and collagen XIV. Computational integration of the aging proteome with the single cell transcriptomes predicts the cellular source of regulated proteins and creates an unbiased reference map of the aging lung.
Collapse
Affiliation(s)
- Ilias Angelidis
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Lukas M Simon
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Isis E Fernandez
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Christoph H Mayr
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - Flavia R Greiffo
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
| | - George Tsitsiridis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Meshal Ansari
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany
| | - Elisabeth Graf
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Tim-Matthias Strom
- Helmholtz Zentrum München, Institute of Human Genetics, Munich, 85764, Germany
| | - Monica Nagendran
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Tushar Desai
- Department of Internal Medicine, Division of Pulmonary and Critical Care, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, 94305, CA, USA
| | - Oliver Eickelberg
- Department of Medicine, Division of Respiratory Sciences and Critical Care Medicine, University of Colorado, Aurora, 80045, CO, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Munich, 82152, Germany
| | - Fabian J Theis
- Helmholtz Zentrum München, Institute of Computational Biology, Munich, 85764, Germany.
- Department of Mathematics, Technische Universität München, Munich, 85748, Germany.
| | - Herbert B Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Member of the German Center for Lung Research (DZL), Munich, 85764, Germany.
| |
Collapse
|
292
|
Expression, activity and localization of lysosomal sulfatases in Chronic Obstructive Pulmonary Disease. Sci Rep 2019; 9:1991. [PMID: 30760748 PMCID: PMC6374378 DOI: 10.1038/s41598-018-37958-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 12/05/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a leading cause of death world-wide. Recently, we showed that COPD is associated with gene polymorphisms in SUMF1, a master regulator of sulfatases. Sulfatases are involved in extracellular matrix remodeling and activated by SUMF1, but their role in the lung is poorly described. We aimed to examine how sulfatases are affected in the airways of patients with COPD compared to ever smokers and never smokers. We observed that mRNA expression of the sulfatases GALNS, GNS and IDS was increased, while protein expression of many sulfatases was decreased in COPD fibroblasts. Several sulfatases, including GALNS, IDS, and SGSH, showed increased activity in COPD fibroblasts. Examination of different sulfatases by immunofluorescence showed that IDS, ARSB, GNS and SGSH in fibroblasts were localized to sites other than their reported destination. Using a master panel from different organs, RNA expression of all sulfatases could be observed in lung tissue. Additionally, immunohistochemistry on lung biopsies indicated differing expression of sulfatases in COPD patients. In conclusion, mRNA, protein expression, sulfatase activity levels, and localization of sulfatases are altered in lung fibroblasts and lung tissue from COPD patients and may be mechanistically important in COPD pathogenesis. This could contribute to the understanding of the disease mechanism in COPD and in the long run, to lead to more individualized therapies.
Collapse
|
293
|
Bailey KE, Floren ML, D'Ovidio TJ, Lammers SR, Stenmark KR, Magin CM. Tissue-informed engineering strategies for modeling human pulmonary diseases. Am J Physiol Lung Cell Mol Physiol 2019; 316:L303-L320. [PMID: 30461289 PMCID: PMC6397349 DOI: 10.1152/ajplung.00353.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022] Open
Abstract
Chronic pulmonary diseases, including idiopathic pulmonary fibrosis (IPF), pulmonary hypertension (PH), and chronic obstructive pulmonary disease (COPD), account for staggering morbidity and mortality worldwide but have limited clinical management options available. Although great progress has been made to elucidate the cellular and molecular pathways underlying these diseases, there remains a significant disparity between basic research endeavors and clinical outcomes. This discrepancy is due in part to the failure of many current disease models to recapitulate the dynamic changes that occur during pathogenesis in vivo. As a result, pulmonary medicine has recently experienced a rapid expansion in the application of engineering principles to characterize changes in human tissues in vivo and model the resulting pathogenic alterations in vitro. We envision that engineering strategies using precision biomaterials and advanced biomanufacturing will revolutionize current approaches to disease modeling and accelerate the development and validation of personalized therapies. This review highlights how advances in lung tissue characterization reveal dynamic changes in the structure, mechanics, and composition of the extracellular matrix in chronic pulmonary diseases and how this information paves the way for tissue-informed engineering of more organotypic models of human pathology. Current translational challenges are discussed as well as opportunities to overcome these barriers with precision biomaterial design and advanced biomanufacturing techniques that embody the principles of personalized medicine to facilitate the rapid development of novel therapeutics for this devastating group of chronic diseases.
Collapse
Affiliation(s)
- Kolene E Bailey
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Michael L Floren
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Tyler J D'Ovidio
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Steven R Lammers
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Chelsea M Magin
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
- Department of Bioengineering, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
294
|
Xiong Y, Chen Y, Ding L, Liu X, Ju H. Fluorescent visual quantitation of cell-secreted sialoglycoconjugates by chemoselective recognition and hybridization chain reaction. Analyst 2019; 144:4545-4551. [DOI: 10.1039/c9an00572b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A fluorescent visual method is developed for the quantitation of cell-secreted sialoglycoconjugates by chemoselective recognition and hybridization chain reaction.
Collapse
Affiliation(s)
- Yingying Xiong
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Yunlong Chen
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xiaoqiang Liu
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
295
|
Morgan DJ, Casulli J, Chew C, Connolly E, Lui S, Brand OJ, Rahman R, Jagger C, Hussell T. Innate Immune Cell Suppression and the Link With Secondary Lung Bacterial Pneumonia. Front Immunol 2018; 9:2943. [PMID: 30619303 PMCID: PMC6302086 DOI: 10.3389/fimmu.2018.02943] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Secondary infections arise as a consequence of previous or concurrent conditions and occur in the community or in the hospital setting. The events allowing secondary infections to gain a foothold have been studied for many years and include poor nutrition, anxiety, mental health issues, underlying chronic diseases, resolution of acute inflammation, primary immune deficiencies, and immune suppression by infection or medication. Children, the elderly and the ill are particularly susceptible. This review is concerned with secondary bacterial infections of the lung that occur following viral infection. Using influenza virus infection as an example, with comparisons to rhinovirus and respiratory syncytial virus infection, we will update and review defective bacterial innate immunity and also highlight areas for potential new investigation. It is currently estimated that one in 16 National Health Service (NHS) hospital patients develop an infection, the most common being pneumonia, lower respiratory tract infections, urinary tract infections and infection of surgical sites. The continued drive to understand the mechanisms of why secondary infections arise is therefore of key importance.
Collapse
Affiliation(s)
- David J Morgan
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Joshua Casulli
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christine Chew
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Emma Connolly
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Sylvia Lui
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Oliver J Brand
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Rizwana Rahman
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christopher Jagger
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Tracy Hussell
- Manchester Collaborative Centre for Inflammation Research, The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
296
|
Characterization of a Cell-Assembled extracellular Matrix and the effect of the devitalization process. Acta Biomater 2018; 82:56-67. [PMID: 30296619 DOI: 10.1016/j.actbio.2018.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/15/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
Abstract
We have previously shown that the Cell-Assembled extracellular Matrix (CAM) synthesized by normal, human, skin fibroblasts in vitro can be assembled in a completely biological vascular graft that was successfully tested in the clinic. The goal of this study was to perform a detailed analysis of the composition and the organization of this truly bio-material. In addition, we investigated whether the devitalization process (dehydration) used to store the CAM, and thus, make the material available "off-the-shelf," could negatively affect its organization and mechanical properties. We demonstrated that neither the thickness nor the mechanical strength of CAM sheets were significantly changed by the dehydration/freezing/rehydration cycle. The identification of over 50 extracellular matrix proteins highlighted the complex composition of the CAM. Histology showed intense collagen and glycosaminoglycan staining throughout the CAM sheet. The distribution of collagen I, collagen VI, thrombospondin-1, fibronectin-1, fibrillin-1, biglycan, decorin, lumican and versican showed various patterns that were not affected by the devitalization process. Transmission electron microscopy analysis revealed that the remarkably dense collagen network was oriented in the plane of the sheet and that neither fibril density nor diameter was changed by devitalization. Second harmonic generation microscopy revealed an intricate, multi-scale, native-like collagen fiber orientation. In conclusion, this bio-material displayed many tissue-like properties that could support normal cell-ECM interactions and allow implantation without triggering degradative responses from the host's innate immune system. This is consistent with its success in vivo. In addition, the CAM can be devitalized without affecting its mechanical or unique biological architecture. STATEMENT OF SIGNIFICANCE: The extracellular matrix (ECM) defines biological function and mechanical properties of tissues and organs. A number of promising tissue engineering approaches have used processed ECM from cadaver/animal tissues or cell-assembled ECM in vitro combined with scaffolds. We have shown the clinical potential of a scaffold-free approach based on an entirely biological material produced by human cells in culture without chemical processing. Here, we perform a comprehensive analysis of the properties of what can truly be called a bio-material. We also demonstrate that this material can be stored dried without losing its remarkable biological architecture.
Collapse
|
297
|
Hu WP, Zeng YY, Zuo YH, Zhang J. Identification of novel candidate genes involved in the progression of emphysema by bioinformatic methods. Int J Chron Obstruct Pulmon Dis 2018; 13:3733-3747. [PMID: 30532529 PMCID: PMC6241693 DOI: 10.2147/copd.s183100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose By reanalyzing the gene expression profile GSE76925 in the Gene Expression Omnibus database using bioinformatic methods, we attempted to identify novel candidate genes promoting the development of emphysema in patients with COPD. Patients and methods According to the Quantitative CT data in GSE76925, patients were divided into mild emphysema group (%LAA-950<20%, n=12) and severe emphysema group (%LAA-950>50%, n=11). Differentially expressed genes (DEGs) were identified using Agilent GeneSpring GX v11.5 (corrected P-value <0.05 and |Fold Change|>1.3). Known driver genes of COPD were acquired by mining literatures and retrieving databases. Direct protein–protein interaction network (PPi) of DEGs and known driver genes was constructed by STRING.org to screen the DEGs directly interacting with driver genes. In addition, we used STRING.org to obtain the first-layer proteins interacting with DEGs’ products and constructed the indirect PPi of these interaction proteins. By merging the indirect PPi with driver genes’ PPi using Cytoscape v3.6.1, we attempted to discover potential pathways promoting emphysema’s development. Results All the patients had COPD with severe airflow limitation (age=62±8, FEV1%=28±12). A total of 57 DEGs (including 12 pseudogenes) and 135 known driving genes were identified. Direct PPi suggested that GPR65, GNB4, P2RY13, NPSR1, BCR, BAG4, and IMPDH2 were potential pathogenic genes. GPR65 could regulate the response of immune cells to the acidic microenvironment, and NPSR1’s expression on eosinophils was associated with asthma’s severity and IgE level. Indirect merging PPi demonstrated that the interacting network of TP53, IL8, CCR2, HSPA1A, ELANE, PIK3CA was associated with the development of emphysema. IL8, ELANE, and PIK3CA were molecules involved in the pathological mechanisms of emphysema, which also in return proved the role of TP53 in emphysema. Conclusion Candidate genes such as GPR65, NPSR1, and TP53 may be involved in the progression of emphysema.
Collapse
Affiliation(s)
- Wei-Ping Hu
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Ying-Ying Zeng
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Yi-Hui Zuo
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| | - Jing Zhang
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China,
| |
Collapse
|
298
|
Su YC, Jalalvand F, Thegerström J, Riesbeck K. The Interplay Between Immune Response and Bacterial Infection in COPD: Focus Upon Non-typeable Haemophilus influenzae. Front Immunol 2018; 9:2530. [PMID: 30455693 PMCID: PMC6230626 DOI: 10.3389/fimmu.2018.02530] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a debilitating respiratory disease and one of the leading causes of morbidity and mortality worldwide. It is characterized by persistent respiratory symptoms and airflow limitation due to abnormalities in the lower airway following consistent exposure to noxious particles or gases. Acute exacerbations of COPD (AECOPD) are characterized by increased cough, purulent sputum production, and dyspnea. The AECOPD is mostly associated with infection caused by common cold viruses or bacteria, or co-infections. Chronic and persistent infection by non-typeable Haemophilus influenzae (NTHi), a Gram-negative coccobacillus, contributes to almost half of the infective exacerbations caused by bacteria. This is supported by reports that NTHi is commonly isolated in the sputum from COPD patients during exacerbations. Persistent colonization of NTHi in the lower airway requires a plethora of phenotypic adaptation and virulent mechanisms that are developed over time to cope with changing environmental pressures in the airway such as host immuno-inflammatory response. Chronic inhalation of noxious irritants in COPD causes a changed balance in the lung microbiome, abnormal inflammatory response, and an impaired airway immune system. These conditions significantly provide an opportunistic platform for NTHi colonization and infection resulting in a "vicious circle." Episodes of large inflammation as the consequences of multiple interactions between airway immune cells and NTHi, accumulatively contribute to COPD exacerbations and may result in worsening of the clinical status. In this review, we discuss in detail the interplay and crosstalk between airway immune residents and NTHi, and their effect in AECOPD for better understanding of NTHi pathogenesis in COPD patients.
Collapse
Affiliation(s)
- Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Farshid Jalalvand
- Department of Biology, Centre for Bacterial Stress Response and Persistence, University of Copenhagen, Copenhagen, Denmark
| | - John Thegerström
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
299
|
O'Dwyer DN, Gurczynski SJ, Moore BB. Pulmonary immunity and extracellular matrix interactions. Matrix Biol 2018; 73:122-134. [PMID: 29649546 PMCID: PMC6177325 DOI: 10.1016/j.matbio.2018.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/05/2018] [Accepted: 04/07/2018] [Indexed: 12/18/2022]
Abstract
The lung harbors a complex immune system composed of both innate and adaptive immune cells. Recognition of infection and injury by receptors on lung innate immune cells is crucial for generation of antigen-specific responses by adaptive immune cells. The extracellular matrix of the lung, comprising the interstitium and basement membrane, plays a key role in the regulation of these immune systems. The matrix consists of several hundred assembled proteins that interact to form a bioactive scaffold. This template, modified by enzymes, acts to facilitate cell function and differentiation and changes dynamically with age and lung disease. Herein, we explore relationships between innate and adaptive immunity and the lung extracellular matrix. We discuss the interactions between extracellular matrix proteins, including glycosaminoglycans, with prominent effects on innate immune signaling effectors such as toll-like receptors. We describe the relationship of extracellular matrix proteins with adaptive immunity and leukocyte migration to sites of injury within the lung. Further study of these interactions will lead to greater knowledge of the role of matrix biology in lung immunity. The development of novel therapies for acute and chronic lung disease is dependent on a comprehensive understanding of these complex matrix-immunity interactions.
Collapse
Affiliation(s)
- David N O'Dwyer
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Stephen J Gurczynski
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Bethany B Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School, Ann Arbor, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, USA.
| |
Collapse
|
300
|
Almendros I, Alsafadi HN, Bölükbas D, Collins JJP, Duch P, Garrido-Martin EM, Kahn N, Karampitsakos T, Mahmutovic Persson I, Tzouvelekis A, Uhl FE, Bartel S. Early Career Members at the ERS Lung Science Conference: cell-matrix interactions in lung disease and regeneration: Early career forum. Breathe (Sheff) 2018; 14:e78-e83. [PMID: 30131840 PMCID: PMC6095238 DOI: 10.1183/20734735.016818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
.@EarlyCareerERS looks back on #LSC2018 http://ow.ly/6hjS30jB6P9.
Collapse
Affiliation(s)
- Isaac Almendros
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Hani N Alsafadi
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Deniz Bölükbas
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Jennifer J P Collins
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Paula Duch
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Eva M Garrido-Martin
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Nicolas Kahn
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Theodoros Karampitsakos
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Irma Mahmutovic Persson
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Argyrios Tzouvelekis
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Franziska E Uhl
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| | - Sabine Bartel
- Authors listed alphabetically except for the last author. For a list of their affiliations, please see the Acknowledgements section
| |
Collapse
|