251
|
Upregulation of bone-like extracellular matrix expression in human dental pulp stem cells by mechanical strain. BIOTECHNOL BIOPROC E 2010. [DOI: 10.1007/s12257-009-0102-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
252
|
|
253
|
McCave EJ, Cass CAP, Burg KJL, Booth BW. The normal microenvironment directs mammary gland development. J Mammary Gland Biol Neoplasia 2010; 15:291-9. [PMID: 20824492 DOI: 10.1007/s10911-010-9190-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 08/23/2010] [Indexed: 11/29/2022] Open
Abstract
Normal development of the mammary gland is a multidimensional process that is controlled in part by its mammary microenvironment. The mammary microenvironment is a defined location that encompasses mammary somatic stem cells, neighboring signaling cells, the basement membrane and extracellular matrix, mammary fibroblasts as well as the intercellular signals produced and received by these cells. These dynamic signals take numerous forms including growth factors, steroids, cell-cell or cell-basement membrane physical interactions. Cellular growth and differentiation of the mammary gland throughout the developmental stages are regulated by changes in these signals and interactions. The purpose of this review is to summarize current information and research regarding the role of the mammary microenvironment during normal glandular development.
Collapse
Affiliation(s)
- Erin J McCave
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA
| | | | | | | |
Collapse
|
254
|
Kloxin AM, Kloxin CJ, Bowman CN, Anseth KS. Mechanical properties of cellularly responsive hydrogels and their experimental determination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2010; 22:3484-94. [PMID: 20473984 PMCID: PMC3890982 DOI: 10.1002/adma.200904179] [Citation(s) in RCA: 309] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydrogels are increasingly employed as multidimensional cell culture platforms often with a necessity that they respond to or control the cellular environment. Specifically, synthetic hydrogels, such as poly(ethylene glycol) (PEG)-based gels, are frequently utilized for probing the microenvironment's influence on cell function, as the gel properties can be precisely controlled in space and time. Synthetically tunable parameters, such as monomer structure and concentration, facilitate initial gel property control, while incorporation of responsive degradable units enables cell- and/or user-directed degradation. Such responsive gel systems are complex with dynamic changes occurring over multiple time-scales, and cells encapsulated in these synthetic hydrogels often experience and dictate local property changes profoundly different from those in the bulk material. Consequently, advances in bulk and local measurement techniques are needed to monitor property evolution quantatively and understand its effect on cell function. Here, recent progress in cell-responsive PEG hydrogel synthesis and mechanical property characterization is reviewed.
Collapse
Affiliation(s)
- AM Kloxin
- Howard Hughes Medical Institute, Boulder, CO 80309 USA
| | | | | | - KS Anseth
- Howard Hughes Medical Institute, Boulder, CO 80309 USA
| |
Collapse
|
255
|
Loessner D, Stok KS, Lutolf MP, Hutmacher DW, Clements JA, Rizzi SC. Bioengineered 3D platform to explore cell-ECM interactions and drug resistance of epithelial ovarian cancer cells. Biomaterials 2010; 31:8494-506. [PMID: 20709389 DOI: 10.1016/j.biomaterials.2010.07.064] [Citation(s) in RCA: 471] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 07/15/2010] [Indexed: 11/18/2022]
Abstract
The behaviour of cells cultured within three-dimensional (3D) structures rather than onto two-dimensional (2D) culture plastic more closely reflects their in vivo responses. Consequently, 3D culture systems are becoming crucial scientific tools in cancer cell research. We used a novel 3D culture concept to assess cell-matrix interactions implicated in carcinogenesis: a synthetic hydrogel matrix equipped with key biomimetic features, namely incorporated cell integrin-binding motifs (e.g. RGD peptides) and the ability of being degraded by cell-secreted proteases (e.g. matrix metalloproteases). As a cell model, we chose epithelial ovarian cancer, an aggressive disease typically diagnosed at an advanced stage when chemoresistance occurs. Both cell lines used (OV-MZ-6, SKOV-3) proliferated similarly in 2D, but not in 3D. Spheroid formation was observed exclusively in 3D when cells were embedded within hydrogels. By exploiting the design flexibility of the hydrogel characteristics, we showed that proliferation in 3D was dependent on cell-integrin engagement and the ability of cells to proteolytically remodel their extracellular microenvironment. Higher survival rates after exposure to the anti-cancer drug paclitaxel were observed in cell spheroids grown in hydrogels (40-60%) compared to cell monolayers in 2D (20%). Thus, 2D evaluation of chemosensitivity may not reflect pathophysiological events seen in patients. Because of the design flexibility of their characteristics and their stability in long-term cultures (28 days), these biomimetic hydrogels represent alternative culture systems for the increasing demand in cancer research for more versatile, physiologically relevant and reproducible 3D matrices.
Collapse
Affiliation(s)
- Daniela Loessner
- Hormone Dependent Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | | | | | | | | | | |
Collapse
|
256
|
Developments in three-dimensional cell culture technology aimed at improving the accuracy of in vitro analyses. Biochem Soc Trans 2010; 38:1072-5. [DOI: 10.1042/bst0381072] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug discovery programmes require accurate in vitro systems for drug screening and testing. Traditional cell culture makes use of 2D (two-dimensional) surfaces for ex vivo cell growth. In such environments, cells are forced to adopt unnatural characteristics, including aberrant flattened morphologies. Therefore there is a strong demand for new cell culture platforms which allow cells to grow and respond to their environment in a more realistic manner. The development of 3D (three-dimensional) alternative substrates for in vitro cell growth has received much attention, and it is widely acknowledged that 3D cell growth is likely to more accurately reflect the in vivo tissue environments from which cultured cells are derived. 3D cell growth techniques promise numerous advantages over 2D culture, including enhanced proliferation and differentiation of stem cells. The present review focuses on the development of scaffold technologies for 3D cell culture.
Collapse
|
257
|
Abstract
Melanoma cells are highly resistant to anoikis, a form of apoptosis induced in nonadherent/inappropriate adhesion conditions. Depleting B-RAF or the prosurvival Bcl-2 family protein Mcl-1 renders mutant B-RAF melanoma cells susceptible to anoikis. In this study, we examined the effect of targeting B-RAF on the survival of primary stage melanoma cells cultured in three-dimensional type I collagen gels, which partially mimics the dermal microenvironment. Depletion/inhibition of B-RAF with small interfering RNA or the mutant B-RAF inhibitor, PLX4720, induced apoptosis of mutant B-RAF melanoma cells in three-dimensional collagen. Apoptosis was dependent on two upregulated BH3-only proteins, Bim-EL and Bmf, and was inhibited by ectopic Mcl-1 expression. Akt3 activation has been associated with the survival of melanoma cells. Mutant B-RAF melanoma cells ectopically expressing a constitutively activated form of Akt3 or endogenously expressing mutant Akt3 were protected from apoptosis induced by B-RAF knockdown or PLX4720 treatment. Furthermore, intrinsically resistant metastatic melanoma cells displayed elevated Akt phosphorylation in three-dimensional collagen and were rendered susceptible to PLX4720 by Akt3 knockdown. Importantly, myristylated Akt3 prevented B-RAF targeting-induced upregulation of Bim-EL and Bmf in three-dimensional collagen and partially protected Mcl-1-depleted cells from apoptosis. These findings delineate how mutant B-RAF protects melanoma cells from apoptosis and provide insight into possible resistance mechanisms to B-RAF inhibitors.
Collapse
Affiliation(s)
- Yongping Shao
- Department of Cancer Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | |
Collapse
|
258
|
Elliott NT, Yuan F. A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 2010; 100:59-74. [PMID: 20533556 DOI: 10.1002/jps.22257] [Citation(s) in RCA: 318] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 05/04/2010] [Indexed: 12/12/2022]
Abstract
The use of animal models in drug discovery studies presents issues with feasibility and ethical concerns. To address these limitations, in vitro tissue models have been developed to provide a means for systematic, repetitive, and quantitative investigation of drugs. By eliminating or reducing the need for animal subjects, these models can serve as platforms for more tightly controlled, high-throughput screening of drugs and for pharmacokinetic and pharmacodynamic analyses of drugs. The focus of this review is three-dimensional (3D) tissue models that can capture cell-cell and cell-matrix interactions. Compared to the 2D culture of cell monolayers, 3D models more closely mimic native tissues since the cellular microenvironment established in the 3D models often plays a significant role in disease progression and cellular responses to drugs. A growing body of research has been published in the literature, which highlights the benefits of the 3D in vitro models of various tissues. This review provides an overview of some successful 3D in vitro models that have been developed to mimic liver, breast, cardiac, muscle, bone, and corneal tissues as well as malignant tissues in solid tumors.
Collapse
Affiliation(s)
- Nelita T Elliott
- Department of Biomedical Engineering, Duke University, 136 Hudson Hall, PO Box 90281, Durham, North Carolina 27708, USA
| | | |
Collapse
|
259
|
Soto-Gutierrez A, Yagi H, Uygun BE, Navarro-Alvarez N, Uygun K, Kobayashi N, Yang YG, Yarmush ML. Cell delivery: from cell transplantation to organ engineering. Cell Transplant 2010; 19:655-65. [PMID: 20525441 DOI: 10.3727/096368910x508753] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cell populations derived from adult tissue and stem cells possess a great expectation for the treatment of several diseases. Great efforts have been made to generate cells with therapeutic impact from stem cells. However, it is clear that the development of systems to deliver such cells to induce efficient engraftment, growth, and function is a real necessity. Biologic and artificial scaffolds have received significant attention for their potential therapeutic application when use to form tissues in vitro and facilitate engraftment in vivo. Ultimately more sophisticated methods for decellularization of organs have been successfully used in tissue engineering and regenerative medicine applications. These decellularized tissues and organs appear to provide bioactive molecules and bioinductive properties to induce homing, differentiation, and proliferation of cells. The combination of decellularized organs and stem cells may dramatically improve the survival, engraftment, and fate control of transplanted stem cells and their ultimate clinical utility, opening the doors to a new era of organ engineering.
Collapse
Affiliation(s)
- Alejandro Soto-Gutierrez
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Center for Engineering in Medicine, Boston, MA 76104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
260
|
Xu X, Prestwich GD. Inhibition of tumor growth and angiogenesis by a lysophosphatidic acid antagonist in an engineered three-dimensional lung cancer xenograft model. Cancer 2010; 116:1739-50. [PMID: 20143443 DOI: 10.1002/cncr.24907] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND : We developed an engineered three-dimensional (3D) tumor xenograft model of nonsmall cell lung cancer (NSCLC) in nude mice, and we used this model to evaluate a dual-activity inhibitor of lysophosphatidic acid (LPA) biosynthesis and receptor activation. METHODS : First, BrP-LPA, a pan-antagonist for 4 LPA receptors and inhibitor of the lyosphospholipase D activity of autotaxin, was examined for inhibition of cell migration and cell invasion by human NSCLC A549 cells. Second, A549 cells were encapsulated in 3D in 3 semisynthetic extracellular matrices (ECMs) based on chemically modified glycosaminoglycans, and injected subcutaneously in nude mice. Tumor volume and vascularity were determined as a function of semisynthetic ECMs composition. Third, engineered NSCLC xenografts were formed from A549 cells in either Extracel-HP or Matrigel, and mice were treated with 4 intraperitoneal injections of 3 mg/kg of BrP-LPA. RESULTS : First, BrP-LPA inhibited cell migration and invasiveness of A549 cells in vitro. Second, tumor growth and microvessel formation for 3D encapsulated A549 cells in vivo in nude mice increased in the following order: buffer only < Extracel < Extracel-HP < Extracel-HP containing growth factorss plus laminin. Third, tumor volumes increased rapidly in both Matrigel and Extracel-HP encapsulated A549 cells, and tumor growth was markedly inhibited by BrP-LPA treatment. Finally, tumor vascularization was dramatically reduced in the A549 tumors treated with BrP-LPA. CONCLUSIONS : Engineered A549 lung tumors can be created by 3D encapsulation in an ECM substitute with user controlled composition. The engineered tumors regress and lose vascularity in response to a dual activity inhibitor of the LPA signaling pathway. Cancer 2010. (c) 2010 American Cancer Society.
Collapse
Affiliation(s)
- Xiaoyu Xu
- Department of Medicinal Chemistry and The Center for Therapeutic Biomaterials, The University of Utah, Salt Lake City, Utah, USA
| | | |
Collapse
|
261
|
Ménard L, Taras D, Grigoletto A, Haurie V, Nicou A, Dugot-Senant N, Costet P, Rousseau B, Rosenbaum J. In vivo silencing of Reptin blocks the progression of human hepatocellular carcinoma in xenografts and is associated with replicative senescence. J Hepatol 2010; 52:681-9. [PMID: 20346530 DOI: 10.1016/j.jhep.2009.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 12/05/2009] [Accepted: 12/09/2009] [Indexed: 01/12/2023]
Abstract
BACKGROUND & AIMS We previously showed that Reptin is overexpressed in hepatocellular carcinoma (HCC), and that in vitro depletion of Reptin with siRNAs led to HCC cell growth arrest and apoptosis. Here, we asked whether in vivo targeting of Reptin in established tumours had a therapeutic effect. METHODS We used lentiviral vectors to construct HuH7 and Hep3B cell lines with doxycycline (Dox)-dependent expression of Reptin (R2) or control shRNA (GL2). Cells were injected subcutaneously into immunodeficient mice, and Dox was given when tumours reached a volume of 250 mm(3). RESULTS In vitro, the growth of GL2-Dox, GL2+Dox, and R2-Dox cells was undistinguishable whereas that of R2+Dox cells stopped 4 days after Dox treatment. The growth decrease was associated with increased apoptosis, and evidence of replicative senescence, as shown by staining for acid beta-galactosidase and the presence of senescence-associated heterochromatin foci. In xenografted mice, R2+Dox tumour growth stagnated or even regressed with prolonged treatment in contrast with the GL2-Dox, GL2+Dox, and R2-Dox tumours that progressed steadily. The blockage of tumour progression was associated with the induction of senescence and reduced cell proliferation. CONCLUSIONS In vivo Reptin depletion leads to tumour growth arrest. Reptin may prove a valuable target in HCC.
Collapse
Affiliation(s)
- Ludovic Ménard
- INSERM U889, Université de Bordeaux, F-33076 Bordeaux, France
| | | | | | | | | | | | | | | | | |
Collapse
|
262
|
Dhimolea E, Maffini MV, Soto AM, Sonnenschein C. The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 2010; 31:3622-30. [DOI: 10.1016/j.biomaterials.2010.01.077] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 01/14/2010] [Indexed: 11/24/2022]
|
263
|
Sowa MB, Chrisler WB, Zens KD, Ashjian EJ, Opresko LK. Three-dimensional culture conditions lead to decreased radiation induced cytotoxicity in human mammary epithelial cells. Mutat Res 2010; 687:78-83. [PMID: 20211636 DOI: 10.1016/j.mrfmmm.2010.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two-dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extracellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three-dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D versus 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. approximately 4-fold increased survival at 5Gy). The cell cycle delay induced following exposure to 2 and 5Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures.
Collapse
Affiliation(s)
- Marianne B Sowa
- Pacific Northwest National Laboratory, Richland, WA 99352, United States.
| | - William B Chrisler
- Pacific Northwest National Laboratory, Richland, WA 99352, United States
| | - Kyra D Zens
- School of Public Health, Infectious Disease and Vaccinology Department, University of California, Berkeley, CA 94720, United States
| | - Emily J Ashjian
- School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States
| | - Lee K Opresko
- Pacific Northwest National Laboratory, Richland, WA 99352, United States
| |
Collapse
|
264
|
Norton KA, Wininger M, Bhanot G, Ganesan S, Barnard N, Shinbrot T. A 2D mechanistic model of breast ductal carcinoma in situ (DCIS) morphology and progression. J Theor Biol 2010; 263:393-406. [PMID: 20006623 PMCID: PMC2839055 DOI: 10.1016/j.jtbi.2009.11.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 11/24/2009] [Accepted: 11/28/2009] [Indexed: 02/07/2023]
Abstract
Ductal carcinoma in situ (DCIS) of the breast is a non-invasive tumor in which cells proliferate abnormally, but remain confined within a duct. Although four distinguishable DCIS morphologies are recognized, the mechanisms that generate these different morphological classes remain unclear, and consequently the prognostic strength of DCIS classification is not strong. To improve the understanding of the relation between morphology and time course, we have developed a 2D in silico particle model of the growth of DCIS within a single breast duct. This model considers mechanical effects such as cellular adhesion and intra-ductal pressure, and biological features including proliferation, apoptosis, necrosis, and cell polarity. Using this model, we find that different regions of parameter space generate distinct morphological subtypes of DCIS, so elucidating the relation between morphology and time course. Furthermore, we find that tumors with similar architectures may in fact be produced through different mechanisms, and we propose future work to further disentangle the mechanisms involved in DCIS progression.
Collapse
Affiliation(s)
- Kerri-Ann Norton
- BioMaPS Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
265
|
Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors. Proc Natl Acad Sci U S A 2010; 107:8352-6. [PMID: 20404174 DOI: 10.1073/pnas.0907676107] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predicting drug response in cancer patients remains a major challenge in the clinic. We have perfected an ex vivo, reproducible, rapid and personalized culture method to investigate antitumoral pharmacological properties that preserves the original cancer microenvironment. Response to signal transduction inhibitors in cancer is determined not only by properties of the drug target but also by mutations in other signaling molecules and the tumor microenvironment. As a proof of concept, we, therefore, focused on the PI3K/Akt signaling pathway, because it plays a prominent role in cancer and its activity is affected by epithelial-stromal interactions. Our results show that this culture model preserves tissue 3D architecture, cell viability, pathway activity, and global gene-expression profiles up to 5 days ex vivo. In addition, we show pathway modulation in tumor cells resulting from pharmacologic intervention in ex vivo culture. This technology may have a significant impact on patient selection for clinical trials and in predicting response to small-molecule inhibitor therapy.
Collapse
|
266
|
Zhou W, Hur W, McDermott U, Dutt A, Xian W, Picarro SB, Zhang J, Sharma SV, Brugge J, Meyerson M, Settleman J, Gray NS. A structure-guided approach to creating covalent FGFR inhibitors. CHEMISTRY & BIOLOGY 2010; 17:285-95. [PMID: 20338520 PMCID: PMC2920453 DOI: 10.1016/j.chembiol.2010.02.007] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/14/2010] [Accepted: 01/29/2010] [Indexed: 02/08/2023]
Abstract
The fibroblast growth factor receptor tyrosine kinases (FGFR1, 2, 3, and 4) represent promising therapeutic targets in a number of cancers. We have developed the first potent and selective irreversible inhibitor of FGFR1, 2, 3, and 4, which we named FIIN-1 that forms a covalent bond with cysteine 486 located in the P loop of the FGFR1 ATP binding site. We demonstrated that the inhibitor potently inhibits Tel-FGFR1-transformed Ba/F3 cells (EC(50) = 14 nM) as well as numerous FGFR-dependent cancer cell lines. A biotin-derivatized version of the inhibitor, FIIN-1-biotin, was shown to covalently label FGFR1 at Cys486. FIIN-1 is a useful probe of FGFR-dependent cellular phenomena and may provide a starting point of the development of therapeutically relevant irreversible inhibitors of wild-type and drug-resistant forms of FGFR kinases.
Collapse
Affiliation(s)
- Wenjun Zhou
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wooyoung Hur
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Ultan McDermott
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Amit Dutt
- The Broad Institute, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Wa Xian
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Scott B. Picarro
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jianming Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Sreenath V. Sharma
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Joan Brugge
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew Meyerson
- The Broad Institute, Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jeffrey Settleman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nathanael S. Gray
- Department of Cancer Biology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence: Nathanael S. Gray ()
| |
Collapse
|
267
|
Pinto MP, Badtke MM, Dudevoir ML, Harrell JC, Jacobsen BM, Horwitz KB. Vascular endothelial growth factor secreted by activated stroma enhances angiogenesis and hormone-independent growth of estrogen receptor-positive breast cancer. Cancer Res 2010; 70:2655-64. [PMID: 20332242 DOI: 10.1158/0008-5472.can-09-4373] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
"Reactive" or activated stroma characterizes many malignancies including breast cancers. Recently, we isolated a reactive mouse mammary gland stromal cell line called BJ3Z. These cells express alpha-smooth muscle actin and stromal cell-derived factor 1 (SDF-1) and are tumorigenic when injected into mice. Here we show that, in vivo, BJ3Z cells influence the angiogenesis and proliferation of xenografted estrogen receptor (ER)-positive MCF-7 human breast cancer cell-derived solid tumors. The growth-promoting effects of BJ3Z cells are equivalent to those of estradiol (E(2)). BJ3Z cells also increase the proliferation of normal mouse mammary luminal cells adjacent to tumors. In vitro, BJ3Z cells reorganize and increase the proliferation of cocultured malignant MCF-7 and normal human breast MCF10A cells grown as organoids in three-dimensional culture. The effects of BJ3Z cells on MCF-7 cells are equivalent to those of E(2). In contrast, BJ3Z cells do not alter the growth of highly aggressive ER-negative MDA-MB-231 human breast cancer cells. We show that BJ3Z cells secrete vascular endothelial growth factor (VEGF). The growth of MCF-7 organoids induced by BJ3Z can be inhibited by antagonists of VEGF and SDF-1. Conversely, recombinant VEGF stimulates the proliferation of MCF-7, but not MDA-MB-231, organoids. We conclude that, in addition to angiogenesis, VEGF released by activated stroma increases the growth of ER-positive malignant epithelial cells and of adjacent normal epithelium. Because activated stroma can substitute for E(2) and fosters hormone-independent growth of ER-positive tumors, we suggest that breast cancers exhibiting intrinsic hormone resistance may respond to antiangiogenic therapies.
Collapse
Affiliation(s)
- Mauricio P Pinto
- Department of Medicine, Mail Stop 8106, RC-1 South, 12801 East 17th Avenue, Room 7402-D, P.O. Box 6511, Aurora, CO 80045, USA.
| | | | | | | | | | | |
Collapse
|
268
|
Hjelm BE, Berta AN, Nickerson CA, Arntzen CJ, Herbst-Kralovetz MM. Development and characterization of a three-dimensional organotypic human vaginal epithelial cell model. Biol Reprod 2010; 82:617-27. [PMID: 20007410 PMCID: PMC6366157 DOI: 10.1095/biolreprod.109.080408] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 09/02/2009] [Accepted: 11/17/2009] [Indexed: 11/01/2022] Open
Abstract
We have developed an in vitro human vaginal epithelial cell (EC) model using the innovative rotating wall vessel (RWV) bioreactor technology that recapitulates in vivo structural and functional properties, including a stratified squamous epithelium with microvilli, tight junctions, microfolds, and mucus. This three-dimensional (3-D) vaginal model provides a platform for high-throughput toxicity testing of candidate microbicides targeted to combat sexually transmitted infections, effectively complementing and extending existing testing systems such as surgical explants or animal models. Vaginal ECs were grown on porous, collagen-coated microcarrier beads in a rotating, low fluid-shear environment; use of RWV bioreactor technology generated 3-D vaginal EC aggregates. Immunofluorescence and scanning and transmission electron microscopy confirmed differentiation and polarization of the 3-D EC aggregates among multiple cell layers and identified ultrastructural features important for nutrient absorption, cell-cell interactions, and pathogen defense. After treatment with a variety of toll-like receptor (TLR) agonists, cytokine production was quantified by cytometric bead array, confirming that TLRs 2, 3, 5, and 6 were expressed and functional. The 3-D vaginal aggregates were more resistant to nonoxynol-9 (N-9), a contraceptive and previous microbicide candidate, when compared to two-dimensional monolayers of the same cell line. A dose-dependent production of tumor necrosis factor-related apoptosis-inducing ligand and interleukin-1 receptor antagonist, biomarkers of cervicovaginal inflammation, correlated to microbicide toxicity in the 3-D model following N-9 treatment. These results indicate that this 3-D vaginal model could be used as a complementary tool for screening microbicide compounds for safety and efficacy, thus improving success in clinical trials.
Collapse
Affiliation(s)
- Brooke E Hjelm
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
269
|
Strand DW, Franco OE, Basanta D, Anderson ARA, Hayward SW. Perspectives on tissue interactions in development and disease. Curr Mol Med 2010; 10:95-112. [PMID: 20205682 PMCID: PMC4195241 DOI: 10.2174/156652410791065363] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/30/2009] [Indexed: 12/20/2022]
Abstract
From the morphogenetic movements of the three germ layers during development to the reactive stromal microenvironment in cancer, tissue interactions are vital to maintaining healthy organ morphologic architecture and function. The stromal compartment is thought to be complicit in tumor progression and, as such, represents an opportune target for disease therapies. However, recent developments in our understanding of the diversity of the stromal compartment and the lack of appropriate models to study its relevance in human disease have limited our further understanding of the role of tissue interactions in tumor progression. The failure any model to fully recapitulate the complexities of systemic biology continue to create a higher imperative for incorporating various perspectives into a broader understanding for the ultimate goal of designing interventional therapies. Understanding this potential, this review examines the biological models used to study stromal-epithelial interactions and includes an attempt to incorporate behavioral terminology to define and mathematically model ecological relationships in stromal-epithelial interactions. In addition, the current attempt to incorporate these diverse ecological perspectives into in silico mathematical models through cross-disciplinary coordination is reviewed, which will provide a fresh perspective on defining cell group behavior and tissue ecology in disease and hopefully lead to the generation of new hypotheses to be empirically validated.
Collapse
Affiliation(s)
- D W Strand
- Vanderbilt Prostate Cancer Center, Department of Urologic Surgery, Vanderbilt University Medical Center, AA-1309 Medical Center North, Nashville, TN 37232, USA.
| | | | | | | | | |
Collapse
|
270
|
Binamé F, Pawlak G, Roux P, Hibner U. What makes cells move: requirements and obstacles for spontaneous cell motility. MOLECULAR BIOSYSTEMS 2010; 6:648-61. [PMID: 20237642 DOI: 10.1039/b915591k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Movement of individual cells and of cellular cohorts, chains or sheets requires physical forces that are established through interactions of cells with their environment. In vivo, migration occurs extensively during embryonic development and in adults during wound healing and tumorigenesis. In order to identify the molecular events involved in cell movement, in vitro systems have been developed. These have contributed to the definition of a number of molecular pathways put into play in the course of migratory behaviours, such as mesenchymal and amoeboid movement. More recently, our knowledge of migratory modes has been enriched by analyses of cells exploring and moving through three-dimensional (3D) matrices. While the cells' morphologies differ in 2D and 3D environments, the basic mechanisms that put a cellular body into motion are remarkably similar. Thus, in both 2D and 3D, the polarity of the migrating cell is initially defined by a specific subcellular localization of signalling molecules and components of molecular machines required for motion. While the polarization can be initiated either in response to extracellular signalling or be a chance occurrence, it is reinforced and sustained by positive feedback loops of signalling molecules. Second, adhesion to a substratum is necessary to generate forces that will propel the cell engaged in either mesenchymal or ameboid migration. For collective cell movement, intercellular coordination constitutes an additional requirement: a cell cohort remains stationary if individual cells pull in opposite directions. Finally, the availability of space to move into is a general requirement to set cells into motion. Lack of free space is probably the main obstacle for migration of most healthy cells in an adult multicellular organism. Thus, the requirements for cell movement are both intrinsic to the cell, involving coordinated signalling and interactions with molecular machines, and extrinsic, imposed by the physicochemical nature of the environment. In particular, the geometry and stiffness of the support act on a range of signalling pathways that induce specific cell migratory responses. These issues are discussed in the present review in the context of published work and our own data on collective migration of hepatocyte cohorts.
Collapse
Affiliation(s)
- Fabien Binamé
- CNRS, UMR 5535, IGMM, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
271
|
Rudinskaya TD, Kuprina NI, Lazarevich NL, Polyanskaya NI, Poltoranina VS, Shavochkina DA, Engelhardt NV. Partial reversion of the phenotype of a poorly differentiated hepatocellular carcinoma in a three-dimensional culture. Russ J Dev Biol 2010. [DOI: 10.1134/s1062360410010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
272
|
Abstract
Genomes are spatially highly organized within interphase nuclei. Spatial genome organization is increasingly linked to genome function. Fluorescence in situ hybridization (FISH) allows the visualization of specific regions of the genome for spatial mapping. While most gene localization studies have been performed on cultured cells, genome organization is likely to be different in the context of tissues. Three-dimensional (3D) culture model systems provide a powerful tool to study the contribution of tissue organization to gene expression and organization. However, FISH on 3D cultures is technically more challenging than on monocultures. Here, we describe an optimized protocol for interphase DNA FISH on 3D cultures of the breast epithelial cell line MCF-10A.B2, which forms breast acini and can be used as a model for early breast cancer.
Collapse
|
273
|
Mesotrypsin promotes malignant growth of breast cancer cells through shedding of CD109. Breast Cancer Res Treat 2009; 124:27-38. [PMID: 20035377 DOI: 10.1007/s10549-009-0699-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Serine proteases have been implicated in many stages of cancer development, facilitating tumor cell growth, invasion, and metastasis, and naturally occurring serine protease inhibitors have shown promise as potential anticancer therapeutics. Optimal design of inhibitors as potential therapeutics requires the identification of the specific serine proteases involved in disease progression and the functional targets responsible for the tumor-promoting properties. Here, we use the HMT-3522 breast cancer progression series grown in 3D organotypic culture conditions to find that serine protease inhibitors cause morphological reversion of the malignant T4-2 cells, assessed by inhibition of proliferation and formation of acinar structures with polarization of basal markers, implicating serine protease activity in their malignant growth behavior. We identify PRSS3/mesotrypsin upregulation in T4-2 cells as compared to their nonmalignant progenitors, and show that knockdown of PRSS3 attenuates, and treatment with recombinant purified mesotrypsin enhances, the malignant growth phenotype. Using proteomic methods, we identify CD109 as the functional proteolytic target of mesotrypsin. Our study identifies a new mediator and effector of breast cancer growth and progression.
Collapse
|
274
|
Morales J, Alpaugh ML. Gain in cellular organization of inflammatory breast cancer: A 3D in vitro model that mimics the in vivo metastasis. BMC Cancer 2009; 9:462. [PMID: 20028562 PMCID: PMC2808321 DOI: 10.1186/1471-2407-9-462] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 12/23/2009] [Indexed: 12/24/2022] Open
Abstract
Background The initial step of metastasis in carcinomas, often referred to as the epithelial-mesenchymal transition (EMT), occurs via the loss of adherens junctions (e.g. cadherins) by the tumor embolus. This leads to a subsequent loss of cell polarity and cellular differentiation and organization, enabling cells of the embolus to become motile and invasive. However highly malignant inflammatory breast cancer (IBC) over-expresses E-cadherin. The human xenograft model of IBC (MARY-X), like IBC, displays the signature phenotype of an exaggerated degree of lymphovascular invasion (LVI) in situ by tumor emboli. An intact E-cadherin/α, β-catenin axis mediates the tight, compact clump of cells found both in vitro and in vivo as spheroids and tumor emboli, respectively. Methods Using electron microscopy and focused ion beam milling to acquire in situ sections, we performed ultrastructural analysis of both an IBC and non-IBC, E-cadherin positive cell line to determine if retention of this adhesion molecule contributed to cellular organization. Results Here we report through ultrastructural analysis that IBC exhibits a high degree of cellular organization with polar elements such as apical/lateral positioning of E-cadherin, apical surface microvilli, and tortuous lumen-like (canalis) structures. In contrast, agarose-induced spheroids of MCF-7, a weakly invasive E-cadherin positive breast carcinoma cell line, do not exhibit ultrastructural polar features. Conclusions This study has determined that the highly metastatic IBC with an exaggerated malignant phenotype challenges conventional wisdom in that instead of displaying a loss of cellular organization, IBC acquires a highly structured architecture. These findings suggest that the metastatic efficiency might be linked to the formation and maintenance of these architectural features. The comparative architectural features of both the spheroid and embolus of MARY-X provide an in vitro model with tractable in vivo applications.
Collapse
Affiliation(s)
- Jorge Morales
- Department of Biology, City University of New York, The City College of New York 138th and Convent Avenue, New York, NY 10031, USA.
| | | |
Collapse
|
275
|
Mizushima H, Wang X, Miyamoto S, Mekada E. Integrin signal masks growth-promotion activity of HB-EGF in monolayer cell cultures. J Cell Sci 2009; 122:4277-86. [DOI: 10.1242/jcs.054551] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The extracellular environment and tissue architecture contribute to proper cell function and growth control. Cells growing in monolayers on standard polystyrene tissue culture plates differ in their shape, growth rate and response to external stimuli, compared with cells growing in vivo. Here, we showed that the EGFR (epidermal growth factor receptor) ligand heparin-binding EGF-like growth factor (HB-EGF) strongly stimulated cell growth in nude mice, but not in cells cultured in vitro. We explored the effects of HB-EGF on cell growth under various cell culture conditions and found that growth promotion by HB-EGF was needed in three-dimensional (3D) or two-dimensional (2D) culture systems in which cell-matrix adhesion was reduced. Under such conditions, cell growth was extremely suppressed in the absence of HB-EGF, but markedly potentiated in the presence of HB-EGF. When the integrin signal was reduced using antibodies or knockout of either integrin β1 or focal adhesion kinase (FAK), cells showed HB-EGF-dependent growth. We also showed that EGF, transforming growth factor-α (TGFα) or ligands of other receptor tyrosine kinases (RTKs) stimulated cell growth in 3D culture, but not in tissue culture plates. These results indicate that the integrin signal was sufficient to support cell growth in 2D tissue culture plates without addition of the growth factor, whereas stimulation by growth factors was clearly demonstrated in culture systems in which integrin signals were attenuated.
Collapse
Affiliation(s)
- Hiroto Mizushima
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Xiaobiao Wang
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shingo Miyamoto
- Department of Obstetrics and Gynecology, School of Medicine, Fukuoka University, 7-45-1 Nanakuma, Fukuoka 814-0180, Japan
| | - Eisuke Mekada
- Department of Cell Biology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
276
|
Li Q, Chow AB, Mattingly RR. Three-dimensional overlay culture models of human breast cancer reveal a critical sensitivity to mitogen-activated protein kinase kinase inhibitors. J Pharmacol Exp Ther 2009; 332:821-8. [PMID: 19952304 DOI: 10.1124/jpet.109.160390] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tumor cells that are grown in three-dimensional (3D) cell culture exhibit relative resistance to cytotoxic drugs compared with their response in conventional two-dimensional (2D) culture. We studied the effects of targeted agents and doxorubicin on 2D and 3D cultures of human breast cell lines that represent the progression from normal epithelia (modeled by MCF10A cells) through hyperplastic variants to a dysplastic/carcinoma phenotype (MCF10.DCIS cells), variants transformed by expression of activated Ras, and also a basal-subtype breast carcinoma cell line (MDA-MB-231). The results showed the expected relative resistance to the cytotoxic agent doxorubicin in 3D cultures, with greater resistance in normal and hyperplastic cells than in carcinoma models. However, the response to the targeted inhibitors was more complex. Inhibition of mitogen-activated protein kinase kinase (MEK) by either 1,4-diamino-2,3-dicyano-1,4-bis(methylthio)butadiene (U0126) or 2-(2-chloro-4-iodo-phenylamino)-N-cyclopropylmethoxy-3,4-difluoro-benzamide (CI-1040, PD184352) produced a similar inhibition of the growth of all the MCF10 cell lines in 2D. In 3D culture, the normal and hyperplastic models exhibited some resistance, whereas the carcinoma models became far more sensitive to MEK inhibition. Increased sensitivity to MEK inhibition was also seen in MDA-MB-231 cells grown in 3D compared with 2D. In contrast, inhibition of phosphatidylinositol 3'-kinase activity by wortmannin had no significant effect on the growth of any of the cells in either 2D or 3D. Our conclusion is that 3D culture models may not only model the relative resistance of tumor cells to cytotoxic therapy but also that the 3D approach may better identify the driving oncogenic pathways and critical targeted inhibitors that may be effective treatment approaches.
Collapse
Affiliation(s)
- Quanwen Li
- Wayne State University, Department of Pharmacology, 540 East Canfield Avenue, Detroit, MI 48201, USA
| | | | | |
Collapse
|
277
|
Wang X, Ye K. Three-dimensional differentiation of embryonic stem cells into islet-like insulin-producing clusters. Tissue Eng Part A 2009; 15:1941-52. [PMID: 19196138 DOI: 10.1089/ten.tea.2008.0181] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The production of mature pancreatic cells that function similarly to primary islets is the premise of cell therapy for diabetes. Here, we describe a novel approach to generating more mature insulin-producing cells from embryonic stem (ES) cells. A three-dimensional (3D) ES cell pancreatic differentiation system was developed and used to direct the ES cell differentiation into glucose-responsive, insulin-secreting cells. Using mouse ES cells as a model, we demonstrate that more mature insulin-producing cells can be generated from ES cells in 3D cultures. The 3D differentiated pancreatic endocrine cells can assemble into an islet-like tissue structure that displays greater similarities in phenotype and gene expression profile to adult mouse pancreatic islets, that is, with beta cells in the core and non-beta cells forming the mantel, leading to a significant improvement of the maturity of the insulin-producing cells. Our findings show that nearly 50-60% of the cells in 3D formed cell clusters express insulin. More importantly, those cells exhibit a high level of glucose-responsive insulin and C-peptide syntheses and release. A high level of expression of glucose transporter-2 was also detected in these cells. Compared to two-dimensional ES cell-derived insulin-producing cells, the insulin release from 3D ES cell-derived insulin-producing cells showed a nearly fivefold (p<0.05) increase when exposed to a high glucose (27.7 mM) medium. This 3D culture model provides an excellent system to study pancreatic endocrine morphogenesis and tissue organization. This study also demonstrates the feasibility of producing clinically relevant beta cells from ES cells in a 3D environment.
Collapse
Affiliation(s)
- Xiuli Wang
- Biomedical Engineering Program, College of Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | | |
Collapse
|
278
|
Nam JM, Chung Y, Hsu HC, Park CC. beta1 integrin targeting to enhance radiation therapy. Int J Radiat Biol 2009; 85:923-8. [PMID: 19895268 DOI: 10.3109/09553000903232876] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Cell adhesion to extracellular matrix (ECM) proteins is mediated by the integrin family and has been known to modify radiation sensitivity and resistance in several cell types, including cancer cells. In particular, beta1 integrin signaling has been implicated in the progression and metastasis of various cancers and has been shown to facilitate resistance to radiation therapy. CONCLUSION In this mini-review, we provide a brief overview of integrin targeting in radiation therapy. We specifically focus on the updated findings of beta1 integrin-mediated signaling pathways after exposure to ionising radiation (IR) using in vitro and in vivo experimental models, which could represent promising therapeutic targets for breast cancer.
Collapse
Affiliation(s)
- Jin-Min Nam
- Life Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94143-1708, USA
| | | | | | | |
Collapse
|
279
|
Myers TA, Kaushal D, Philipp MT. Microglia are mediators of Borrelia burgdorferi-induced apoptosis in SH-SY5Y neuronal cells. PLoS Pathog 2009; 5:e1000659. [PMID: 19911057 PMCID: PMC2771360 DOI: 10.1371/journal.ppat.1000659] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/19/2009] [Indexed: 12/31/2022] Open
Abstract
Inflammation has long been implicated as a contributor to pathogenesis in many CNS illnesses, including Lyme neuroborreliosis. Borrelia burgdorferi is the spirochete that causes Lyme disease and it is known to potently induce the production of inflammatory mediators in a variety of cells. In experiments where B. burgdorferi was co-cultured in vitro with primary microglia, we observed robust expression and release of IL-6 and IL-8, CCL2 (MCP-1), CCL3 (MIP-1α), CCL4 (MIP-1β) and CCL5 (RANTES), but we detected no induction of microglial apoptosis. In contrast, SH-SY5Y (SY) neuroblastoma cells co-cultured with B. burgdorferi expressed negligible amounts of inflammatory mediators and also remained resistant to apoptosis. When SY cells were co-cultured with microglia and B. burgdorferi, significant neuronal apoptosis consistently occurred. Confocal microscopy imaging of these cell cultures stained for apoptosis and with cell type-specific markers confirmed that it was predominantly the SY cells that were dying. Microarray analysis demonstrated an intense microglia-mediated inflammatory response to B. burgdorferi including up-regulation in gene transcripts for TLR-2 and NFκβ. Surprisingly, a pathway that exhibited profound changes in regard to inflammatory signaling was triggering receptor expressed on myeloid cells-1 (TREM1). Significant transcript alterations in essential p53 pathway genes also occurred in SY cells cultured in the presence of microglia and B. burgdorferi, which indicated a shift from cell survival to preparation for apoptosis when compared to SY cells cultured in the presence of B. burgdorferi alone. Taken together, these findings indicate that B. burgdorferi is not directly toxic to SY cells; rather, these cells become distressed and die in the inflammatory surroundings generated by microglia through a bystander effect. If, as we hypothesized, neuronal apoptosis is the key pathogenic event in Lyme neuroborreliosis, then targeting microglial responses may be a significant therapeutic approach for the treatment of this form of Lyme disease. Lyme disease, which is transmitted to humans through the bite of a tick, is currently the most frequently reported vector-borne illness in the northern hemisphere. Borrelia burgdorferi is the bacterium that causes Lyme disease and it is known to readily induce inflammation within a variety of infected tissues. Many of the neurological signs and symptoms that may affect patients with Lyme disease have been associated with B. burgdorferi-induced inflammation in the central nervous system (CNS). In this report we investigated which of the primary cell types residing in the CNS might be functioning to create the inflammatory environment that, in addition to helping clear the pathogen, could simultaneously be harming nearby neurons. We report findings that implicate microglia, a macrophage cell type in the CNS, as the key responders to infection with B. burgdorferi. We also present evidence indicating that this organism is not directly toxic to neurons; rather, a bystander effect is generated whereby the inflammatory surroundings created by microglia in response to B. burgdorferi may themselves be toxic to neuronal cells.
Collapse
Affiliation(s)
- Tereance A. Myers
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
| | - Deepak Kaushal
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
| | - Mario T. Philipp
- Division of Bacteriology & Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
280
|
Identification of virus resistant tumor cell subpopulations in three-dimensional uveal melanoma cultures. Cancer Gene Ther 2009; 17:223-34. [DOI: 10.1038/cgt.2009.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
281
|
Ong SM, Zhao Z, Arooz T, Zhao D, Zhang S, Du T, Wasser M, van Noort D, Yu H. Engineering a scaffold-free 3D tumor model for in vitro drug penetration studies. Biomaterials 2009; 31:1180-90. [PMID: 19889455 DOI: 10.1016/j.biomaterials.2009.10.049] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 10/20/2009] [Indexed: 12/15/2022]
Abstract
Three-dimensional (3D) in vitro cultures are recognized for recapitulating the physiological microenvironment and exhibiting high concordance with in vivo conditions. In cancer research, the multi-cellular tumor spheroid (MCTS) model is an established 3D cancer model that exhibits microenvironmental heterogeneity close to that of tumors in vivo. However, the established process of MCTS formation is time-consuming and often uncontrolled. Here, we report a method for engineering MCTS using a transient inter-cellular linker which facilitates cell-cell interaction. Using C3A cells (a hepatocellular carcinoma cell line) as a model, we formed linker-engineered spheroids which grew to a diameter of 250 microm in 7 days, as compared to 16 days using conventional non-adherent culture. Seven-day old linker-engineered spheroids exhibited characteristics of mature MCTS, including spheroid morphology, gene expression profile, cell-cell interaction, extracellular matrix secretion, proliferation and oxygen concentration gradients, and cellular functions. Linker-engineered spheroids also displayed a resistance to drug penetration similar to mature MCTS, with dose-dependent extracellular accumulation of the drug. The linker-engineered spheroids thus provide a reliable accelerated 3D in vitro tumor model for drug penetration studies.
Collapse
Affiliation(s)
- Siew-Min Ong
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A* STAR), The Nanos, 31 Biopolis Way, Singapore 138669, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
282
|
Abstract
Fundamental investigations of human biology, and the development of therapeutics, commonly rely on 2D cell-culture systems that do not accurately recapitulate the structure, function, or physiology of living tissues. Systems for 3D cultures exist but do not replicate the spatial distributions of oxygen, metabolites, and signaling molecules found in tissues. Microfabrication can create architecturally complex scaffolds for 3D cell cultures that circumvent some of these limitations; unfortunately, these approaches require instrumentation not commonly available in biology laboratories. Here we report that stacking and destacking layers of paper impregnated with suspensions of cells in extracellular matrix hydrogel makes it possible to control oxygen and nutrient gradients in 3D and to analyze molecular and genetic responses. Stacking assembles the "tissue", whereas destacking disassembles it, and allows its analysis. Breast cancer cells cultured within stacks of layered paper recapitulate behaviors observed both in 3D tumor spheroids in vitro and in tumors in vivo: Proliferating cells in the stacks localize in an outer layer a few hundreds of microns thick, and growth-arrested, apoptotic, and necrotic cells concentrate in the hypoxic core where hypoxia-sensitive genes are overexpressed. Altering gas permeability at the ends of stacks controlled the gradient in the concentration of the O(2) and was sufficient by itself to determine the distribution of viable cells in 3D. Cell cultures in stacked, paper-supported gels offer a uniquely flexible approach to study cell responses to 3D molecular gradients and to mimic tissue- and organ-level functions.
Collapse
|
283
|
Yates C, Shepard CR, Papworth G, Dash A, Beer Stolz D, Tannenbaum S, Griffith L, Wells A. Novel three-dimensional organotypic liver bioreactor to directly visualize early events in metastatic progression. Adv Cancer Res 2009; 97:225-46. [PMID: 17419948 DOI: 10.1016/s0065-230x(06)97010-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Metastatic seeding leads to most of the morbidity from carcinomas. However, little is known of this key event as current methods to study the cellular behaviors utilize nonrepresentative in vitro models or follow indirect subsequent developments in vivo. Therefore, we developed a system to visualize over a multiday to multiweek period the interactions between tumor cells and target organ parenchyma. We employ an ex vivo microscale perfusion culture system that provides a tissue-relevant environment to assess metastatic seeding behavior. The bioreactor recreates many features of the fluid flow, scale, and biological functionality of a hepatic parenchyma, a common site of metastatic spread for a wide range of carcinomas. As a test of this model, prostate and breast carcinoma cells were introduced. Tumor cell invasion and expansion could be observed by two-photon microscopy of red fluorescent protein (RFP)- and CellTracker-labeled carcinoma cells against a green fluorescent protein (GFP)-labeled hepatic tissue bed over a 14-day period. Tumors visible to the naked eye could be formed by day 25, without evident necrosis in the >0.3-mm tumor mass. These tumor cells failed to grow in the absence of the supporting three-dimensional (3D) hepatic microtissue, suggesting paracrine or stromal support function for the liver structure in tumor progression. Initial ultrastructural studies suggest that early during the tumor-parenchyma interactions, there are extensive interactions between and accommodations of the cancer and host cells, suggesting that the tumor-related epithelial-mesenchymal transition (EMT) reverts, at least transiently, to promote metastatic seeding. In sum, our 3D ex vivo organotypic liver tissue system presents a critical vehicle to examine tumor-host interactions during cancer metastasis and/or invasion. It also circumvents current limitations in assays to assess early events in metastasis, and provides new approaches to study molecular events during tumor progression.
Collapse
Affiliation(s)
- Clayton Yates
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
284
|
Spencer VA, Xu R, Bissell MJ. Extracellular matrix, nuclear and chromatin structure, and gene expression in normal tissues and malignant tumors: a work in progress. Adv Cancer Res 2009; 97:275-94. [PMID: 17419950 PMCID: PMC2912285 DOI: 10.1016/s0065-230x(06)97012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Almost three decades ago, we presented a model where the extracellular matrix (ECM) was postulated to influence gene expression and tissue-specificity through the action of ECM receptors and the cytoskeleton. This hypothesis implied that ECM molecules could signal to the nucleus and that the unit of function in higher organisms was not the cell alone, but the cell plus its microenvironment. We now know that ECM invokes changes in tissue and organ architecture and that tissue, cell, nuclear, and chromatin structure are changed profoundly as a result of and during malignant progression. Whereas some evidence has been generated for a link between ECM-induced alterations in tissue architecture and changes in both nuclear and chromatin organization, the manner by which these changes actively induce or repress gene expression in normal and malignant cells is a topic in need of further attention. Here, we will discuss some key findings that may provide insights into mechanisms through which ECM could influence gene transcription and how tumor cells acquire the ability to overcome these levels of control.
Collapse
Affiliation(s)
- Virginia A Spencer
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | |
Collapse
|
285
|
Tissue assembly and organization: Developmental mechanisms in microfabricated tissues. Biomaterials 2009; 30:4851-8. [DOI: 10.1016/j.biomaterials.2009.06.037] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 06/19/2009] [Indexed: 12/20/2022]
|
286
|
Wadlow RC, Wittner BS, Finley SA, Bergquist H, Upadhyay R, Finn S, Loda M, Mahmood U, Ramaswamy S. Systems-level modeling of cancer-fibroblast interaction. PLoS One 2009; 4:e6888. [PMID: 19727395 PMCID: PMC2731225 DOI: 10.1371/journal.pone.0006888] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/29/2009] [Indexed: 11/18/2022] Open
Abstract
Cancer cells interact with surrounding stromal fibroblasts during tumorigenesis, but the complex molecular rules that govern these interactions remain poorly understood thus hindering the development of therapeutic strategies to target cancer stroma. We have taken a mathematical approach to begin defining these rules by performing the first large-scale quantitative analysis of fibroblast effects on cancer cell proliferation across more than four hundred heterotypic cell line pairings. Systems-level modeling of this complex dataset using singular value decomposition revealed that normal tissue fibroblasts variably express at least two functionally distinct activities, one which reflects transcriptional programs associated with activated mesenchymal cells, that act either coordinately or at cross-purposes to modulate cancer cell proliferation. These findings suggest that quantitative approaches may prove useful for identifying organizational principles that govern complex heterotypic cell-cell interactions in cancer and other contexts.
Collapse
Affiliation(s)
- Raymond C. Wadlow
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - Ben S. Wittner
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
| | - S. Aidan Finley
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
| | - Henry Bergquist
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rabi Upadhyay
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Stephen Finn
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Massimo Loda
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Umar Mahmood
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Center for Molecular Imaging Research, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, United States of America
- Harvard Stem Cell Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
287
|
Elia N, Lippincott-Schwartz J. Culturing MDCK cells in three dimensions for analyzing intracellular dynamics. CURRENT PROTOCOLS IN CELL BIOLOGY 2009; Chapter 4:4.22.1-4.22.18. [PMID: 19499508 DOI: 10.1002/0471143030.cb0422s43] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Epithelial cells grown in three-dimensional (3-D) cultures of extracellular matrix differentiate into a multicellular structure of polarized cells. This process shares many characteristics with the physiological development of an epithelial tissue and the formation of polarity in epithelial cells. Imaging 3-D cultures of polarized epithelial cells is therefore a powerful tool to study epithelial architecture and morphogenesis under close-to-physiological conditions. The new generation of confocal microscopes allows live-cell imaging of fluorescently tagged molecules in these cultures. This opens up new opportunities for studying how molecules behave and are distinguished asymmetrically within a 3-D setting. This unit discusses technical aspects for culturing and imaging MDCK 3-D culture for both fixed 3-D cultures and live-cell imaging.
Collapse
Affiliation(s)
- Natalie Elia
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
288
|
Epigallocatechin-3-gallate reduces DNA damage induced by benzo[a]pyrene diol epoxide and cigarette smoke condensate in human mucosa tissue cultures. Eur J Cancer Prev 2009; 18:230-5. [PMID: 19491610 DOI: 10.1097/cej.0b013e32831bc3a0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although epidemiological studies indicate cancer preventive effects of diets rich in fruit and vegetables, large clinical intervention studies conducted to evaluate dietary supplementation with micronutrients, mostly vitamins, showed disappointing results in large parts. In contrast, there is encouraging epidemiologic data indicating great chemopreventive potential of a large group of phytochemicals, namely polyphenols. This study shows the DNA protective effect epigallocatechin-3-gallate, a tea catechin, and one of the best-studied substances within this group, on carcinogen-induced DNA fragmentation in upper aerodigestive tract cells. Cell cultures from fresh oropharyngeal mucosa biopsies were preincubated with epigallocatechin-3-gallate in different concentrations before DNA damage was introduced with the metabolically activated carcinogen benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide or cigarette smoke condensate. Effects on resulting DNA fragmentation were measured using the alkaline single-cell microgel electrophoresis (comet assay). Epigallocatechin-3-gallate significantly reduced benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide-induced DNA damage by up to 51% (P<0.001). Fragmentation induced by cigarette smoke condensate could be lowered by 47% (P<0.001). Data suggest a cancer preventive potential of epigallocatechin-3-gallate as demonstrated on a subcellular level. An additional mechanism of tea catechin action is revealed by using a primary mucosa culture model.
Collapse
|
289
|
Jechlinger M, Podsypanina K, Varmus H. Regulation of transgenes in three-dimensional cultures of primary mouse mammary cells demonstrates oncogene dependence and identifies cells that survive deinduction. Genes Dev 2009; 23:1677-88. [PMID: 19605689 DOI: 10.1101/gad.1801809] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The advent of targeted therapies for cancer has provoked interest in experimental models for the systematic study of oncogene dependence. To that end, we developed a three-dimensional (3D) culture system to analyze the responses of primary mouse mammary epithelial cells to the induction and deinduction of oncogenes. Mammary cells derived from normal virgin mice, or from tritransgenic mice (TetO-MYC;TetO-Kras(G12D);MMTV-rtTA) in which MYC and mutant Kras can be regulated by doxycycline, develop from single cells into polarized acini. Lumen formation occurs without apparent apoptosis, and the hollow spheres of cells enlarge by division, with metaphase plates oriented perpendicularly to the apical surface. When MYC and Kras(G12D) are induced, the acini enlarge and form solid, depolarized spheres. Upon deinduction of MYC and Kras(G12D) the solid structures regress, leaving a repolarized monolayer of viable cells. These cells display a phenotype consistent with progenitors of mammary epithelium: They exclude Hoechst dye 33342, and reform acini in 3D cultures and repopulate mammary fat pads more efficiently than cells harvested from uninduced acini. Moreover, cells in the surviving spheres retain the ability to respond to reinduction and thus may represent the type of cells that give rise to recurrent tumors.
Collapse
Affiliation(s)
- Martin Jechlinger
- Program in Cancer Biology and Genetics, Sloan Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.
| | | | | |
Collapse
|
290
|
Han SY, Hwang HS, Chae JS, Yang SJ, Yoon JH, Yeom YI, Choi EJ. CIIA induces the epithelial-mesenchymal transition and cell invasion. Biochem Biophys Res Commun 2009; 387:548-52. [PMID: 19615336 DOI: 10.1016/j.bbrc.2009.07.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
Epithelial-mesenchymal transition (EMT) and the acquisition of invasive potential are key events in tumor progression. We now show that CIIA, originally identified as an anti-apoptotic protein, induces the EMT and promotes cell migration and invasion. Ectopic expression of CIIA induced down-regulation of E-cadherin and claudin-1 as well as up-regulation of N-cadherin in MDCK cells. It also disrupted the differentiated epithelial morphology of MDCK cells grown in three-dimensional Matrigel cultures as well as increased the migration and invasion of MDCK cells in vitro. Furthermore, depletion of endogenous CIIA by RNA interference inhibited the migration and invasion of HeLa cells, and this inhibition was abolished by RNA interference-mediated depletion of claudin-1. These results suggest that CIIA functions as an inducer of cell invasion, and this effect is mediated, at least in part, through down-regulation of claudin-1.
Collapse
Affiliation(s)
- Sun-Young Han
- Pharmacology Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
291
|
Mao Y, Schwarzbauer JE. Accessibility to the Fibronectin Synergy Site in a 3D Matrix Regulates Engagement of α 5β 1 versus α vβ 3 Integrin Receptors. ACTA ACUST UNITED AC 2009; 13:267-77. [PMID: 17162669 DOI: 10.1080/15419060601072215] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cell adhesion and migration on fibronectin (FN) extracellular matrix are mediated by integrin receptors. Integrins alpha5beta1 and alphavbeta3 require the RGD cell-binding sequence in FN, but alpha5beta1 also requires the nearby synergy site for maximal binding. In this study, we investigated how differences in the numbers of RGD or synergy sites within a three-dimensional (3D) FN-rich matrix influence cell adhesion and migration. CHO cell adhesion, spreading, and migration were reduced on 3D chimeric matrix containing FN lacking RGD (FN(RGD-)). Incorporation of FN with mutation of the synergy site (FN(syn-)), however, resulted in selective usage of integrins. CHO cells expressing alpha5beta1 showed decreased interactions with FN(syn-) chimeric matrix. In contrast, the presence of FN(syn-) had no effect on CHOalphavbeta3 cell migration. Interestingly, CHOalpha5/alphavbeta3 cells expressing both integrins selectively used alpha5beta1 for migration on wild type FN matrix but preferred alphavbeta3 for migration on FN(syn-) chimeric matrix. Thus sequestration or exposure of the FN synergy site within a 3D matrix may represent a novel mechanism for regulating cell functions through differential usage of integrin receptors. [Supplementary materials are available for this article. Go to the publisher's online edition of Cell Communication and Adhesion for the following free supplemental resource: a video recording shows migration of HT1080 cells on 3D matrix. HT1080 cells were allowed to attach to the matrix in serum-free DMEM for 2 h. FBS was then added to the medium to a final concentration of 10% and video recording was started. Images were taken every 5 min for 2 h. The video plays at 6 frames/s.].
Collapse
Affiliation(s)
- Yong Mao
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
292
|
Dutta RC, Dutta AK. Cell-interactive 3D-scaffold; advances and applications. Biotechnol Adv 2009; 27:334-9. [DOI: 10.1016/j.biotechadv.2009.02.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 11/19/2008] [Accepted: 02/03/2009] [Indexed: 10/21/2022]
|
293
|
Rey SM, Povazay B, Hofer B, Unterhuber A, Hermann B, Harwood A, Drexler W. Three- and four-dimensional visualization of cell migration using optical coherence tomography. JOURNAL OF BIOPHOTONICS 2009; 2:370-9. [PMID: 19475627 DOI: 10.1002/jbio.200910027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Conventionally, cell chemotaxis is studied on two-dimensional (2D) transparent surfaces, due to limitations in optical and image data-collection techniques. However, surfaces that more closely mimic the natural environment of cells are often opaque. Optical coherence tomography (OCT) is a noninvasive label-free imaging technique, which offers the potential to visualize moving cells on opaque surfaces and in three dimensions (3D). Here, we demonstrate that OCT is an effective means of time-lapse videomicroscopy of Dictyostelium cells undergoing 3D (2D+time) cell migration on nitrocellulose substrates and 4D (3D+time) chemotaxis within low-density agarose gels. The generated image sequences are compatible with current computer-based image-analysis software for quantification of cell motility. This demonstrates the utility of OCT for cell tracking and analysis of cell chemotaxis in complex environments.
Collapse
Affiliation(s)
- Sara M Rey
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | | | | | | | | | | |
Collapse
|
294
|
Kenny PA, Lee GY, Myers CA, Neve RM, Semeiks JR, Spellman PT, Lorenz K, Lee EH, Barcellos-Hoff MH, Petersen OW, Gray JW, Bissell MJ. The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Mol Oncol 2009; 1:84-96. [PMID: 18516279 DOI: 10.1016/j.molonc.2007.02.004] [Citation(s) in RCA: 729] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
3D cell cultures are rapidly becoming the method of choice for the physiologically relevant modeling of many aspects of non-malignant and malignant cell behavior ex vivo. Nevertheless, only a limited number of distinct cell types have been evaluated in this assay to date. Here we report the first large scale comparison of the transcriptional profiles and 3D cell culture phenotypes of a substantial panel of human breast cancer cell lines. Each cell line adopts a colony morphology of one of four main classes in 3D culture. These morphologies reflect, at least in part, the underlying gene expression profile and protein expression patterns of the cell lines, and distinct morphologies were also associated with tumor cell invasiveness and with cell lines originating from metastases. We further demonstrate that consistent differences in genes encoding signal transduction proteins emerge when even tumor cells are cultured in 3D microenvironments.
Collapse
Affiliation(s)
- Paraic A Kenny
- Life Sciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
295
|
Pearson GW, Hunter T. PI-3 kinase activity is necessary for ERK1/2-induced disruption of mammary epithelial architecture. Breast Cancer Res 2009; 11:R29. [PMID: 19457236 PMCID: PMC2716497 DOI: 10.1186/bcr2259] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 04/28/2009] [Accepted: 05/20/2009] [Indexed: 12/21/2022] Open
Abstract
Introduction Epithelial tumors, including breast cancer, are being identified and treated at earlier stages of tumor development because of technological advances in screening and detection methods. It is likely that early-stage epithelial tumors, such as mammary ductal carcinoma in situ (DCIS), will be amenable to new and more efficacious diagnostic tests and forms of therapy. However, our limited understanding of the underlying molecular mechanisms of early-stage epithelial tumor growth has hampered the development of new forms treatment and preventative therapy. Methods The Raf–MEK1/2–ERK1/2 mitogen-activated protein kinase module is activated by stimuli complicit in mammary neoplastic progression. We have recently demonstrated that the activation of ERK1/2 induces a non-invasive form of motility, where cells can track along the basement membrane and adjacent epithelial cells, but do not become invasive over time, using real-time imaging of a mammary epithelial organotypic culture model. Using this novel approach combined with traditional biochemical techniques, we have analyzed at the molecular level how ERK1/2 induces this new non-invasive form of motility as well as proliferation and cell survival. Results We find that the activation of Raf:ER in the differentiated epithelium of fully formed acini promotes proliferation and cell survival, which are characteristic features of pre-invasive DCIS lesions. The activation of ERK1/2 correlated with induction of c-Fos, a transcriptional regulator of proliferation and reduced expression of the pro-apoptotic BH3-only protein BIM. Both ERK1/2 and PI-3 kinase-dependent effector pathways were required for activated Raf:ER to reduce expression of p27 and promote proliferation. In addition, PI-3K activity was necessary for the induction of non-invasive motility induced by ERK1/2. Conclusions ERK1/2 activation is sufficient to induce cell behaviors in organotypic culture that could promote recurrent and invasive growth in DCIS patients. Interestingly, PI-3K activity is necessary for two of these behaviors, proliferation and cell motility. Collectively, our results suggest that the relationship between the activity state of the ERK1/2 and PI-3K signaling pathways and recurrent growth in DCIS patients should be investigated.
Collapse
Affiliation(s)
- Gray W Pearson
- Molecular and Cell Biology Laboratory, Salk Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
296
|
Mastro AM, Vogler EA. A Three-Dimensional Osteogenic Tissue Model for the Study of Metastatic Tumor Cell Interactions with Bone: Figure 1. Cancer Res 2009; 69:4097-100. [DOI: 10.1158/0008-5472.can-08-4437] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
297
|
van Noort D, Ong SM, Zhang C, Zhang S, Arooz T, Yu H. Stem cells in microfluidics. Biotechnol Prog 2009; 25:52-60. [PMID: 19205022 DOI: 10.1002/btpr.171] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
With the introduction of microtechnology and microfluidic platforms for cell culture, stem cell research can be put into a new context. Inside microfluidics, microenvironments can be more precisely controlled and their influence on cell fate studied. Microfluidic devices can be made transparent and the cells monitored real time by imaging, using fluorescence markers to probe cell functions and cell fate. This article gives a perspective on the yet untapped utility of microfluidic devices for stem cell research. It will guide the biologists through some basic microtechnology and the application of microfluidics to cell research, as well as highlight to the engineers the cell culture capabilities of microfluidics.
Collapse
Affiliation(s)
- Danny van Noort
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore.
| | | | | | | | | | | |
Collapse
|
298
|
Vickers AEM. Characterization of hepatic mitochondrial injury induced by fatty acid oxidation inhibitors. Toxicol Pathol 2009; 37:78-88. [PMID: 19234235 DOI: 10.1177/0192623308329285] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Impairment of liver mitochondrial beta-oxidation is an important mechanism of drug-induced liver injury. Four inhibitors of fatty acid oxidation were compared in short-term rat in vivo studies in which the rats were administered one or four doses. The hepatocellular vacuolation represented ultra-structural mitochondrial changes. Urine nuclear magnetic resonance (NMR) spectroscopy revealed that both FOX988 and SDZ51-641 induced a persistent dicarboxylic aciduria, suggesting an inhibition of mitochondrial beta-oxidation and incomplete fatty acid metabolism. Etomoxir caused minimal mitochondrial ultrastructural changes and induced only transient dicarboxylic aciduria. CPI975 served as a negative control, in that there were no significant perturbations to the mitochondrial ultrastructural morphology or in the urine NMR composition; however, compound exposure was confirmed by the up-regulation of liver gene expression compared to vehicle control. The liver gene expression changes that were altered by the compounds were indicative of mitochondria, general and oxidative stress, and peroxisomal enzymes involved in beta-oxidation, suggestive of a compensatory response to the inhibition in the mitochondria. In addition, both FOX988 and SDZ51-641 up-regulated ribosomal genes associated with apoptosis, as well as p53 pathways linked with apoptosis. In summary, metabonomics and liver gene expression provided mechanistic information on mitochondrial dysfunction and impaired fatty acid oxidation to further define the clinical pathology and histopathology findings of hepatotoxicity.
Collapse
|
299
|
Zhang X, Fournier MV, Ware JL, Bissell MJ, Yacoub A, Zehner ZE. Inhibition of vimentin or beta1 integrin reverts morphology of prostate tumor cells grown in laminin-rich extracellular matrix gels and reduces tumor growth in vivo. Mol Cancer Ther 2009; 8:499-508. [PMID: 19276168 DOI: 10.1158/1535-7163.mct-08-0544] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Prostate epithelial cells grown embedded in laminin-rich extracellular matrix (lrECM) undergo morphologic changes that closely resemble their architecture in vivo. In this study, growth characteristics of three human prostate epithelial sublines derived from the same cellular lineage, but displaying different tumorigenic and metastatic properties in vivo, were assessed in three-dimensional lrECM gels. M12, a highly tumorigenic and metastatic subline, was derived from the immortalized, prostate epithelial P69 cell line by selection in athymic, nude mice and found to contain a deletion of 19p-q13.1. The stable reintroduction of an intact human chromosome 19 into M12 resulted in a poorly tumorigenic subline, designated F6. When embedded in lrECM gels, the parental, nontumorigenic P69 line produced acini with clearly defined lumena. Immunostaining with antibodies to beta-catenin, E-cadherin, or alpha6 and beta1 integrins showed polarization typical of glandular epithelium. In contrast, the metastatic M12 subline produced highly disorganized cells with no evidence of polarization. The F6 subline reverted to acini-like structures exhibiting basal polarity marked with integrins. Reducing either vimentin levels via small interfering RNA interference or the expression of alpha6 and beta1integrins by the addition of blocking antibodies, reorganized the M12 subline into forming polarized acini. The loss of vimentin significantly reduced M12-Vim tumor growth when assessed by s.c. injection in athymic mice. Thus, tumorigenicity in vivo correlated with disorganized growth in three-dimensional lrECM gels. These studies suggest that the levels of vimentin and beta1 integrin play a key role in the homeostasis of the normal acinus in prostate and that their dysregulation may lead to tumorigenesis.
Collapse
Affiliation(s)
- Xueping Zhang
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University-Medical Campus, P.O. Box 980614, Richmond, VA 23298-0614, USA
| | | | | | | | | | | |
Collapse
|
300
|
Lutolf MP. Integration column: artificial ECM: expanding the cell biology toolbox in 3D. Integr Biol (Camb) 2009; 1:235-41. [PMID: 20023734 DOI: 10.1039/b902243k] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many crucial cellular processes in our tissues are governed by complex, spatio-temporally regulated interactions between cells and their extracellular matrix (ECM). These interactions can be studied using well-established 3D in vitro model systems such as collagen gels or Matrigel generated from native ECM macromolecular components. Recent advances in the molecular design of 'smart' synthetic biomaterials have generated artificial ECM (aECM) that mimic some of the key structural and biochemical characteristics of their naturally derived counterparts and, thanks to their synthetic origin, promise to overcome some complexities of the latter. Here I will discuss emerging approaches in aECM design, hopefully inspiring cell biologists to apply these systems to address their specific biological question.
Collapse
Affiliation(s)
- Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering and Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland.
| |
Collapse
|