251
|
Paterniti I, Impellizzeri D, Di Paola R, Navarra M, Cuzzocrea S, Esposito E. A new co-ultramicronized composite including palmitoylethanolamide and luteolin to prevent neuroinflammation in spinal cord injury. J Neuroinflammation 2013; 10:91. [PMID: 23880066 PMCID: PMC3728012 DOI: 10.1186/1742-2094-10-91] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 07/09/2013] [Indexed: 01/24/2023] Open
Abstract
Background It has recently been demonstrated that palmitoylethanolamide (PEA), an endogenous lipid amide belonging to the N-acylethanolamine family, exerts neuroprotection in central nervous system (CNS) pathologies. In recent studies, we have demonstrated that treatment with PEA significantly reduced inflammatory secondary events associated with spinal cord injury (SCI). Since oxidative stress is considered to play an important role in neuroinflammatory disorders, in the present work we studied a new composite, a formulation including PEA and the antioxidant compound luteolin (Lut), subjected to an ultramicronization process, co-ultraPEALut. We investigated the effect of co-ultraPEALut (in the respective fixed doses of 10:1 in mass) in both an ex vivo organotypic spinal cord culture model and an in vivo model of SCI. Methods For the organotypic cultures, spinal cords were prepared from mice at postnatal day 6 and were cut into transverse slices of 400 μm thickness to generate the lumbar organotypic slice cultures. After 7 days of culturing, the slices were mechanically injured onto the center of the slice and the co-ultraPEALut was applied at different concentrations (0.00009, 0.0009 and 0.009 g/l) 1 hour before damage. For in vivo studies, SCI was induced in mice through spinal cord compression by the application of vascular clips (force of 24 g) to the dura via a four-level T5 to T8 laminectomy, and co-ultraPEALut (1 mg/kg ip) was administered at 1 and 6 hours after SCI. At 24 hours after SCI, mice were sacrificed and the spinal cords were collected for further evaluation. Additional animals were treated similarly and sacrificed 10 days after SCI. Results Pretreatment with co-ultraPEALut significantly reduced cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression in a concentration-dependent manner, restored neuronal nitric oxide synthase (nNOS) expression at all three tested concentrations, and protected cells by cell death (MTT assay) in spinal cord organotypic cultures. Moreover, we demonstrated in vivo that co-ultraPEALut 1 mg/kg reduced the severity of trauma induced by compression and improved the motor activity evaluated at 10 days post-injury. Conclusion The present study demonstrates that the protective effect of PEA on SCI-associated neuroinflammation could be improved by co-ultramicronization with Lut possibly due to its antioxidant properties.
Collapse
Affiliation(s)
- Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 98166 Messina, Italy
| | | | | | | | | | | |
Collapse
|
252
|
Fan H, Guo Y, Liang X, Yuan Y, Qi X, Wang M, Ma J, Zhou H. Hydrogen sulfide protects against amyloid beta-peptide induced neuronal injury via attenuating inflammatory responses in a rat model. J Biomed Res 2013; 27:296-304. [PMID: 23885269 PMCID: PMC3721038 DOI: 10.7555/jbr.27.20120100] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/25/2012] [Accepted: 04/24/2013] [Indexed: 11/18/2022] Open
Abstract
Neuroinflammation has been recognized to play a critical role in the pathogenesis of Alzheimer's disease (AD), which is pathologically characterized by the accumulation of senile plaques containing activated microglia and amyloid β-peptides (Aβ). In the present study, we examined the neuroprotective effects of hydrogen sulfide (H2S) on neuroinflammation in rats with Aβ1-40 hippocampal injection. We found that Aβ-induced rats exhibited a disorder of pyramidal cell layer arrangement, and a decrease of mean pyramidal cell number in the CA1 hippocampal region compared with those in sham operated rats. NaHS (a donor of H2S, 5.6 mg/kg/d, i.p.) treatment for 3 weeks rescued neuronal cell death significantly. Moreover, we found that H2S dramatically suppressed the release of TNF-α, IL-1β and IL-6 in the hippocampus. Consistently, both immunohistochemistry and Western blotting assays showed that H2S inhibited the upregulation of COX-2 and the activation of NF-κB in the hippocampus. In conclusion, our data indicate that H2S suppresses neuroinflammation via inhibition of the NF-κB activation pathway in the Aβ-induced rat model and has potential value for AD therapy.
Collapse
Affiliation(s)
- Hao Fan
- Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | | | | | | | | | | | | | | |
Collapse
|
253
|
Campolo M, Ahmad A, Crupi R, Impellizzeri D, Morabito R, Esposito E, Cuzzocrea S. Combination therapy with melatonin and dexamethasone in a mouse model of traumatic brain injury. J Endocrinol 2013; 217:291-301. [PMID: 23532863 DOI: 10.1530/joe-13-0022] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Traumatic brain injury (TBI) is a major cause of preventable death and morbidity in young adults. This complex condition is characterized by a significant blood-brain barrier leakage that stems from cerebral ischemia, inflammation, and redox imbalances in the traumatic penumbra of the injured brain. Recovery of function after TBI is partly through neuronal plasticity. In order to test whether combination therapy with melatonin and dexamethasone (DEX) might improve functional recovery, a controlled cortical impact (CCI) was performed in adult mice, acting as a model of TBI. Once trauma has occurred, combating these exacerbations is the keystone of an effective TBI therapy. The therapy with melatonin (10 mg/kg) and DEX (0.025 mg/kg) is able to reduce edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride staining across the brain sections. Melatonin- and DEX-mediated improvements in tissue histology shown by the reduction in lesion size and an improvement in apoptosis level further support the efficacy of combination therapy. The combination therapy also blocked the infiltration of astrocytes and reduced CCI-mediated oxidative stress. In addition, we have also clearly demonstrated that the combination therapy significantly ameliorated neurological scores. Taken together, our results clearly indicate that combination therapy with melatonin and DEX presents beneficial synergistic effects, and we consider it an avenue for further development of novel combination therapeutic agents in the treatment of TBI that are more effective than a single effector molecule.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Biological and Environmental Sciences, University of Messina, Torre Biologica, Policlinico Universitario Via C Valeria, Gazzi, 98100 Messina, Italy
| | | | | | | | | | | | | |
Collapse
|
254
|
Abstract
The first observation on the relationship between the pineal gland and the immune system was done by the author of this paper in the late sixties and early seventies of the last century. After neonatal pinealectomy the thymus has been destroyed and wasting disease developed. Since that time a flood of experiments justified the observation and pointed to the prominent role of pineal in the regulation of the immune system. Melatonin, the hormone of the pineal gland stimulates immune processes acting to the immune cells' cytokine production, the haemopoiesis, and immune cell-target cell interactions. Melatonin receptors have been demonstrated and their localization and function were justified. Melatonin production by and melatonin receptors on (and in) the immune cells was proved. Melatonin agonists have been synthesized and the use of melatonin as adjuvant in the therapy of diseases connected to the immune system (cancers included) has been started. The paper summarizes the most important studies and discusses the interrelations of the data. The discussion points to the possibility of packed transport of the pineal hormone by the immune cells and to the adventages of local regulation by this transport.
Collapse
Affiliation(s)
- György Csaba
- Semmelweis University, Department of Genetics, Cell and Immunobiology, Budapest, Hungary.
| |
Collapse
|
255
|
Pinheiro da Silva F, Machado MCC, Velasco IT. Neuropeptides in sepsis: from brain pathology to systemic inflammation. Peptides 2013; 44:135-8. [PMID: 23583479 DOI: 10.1016/j.peptides.2013.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 12/20/2022]
Abstract
Septic encephalopathy is frequently diagnosed in critically ill patients and in up to 70% of patients with severe systemic infection [19]. The syndrome is defined by diffuse cerebral dysfunction or structural abnormalities attributed to the effects of systemic infection, rather than a direct central nervous system cause. The clinical characteristics can range from mild delirium to deep coma, but patients are often medically sedated making the diagnosis difficult. Any manifestation, however, is specific and markers of disease are lacking [43]. Sepsis survivors present long term cognitive impairment, including alterations of memory, attention and concentration [10,54]. Here, we propose that neuropeptides may play a key role in septic encephalopathy, leading to a vicious circle characterized by brain disease and systemic inflammation.
Collapse
|
256
|
Ghorbani A, Salari M, Shaygannejad V, Norouzi R. The role of melatonin in the pathogenesis of multiple sclerosis: a case-control study. Int J Prev Med 2013; 4:S180-4. [PMID: 23776720 PMCID: PMC3678214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 02/23/2013] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The association between the prevalence of multiple sclerosis (MS) and latitude gradient indicates the importance of environmental factors in MS susceptibility. Sunlight's ultraviolet radiation, its ability to influence melatonin, and an imbalance of melatonin in the central nervous system (CNS) may be involved in this process. METHODS This case-control study was conducted in Isfahan MS Society (IMSS), Isfahan, Iran. Enrollment was limited to patients with MS referring to the MS clinic of Alzahra and Kashani hospital during January and February 2012. RESULTS Thirty-five patients with MS and 35 healthy individuals were included in our study. The melatonin levels were analyzed using enzyme-linked immunosorbent assay (ELISA) kits. There was no significant difference between saliva melatonin level of two groups (patients and healthy individuals) (P = 0.417); however, after controlling the effect of age, a significant difference (P = 0.022) was found. CONCLUSIONS In the present study, it is proposed that environmental conditions in Isfahan city might have increased the susceptibility to MS, but more studies in different parts of the world are needed to evaluate this claim.
Collapse
Affiliation(s)
- Abbas Ghorbani
- Department of Neurology, Isfahan Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehri Salari
- Department of Neurology, Isfahan Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran,Correspondence to: Dr. Mehri Salari, Department of Neurology, Isfahan Neurosciences Research Center, Isfahan Medical University, Alzahra Hospital, Sofeh Blvd., Isfahan 81744-176, Iran. E-mail:
| | - Vahid Shaygannejad
- Department of Neurology, Isfahan Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasul Norouzi
- Department of Neurology, Isfahan Neurosciences Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
257
|
Miller E, Walczak A, Majsterek I, Kędziora J. Melatonin reduces oxidative stress in the erythrocytes of multiple sclerosis patients with secondary progressive clinical course. J Neuroimmunol 2013; 257:97-101. [DOI: 10.1016/j.jneuroim.2013.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/14/2013] [Accepted: 02/19/2013] [Indexed: 12/16/2022]
|
258
|
Cerio FGD, Lara-Celador I, Alvarez A, Hilario E. Neuroprotective therapies after perinatal hypoxic-ischemic brain injury. Brain Sci 2013; 3:191-214. [PMID: 24961314 PMCID: PMC4061821 DOI: 10.3390/brainsci3010191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/22/2013] [Indexed: 12/29/2022] Open
Abstract
Hypoxic-ischemic (HI) brain injury is one of the main causes of disabilities in term-born infants. It is the result of a deprivation of oxygen and glucose in the neural tissue. As one of the most important causes of brain damage in the newborn period, the neonatal HI event is a devastating condition that can lead to long-term neurological deficits or even death. The pattern of this injury occurs in two phases, the first one is a primary energy failure related to the HI event and the second phase is an energy failure that takes place some hours later. Injuries that occur in response to these events are often manifested as severe cognitive and motor disturbances over time. Due to difficulties regarding the early diagnosis and treatment of HI injury, there is an increasing need to find effective therapies as new opportunities for the reduction of brain damage and its long term effects. Some of these therapies are focused on prevention of the production of reactive oxygen species, anti-inflammatory effects, anti-apoptotic interventions and in a later stage, the stimulation of neurotrophic properties in the neonatal brain which could be targeted to promote neuronal and oligodendrocyte regeneration.
Collapse
Affiliation(s)
- Felipe Goñi de Cerio
- Biotechnology Area, GAIKER Technology Centre, Parque Tecnológico de Zamudio Ed 202, 48170 Zamudio, Vizcaya, Spain.
| | - Idoia Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Antonia Alvarez
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| | - Enrique Hilario
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, 48949 Leioa, Bizkaia, Spain.
| |
Collapse
|
259
|
Comparison of the beneficial effect of melatonin on recovery after cut and crush sciatic nerve injury: a combined study using functional, electrophysiological, biochemical, and electron microscopic analyses. Childs Nerv Syst 2013; 29:389-401. [PMID: 23053363 DOI: 10.1007/s00381-012-1936-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 09/25/2012] [Indexed: 01/24/2023]
Abstract
PURPOSE Following tissue injury, melatonin is known to reduce detrimental effects of free radicals by stimulating antioxidant enzymes and also to inhibit posttraumatic polymorphonuclear infiltration. Beneficial effects after peripheral nerve injury have been suggested, but not studied in detail. Therefore, we aimed to elucidate the effects of melatonin on the recovery of the lesioned rat sciatic nerve by means of combined analysis. METHODS A total number of 90 rats were randomly distributed into six groups: control (group 1), sham-operated (group 2), sciatic nerve cut (group 3), sciatic nerve cut + melatonin treatment (group 4), sciatic nerve crush (group 5), and sciatic nerve crush + melatonin treatment (group 6). Melatonin was administered intraperitoneally at a dose of 50 mg/kg/day for 6 weeks. Recovery of function was analyzed by assessment of the sciatic functional index based on walking track analysis, somatosensory evoked potentials, biochemical quantification of malondialdehyde, antioxidant enzymes levels, and ultrastructural analysis. RESULTS Our data showed the beneficial effect of melatonin on sciatic nerve recovery. Rats treated with melatonin demonstrated better structural preservation of the myelin sheaths compared to the nontreated group. The biochemical analysis confirmed the beneficial effects of melatonin displaying lower lipid peroxidation and higher superoxide dismutase, catalase, and glutathione peroxidase activities in sciatic nerve samples in comparison to nontreated groups. CONCLUSIONS The beneficial effects of melatonin administration on the recovery of the cut and crush injured sciatic nerve may be attributed to its antioxidant properties. Based on these investigations, we think that our data would be helpful for clinicians who deal with peripheral nerve injuries.
Collapse
|
260
|
Cardinali DP, Pagano ES, Scacchi Bernasconi PA, Reynoso R, Scacchi P. Melatonin and mitochondrial dysfunction in the central nervous system. Horm Behav 2013; 63:322-30. [PMID: 22391273 DOI: 10.1016/j.yhbeh.2012.02.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 01/19/2023]
Abstract
Cell death and survival are critical events for neurodegeneration, mitochondria being increasingly seen as important determinants of both. Mitochondrial dysfunction is considered a major causative factor in Alzheimer's disease (AD), Parkinson's disease (PD) and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity and NO production, and disrupted electron transport system and mitochondrial permeability transition, have all been involved in impaired mitochondrial function. Melatonin, the major secretory product of the pineal gland, is an antioxidant and an effective protector of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective to prevent oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of AD, PD and HD. These effects are seen at doses 2-3 orders of magnitude higher than those required to affect sleep and circadian rhythms, both conspicuous targets of melatonin action. Melatonin is selectively taken up by mitochondria, a function not shared by other antioxidants. A limited number of clinical studies indicate that melatonin can improve sleep and circadian rhythm disruption in PD and AD patients. More recently, attention has been focused on the development of potent melatonin analogs with prolonged effects which were employed in clinical trials in sleep-disturbed or depressed patients in doses considerably higher than those employed for melatonin. In view that the relative potencies of the analogs are higher than that of the natural compound, clinical trials employing melatonin in the range of 50-100mg/day are needed to assess its therapeutic validity in neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Pontificia Universidad Católica Argentina, Facultad de Ciencias Médicas, 1107 Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
261
|
Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J. A review of the molecular aspects of melatonin's anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 2013; 54:1-14. [PMID: 22725668 DOI: 10.1111/j.1600-079x.2012.01014.x] [Citation(s) in RCA: 459] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Melatonin is a highly evolutionary conserved endogenous molecule that is mainly produced by the pineal gland, but also by other nonendocrine organs, of most mammals including man. In the recent years, a variety of anti-inflammatory and antioxidant effects have been observed when melatonin is applied exogenously under both in vivo and in vitro conditions. A number of studies suggest that this indole may exert its anti-inflammatory effects through the regulation of different molecular pathways. It has been documented that melatonin inhibits the expression of the isoforms of inducible nitric oxide synthase and cyclooxygenase and limits the production of excessive amounts of nitric oxide, prostanoids, and leukotrienes, as well as other mediators of the inflammatory process such as cytokines, chemokines, and adhesion molecules. Melatonin's anti-inflammatory effects are related to the modulation of a number of transcription factors such as nuclear factor kappa B, hypoxia-inducible factor, nuclear factor erythroid 2-related factor 2, and others. Melatonin's effects on the DNA-binding capacity of transcription factors may be regulated through the inhibition of protein kinases involved in signal transduction, such as mitogen-activated protein kinases. This review summarizes recent research data focusing on the modulation of the expression of different inflammatory mediators by melatonin and the effects on cell signaling pathways responsible for the indole's anti-inflammatory activity. Although there are a numerous published reports that have analyzed melatonin's anti-inflammatory properties, further studies are necessary to elucidate its complex regulatory mechanisms in different cellular types and tissues.
Collapse
Affiliation(s)
- José L Mauriz
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd) and Institute of Biomedicine, University of León, León, Spain Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | |
Collapse
|
262
|
Falsini B, Bush RA, Sieving PA. Neuroprotection. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00037-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
263
|
Affiliation(s)
- Kasper P Kepp
- DTU Chemistry, Technical University of Denmark, DK 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
264
|
Melatonin Antioxidative Defense: Therapeutical Implications for Aging and Neurodegenerative Processes. Neurotox Res 2012; 23:267-300. [DOI: 10.1007/s12640-012-9337-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/12/2012] [Accepted: 06/13/2012] [Indexed: 12/12/2022]
|
265
|
Anderson G, Maes M. Melatonin: an overlooked factor in schizophrenia and in the inhibition of anti-psychotic side effects. Metab Brain Dis 2012; 27:113-9. [PMID: 22527998 DOI: 10.1007/s11011-012-9307-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/11/2012] [Indexed: 12/11/2022]
Abstract
This paper reviews melatonin as an overlooked factor in the developmental etiology and maintenance of schizophrenia; the neuroimmune and oxidative pathophysiology of schizophrenia; specific symptoms in schizophrenia, including sleep disturbance; circadian rhythms; and side effects of antipsychotics, including tardive dyskinesia and metabolic syndrome. Electronic databases, i.e. PUBMED, Scopus and Google Scholar were used as sources for this review using keywords: schizophrenia, psychosis, tardive dyskinesia, antipsychotics, metabolic syndrome, drug side effects and melatonin. Articles were selected on the basis of relevance to the etiology, course and treatment of schizophrenia. Melatonin levels and melatonin circadian rhythm are significantly decreased in schizophrenic patients. The adjunctive use of melatonin in schizophrenia may augment the efficacy of antipsychotics through its anti-inflammatory and antioxidative effects. Further, melatonin would be expected to improve sleep disorders in schizophrenia and side effects of anti-psychotics, such as tardive dyskinesia, metaboilic syndrome and hypertension. It is proposed that melatonin also impacts on the tryptophan catabolic pathway via its effect on stress response and cortisol secretion, thereby impacting on cortex associated cognition, amygdala associated affect and striatal motivational processing. The secretion of melatonin is decreased in schizophrenia, contributing to its etiology, pathophysiology and management. Melatonin is likely to have impacts on the metabolic side effects of anti-psychotics that contribute to subsequent decreases in life-expectancy.
Collapse
|
266
|
Seddik L, Bah TM, Aoues A, Slimani M, Benderdour M. Elucidation of mechanisms underlying the protective effects of olive leaf extract against lead-induced neurotoxicity in Wistar rats. J Toxicol Sci 2012; 36:797-809. [PMID: 22129743 DOI: 10.2131/jts.36.797] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recently, we identified that olive leaf extract (OLE) prevents lead (Pb)-induced abnormalities in behavior and neurotransmitters production in chronic Pb exposure in rats. The aim of the present study was to provide additional evidence that OLE acts as an anti-apoptotic, anti-inflammatory, and antioxidant mediator in Pb exposed rats. 4-weeks old Wistar rats were exposed or not to 250 mg/l Pb for 13-weeks and then exposed to tap water containing or not 0.1% OLE for additional 2-weeks. Atomic absorption spectrophotometry showed significantly elevated Pb levels in the hippocampus and serum and reaches 5 and 42 µg/mg tissue, respectively. In the hippocampus, the examination of markers of apoptosis and inflammation revealed an increase in caspase-3 activity and DNA fragmentation as well as tumor necrosis factor alpha, interleukin-1 beta and prostaglandin E2 in Pb-exposed rats. In addition, our findings showed that Pb induced 4-hydroxynonenal production and inhibited antioxidant-related enzyme activity, such as glutathione-S-transferase as wells as energy metabolism-related enzyme activity, such as NADP-isocitrate dehydrogenase and glucose transporter. Upon examination of signaling pathways involved in apoptosis process, we found that Pb induced p38 mitogen activated protein kinase (MAPK) and Akt phosphorylation, but in contrast, inhibited that of ERK(1/2). Interestingly, OLE administration diminished tissue Pb deposition and prevented all Pb effects. In the frontal cortex, our data also showed that OLE-abolished Pb-induced caspase-3 activity and DNA fragmentation. Collectively, these data support the use of OLE by traditional medicine to counter Pb neurotoxicity.
Collapse
Affiliation(s)
- Leila Seddik
- Département de Biologie, Faculté des Sciences, Université d'Es-Senia, Oran, Algeria
| | | | | | | | | |
Collapse
|
267
|
Perrone S, Stazzoni G, Tataranno ML, Buonocore G. New pharmacologic and therapeutic approaches for hypoxic-ischemic encephalopathy in the newborn. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:83-8. [DOI: 10.3109/14767058.2012.663168] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
268
|
Balduini W, Carloni S, Perrone S, Bertrando S, Tataranno M, Negro S, Proietti F, Longini M, Buonocore G. The use of melatonin in hypoxic-ischemic brain damage: an experimental study. J Matern Fetal Neonatal Med 2012; 25 Suppl 1:119-24. [DOI: 10.3109/14767058.2012.663232] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
269
|
|
270
|
Wang Z, Liu D, Wang J, Liu S, Gao M, Ling EA, Hao A. Cytoprotective effects of melatonin on astroglial cells subjected to palmitic acid treatment in vitro. J Pineal Res 2012; 52:253-64. [PMID: 21929682 DOI: 10.1111/j.1600-079x.2011.00952.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Melatonin, an endogenously produced neurohormone secreted mainly by the pineal gland, has a variety of physiological functions and neuroprotective effects. Saturated fatty acids (SFAs) have been known to induce neurotoxicity and oxidative stress in central nervous system injuries and neurodegenerative pathologies. However, the effect of melatonin on SFAs-induced cytotoxicity in astroglial cells, if any, has remained to be explored. This study reports that in primary cultured astroglial cells, melatonin significantly attenuated palmitic acid (PA)-induced cytotoxicity in a concentration- and time-dependent manner. Additionally, melatonin effectively suppressed PA-induced reactive oxygen species generation and prevented PA-induced apoptosis whereby the rise in Bax/Bcl-2 ratio and caspase-3 activation in astroglial cells was inhibited. However, it did not appear to exert an obvious effect on PA-induced intracellular calcium overload. Luzindole, a nonselective melatonin receptor antagonist, attenuated melatonin's promotion effect of cell survival and Stat3 phosphorylation, indicating that melatonin exerts its protective property in astroglial cells, at least in part, through the activation of membrane receptors and then Stat3 signaling pathway. Finally, melatonin had an inhibitory effect on the pro-inflammatory cytokine gene expression. The results suggest that melatonin may be an effective cytoprotective agent against PA-based cytotoxicity through modulating cell survival and inflammatory response in astroglial cells.
Collapse
Affiliation(s)
- Zhen Wang
- Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
271
|
Christophersen OA. Radiation protection following nuclear power accidents: a survey of putative mechanisms involved in the radioprotective actions of taurine during and after radiation exposure. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2012; 23:14787. [PMID: 23990836 PMCID: PMC3747764 DOI: 10.3402/mehd.v23i0.14787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 12/28/2022]
Abstract
There are several animal experiments showing that high doses of ionizing radiation lead to strongly enhanced leakage of taurine from damaged cells into the extracellular fluid, followed by enhanced urinary excretion. This radiation-induced taurine depletion can itself have various harmful effects (as will also be the case when taurine depletion is due to other causes, such as alcohol abuse or cancer therapy with cytotoxic drugs), but taurine supplementation has been shown to have radioprotective effects apparently going beyond what might be expected just as a consequence of correcting the harmful consequences of taurine deficiency per se. The mechanisms accounting for the radioprotective effects of taurine are, however, very incompletely understood. In this article an attempt is made to survey various mechanisms that potentially might be involved as parts of the explanation for the overall beneficial effect of high levels of taurine that has been found in experiments with animals or isolated cells exposed to high doses of ionizing radiation. It is proposed that taurine may have radioprotective effects by a combination of several mechanisms: (1) during the exposure to ionizing radiation by functioning as an antioxidant, but perhaps more because it counteracts the prooxidant catalytic effect of iron rather than functioning as an important scavenger of harmful molecules itself, (2) after the ionizing radiation exposure by helping to reduce the intensity of the post-traumatic inflammatory response, and thus reducing the extent of tissue damage that develops because of severe inflammation rather than as a direct effect of the ionizing radiation per se, (3) by functioning as a growth factor helping to enhance the growth rate of leukocytes and leukocyte progenitor cells and perhaps also of other rapidly proliferating cell types, such as enterocyte progenitor cells, which may be important for immunological recovery and perhaps also for rapid repair of various damaged tissues, especially in the intestines, and (4) by functioning as an antifibrogenic agent. A detailed discussion is given of possible mechanisms involved both in the antioxidant effects of taurine, in its anti-inflammatory effects and in its role as a growth factor for leukocytes and nerve cells, which might be closely related to its role as an osmolyte important for cellular volume regulation because of the close connection between cell volume regulation and the regulation of protein synthesis as well as cellular protein degradation. While taurine supplementation alone would be expected to exert a therapeutic effect far better than negligible in patients that have been exposed to high doses of ionizing radiation, it may on theoretical grounds be expected that much better results may be obtained by using taurine as part of a multifactorial treatment strategy, where it may interact synergistically with several other nutrients, hormones or other drugs for optimizing antioxidant protection and minimizing harmful posttraumatic inflammatory reactions, while using other nutrients to optimize DNA and tissue repair processes, and using a combination of good diet, immunostimulatory hormones and perhaps other nontoxic immunostimulants (such as beta-glucans) for optimizing the recovery of antiviral and antibacterial immune functions. Similar multifactorial treatment strategies may presumably be helpful in several other disease situations (including severe infectious diseases and severe asthma) as well as for treatment of acute intoxications or acute injuries (both mechanical ones and severe burns) where severely enhanced oxidative and/or nitrative stress and/or too much secretion of vasodilatory neuropeptides from C-fibres are important parts of the pathogenetic mechanisms that may lead to the death of the patient. Some case histories (with discussion of some of those mechanisms that may have been responsible for the observed therapeutic outcome) are given for illustration of the likely validity of these concepts and their relevance both for treatment of severe infections and non-infectious inflammatory diseases such as asthma and rheumatoid arthritis.
Collapse
|
272
|
Yawno T, Castillo-Melendez M, Jenkin G, Wallace EM, Walker DW, Miller SL. Mechanisms of Melatonin-Induced Protection in the Brain of Late Gestation Fetal Sheep in Response to Hypoxia. Dev Neurosci 2012; 34:543-51. [DOI: 10.1159/000346323] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 11/28/2012] [Indexed: 11/19/2022] Open
|
273
|
Singhal NK, Srivastava G, Agrawal S, Jain SK, Singh MP. Melatonin as a neuroprotective agent in the rodent models of Parkinson's disease: is it all set to irrefutable clinical translation? Mol Neurobiol 2011; 45:186-99. [PMID: 22198804 DOI: 10.1007/s12035-011-8225-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/02/2011] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is characterized by the selective degeneration of the nigrostriatal dopaminergic neurons, continuing or permanent deficiency of dopamine, accretion of an abnormal form of alpha synuclein in the adjacent neurons, and dysregulation of ubiquitin proteasomal system, mitochondrial metabolism, permeability and integrity, and cellular apoptosis resulting in rigidity, bradykinesia, resting tremor, and postural instability. Melatonin, an indoleamine produced almost in all the organisms, has anti-inflammatory, anti-apoptotic, and anti-oxidant nature. Experimental studies employing 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), methamphetamine, rotenone, and maneb and paraquat models have shown an enormous potential of melatonin in amelioration of the symptomatic features of PD. Although a few reviews published previously have described the multifaceted efficacy of melatonin against MPTP and 6-OHDA rodent models, due to development and validation of the newer models as well as the extensive studies on the usage of melatonin in entrenched PD models, it is worthwhile to bring up to date note on the usage of melatonin as a neuroprotective agent in PD. This article presents an update on the usage and applications of melatonin in PD models along with incongruous observations. The impending implications in the clinics, success, limitations, and future prospective have also been discussed in this article.
Collapse
Affiliation(s)
- Naveen Kumar Singhal
- Indian Institute of Toxicology Research (Council of Scientific and Industrial Research), Mahatma Gandhi Marg, Post Box 80, Lucknow 226 001 UP, India
| | | | | | | | | |
Collapse
|
274
|
|
275
|
Pennisi G, Cornelius C, Cavallaro M, Salinaro AT, Cambria M, Pennisi M, Bella R, Milone P, Ventimiglia B, Migliore M, Di Renzo L, De Lorenzo A, Calabrese V. Redox regulation of cellular stress response in multiple sclerosis. Biochem Pharmacol 2011; 82:1490-9. [DOI: 10.1016/j.bcp.2011.07.092] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 07/20/2011] [Accepted: 07/22/2011] [Indexed: 12/13/2022]
|
276
|
Liu YY, Sparatore A, Del Soldato P, Bian JS. H2S releasing aspirin protects amyloid beta induced cell toxicity in BV-2 microglial cells. Neuroscience 2011; 193:80-8. [DOI: 10.1016/j.neuroscience.2011.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/28/2011] [Accepted: 07/09/2011] [Indexed: 01/11/2023]
|
277
|
Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011; 2011:326320. [PMID: 21629741 PMCID: PMC3100547 DOI: 10.4061/2011/326320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/02/2011] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R), septic shock, and neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical, Educational and Research Foundation, Prashanthi Nilayam 40, Kovai Thirunagar Coimbatore 641014, India
| | | | | | - Gregory M. Brown
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Daniel P. Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Avenida Alicia Moreau de Justo 1500, 4 Piso, 1107 Buenos Aires, Argentina
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|