251
|
Hernández I, Munné-Bosch S. Naringenin inhibits seed germination and seedling root growth through a salicylic acid-independent mechanism in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:24-28. [PMID: 23031844 DOI: 10.1016/j.plaphy.2012.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 09/04/2012] [Indexed: 05/27/2023]
Abstract
Flavonoids fulfill an enormous range of biological functions in plants. In seeds, these compounds play several roles; for instance proanthocyanidins protect them from moisture, pathogen attacks, mechanical stress, UV radiation, etc., and flavonols have been suggested to protect the embryo from oxidative stress. The present study aimed at determining the role of flavonoids in Arabidopsis thaliana (L.) seed germination, and the involvement of salicylic acid (SA) and auxin (indole-3-acetic acid), two phytohormones with the same biosynthetic origin as flavonoids, the shikimate pathway, in such a putative role. We show that naringenin, a flavanone, strongly inhibits the germination of A. thaliana seeds in a dose-dependent and SA-independent manner. Altered auxin levels do not affect seed germination in Arabidopsis, but impaired auxin transport does, although to a minor extent. Naringenin and N-1-naphthylphthalamic acid (NPA) impair auxin transport through the same mechanisms, so the inhibition of germination by naringenin might involve impaired auxin transport among other mechanisms. From the present study it is concluded that naringenin inhibits the germination of Arabidopsis seeds in a dose-dependent and SA-independent manner, and the results also suggest that such effects are exerted, at least to some extent, through impaired auxin transport, although additional mechanisms seem to operate as well.
Collapse
Affiliation(s)
- Iker Hernández
- Departament de Biologia Vegetal, Edifici Margalef, Facultat de Biologia, Universitat de Barcleona, Avda. Diagonal 643, Margalef Bldg, 08028 Barcelona, Spain.
| | | |
Collapse
|
252
|
Peng X, Hu Y, Tang X, Zhou P, Deng X, Wang H, Guo Z. Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. PLANTA 2012; 236:1485-98. [PMID: 22798060 DOI: 10.1007/s00425-012-1698-7] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Accepted: 06/18/2012] [Indexed: 05/20/2023]
Abstract
WRKY transcription factors are crucial regulatory components of plant responses to pathogen infection. In the present study, we report isolation and functional characterization of the pathogen-responsive rice WRKY30 gene, whose transcripts accumulate rapidly in response to salicylic acid (SA) and jasmonic acid (JA) treatment. Overexpression of WRKY30 in rice enhanced resistance to rice sheath blight fungus Rhizoctonia solani and blast fungus Magnaporthe grisea. The enhanced resistance in the transgenic lines overexpressing WRKY30 was associated with activated expression of JA synthesis-related genes LOX, AOS2 and pathogenesis-related (PR)3 and PR10, and increased endogenous JA accumulation under the challenge of fungal pathogens. WRKY30 was nuclear-localized and had transcriptional activation ability in yeast cells, supporting that it functions as a transcription factor. Together, our findings indicate that JA plays a crucial role in the WRKY30-mediated defense responses to fungal pathogens, and that the rice WRKY30 seems promising as an important candidate gene to improve disease resistance in rice.
Collapse
Affiliation(s)
- Xixu Peng
- School of Life Sciences, Hunan University of Science and Technology, Taoyuan Rd., Xiangtan, 411201, Hunan, China
| | | | | | | | | | | | | |
Collapse
|
253
|
Bahuguna RN, Joshi R, Shukla A, Pandey M, Kumar J. Thiamine primed defense provides reliable alternative to systemic fungicide carbendazim against sheath blight disease in rice (Oryza sativa L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 57:159-67. [PMID: 22705591 DOI: 10.1016/j.plaphy.2012.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 05/03/2012] [Indexed: 05/06/2023]
Abstract
A novel pathogen defense strategy by thiamine priming was evaluated for its efficacy against sheath blight pathogen, Rhizoctonia solani AG-1A, of rice and compared with that of systemic fungicide, carbendazim (BCM). Seeds of semidwarf, high yielding, basmati rice variety Vasumati were treated with thiamine (50 mM) and BCM (4 mM). The pot cultured plants were challenge inoculated with R. solani after 40 days of sowing and effect of thiamine and BCM on rice growth and yield traits was examined. Higher hydrogen peroxide content, total phenolics accumulation, phenylalanine ammonia lyase (PAL) activity and superoxide dismutase (SOD) activity under thiamine treatment displayed elevated level of systemic resistance, which was further augmented under challenging pathogen infection. High transcript level of phenylalanine ammonia lyase (PAL) and manganese superoxide dismutase (MnSOD) validated mode of thiamine primed defense. Though minimum disease severity was observed under BCM treatment, thiamine produced comparable results, with 18.12 per cent lower efficacy. Along with fortifying defense components and minor influence on photosynthetic pigments and nitrate reductase (NR) activity, thiamine treatment significantly reduced pathogen-induced loss in photosynthesis, stomatal conductance, chlorophyll fluorescence, NR activity and NR transcript level. Physiological traits affected under pathogen infection were found signatory for characterizing plant's response under disease and were detectable at early stage of infection. These findings provide a novel paradigm for developing alternative, environmentally safe strategies to control plant diseases.
Collapse
Affiliation(s)
- Rajeev Nayan Bahuguna
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, India.
| | | | | | | | | |
Collapse
|
254
|
Shimakawa A, Shiraya T, Ishizuka Y, Wada KC, Mitsui T, Takeno K. Salicylic acid is involved in the regulation of starvation stress-induced flowering in Lemna paucicostata. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:987-91. [PMID: 22429781 DOI: 10.1016/j.jplph.2012.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 02/24/2012] [Accepted: 02/25/2012] [Indexed: 05/08/2023]
Abstract
The short-day plant, Lemna paucicostata (synonym Lemna aequinoctialis), was induced to flower when cultured in tap water without any additional nutrition under non-inductive long-day conditions. Flowering occurred in all three of the tested strains, and strain 6746 was the most sensitive to the starvation stress conditions. For each strain, the stress-induced flowering response was weaker than that induced by short-day treatment, and the stress-induced flowering of strain 6746 was completely inhibited by aminooxyacetic acid and l-2-aminooxy-3-phenylpropionic acid, which are inhibitors of phenylalanine ammonia-lyase. Significantly higher amounts of endogenous salicylic acid (SA) were detected in the fronds that flowered under the poor-nutrition conditions than in the vegetative fronds cultured under nutrition conditions, and exogenously applied SA promoted the flowering response. The results indicate that endogenous SA plays a role in the regulation of stress-induced flowering.
Collapse
Affiliation(s)
- Aya Shimakawa
- Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan
| | | | | | | | | | | |
Collapse
|
255
|
Tzin V, Malitsky S, Zvi MMB, Bedair M, Sumner L, Aharoni A, Galili G. Expression of a bacterial feedback-insensitive 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of the shikimate pathway in Arabidopsis elucidates potential metabolic bottlenecks between primary and secondary metabolism. THE NEW PHYTOLOGIST 2012; 194:430-439. [PMID: 22296303 DOI: 10.1111/j.1469-8137.2012.04052.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The shikimate pathway of plants mediates the conversion of primary carbon metabolites via chorismate into the three aromatic amino acids and to numerous secondary metabolites derived from them. However, the regulation of the shikimate pathway is still far from being understood. We hypothesized that 3-deoxy-d-arabino-heptulosonate 7-phosphate synthase (DAHPS) is a key enzyme regulating flux through the shikimate pathway. To test this hypothesis, we expressed a mutant bacterial AroG gene encoding a feedback-insensitive DAHPS in transgenic Arabidopsis plants. The plants were subjected to detailed analysis of primary metabolism, using GC-MS, as well as secondary metabolism, using LC-MS. Our results exposed a major effect of bacterial AroG expression on the levels of shikimate intermediate metabolites, phenylalanine, tryptophan and broad classes of secondary metabolite, such as phenylpropanoids, glucosinolates, auxin and other hormone conjugates. We propose that DAHPS is a key regulatory enzyme of the shikimate pathway. Moreover, our results shed light on additional potential metabolic bottlenecks bridging plant primary and secondary metabolism.
Collapse
Affiliation(s)
- Vered Tzin
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Malitsky
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michal Moyal Ben Zvi
- The Institute of Plant Sciences and Genetics in Agriculture, Faculty of Agriculture, The Hebrew University of Jerusalem, PO Box 12, Rehovot 76100, Israel
| | - Mohamed Bedair
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Lloyd Sumner
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | - Asaph Aharoni
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gad Galili
- Department of Plant Sciences, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
256
|
Pastor V, Vicent C, Cerezo M, Mauch-Mani B, Dean J, Flors V. Detection, characterization and quantification of salicylic acid conjugates in plant extracts by ESI tandem mass spectrometric techniques. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 53:19-26. [PMID: 22285411 DOI: 10.1016/j.plaphy.2012.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/03/2012] [Indexed: 05/07/2023]
Abstract
An approach for the detection and characterization of SA derivatives in plant samples is presented based on liquid chromatography coupled to electrospray ionization (ESI) tandem mass spectrometric techniques. Precursor ion scan methods using an ESI triple quadrupole spectrometer for samples from plants challenged with the virulent Pseudomonas syringae pv tomato DC3000 allowed us to detect two potential SA derivatives. The criterion used to consider a potential SA derivative is based on the detection of analytes in the precursor ion scan chromatogram upon selecting m/z 137 and m/z 93 that correspond to the salicylate and its main product ion, respectively. Product ion spectra of the newly-detected analytes as well as accurate m/z determinations using an ESI Q-time-of-flight instrument were registered as means of characterization and strongly suggest that glucosylated forms of SA at the carboxylic and at the phenol functional groups are present in plant samples. The specific synthesis and subsequent chromatography of salicylic glucosyl ester (SGE) and glucosyl salicylate (SAG) standards confirmed the chemical identity of both peaks that were obtained applying different tandem mass spectrometric techniques and accurate m/z determinations. A multiple reaction monitoring method has been developed and applied to plant samples. The advantages of this LC-ESI-MS/MS methods with respect to the traditional analysis of glucosyl conjugates are also discussed. Preliminary results revealed that SA and the glucosyl conjugates are accumulated in Arabidopsis thaliana in a time dependent manner, accordingly to the up-regulation of SA-dependent defenses following P. syringae infection. This technique applied to plant hormones or fragment ions may be useful to obtain chemical family members of plant metabolites and help identify their contribution in the signaling of plant defenses.
Collapse
Affiliation(s)
- Victoria Pastor
- Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Department CAMN, Universitat Jaume I, Avd Vicente Sos Baynat, Castellón 12071, Spain
| | | | | | | | | | | |
Collapse
|
257
|
Salicylic acid mediates the reduced growth of lignin down-regulated plants. Proc Natl Acad Sci U S A 2011; 108:20814-9. [PMID: 22123972 DOI: 10.1073/pnas.1117873108] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Down-regulation of the enzyme hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT) in thale cress (Arabidopsis thaliana) and alfalfa (Medicago sativa) leads to strongly reduced lignin levels, reduced recalcitrance of cell walls to sugar release, but severe stunting of the plants. Levels of the stress hormone salicylic acid (SA) are inversely proportional to lignin levels and growth in a series of transgenic alfalfa plants in which lignin biosynthesis has been perturbed at different biosynthetic steps. Reduction of SA levels by genetically blocking its formation or causing its removal restores growth in HCT-down-regulated Arabidopsis, although the plants maintain reduced lignin levels. SA-mediated growth inhibition may occur via interference with gibberellic acid signaling or responsiveness. Our data place SA as a central component in growth signaling pathways that either sense flux into the monolignol pathway or respond to secondary cell-wall integrity, and indicate that it is possible to engineer plants with highly reduced cell-wall recalcitrance without negatively impacting growth.
Collapse
|
258
|
War AR, Paulraj MG, War MY, Ignacimuthu S. Role of salicylic acid in induction of plant defense system in chickpea (Cicer arietinum L.). PLANT SIGNALING & BEHAVIOR 2011; 6:1787-92. [PMID: 22057329 PMCID: PMC3329353 DOI: 10.4161/psb.6.11.17685] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Salicylic acid (SA), a plant hormone plays an important role in induction of plant defense against a variety of biotic and abiotic stresses through morphological, physiological and biochemical mechanisms. A series of experiments were carried out to evaluate the biochemical response of the chickpea (Cicer arietinum L.) plants to a range of SA concentrations (1, 1.5, and 2 mM). Water treated plants were maintained as control. Activities of peroxidase (POD) and polyphenol oxidase (PPO) were evaluated and amounts of total phenols, hydrogen peroxide (H2O2), and proteins were calculated after 96 h of treatment. Plants responded very quickly to SA at 1.5 mM and showed higher induction of POD and PPO activities, besides the higher accumulation of phenols, H2O2 and proteins. Plants treated with SA at 2 mM showed phytotoxic symptoms. These results suggest that SA at 1.5 mM is safe to these plants and could be utilized for the induction of plant defense.
Collapse
Affiliation(s)
- Abdul Rashid War
- Entomology Research Institute, Loyola College; Chennai, Tamilnadu, India
| | | | | | - Savarimuthu Ignacimuthu
- Entomology Research Institute, Loyola College; Chennai, Tamilnadu, India
- Correspondence to: Savarimuthu Ignacimuthu,
| |
Collapse
|
259
|
Hao S, Zhao T, Xia X, Yin W. Genome-wide comparison of two poplar genotypes with different growth rates. PLANT MOLECULAR BIOLOGY 2011; 76:575-91. [PMID: 21614644 DOI: 10.1007/s11103-011-9790-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 05/07/2011] [Indexed: 05/26/2023]
Abstract
The ecologically dominant and economically important genus Populus, with its available full genome sequence, has become an ideal woody species for genomic study. Rapid growth is one of the primary advantageous features of Populus, and extensive physiological research has been carried out on the growth of Populus throughout the growing period among different clones. However, the molecular information related to the mechanisms of rapid growth is rather limited. In this study, an Affymetrix poplar genome array was employed to analyze the transcriptomic changes from the pre-growth to the fast-growth phase in two poplar clones (P.deltoides × P.nigra, DN2, and P.nigra × (P.deltoides × P. nigra), NE19) with different growth rates. A total of 1,695 differently expressed genes were identified between two time points in NE19 and DN2 (two-way ANOVA, P < 0.01 and fold change ≥2). Except for genes changing in common for both clones, many transcripts were regulated specifically in one genotype. After functional analysis of the differentially expressed genes, distinct biological strategies seemed to be utilized by the two genotypes to accommodate their fast-growth phase. The faster-growing clone NE19, which has a higher photosynthetic rate and larger total leaf area, emphasized growth-related primary metabolism. However, the slower-growing DN2 tended to have more up-regulated genes involved in defense-related secondary metabolism and stress response. Emphasis of such divergent biological processes in two clones may explain their significant growth differences during the fast-growth phase.
Collapse
Affiliation(s)
- Shuang Hao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35, Tsinghua East Road, Beijing, 100083, People's Republic of China
| | | | | | | |
Collapse
|
260
|
Mulaudzi T, Ludidi N, Ruzvidzo O, Morse M, Hendricks N, Iwuoha E, Gehring C. Identification of a novel Arabidopsis thaliana nitric oxide-binding molecule with guanylate cyclase activity in vitro. FEBS Lett 2011; 585:2693-7. [PMID: 21820435 DOI: 10.1016/j.febslet.2011.07.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 12/27/2022]
Abstract
While there is evidence of nitric oxide (NO)-dependent signalling via the second messenger cyclic guanosine 3',5'-monophosphate (cGMP) in plants, guanylate cyclases (GCs), enzymes that catalyse the formation of cGMP from guanosine 5'-triphosphate (GTP) have until recently remained elusive and none of the candidates identified to-date are NO-dependent. Using both a GC and heme-binding domain specific (H-NOX) search motif, we have identified an Arabidopsis flavin monooxygenase (At1g62580) and shown electrochemically that it binds NO, has a higher affinity for NO than for O(2) and that this molecule can generate cGMP from GTP in vitro in an NO-dependent manner.
Collapse
Affiliation(s)
- Takalani Mulaudzi
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | | | | | | | | | | | | |
Collapse
|
261
|
Wang GF, Seabolt S, Hamdoun S, Ng G, Park J, Lu H. Multiple roles of WIN3 in regulating disease resistance, cell death, and flowering time in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:1508-19. [PMID: 21543726 PMCID: PMC3135961 DOI: 10.1104/pp.111.176776] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 04/26/2011] [Indexed: 05/18/2023]
Abstract
The salicylic acid (SA) regulatory gene HOPW1-1-INTERACTING3 (WIN3) was previously shown to confer resistance to the biotrophic pathogen Pseudomonas syringae. Here, we report that WIN3 controls broad-spectrum disease resistance to the necrotrophic pathogen Botrytis cinerea and contributes to basal defense induced by flg22, a 22-amino acid peptide derived from the conserved region of bacterial flagellin proteins. Genetic analysis indicates that WIN3 acts additively with several known SA regulators, including PHYTOALEXIN DEFICIENT4, NONEXPRESSOR OF PR GENES1 (NPR1), and SA INDUCTION-DEFICIENT2, in regulating SA accumulation, cell death, and/or disease resistance in the Arabidopsis (Arabidopsis thaliana) mutant acd6-1. Interestingly, expression of WIN3 is also dependent on these SA regulators and can be activated by cell death, suggesting that WIN3-mediated signaling is interconnected with those derived from other SA regulators and cell death. Surprisingly, we found that WIN3 and NPR1 synergistically affect flowering time via influencing the expression of flowering regulatory genes FLOWERING LOCUS C and FLOWERING LOCUS T. Taken together, our data reveal that WIN3 represents a novel node in the SA signaling networks to regulate plant defense and flowering time. They also highlight that plant innate immunity and development are closely connected processes, precise regulation of which should be important for the fitness of plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Hua Lu
- Corresponding author; e-mail
| |
Collapse
|
262
|
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3321-38. [PMID: 21357767 DOI: 10.1093/jxb/err031] [Citation(s) in RCA: 597] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, 04510, México, DF, México
| | | |
Collapse
|
263
|
Abstract
The small phenolic compound salicylic acid (SA) plays an important regulatory role in multiple physiological processes including plant immune response. Significant progress has been made during the past two decades in understanding the SA-mediated defense signaling network. Characterization of a number of genes functioning in SA biosynthesis, conjugation, accumulation, signaling, and crosstalk with other hormones such as jasmonic acid, ethylene, abscisic acid, auxin, gibberellic acid, cytokinin, brassinosteroid, and peptide hormones has sketched the finely tuned immune response network. Full understanding of the mechanism of plant immunity will need to take advantage of fast developing genomics tools and bioinformatics techniques. However, elucidating genetic components involved in these pathways by conventional genetics, biochemistry, and molecular biology approaches will continue to be a major task of the community. High-throughput method for SA quantification holds the potential for isolating additional mutants related to SA-mediated defense signaling.
Collapse
Affiliation(s)
- Chuanfu An
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
264
|
Lee Y, Chen F, Gallego-Giraldo L, Dixon RA, Voit EO. Integrative analysis of transgenic alfalfa (Medicago sativa L.) suggests new metabolic control mechanisms for monolignol biosynthesis. PLoS Comput Biol 2011; 7:e1002047. [PMID: 21625579 PMCID: PMC3098223 DOI: 10.1371/journal.pcbi.1002047] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 03/25/2011] [Indexed: 11/18/2022] Open
Abstract
The entanglement of lignin polymers with cellulose and hemicellulose in plant cell walls is a major biological barrier to the economically viable production of biofuels from woody biomass. Recent efforts of reducing this recalcitrance with transgenic techniques have been showing promise for ameliorating or even obviating the need for costly pretreatments that are otherwise required to remove lignin from cellulose and hemicelluloses. At the same time, genetic manipulations of lignin biosynthetic enzymes have sometimes yielded unforeseen consequences on lignin composition, thus raising the question of whether the current understanding of the pathway is indeed correct. To address this question systemically, we developed and applied a novel modeling approach that, instead of analyzing the pathway within a single target context, permits a comprehensive, simultaneous investigation of different datasets in wild type and transgenic plants. Specifically, the proposed approach combines static flux-based analysis with a Monte Carlo simulation in which very many randomly chosen sets of parameter values are evaluated against kinetic models of lignin biosynthesis in different stem internodes of wild type and lignin-modified alfalfa plants. In addition to four new postulates that address the reversibility of some key reactions, the modeling effort led to two novel postulates regarding the control of the lignin biosynthetic pathway. The first posits functionally independent pathways toward the synthesis of different lignin monomers, while the second postulate proposes a novel feedforward regulatory mechanism. Subsequent laboratory experiments have identified the signaling molecule salicylic acid as a potential mediator of the postulated control mechanism. Overall, the results demonstrate that mathematical modeling can be a valuable complement to conventional transgenic approaches and that it can provide biological insights that are otherwise difficult to obtain. Cellulose-based biofuels presently offer the most environmentally attractive and technologically promising alternative to fossil fuels. To be viable, biofuels must be derived from non-food crops, such as grasses, wood, bark, and plant residues. Techniques for releasing the energy stored in these renewable materials must first untangle a very recalcitrant scaffold of interlinking molecules inside the plant cell walls, which is very costly. Much of the recalcitrance is due to the natural polymer lignin, which hardens the cell walls and is composed of three different building blocks, called monolignols. Modern transgenic techniques have yielded plant lines whose cell walls are easier to break down, but some of these modified plants have exhibited unexplained and undesired features. Here, we present new computational methods for analyzing monolignol biosynthesis in unprecedented detail. The analysis simultaneously accounts for lignin biosynthesis in various transgenic lines and different developmental stages and yields six novel, testable postulates regarding the metabolic control of the pathway. The results suggest new, targeted experiments towards a better understanding of monolignol biosynthesis and issues of recalcitrance reduction. More generally, the results highlight the genuine benefits of using computational methods as companions and complements to experimental studies.
Collapse
Affiliation(s)
- Yun Lee
- Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
| | - Fang Chen
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Lina Gallego-Giraldo
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Richard A. Dixon
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, Oklahoma, United States of America
| | - Eberhard O. Voit
- Integrative BioSystems Institute and The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, United States of America
- BioEnergy Sciences Center (BESC), Oak Ridge, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
265
|
Ibrahim HMM, Hosseini P, Alkharouf NW, Hussein EHA, Gamal El-Din AEKY, Aly MAM, Matthews BF. Analysis of gene expression in soybean (Glycine max) roots in response to the root knot nematode Meloidogyne incognita using microarrays and KEGG pathways. BMC Genomics 2011; 12:220. [PMID: 21569240 PMCID: PMC3225080 DOI: 10.1186/1471-2164-12-220] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 05/10/2011] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Root-knot nematodes are sedentary endoparasites that can infect more than 3000 plant species. Root-knot nematodes cause an estimated $100 billion annual loss worldwide. For successful establishment of the root-knot nematode in its host plant, it causes dramatic morphological and physiological changes in plant cells. The expression of some plant genes is altered by the nematode as it establishes its feeding site. RESULTS We examined the expression of soybean (Glycine max) genes in galls formed in roots by the root-knot nematode, Meloidogyne incognita, 12 days and 10 weeks after infection to understand the effects of infection of roots by M. incognita. Gene expression was monitored using the Affymetrix Soybean GeneChip containing 37,500 G. max probe sets. Gene expression patterns were integrated with biochemical pathways from the Kyoto Encyclopedia of Genes and Genomes using PAICE software. Genes encoding enzymes involved in carbohydrate and cell wall metabolism, cell cycle control and plant defense were altered. CONCLUSIONS A number of different soybean genes were identified that were differentially expressed which provided insights into the interaction between M. incognita and soybean and into the formation and maintenance of giant cells. Some of these genes may be candidates for broadening plants resistance to root-knot nematode through over-expression or silencing and require further examination.
Collapse
Affiliation(s)
- Heba MM Ibrahim
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Parsa Hosseini
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA
| | - Nadim W Alkharouf
- Department of Computer and Information Sciences, Towson University, Towson, MD 21252, USA
| | | | | | - Mohammed AM Aly
- Department of Arid land Agriculture, College of Food and Agriculture, UAE University, UAE
| | - Benjamin F Matthews
- United States Department of Agriculture, Plant Sciences Institute, Beltsville, MD 20705, USA
| |
Collapse
|
266
|
Dempsey DA, Vlot AC, Wildermuth MC, Klessig DF. Salicylic Acid biosynthesis and metabolism. THE ARABIDOPSIS BOOK 2011; 9:e0156. [PMID: 22303280 PMCID: PMC3268552 DOI: 10.1199/tab.0156] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) has been shown to regulate various aspects of growth and development; it also serves as a critical signal for activating disease resistance in Arabidopsis thaliana and other plant species. This review surveys the mechanisms involved in the biosynthesis and metabolism of this critical plant hormone. While a complete biosynthetic route has yet to be established, stressed Arabidopsis appear to synthesize SA primarily via an isochorismate-utilizing pathway in the chloroplast. A distinct pathway utilizing phenylalanine as the substrate also may contribute to SA accumulation, although to a much lesser extent. Once synthesized, free SA levels can be regulated by a variety of chemical modifications. Many of these modifications inactivate SA; however, some confer novel properties that may aid in long distance SA transport or the activation of stress responses complementary to those induced by free SA. In addition, a number of factors that directly or indirectly regulate the expression of SA biosynthetic genes or that influence the rate of SA catabolism have been identified. An integrated model, encompassing current knowledge of SA metabolism in Arabidopsis, as well as the influence other plant hormones exert on SA metabolism, is presented.
Collapse
Affiliation(s)
| | | | - Mary C. Wildermuth
- Department of Plant and Microbial Biology, 221 Koshland Hall, University of California, Berkeley, California 94720-3102
- Address correspondence to and
| | - Daniel F. Klessig
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
- Address correspondence to and
| |
Collapse
|
267
|
Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou YH, Yu JQ, Chen Z. Functional analysis of the Arabidopsis PAL gene family in plant growth, development, and response to environmental stress. PLANT PHYSIOLOGY 2010; 153:1526-38. [PMID: 20566705 PMCID: PMC2923909 DOI: 10.1104/pp.110.157370] [Citation(s) in RCA: 496] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Accepted: 06/18/2010] [Indexed: 05/18/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) catalyzes the first step of the phenylpropanoid pathway, which produces precursors to a variety of important secondary metabolites. Arabidopsis (Arabidopsis thaliana) contains four PAL genes (PAL1-PAL4), but there has been no genetic analysis to assess the biological functions of the entire gene family. Here, we report the generation and analysis of combined mutations for the four Arabidopsis PAL genes. Contrary to a previous report, we found that three independent pal1 pal2 double mutants were fertile and generated yellow seeds due to the lack of condensed tannin pigments in the seed coat. The pal1 pal2 double mutants were also deficient in anthocyanin pigments in various plant tissues, which accumulate in wild-type plants under stress conditions. Thus, PAL1 and PAL2 have a redundant role in flavonoid biosynthesis. Furthermore, the pal1 pal2 double mutants were more sensitive to ultraviolet-B light but more tolerant to drought than wild-type plants. We have also generated two independent pal1 pal2 pal3 pal4 quadruple knockout mutants, which are stunted and sterile. The quadruple knockout mutants still contained about 10% of the wild-type PAL activity, which might result from one or more leaky pal mutant genes or from other unknown PAL genes. The quadruple mutants also accumulated substantially reduced levels of salicylic acid and displayed increased susceptibility to a virulent strain of the bacterial pathogen Pseudomonas syringae. These results provide further evidence for both distinct and overlapping roles of the Arabidopsis PAL genes in plant growth, development, and responses to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907–2054 (J.H., Z.L., B.F., Z.C.); Department of Horticulture, Zhejiang University, Hangzhou 310029, People's Republic of China (M.G., K.S., Y.-H.Z., J.-Q.Y.)
| |
Collapse
|