3251
|
Pavlova A, Gumbart JC. Parametrization of macrolide antibiotics using the force field toolkit. J Comput Chem 2015; 36:2052-63. [PMID: 26280362 DOI: 10.1002/jcc.24043] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/25/2015] [Accepted: 07/03/2015] [Indexed: 01/09/2023]
Abstract
Macrolides are an important class of antibiotics that target the bacterial ribosome. Computer simulations of macrolides are limited as specific force field parameters have not been previously developed for them. Here, we determine CHARMM-compatible force field parameters for erythromycin, azithromycin, and telithromycin, using the force field toolkit (ffTK) plugin in VMD. Because of their large size, novel approaches for parametrizing them had to be developed. Two methods for determining partial atomic charges, from interactions with TIP3P water and from the electrostatic potential, as well as several approaches for fitting the dihedral parameters were tested. The performance of the different parameter sets was evaluated by molecular dynamics simulations of the macrolides in ribosome, with a distinct improvement in maintenance of key interactions observed after refinement of the initial parameters. Based on the results of the macrolide tests, recommended procedures for parametrizing very large molecules using ffTK are given.
Collapse
Affiliation(s)
- Anna Pavlova
- School of Physics and School of Chemistry, Georgia Institute of Technology, Atlanta, 30332, Georgia
| | - James C Gumbart
- School of Physics and School of Chemistry, Georgia Institute of Technology, Atlanta, 30332, Georgia
| |
Collapse
|
3252
|
A Combined Molecular Docking/Dynamics Approach to Probe the Binding Mode of Cancer Drugs with Cytochrome P450 3A4. Molecules 2015; 20:14915-35. [PMID: 26287147 PMCID: PMC6332164 DOI: 10.3390/molecules200814915] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/11/2015] [Accepted: 08/12/2015] [Indexed: 12/23/2022] Open
Abstract
Cytarabine, daunorubicin, doxorubicin and vincristine are clinically used for combinatorial therapies of cancers in different combinations. However, the knowledge about the interaction of these drugs with the metabolizing enzyme cytochrome P450 is limited. Therefore, we utilized computational methods to predict and assess the drug-binding modes. In this study, we performed docking, MD simulations and free energy landscape analysis to understand the drug-enzyme interactions, protein domain motions and the most populated free energy minimum conformations of the docked protein-drug complexes, respectively. The outcome of docking and MD simulations predicted the productive, as well as the non-productive binding modes of the selected drugs. Based on these interaction studies, we observed that S119, R212 and R372 are the major drug-binding residues in CYP3A4. The molecular mechanics Poisson–Boltzmann surface area analysis revealed the dominance of hydrophobic forces in the CYP3A4-drug association. Further analyses predicted the residues that may contain favorable drug-specific interactions. The probable binding modes of the cancer drugs from this study may extend the knowledge of the protein-drug interaction and pave the way to design analogs with reduced toxicity. In addition, they also provide valuable insights into the metabolism of the cancer drugs.
Collapse
|
3253
|
Mahdavi S, Kuyucak S. Mechanism of Ion Permeation in Mammalian Voltage-Gated Sodium Channels. PLoS One 2015; 10:e0133000. [PMID: 26274802 PMCID: PMC4537306 DOI: 10.1371/journal.pone.0133000] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Recent determination of the crystal structures of bacterial voltage-gated sodium (NaV) channels have raised hopes that modeling of the mammalian counterparts could soon be achieved. However, there are substantial differences between the pore domains of the bacterial and mammalian NaV channels, which necessitates careful validation of mammalian homology models constructed from the bacterial NaV structures. Such a validated homology model for the NaV1.4 channel was constructed recently using the extensive mutagenesis data available for binding of μ-conotoxins. Here we use this NaV1.4 model to study the ion permeation mechanism in mammalian NaV channels. Linking of the DEKA residues in the selectivity filter with residues in the neighboring domains is found to be important for keeping the permeation pathway open. Molecular dynamics simulations and potential of mean force calculations reveal that there is a binding site for a Na+ ion just inside the DEKA locus, and 1-2 Na+ ions can occupy the vestibule near the EEDD ring. These sites are separated by a low free energy barrier, suggesting that inward conduction occurs when a Na+ ion in the vestibule goes over the free energy barrier and pushes the Na+ ion in the filter to the intracellular cavity, consistent with the classical knock-on mechanism. The NaV1.4 model also provides a good description of the observed Na+/K+ selectivity.
Collapse
Affiliation(s)
- Somayeh Mahdavi
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, New South Wales 2006, Australia
- * E-mail:
| |
Collapse
|
3254
|
Di Marino D, Bonome EL, Tramontano A, Chinappi M. All-Atom Molecular Dynamics Simulation of Protein Translocation through an α-Hemolysin Nanopore. J Phys Chem Lett 2015; 6:2963-2968. [PMID: 26267189 DOI: 10.1021/acs.jpclett.5b01077] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanopore sensing is attracting the attention of a large and varied scientific community. One of the main issues in nanopore sensing is how to associate the measured current signals to specific features of the molecule under investigation. This is particularly relevant when the translocating molecule is a protein and the pore is sufficiently narrow to necessarily involve unfolding of the translocating protein. Recent experimental results characterized the cotranslocational unfolding of Thioredoxin (Trx) passing through an α-hemolisin pore, providing evidence for the existence of a multistep process. In this study we report the results of all-atom molecular dynamics simulations of the same system. Our data indicate that Trx translocation involves two main barriers. The first one is an unfolding barrier associated with a translocation intermediate where the N-terminal region of Trx is stuck at the pore entrance in a conformation that strongly resembles the native one. After the abrupt unfolding of the N-terminal region, the Trx enters the α-hemolisin vestibule. During this stage, the constriction is occupied not only by the translocating residue but also by a hairpin-like structure forming a tangle in the constriction. The second barrier is associated with the disentangling of this region.
Collapse
Affiliation(s)
- Daniele Di Marino
- †Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Rome, Italy
| | - Emma Letizia Bonome
- ‡Dipartimento di Ingegneria Meccanica e Aerospaziale, Sapienza Università di Roma, Via Eudossiana 18, 00184 Rome, Italy
| | - Anna Tramontano
- †Dipartimento di Fisica, Sapienza Università di Roma, P.le A. Moro, 5, 00185 Rome, Italy
- §Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Viale Regina Elena 291, 00161 Rome, Italy
| | - Mauro Chinappi
- ∥Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Via Regina Elena 291, 00161, Roma, Italia
| |
Collapse
|
3255
|
Huang W, Manglik A, Venkatakrishnan AJ, Laeremans T, Feinberg EN, Sanborn AL, Kato HE, Livingston KE, Thorsen TS, Kling RC, Granier S, Gmeiner P, Husbands SM, Traynor JR, Weis WI, Steyaert J, Dror RO, Kobilka BK. Structural insights into µ-opioid receptor activation. Nature 2015; 524:315-21. [PMID: 26245379 PMCID: PMC4639397 DOI: 10.1038/nature14886] [Citation(s) in RCA: 706] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 06/30/2015] [Indexed: 12/18/2022]
Abstract
Activation of the μ-opioid receptor (μOR) is responsible for the efficacy of the most effective analgesics. To understand the structural basis for μOR activation, we obtained a 2.1 Å X-ray crystal structure of the μOR bound to the morphinan agonist BU72 and stabilized by a G protein-mimetic camelid-antibody fragment. The BU72-stabilized changes in the μOR binding pocket are subtle and differ from those observed for agonist-bound structures of the β2 adrenergic receptor (β2AR) and the M2 muscarinic receptor (M2R). Comparison with active β2AR reveals a common rearrangement in the packing of three conserved amino acids in the core of the μOR, and molecular dynamics simulations illustrate how the ligand-binding pocket is conformationally linked to this conserved triad. Additionally, an extensive polar network between the ligand-binding pocket and the cytoplasmic domains appears to play a similar role in signal propagation for all three GPCRs.
Collapse
Affiliation(s)
- Weijiao Huang
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Aashish Manglik
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - A J Venkatakrishnan
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA
| | - Toon Laeremans
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Evan N Feinberg
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA
| | - Adrian L Sanborn
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA
| | - Hideaki E Kato
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Kathryn E Livingston
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Thor S Thorsen
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| | - Ralf C Kling
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, CNRS UMR-5203 INSERM U1191, University of Montpellier, F-34000 Montpellier, France
| | - Peter Gmeiner
- Department of Chemistry and Pharmacy, Friedrich Alexander University, Schuhstrasse 19, 91052 Erlangen, Germany
| | - Stephen M Husbands
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - John R Traynor
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - William I Weis
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, 299 Campus Drive, Stanford, California 94305, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.,Structural Biology Research Center, VIB, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Ron O Dror
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.,Department of Computer Science, Stanford University, 318 Campus Drive, Stanford, California 94305, USA.,Institute for Computational and Mathematical Engineering, Stanford University, 475 Via Ortega, Stanford, California 94305, USA
| | - Brian K Kobilka
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
3256
|
Yin J, Fenley AT, Henriksen NM, Gilson MK. Toward Improved Force-Field Accuracy through Sensitivity Analysis of Host-Guest Binding Thermodynamics. J Phys Chem B 2015; 119:10145-55. [PMID: 26181208 DOI: 10.1021/acs.jpcb.5b04262] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Improving the capability of atomistic computer models to predict the thermodynamics of noncovalent binding is critical for successful structure-based drug design, and the accuracy of such calculations remains limited by nonoptimal force field parameters. Ideally, one would incorporate protein-ligand affinity data into force field parametrization, but this would be inefficient and costly. We now demonstrate that sensitivity analysis can be used to efficiently tune Lennard-Jones parameters of aqueous host-guest systems for increasingly accurate calculations of binding enthalpy. These results highlight the promise of a comprehensive use of calorimetric host-guest binding data, along with existing validation data sets, to improve force field parameters for the simulation of noncovalent binding, with the ultimate goal of making protein-ligand modeling more accurate and hence speeding drug discovery.
Collapse
Affiliation(s)
- Jian Yin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, United States
| | - Andrew T Fenley
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, United States
| | - Niel M Henriksen
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, United States
| | - Michael K Gilson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0736, United States
| |
Collapse
|
3257
|
Rao CMMP, Yejella RP, Rehman RSA, Basha SH. Molecular docking based screening of novel designed chalcone series of compounds for their anti-cancer activity targeting EGFR kinase domain. Bioinformation 2015; 11:322-9. [PMID: 26339147 PMCID: PMC4546990 DOI: 10.6026/97320630011322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 06/14/2015] [Accepted: 06/15/2015] [Indexed: 01/19/2023] Open
Abstract
Epidermal growth factor receptors (EGFR) are critical for the growth of many tumors and expressed at high levels in about one third of epithelial cancers. Hence, blockade of the binding sites for EGFR has been hypothesized as an effective anti-cancer therapy. Chalcone derivative compounds have been shown to be highly effective anti-cancer agents, however there are still so many novel derivatives possible, one of which might get us the best targeted EGFR inhibitor. In this effort directed towards the discovery of novel, potent anti-tumor agents for the treatment of cancer, in the present study a library of novel chalcone series of compounds has been designed and evaluated for their anti-cancer activity targeting EGFR kinase domain using various computational approaches. Among the twenty five novel designed chalcone series of compounds, all of them have found to be successfully docking inside the active binding domain of EGFR receptor target with a binding energy in a range of -6.10 to -9.25 Kcal/mol with predicted IC50 value range of 33.50 micor molar to 164.66 nano molar respectively. On the other hand, calculated 2DQSAR molecular descriptor properties of the compounds showed promising ADME parameters and found to be well in compliance with Lipinski׳s rule of five. Among all the twenty five compounds tested, compound 21 ((2E)-3-(anthracen-9-yl)-1-phenylprop-2-2n-1- one) was found to be the best lead like molecule with a binding energy of -9.25 kcal/mol with predicted IC50 value of 164.66 nano molar. Conclusively, novel designed compound 21 of the present study have shown promising anti-cancer potential worth considering for further evaluations.
Collapse
Affiliation(s)
| | - Rajendra Prasad Yejella
- Department of Pharmaceutical Chemistry, University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, Andhra Pradesh-530003, Andhra Pradesh, India
| | - Rehman Shaik Abdul Rehman
- Department of Pharmaceutical Chemistry, Nirmala College of Pharmacy, Mangalagiri, Atmakur Rural, Andhra Pradesh 522503, Andhra Pradesh, India
| | - Syed Hussain Basha
- Innovative Informatica Technologies, Hyderabad – 500 049, Andhra Pradesh, India
| |
Collapse
|
3258
|
McDougle DR, Baylon JL, Meling DD, Kambalyal A, Grinkova YV, Hammernik J, Tajkhorshid E, Das A. Incorporation of charged residues in the CYP2J2 F-G loop disrupts CYP2J2-lipid bilayer interactions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2460-2470. [PMID: 26232558 DOI: 10.1016/j.bbamem.2015.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Revised: 07/24/2015] [Accepted: 07/28/2015] [Indexed: 12/19/2022]
Abstract
CYP2J2 epoxygenase is an extrahepatic, membrane bound cytochrome P450 (CYP) that is primarily found in the heart and mediates endogenous fatty acid metabolism. CYP2J2 interacts with membranes through an N-terminal anchor and various non-contiguous hydrophobic residues. The molecular details of the motifs that mediate membrane interactions are complex and not fully understood. To gain better insights of these complex protein-lipid interactions, we employed molecular dynamics (MD) simulations using a highly mobile membrane mimetic (HMMM) model that enabled multiple independent spontaneous membrane binding events to be captured. Simulations revealed that CYP2J2 engages with the membrane at the F-G loop through hydrophobic residues Trp-235, Ille-236, and Phe-239. To explore the role of these residues, three F-G loop mutants were modeled from the truncated CYP2J2 construct (Δ34) which included Δ34-I236D, Δ34-F239H and Δ34-I236D/F239H. Using the HMMM coordinates of CYP2J2, the simulations were extended to a full POPC membrane which showed a significant decrease in the depth of insertion for each of the F-G loop mutants. The CYP2J2 F-G loop mutants were expressed in E. coli and were shown to be localized to the cytosolic fraction at a greater percentage relative to construct Δ34. Notably, the functional data demonstrated that the double mutant, Δ34-I236D/F239H, maintained native-like enzymatic activity. The membrane insertion characteristics were examined by monitoring CYP2J2 Trp-quenching fluorescence spectroscopy upon binding nanodiscs containing pyrene phospholipids. Relative to the Δ34 construct, the F-G loop mutants exhibited lower Trp quenching and membrane insertion. Taken together, the results suggest that the mutants exhibit a different membrane topology in agreement with the MD simulations and provide important evidence towards the involvement of key residues in the F-G loop of CYP2J2.
Collapse
Affiliation(s)
- Daniel R McDougle
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Javier L Baylon
- Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Daryl D Meling
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Amogh Kambalyal
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Yelena V Grinkova
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Jared Hammernik
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Emad Tajkhorshid
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana IL 61801.,Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana IL 61801.,Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana IL 61801
| |
Collapse
|
3259
|
Abstract
Enantiomers share nearly identical physical properties but have different chiral geometries, making their identification and separation difficult. Here we show that when exposed to a rotating electric field, the left- and right-handed chiral molecules rotate with the field and act as microscopic propellers; moreover, owing to their opposite handedness, they propel along the axis of field rotation in opposite directions. We introduce a new molecular parameter called hydrodynamic chirality to characterize the coupling of rotational motion of a chiral molecule into its translational motion and quantify the direction and velocity of such motion. We demonstrate >80% enrichment level of counterpart enantiomers in solution without using chiral selectors or circularly polarized light. We expect our results to have an impact on multiple applications in drug discovery, analytical and chiral chemistry, including determination of absolute configuration, as well as in influencing the understanding of artificial and natural molecular systems where rotational motion of the molecules is involved.
Collapse
|
3260
|
Blanchard AE, Arcario MJ, Schulten K, Tajkhorshid E. A highly tilted membrane configuration for the prefusion state of synaptobrevin. Biophys J 2015; 107:2112-21. [PMID: 25418096 DOI: 10.1016/j.bpj.2014.09.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/07/2014] [Accepted: 09/10/2014] [Indexed: 10/24/2022] Open
Abstract
The SNARE complex plays a vital role in vesicle fusion arising during neuronal exocytosis. Key components in the regulation of SNARE complex formation, and ultimately fusion, are the transmembrane and linker regions of the vesicle-associated protein, synaptobrevin. However, the membrane-embedded structure of synaptobrevin in its prefusion state, which determines its interaction with other SNARE proteins during fusion, is largely unknown. This study reports all-atom molecular-dynamics simulations of the prefusion configuration of synaptobrevin in a lipid bilayer, aimed at characterizing the insertion depth and the orientation of the protein in the membrane, as well as the nature of the amino acids involved in determining these properties. By characterizing the structural properties of both wild-type and mutant synaptobrevin, the effects of C-terminal additions on tilt and insertion depth of membrane-embedded synaptobrevin are determined. The simulations suggest a robust, highly tilted state for membrane-embedded synaptobrevin with a helical connection between the transmembrane and linker regions, leading to an apparently new characterization of structural elements in prefusion synaptobrevin and providing a framework for interpreting past mutation experiments.
Collapse
Affiliation(s)
- Andrew E Blanchard
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Mark J Arcario
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Klaus Schulten
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Physics, Department of Biochemistry, College of Medicine and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
3261
|
Uusitalo JJ, Ingólfsson HI, Akhshi P, Tieleman DP, Marrink SJ. Martini Coarse-Grained Force Field: Extension to DNA. J Chem Theory Comput 2015; 11:3932-45. [PMID: 26574472 DOI: 10.1021/acs.jctc.5b00286] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We systematically parameterized a coarse-grained (CG) model for DNA that is compatible with the Martini force field. The model maps each nucleotide into six to seven CG beads and is parameterized following the Martini philosophy. The CG nonbonded interactions are based on partitioning of the nucleobases between polar and nonpolar solvents as well as base-base potential of mean force calculations. The bonded interactions are fit to single-stranded DNA (ssDNA) atomistic simulations and an elastic network is used to retain double-stranded DNA (dsDNA) and other specific DNA conformations. We present the implementation of the Martini DNA model and demonstrate the properties of individual bases, ssDNA as well as dsDNA, and DNA-protein complexes. The model opens up large-scale simulations of DNA interacting with a wide range of other (bio)molecules that are available within the Martini framework.
Collapse
Affiliation(s)
- Jaakko J Uusitalo
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Helgi I Ingólfsson
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Parisa Akhshi
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - D Peter Tieleman
- Department of Biological Sciences and Centre for Molecular Simulation, University of Calgary , 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
3262
|
Arcario MJ, Tajkhorshid E. Membrane-induced structural rearrangement and identification of a novel membrane anchor in talin F2F3. Biophys J 2015; 107:2059-69. [PMID: 25418091 DOI: 10.1016/j.bpj.2014.09.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 07/31/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023] Open
Abstract
Experimental challenges associated with characterization of the membrane-bound form of talin have prevented us from understanding the molecular mechanism of its membrane-dependent integrin activation. Here, utilizing what we believe to be a novel membrane mimetic model, we present a reproducible model of membrane-bound talin observed across multiple independent simulations. We characterize both local and global membrane-induced structural transitions that successfully reconcile discrepancies between biochemical and structural studies and provide insight into how talin might modulate integrin function. Membrane binding of talin, captured in unbiased simulations, proceeds through three distinct steps: initial electrostatic recruitment of the F2 subdomain to anionic lipids via several basic residues; insertion of an initially buried, conserved hydrophobic anchor into the membrane; and association of the F3 subdomain with the membrane surface through a large, interdomain conformational change. These latter two steps, to our knowledge, have not been observed or described previously. Electrostatic analysis shows talin F2F3 to be highly polarized, with a highly positive underside, which we attribute to the initial electrostatic recruitment, and a negative top face, which can help orient the protein optimally with respect to the membrane, thereby reducing the number of unproductive membrane collision events.
Collapse
Affiliation(s)
- Mark J Arcario
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
3263
|
Kojic M, Milosevic M, Wu S, Blanco E, Ferrari M, Ziemys A. Mass partitioning effects in diffusion transport. Phys Chem Chem Phys 2015. [PMID: 26204522 DOI: 10.1039/c5cp02720a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Frequent mass exchange takes place in a heterogeneous environment among several phases, where mass partitioning may occur at the interface of phases. Analytical and computational methods for diffusion do not usually incorporate molecule partitioning masking the true picture of mass transport. Here we present a computational finite element methodology to calculate diffusion mass transport with a partitioning phenomenon included and the analysis of the effects of partitioning. Our numerical results showed that partitioning controls equilibrated mass distribution as expected from analytical solutions. The experimental validation of mass release from drug-loaded nanoparticles showed that partitioning might even dominate in some cases with respect to diffusion itself. The analysis of diffusion kinetics in the parameter space of partitioning and diffusivity showed that partitioning is an extremely important parameter in systems, where mass diffusivity is fast and that the concentration of nanoparticles can control payload retention inside nanoparticles. The computational and experimental results suggest that partitioning and physiochemical properties of phases play an important, if not crucial, role in diffusion transport and should be included in the studies of mass transport processes.
Collapse
Affiliation(s)
- Milos Kojic
- Houston Methodist Research Institute, 6670 Bertner Ave., R7-116, Houston, TX 77030, USA.
| | | | | | | | | | | |
Collapse
|
3264
|
Webb MA, Jung Y, Pesko DM, Savoie BM, Yamamoto U, Coates GW, Balsara NP, Wang ZG, Miller TF. Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes. ACS CENTRAL SCIENCE 2015; 1:198-205. [PMID: 27162971 PMCID: PMC4827473 DOI: 10.1021/acscentsci.5b00195] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 05/22/2023]
Abstract
Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.
Collapse
Affiliation(s)
- Michael A. Webb
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yukyung Jung
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Danielle M. Pesko
- Department of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Brett M. Savoie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Umi Yamamoto
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Geoffrey W. Coates
- Department
of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Nitash P. Balsara
- Department of Chemical and Biomolecular
Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Science Division and Environmental Energy Technology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zhen-Gang Wang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Thomas F. Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
- E-mail:
| |
Collapse
|
3265
|
Paloncýová M, Vávrová K, Sovová Ž, DeVane R, Otyepka M, Berka K. Structural Changes in Ceramide Bilayers Rationalize Increased Permeation through Stratum Corneum Models with Shorter Acyl Tails. J Phys Chem B 2015; 119:9811-9. [DOI: 10.1021/acs.jpcb.5b05522] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Markéta Paloncýová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Kateřina Vávrová
- Skin
Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University in Prague, Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Žofie Sovová
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Russell DeVane
- Corporate Modeling & Simulation, Procter & Gamble, 8611 Beckett Road, West Chester, Ohio 45069, United States
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17. listopadu 12, 771 46 Olomouc, Czech Republic
| | - Karel Berka
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacký University Olomouc, tř.
17. listopadu 12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
3266
|
Chartier M, Najmanovich R. Detection of Binding Site Molecular Interaction Field Similarities. J Chem Inf Model 2015; 55:1600-15. [PMID: 26158641 DOI: 10.1021/acs.jcim.5b00333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein binding-site similarity detection methods can be used to predict protein function and understand molecular recognition, as a tool in drug design for drug repurposing and polypharmacology, and for the prediction of the molecular determinants of drug toxicity. Here, we present IsoMIF, a method able to identify binding site molecular interaction field similarities across protein families. IsoMIF utilizes six chemical probes and the detection of subgraph isomorphisms to identify geometrically and chemically equivalent sections of protein cavity pairs. The method is validated using six distinct data sets, four of those previously used in the validation of other methods. The mean area under the receiver operator curve (AUC) obtained across data sets for IsoMIF is higher than those of other methods. Furthermore, while IsoMIF obtains consistently high AUC values across data sets, other methods perform more erratically across data sets. IsoMIF can be used to predict function from structure, to detect potential cross-reactivity or polypharmacology targets, and to help suggest bioisosteric replacements to known binding molecules. Given that IsoMIF detects spatial patterns of molecular interaction field similarities, its predictions are directly related to pharmacophores and may be readily translated into modeling decisions in structure-based drug design. IsoMIF may in principle detect similar binding sites with distinct amino acid arrangements that lead to equivalent interactions within the cavity. The source code to calculate and visualize MIFs and MIF similarities are freely available.
Collapse
Affiliation(s)
- Matthieu Chartier
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke , 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec, Canada
| | - Rafael Najmanovich
- Department of Biochemistry, Faculty of Medicine and Health Sciences, University of Sherbrooke , 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec, Canada
| |
Collapse
|
3267
|
Zidar N, Macut H, Tomašič T, Brvar M, Montalvão S, Tammela P, Solmajer T, Peterlin Mašič L, Ilaš J, Kikelj D. N-Phenyl-4,5-dibromopyrrolamides and N-Phenylindolamides as ATP Competitive DNA Gyrase B Inhibitors: Design, Synthesis, and Evaluation. J Med Chem 2015; 58:6179-94. [PMID: 26126187 DOI: 10.1021/acs.jmedchem.5b00775] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacterial DNA gyrase is a well-known and validated target in the design of antibacterial drugs. However, inhibitors of its ATP binding subunit, DNA gyrase B (GyrB), have so far not reached clinical use. In the present study, three different series of N-phenyl-4,5-dibromopyrrolamides and N-phenylindolamides were designed and prepared as potential DNA gyrase B inhibitors. The IC50 values of compounds on DNA gyrase from Escherichia coli were in the low micromolar range, with the best compound, (4-(4,5-dibromo-1H-pyrrole-2-carboxamido)benzoyl)glycine (18a), displaying an IC50 of 450 nM. For this compound, a high-resolution crystal structure in complex with E. coli DNA gyrase B was obtained, revealing details of its binding mode within the active site. The binding affinities of three compounds with GyrB were additionally evaluated by surface plasmon resonance, and the results were in good agreement with the determined enzymatic activities. For the most promising compounds, the inhibitory activities against DNA gyrase from Staphylococcus aureus and topoisomerases IV from E. coli and S. aureus were determined. Antibacterial activities of the most potent compounds of each series were evaluated against two Gram-positive and two Gram-negative bacterial strains. The results obtained in this study provide valuable information on the binding mode and structure-activity relationship of N-phenyl-4,5-dibromopyrrolamides and N-phenylindolamides as promising classes of ATP competitive GyrB inhibitors.
Collapse
Affiliation(s)
- Nace Zidar
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Helena Macut
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tihomir Tomašič
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Matjaž Brvar
- ‡National Institute of Chemistry, Laboratory for Biocomputing and Bioinformatics, 1001 Ljubljana, Slovenia
| | - Sofia Montalvão
- §Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki FI-00014, Finland
| | - Päivi Tammela
- §Centre for Drug Research, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56 (Viikinkaari 5 E), Helsinki FI-00014, Finland
| | - Tom Solmajer
- ‡National Institute of Chemistry, Laboratory for Biocomputing and Bioinformatics, 1001 Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Janez Ilaš
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- †Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
3268
|
Xu M, Unzue A, Dong J, Spiliotopoulos D, Nevado C, Caflisch A. Discovery of CREBBP Bromodomain Inhibitors by High-Throughput Docking and Hit Optimization Guided by Molecular Dynamics. J Med Chem 2015; 59:1340-9. [PMID: 26125948 DOI: 10.1021/acs.jmedchem.5b00171] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We have identified two chemotypes of CREBBP bromodomain ligands by fragment-based high-throughput docking. Only 17 molecules from the original library of two-million compounds were tested in vitro. Optimization of the two low-micromolar hits, the 4-acylpyrrole 1 and acylbenzene 9, was driven by molecular dynamics results which suggested improvement of the polar interactions with the Arg1173 side chain at the rim of the binding site. The synthesis of only two derivatives of 1 yielded the 4-acylpyrrole 6 which shows a single-digit micromolar affinity for the CREBBP bromodomain and a ligand efficiency of 0.34 kcal/mol per non-hydrogen atom. Optimization of the acylbenzene hit 9 resulted in a series of derivatives with nanomolar potencies, good ligand efficiency and selectivity (see Unzue, A.; Xu, M.; Dong, J.; Wiedmer, L.; Spiliotopoulos, D.; Caflisch, A.; Nevado, C.Fragment-Based Design of Selective Nanomolar Ligands of the CREBBP Bromodomain. J. Med. Chem. 2015, DOI: 10.1021/acs.jmedchem.5b00172). The in silico predicted binding mode of the acylbenzene derivative 10 was validated by solving the structure of the complex with the CREBBP bromodomain.
Collapse
Affiliation(s)
- Min Xu
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Andrea Unzue
- Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Jing Dong
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Dimitrios Spiliotopoulos
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Cristina Nevado
- Department of Chemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich , Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
| |
Collapse
|
3269
|
Pyridoxamine is a substrate of the energy-coupling factor transporter HmpT. Cell Discov 2015; 1:15014. [PMID: 27462413 PMCID: PMC4860826 DOI: 10.1038/celldisc.2015.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
Energy-coupling factor (ECF) transporters belong to a novel family of proteins that forms a subset within the ATP-binding cassette (ABC) transporter family. These proteins are responsible for the uptake of micronutrients in bacteria. ECF transporters are composed of four proteins: the A- and A′-components, the T-component and the S-component. One of the ECF transporters, named HmpT, was crystallized in the apo form with all four components. It is currently unknown whether HmpT serves as a transporter for hydroxymethyl pyrimidine or the different forms of vitamin B6 (pyridoxine, pyridoxal or pyridoxamine). Using a combination of molecular dynamics (MD) simulations and mass spectrometry, we have identified pyridoxamine to be the preferred substrate of HmpT. Mass spectra show that the mass of the substrate from the HmpT–substrate complex matches that of pyridoxamine. MD simulations likewise indicate that pyridoxamine interacts most strongly with most of the conserved residues of the S-component (Glu 41, His 84 and Gln 43) compared with the other vitamin B6 forms. Furthermore, the simulations have implied that loops 1 and 5 of the S-component can participate in the gating action for HmpT.
Collapse
|
3270
|
Metzger VT, Eun C, Kekenes-Huskey PM, Huber G, McCammon JA. Electrostatic channeling in P. falciparum DHFR-TS: Brownian dynamics and Smoluchowski modeling. Biophys J 2015; 107:2394-402. [PMID: 25418308 DOI: 10.1016/j.bpj.2014.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 11/15/2022] Open
Abstract
We perform Brownian dynamics simulations and Smoluchowski continuum modeling of the bifunctional Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (P. falciparum DHFR-TS) with the objective of understanding the electrostatic channeling of dihydrofolate generated at the TS active site to the DHFR active site. The results of Brownian dynamics simulations and Smoluchowski continuum modeling suggest that compared to Leishmania major DHFR-TS, P. falciparum DHFR-TS has a lower but significant electrostatic-mediated channeling efficiency (?15-25%) at physiological pH (7.0) and ionic strength (150 mM). We also find that removing the electric charges from key basic residues located between the DHFR and TS active sites significantly reduces the channeling efficiency of P. falciparum DHFR-TS. Although several protozoan DHFR-TS enzymes are known to have similar tertiary and quaternary structure, subtle differences in structure, active-site geometry, and charge distribution appear to influence both electrostatic-mediated and proximity-based substrate channeling.
Collapse
Affiliation(s)
- Vincent T Metzger
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California.
| | - Changsun Eun
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California.
| | | | - Gary Huber
- Howard Hughes Medical Institute, University of California San Diego, La Jolla, California
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, University of California San Diego, La Jolla, California; Department of Pharmacology, University of California San Diego, La Jolla, California
| |
Collapse
|
3271
|
MD Simulations of tRNA and Aminoacyl-tRNA Synthetases: Dynamics, Folding, Binding, and Allostery. Int J Mol Sci 2015; 16:15872-902. [PMID: 26184179 PMCID: PMC4519929 DOI: 10.3390/ijms160715872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 12/21/2022] Open
Abstract
While tRNA and aminoacyl-tRNA synthetases are classes of biomolecules that have been extensively studied for decades, the finer details of how they carry out their fundamental biological functions in protein synthesis remain a challenge. Recent molecular dynamics (MD) simulations are verifying experimental observations and providing new insight that cannot be addressed from experiments alone. Throughout the review, we briefly discuss important historical events to provide a context for how far the field has progressed over the past few decades. We then review the background of tRNA molecules, aminoacyl-tRNA synthetases, and current state of the art MD simulation techniques for those who may be unfamiliar with any of those fields. Recent MD simulations of tRNA dynamics and folding and of aminoacyl-tRNA synthetase dynamics and mechanistic characterizations are discussed. We highlight the recent successes and discuss how important questions can be addressed using current MD simulations techniques. We also outline several natural next steps for computational studies of AARS:tRNA complexes.
Collapse
|
3272
|
Metwally AA, Hathout RM. Computer-Assisted Drug Formulation Design: Novel Approach in Drug Delivery. Mol Pharm 2015; 12:2800-10. [DOI: 10.1021/mp500740d] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Abdelkader A. Metwally
- Department of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmacy, and ‡Bioinformatics
Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
| | - Rania M. Hathout
- Department of Pharmaceutics and
Industrial Pharmacy, Faculty of Pharmacy, and ‡Bioinformatics
Program, Faculty of Computer and Information Sciences, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
3273
|
Kern NR, Lee HS, Wu EL, Park S, Vanommeslaeghe K, MacKerell AD, Klauda JB, Jo S, Im W. Lipid-linked oligosaccharides in membranes sample conformations that facilitate binding to oligosaccharyltransferase. Biophys J 2015; 107:1885-1895. [PMID: 25418169 DOI: 10.1016/j.bpj.2014.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/05/2014] [Accepted: 09/09/2014] [Indexed: 01/21/2023] Open
Abstract
Lipid-linked oligosaccharides (LLOs) are the substrates of oligosaccharyltransferase (OST), the enzyme that catalyzes the en bloc transfer of the oligosaccharide onto the acceptor asparagine of nascent proteins during the process of N-glycosylation. To explore LLOs' preferred location, orientation, structure, and dynamics in membrane bilayers of three different lipid types (dilauroylphosphatidylcholine, dimyristoylphosphatidylcholine, and dioleoylphosphatidylcholine), we have modeled and simulated both eukaryotic (Glc3-Man9-GlcNAc2-PP-Dolichol) and bacterial (Glc1-GalNAc5-Bac1-PP-Undecaprenol) LLOs, which are composed of an isoprenoid moiety and an oligosaccharide, linked by pyrophosphate. The simulations show no strong impact of different bilayer hydrophobic thicknesses on the overall orientation, structure, and dynamics of the isoprenoid moiety and the oligosaccharide. The pyrophosphate group stays in the bilayer head group region. The isoprenoid moiety shows high flexibility inside the bilayer hydrophobic core, suggesting its potential role as a tentacle to search for OST. The oligosaccharide conformation and dynamics are similar to those in solution, but there are preferred interactions between the oligosaccharide and the bilayer interface, which leads to LLO sugar orientations parallel to the bilayer surface. Molecular docking of the bacterial LLO to a bacterial OST suggests that such orientations can enhance binding of LLOs to OST.
Collapse
Affiliation(s)
- Nathan R Kern
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas
| | - Hui Sun Lee
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas
| | - Emilia L Wu
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas
| | - Soohyung Park
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas
| | - Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland
| | - Jeffery B Klauda
- Department of Chemical and Biomolecular Engineering and Biophysics Program, University of Maryland, College Park, Maryland
| | - Sunhwan Jo
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas
| | - Wonpil Im
- Department of Molecular Biosciences and Center for Bioinformatics, University of Kansas, Lawrence, Kansas.
| |
Collapse
|
3274
|
Brown JA, Thorpe IF. Dual Allosteric Inhibitors Jointly Modulate Protein Structure and Dynamics in the Hepatitis C Virus Polymerase. Biochemistry 2015; 54:4131-41. [PMID: 26066778 PMCID: PMC4918089 DOI: 10.1021/acs.biochem.5b00411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatitis C virus (HCV) infects close to 200 million people globally, resulting in a significant need for effective HCV therapies. The HCV polymerase (gene product NS5B) is a valuable target for therapeutics because of its role in replicating the viral genome. Various studies have identified inhibitors for this enzyme, including non-nucleoside inhibitors (NNIs) that bind distal to the enzyme active site. Recently, it has been shown that simultaneously challenging the enzyme with two NNIs results in enhanced inhibition relative to that observed after challenge with individual inhibitors, suggesting that employing multiple NNIs might be the basis of more effective therapeutics. Nevertheless, the molecular mechanisms responsible for this enhanced inhibition remain unclear. We employ molecular dynamics simulations to determine the origin of enhanced inhibition when two NNIs bind to NS5B. Our results suggest that nonoverlapping NNI sites are compatible with simultaneous binding of dual NNIs. We observe that both inhibitors act in concert to induce novel enzyme conformations and dynamics, allowing us to identify molecular mechanisms underlying enhanced inhibition of NS5B. This knowledge will be useful in optimizing combinations of NNIs to target NS5B, helping to prevent the acquisition of viral resistance that remains a significant barrier to the development of HCV therapeutics.
Collapse
Affiliation(s)
- Jodian A. Brown
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| | - Ian F. Thorpe
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
3275
|
Nichols DA, Hargis JC, Sanishvili R, Jaishankar P, Defrees K, Smith E, Wang KK, Prati F, Renslo AR, Woodcock HL, Chen Y. Ligand-Induced Proton Transfer and Low-Barrier Hydrogen Bond Revealed by X-ray Crystallography. J Am Chem Soc 2015; 137:8086-95. [PMID: 26057252 PMCID: PMC4530788 DOI: 10.1021/jacs.5b00749] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ligand binding can change the pKa of protein residues and influence enzyme catalysis. Herein, we report three ultrahigh resolution X-ray crystal structures of CTX-M β-lactamase, directly visualizing protonation state changes along the enzymatic pathway: apo protein at 0.79 Å, precovalent complex with nonelectrophilic ligand at 0.89 Å, and acylation transition state (TS) analogue at 0.84 Å. Binding of the noncovalent ligand induces a proton transfer from the catalytic Ser70 to the negatively charged Glu166, and the formation of a low-barrier hydrogen bond (LBHB) between Ser70 and Lys73, with a length of 2.53 Å and the shared hydrogen equidistant from the heteroatoms. QM/MM reaction path calculations determined the proton transfer barrier to be 1.53 kcal/mol. The LBHB is absent in the other two structures although Glu166 remains neutral in the covalent complex. Our data represents the first X-ray crystallographic example of a hydrogen engaged in an enzymatic LBHB, and demonstrates that desolvation of the active site by ligand binding can provide a protein microenvironment conducive to LBHB formation. It also suggests that LBHBs may contribute to stabilization of the TS in general acid/base catalysis together with other preorganized features of enzyme active sites. These structures reconcile previous experimental results suggesting alternatively Glu166 or Lys73 as the general base for acylation, and underline the importance of considering residue protonation state change when modeling protein-ligand interactions. Additionally, the observation of another LBHB (2.47 Å) between two conserved residues, Asp233 and Asp246, suggests that LBHBs may potentially play a special structural role in proteins.
Collapse
Affiliation(s)
- Derek A. Nichols
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | | | - Ruslan Sanishvili
- GMCA@APS, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Kyle Defrees
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - Emmanuel Smith
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| | - Kenneth K. Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Fabio Prati
- Department of Life Sciences, University of Modena and Reggio Emilia, Italy
| | - Adam R. Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, 1700 4 Street, Byers Hall S504, San Francisco, CA 94158
| | - H. Lee Woodcock
- Department of Chemistry, University of South Florida, Tampa, Florida 33620
| | - Yu Chen
- University of South Florida College of Medicine, Dept of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC 3522, Tampa, FL 33612
| |
Collapse
|
3276
|
Singharoy A, Venkatakrishnan B, Liu Y, Mayne CG, Lee S, Chen CH, Zlotnick A, Schulten K, Flood AH. Macromolecular Crystallography for Synthetic Abiological Molecules: Combining xMDFF and PHENIX for Structure Determination of Cyanostar Macrocycles. J Am Chem Soc 2015; 137:8810-8. [PMID: 26121416 DOI: 10.1021/jacs.5b04407] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crystal structure determination has long provided insight into structure and bonding of small molecules. When those same small molecules are designed to come together in multimolecular assemblies, such as in coordination cages, supramolecular architectures and organic-based frameworks, their crystallographic characteristics closely resemble biological macromolecules. This resemblance suggests that biomacromolecular refinement approaches be used for structure determination of abiological molecular complexes that arise in an aggregate state. Following this suggestion we investigated the crystal structure of a pentagonal macrocycle, cyanostar, by means of biological structure analysis methods and compared results to traditional small molecule methods. Cyanostar presents difficulties seen in supramolecular crystallography including whole molecule disorder and highly flexible solvent molecules sitting in macrocyclic and intermolecule void spaces. We used the force-field assisted refinement method, molecular dynamics flexible fitting algorithm for X-ray crystallography (xMDFF), along with tools from the macromolecular structure determination suite PHENIX. We found that a standard implementation of PHENIX, namely one without xMDFF, either fails to produce a solution by molecular replacement alone or produces an inaccurate structure when using generic geometry restraints, even at a very high diffraction data resolution of 0.84 Å. The problems disappear when taking advantage of xMDFF, which applies an optimized force field to realign molecular models during phasing by providing accurate restraints. The structure determination for this model system shows excellent agreement with the small-molecule methods. Therefore, the joint xMDFF-PHENIX refinement protocol provides a new strategy that uses macromolecule methods for structure determination of small molecules and their assemblies.
Collapse
Affiliation(s)
- Abhishek Singharoy
- †Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Balasubramanian Venkatakrishnan
- ‡Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Yun Liu
- §Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Christopher G Mayne
- †Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States
| | - Semin Lee
- §Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Chun-Hsing Chen
- §Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- ‡Molecular and Cellular Biochemistry Department, Indiana University, 212 South Hawthorne Drive, Bloomington, Indiana 47405, United States
| | - Klaus Schulten
- †Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, Illinois 61801, United States.,∥Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - Amar H Flood
- §Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
3277
|
Wright JD, Chu HM, Huang CH, Ma C, Chang TW, Lim C. Structural and Physical Basis for Anti-IgE Therapy. Sci Rep 2015; 5:11581. [PMID: 26113483 PMCID: PMC4481376 DOI: 10.1038/srep11581] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 05/29/2015] [Indexed: 11/09/2022] Open
Abstract
Omalizumab, an anti-IgE antibody, used to treat severe allergic asthma and chronic idiopathic urticaria, binds to IgE in blood or membrane-bound on B lymphocytes but not to IgE bound to its high (FcεRI) or low (CD23) affinity receptor. Mutagenesis studies indicate overlapping FcεRI and omalizumab-binding sites in the Cε3 domain, but crystallographic studies show FcεRI and CD23-binding sites that are far apart, so how can omalizumab block IgE from binding both receptors? We report a 2.42-Å omalizumab-Fab structure, a docked IgE-Fc/omalizumab-Fab structure consistent with available experimental data, and the free energy contributions of IgE residues to binding omalizumab, CD23, and FcεRI. These results provide a structural and physical basis as to why omalizumab cannot bind receptor-bound IgE and why omalizumab-bound IgE cannot bind to CD23/FcεRI. They reveal the key IgE residues and their roles in binding omalizumab, CD23, and FcεRI.
Collapse
Affiliation(s)
- Jon D Wright
- 1] Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan [2] The Genomics Research Center, Academia Sinica 115, Taiwan
| | - Hsing-Mao Chu
- The Genomics Research Center, Academia Sinica 115, Taiwan
| | | | - Che Ma
- The Genomics Research Center, Academia Sinica 115, Taiwan
| | - Tse Wen Chang
- The Genomics Research Center, Academia Sinica 115, Taiwan
| | - Carmay Lim
- 1] Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan [2] Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
3278
|
Sriwimol W, Aroonkesorn A, Sakdee S, Kanchanawarin C, Uchihashi T, Ando T, Angsuthanasombat C. Potential Prepore Trimer Formation by the Bacillus thuringiensis Mosquito-specific Toxin: MOLECULAR INSIGHTS INTO A CRITICAL PREREQUISITE OF MEMBRANE-BOUND MONOMERS. J Biol Chem 2015; 290:20793-20803. [PMID: 26112409 DOI: 10.1074/jbc.m114.627554] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Indexed: 12/31/2022] Open
Abstract
The insecticidal feature of the three-domain Cry δ-endotoxins from Bacillus thuringiensis is generally attributed to their capability to form oligomeric pores, causing lysis of target larval midgut cells. However, the molecular description of their oligomerization process has not been clearly defined. Here a stable prepore of the 65-kDa trypsin-activated Cry4Ba mosquito-specific toxin was established through membrane-mimetic environments by forming an ∼200-kDa octyl-β-D-glucoside micelle-induced trimer. The SDS-resistant trimer caused cytolysis to Sf9 insect cells expressing Aedes-mALP (a Cry4Ba receptor) and was more effective than a toxin monomer in membrane perturbation of calcein-loaded liposomes. A three-dimensional model of toxin trimer obtained by negative-stain EM in combination with single-particle reconstruction at ∼5 nm resolution showed a propeller-shaped structure with 3-fold symmetry. Fitting the three-dimensional reconstructed EM map with a 100-ns molecular dynamics-simulated Cry4Ba structure interacting with an octyl-β-D-glucoside micelle showed relative positioning of individual domains in the context of the trimeric complex with a major protrusion from the pore-forming domain. Moreover, high-speed atomic force microscopy imaging at nanometer resolution and a subsecond frame rate demonstrated conformational transitions from a propeller-like to a globularly shaped trimer upon lipid membrane interactions, implying prepore-to-pore conversion. Real-time trimeric arrangement of monomers associated with L-α-dimyristoylphosphatidylcholine/3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonic acid bicelle membranes was also envisaged by successive high-speed atomic force microscopy imaging, depicting interactions among three individual subunits toward trimer formation. Together, our data provide the first pivotal insights into the structural requirement of membrane-induced conformational changes of Cry4Ba toxin monomers for the molecular assembly of a prepore trimer capable of inserting into target membranes to generate a lytic pore.
Collapse
Affiliation(s)
- Wilaiwan Sriwimol
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Nakornpathom 73170, Thailand; Department of Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Aratee Aroonkesorn
- Department of Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Somsri Sakdee
- Department of Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand
| | - Chalermpol Kanchanawarin
- Laboratory of Theoretical and Computational Biophysics, Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Takayuki Uchihashi
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Toshio Ando
- Department of Physics and Bio-AFM Frontier Research Center, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Chanan Angsuthanasombat
- Department of Bacterial Protein Toxin Research Cluster, Institute of Molecular Biosciences, Mahidol University, Nakornpathom 73170, Thailand; Laboratory of Molecular Biophysics and Structural Biochemistry, Biophysics Institute for Research and Development, Bangkok 10160, Thailand.
| |
Collapse
|
3279
|
Duboué-Dijon E, Laage D. Characterization of the Local Structure in Liquid Water by Various Order Parameters. J Phys Chem B 2015; 119:8406-18. [PMID: 26054933 PMCID: PMC4516314 DOI: 10.1021/acs.jpcb.5b02936] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A wide
range of geometric order parameters have been suggested
to characterize the local structure of liquid water and its tetrahedral
arrangement, but their respective merits have remained elusive. Here,
we consider a series of popular order parameters and analyze molecular
dynamics simulations of water, in the bulk and in the hydration shell
of a hydrophobic solute, at 298 and 260 K. We show that these parameters
are weakly correlated and probe different distortions, for example
the angular versus radial disorders. We first combine these complementary
descriptions to analyze the structural rearrangements leading to the
density maximum in liquid water. Our results reveal no sign of a heterogeneous
mixture and show that the density maximum arises from the depletion
in interstitial water molecules upon cooling. In the hydration shell
of the hydrophobic moiety of propanol, the order parameters suggest
that the water local structure is similar to that in the bulk, with
only a very weak depletion in ordered configurations, thus confirming
the absence of any iceberg-type structure. Finally, we show that the
main structural fluctuations that affect water reorientation dynamics
in the bulk are angular distortions, which we explain by the jump
hydrogen-bond exchange mechanism.
Collapse
Affiliation(s)
- Elise Duboué-Dijon
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| | - Damien Laage
- École Normale Supérieure-PSL Research University, Département de Chimie, Sorbonne Universités - UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond, 75005 Paris, France
| |
Collapse
|
3280
|
Abstract
Fast protein folding involves complex dynamics in many degrees of freedom, yet microsecond folding experiments provide only low-resolution structural information. We enhance the structural resolution of the five-helix bundle protein λ6-85 by engineering into it three fluorescent tryptophan-tyrosine contact probes. The probes report on distances between three different helix pairs: 1-2, 1-3, and 3-2. Temperature jump relaxation experiments on these three mutants reveal two different kinetic timescales: a slower timescale for 1-3 and a faster one for the two contacts involving helix 2. We hypothesize that these differences arise from a single folding mechanism that forms contacts on different timescales, and not from changes of mechanism due to adding the probes. To test this hypothesis, we analyzed the corresponding three distances in one published single-trajectory all-atom molecular-dynamics simulation of a similar mutant. Autocorrelation analysis of the trajectory reveals the same "slow" and "fast" distance change as does experiment, but on a faster timescale; smoothing the trajectory in time shows that this ordering is robust and persists into the microsecond folding timescale. Structural investigation of the all-atom computational data suggests that helix 2 misfolds to produce a short-lived off-pathway trap, in agreement with the experimental finding that the 1-2 and 3-2 distances involving helix 2 contacts form a kinetic grouping distinct from 1 to 3. Our work demonstrates that comparison between experiment and simulation can be extended to several order parameters, providing a stronger mechanistic test.
Collapse
|
3281
|
Tse A, Verkhivker GM. Molecular Determinants Underlying Binding Specificities of the ABL Kinase Inhibitors: Combining Alanine Scanning of Binding Hot Spots with Network Analysis of Residue Interactions and Coevolution. PLoS One 2015; 10:e0130203. [PMID: 26075886 PMCID: PMC4468085 DOI: 10.1371/journal.pone.0130203] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 12/20/2022] Open
Abstract
Quantifying binding specificity and drug resistance of protein kinase inhibitors is of fundamental importance and remains highly challenging due to complex interplay of structural and thermodynamic factors. In this work, molecular simulations and computational alanine scanning are combined with the network-based approaches to characterize molecular determinants underlying binding specificities of the ABL kinase inhibitors. The proposed theoretical framework unveiled a relationship between ligand binding and inhibitor-mediated changes in the residue interaction networks. By using topological parameters, we have described the organization of the residue interaction networks and networks of coevolving residues in the ABL kinase structures. This analysis has shown that functionally critical regulatory residues can simultaneously embody strong coevolutionary signal and high network centrality with a propensity to be energetic hot spots for drug binding. We have found that selective (Nilotinib) and promiscuous (Bosutinib, Dasatinib) kinase inhibitors can use their energetic hot spots to differentially modulate stability of the residue interaction networks, thus inhibiting or promoting conformational equilibrium between inactive and active states. According to our results, Nilotinib binding may induce a significant network-bridging effect and enhance centrality of the hot spot residues that stabilize structural environment favored by the specific kinase form. In contrast, Bosutinib and Dasatinib can incur modest changes in the residue interaction network in which ligand binding is primarily coupled only with the identity of the gate-keeper residue. These factors may promote structural adaptability of the active kinase states in binding with these promiscuous inhibitors. Our results have related ligand-induced changes in the residue interaction networks with drug resistance effects, showing that network robustness may be compromised by targeted mutations of key mediating residues. This study has outlined mechanisms by which inhibitor binding could modulate resilience and efficiency of allosteric interactions in the kinase structures, while preserving structural topology required for catalytic activity and regulation.
Collapse
Affiliation(s)
- Amanda Tse
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
- Chapman University School of Pharmacy, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
3282
|
Cheng MH, Block E, Hu F, Cobanoglu MC, Sorkin A, Bahar I. Insights into the Modulation of Dopamine Transporter Function by Amphetamine, Orphenadrine, and Cocaine Binding. Front Neurol 2015; 6:134. [PMID: 26106364 PMCID: PMC4460958 DOI: 10.3389/fneur.2015.00134] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 05/26/2015] [Indexed: 12/29/2022] Open
Abstract
Human dopamine (DA) transporter (hDAT) regulates dopaminergic signaling in the central nervous system by maintaining the synaptic concentration of DA at physiological levels, upon reuptake of DA into presynaptic terminals. DA translocation involves the co-transport of two sodium ions and the channeling of a chloride ion, and it is achieved via alternating access between outward-facing (OF) and inward-facing states of DAT. hDAT is a target for addictive drugs, such as cocaine, amphetamine (AMPH), and therapeutic antidepressants. Our recent quantitative systems pharmacology study suggested that orphenadrine (ORPH), an anticholinergic agent and anti-Parkinson drug, might be repurposable as a DAT drug. Previous studies have shown that DAT-substrates like AMPH or -blockers like cocaine modulate the function of DAT in different ways. However, the molecular mechanisms of modulation remained elusive due to the lack of structural data on DAT. The newly resolved DAT structure from Drosophila melanogaster opens the way to a deeper understanding of the mechanism and time evolution of DAT–drug/ligand interactions. Using a combination of homology modeling, docking analysis, molecular dynamics simulations, and molecular biology experiments, we performed a comparative study of the binding properties of DA, AMPH, ORPH, and cocaine and their modulation of hDAT function. Simulations demonstrate that binding DA or AMPH drives a structural transition toward a functional form predisposed to translocate the ligand. In contrast, ORPH appears to inhibit DAT function by arresting it in the OF open conformation. The analysis shows that cocaine and ORPH competitively bind DAT, with the binding pose and affinity dependent on the conformational state of DAT. Further assays show that the effect of ORPH on DAT uptake and endocytosis is comparable to that of cocaine.
Collapse
Affiliation(s)
- Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ethan Block
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Feizhuo Hu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA ; Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University , Beijing , China
| | - Murat Can Cobanoglu
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh , Pittsburgh, PA , USA
| |
Collapse
|
3283
|
Baylon JL, Tajkhorshid E. Capturing Spontaneous Membrane Insertion of the Influenza Virus Hemagglutinin Fusion Peptide. J Phys Chem B 2015; 119:7882-93. [PMID: 25996559 DOI: 10.1021/acs.jpcb.5b02135] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hemagglutinin (HA) is a protein located on the surface of the influenza virus that mediates viral fusion to the host cellular membrane. During the fusion process the HA fusion peptide (HAfp), formed by the first 23 N-terminal residues of HA and structurally characterized by two alpha helices (Helix A and Helix B) tightly packed in a hairpin-like arrangement, is the only part of the virus in direct contact with the host membrane. After encountering the host cell, HAfp is believed to insert into the membrane, thereby initiating the fusion of the viral and host membranes. Detailed characterization of the interactions between the HAfp and cellular membrane is therefore of high relevance to the mechanism of viral entry into the host cell. Employing HMMM membrane representation with enhanced lipid mobility, we have performed a large set of independent simulations of unbiased membrane binding of HAfp. We have been able to capture spontaneous binding and insertion of HAfp consistently in nearly all the simulations. A reproducible membrane-bound configuration emerges from these simulations, despite employing a diverse set of initial configurations. Extension of several of the simulations into full membrane systems confirms the stability of the membrane-bound form obtained from HMMM binding simulations. The resulting model allows for the characterization of important interactions between the peptide and the membrane and the details of the binding process of the peptide for the first time. Upon membrane binding, Helix A inserts much deeper into the membrane than Helix B, suggesting that the former is responsible for hydrophobic anchoring of the peptide into the membrane. Helix B, in contrast, is found to establish major amphipathic interactions at the interfacial region thereby contributing to binding strength of HAfp.
Collapse
Affiliation(s)
- Javier L Baylon
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Center for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3284
|
Cazade PA, Tran H, Bereau T, Das AK, Kläsi F, Hamm P, Meuwly M. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study. J Chem Phys 2015; 142:212415. [DOI: 10.1063/1.4916630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
3285
|
Balme S, Picaud F, Manghi M, Palmeri J, Bechelany M, Cabello-Aguilar S, Abou-Chaaya A, Miele P, Balanzat E, Janot JM. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation. Sci Rep 2015; 5:10135. [PMID: 26036687 PMCID: PMC4453161 DOI: 10.1038/srep10135] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 03/30/2015] [Indexed: 01/22/2023] Open
Abstract
Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed.
Collapse
Affiliation(s)
- Sébastien Balme
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Fabien Picaud
- Laboratoire de Nanomédecine, Imagerie et Thérapeutiques, EA4662, Université Franche-Comté, Centre Hospitalier Universitaire, 16 route de Gray, 25030 Besançon cedex, France
| | - Manoel Manghi
- Université de Toulouse, Laboratoire de Physique Théorique (IRSAMC) UMR5152 CNRS-UPS, 118 route de Narbonne, F-31062 Toulouse, France
| | - John Palmeri
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS-Université de Montpellier, Montpellier, F-France
| | - Mikhael Bechelany
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Simon Cabello-Aguilar
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Adib Abou-Chaaya
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Philippe Miele
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Emmanuel Balanzat
- Centre de recherche sur les Ions, les Matériaux et la Photonique, UMR6252 CEA-CNRS-ENSICAEN, 6 Boulevard du Maréchal Juin, 14050 Caen Cedex 4, France
| | - Jean Marc Janot
- Institut Européen des Membranes, UMR5635 ENSCM-UM-CNRS, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
3286
|
Lercher C, Röthel C, Roscioni OM, Geerts YH, Shen Q, Teichert C, Fischer R, Leising G, Sferrazza M, Gbabode G, Resel R. Polymorphism of dioctyl-terthiophene within thin films: The role of the first monolayer. Chem Phys Lett 2015; 630:12-17. [PMID: 31007269 PMCID: PMC6472291 DOI: 10.1016/j.cplett.2015.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The origins of specific polymorphic phases within thin films are still not well understood. The polymorphism of the molecule dioctyl-terthiophene is investigated during the presence of a silicon-oxide surface during the crystallisation process. It is found that a monolayer of molecules forms two-dimensional crystals on the surface. In the case of thicker films crystalline islands are formed, a comparison of the three polymorphic phases observed within thin films and the thermodynamically more stable single crystal phases reveals distinct differences which can be related to an adaption of the molecular packing with the flat surface of the substrate.
Collapse
Affiliation(s)
- Christoph Lercher
- Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria
- ams AG, Tobelbader Strasse 30, 8141 Unterpremstätten, Austria
| | - Christian Röthel
- Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria
| | - Otello Maria Roscioni
- Dipartimento di Chimica Industriale, “Toso Montanari”, Università di Bologna, Viale del Risorgimento, 4, 40136 Bologna, Italy
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Yves Henri Geerts
- Laboratoire de Chimie des Polymères, Université libre de Bruxelles, Campus de la Plaine, 1050 Bruxelles, Belgium
| | - Quan Shen
- Institut für Physik, Montanuniversität Leoben, Franz Josef-Straße 18, 8700 Leoben, Austria
| | - Christian Teichert
- Institut für Physik, Montanuniversität Leoben, Franz Josef-Straße 18, 8700 Leoben, Austria
| | - Roland Fischer
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010 Graz, Austria
| | - Günther Leising
- Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria
| | - Michele Sferrazza
- Département de Physique, Université libre de Bruxelles, Campus de la Plaine, 1050 Bruxelles, Belgium
| | - Gabin Gbabode
- Département de Physique, Université libre de Bruxelles, Campus de la Plaine, 1050 Bruxelles, Belgium
| | - Roland Resel
- Institut für Festkörperphysik, Technische Universität Graz, Petersgasse 16, 8010 Graz, Austria
- Corresponding author.
| |
Collapse
|
3287
|
Vermaas JV, Baylon JL, Arcario MJ, Muller MP, Wu Z, Pogorelov TV, Tajkhorshid E. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution. J Membr Biol 2015; 248:563-82. [PMID: 25998378 PMCID: PMC4490090 DOI: 10.1007/s00232-015-9806-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 04/30/2015] [Indexed: 12/24/2022]
Abstract
Biological membranes constitute a critical component in all living cells. In addition to providing a conducive environment to a wide range of cellular processes, including transport and signaling, mounting evidence has established active participation of specific lipids in modulating membrane protein function through various mechanisms. Understanding lipid-protein interactions underlying these mechanisms at a sufficiently high resolution has proven extremely challenging, partly due to the semi-fluid nature of the membrane. In order to address this challenge computationally, multiple methods have been developed, including an alternative membrane representation termed highly mobile membrane mimetic (HMMM) in which lateral lipid diffusion has been significantly enhanced without compromising atomic details. The model allows for efficient sampling of lipid-protein interactions at atomic resolution, thereby significantly enhancing the effectiveness of molecular dynamics simulations in capturing membrane-associated phenomena. In this review, after providing an overview of HMMM model development, we will describe briefly successful application of the model to study a variety of membrane processes, including lipid-dependent binding and insertion of peripheral proteins, the mechanism of phospholipid insertion into lipid bilayers, and characterization of optimal tilt angle of transmembrane helices. We conclude with practical recommendations for proper usage of the model in simulation studies of membrane processes.
Collapse
Affiliation(s)
- Josh V. Vermaas
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Javier L. Baylon
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Mark J. Arcario
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Melanie P. Muller
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Zhe Wu
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Taras V. Pogorelov
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| | - Emad Tajkhorshid
- Beckman Institute, Department of Biochemistry, and Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave. Urbana, IL 61801
| |
Collapse
|
3288
|
Vanommeslaeghe K, Yang M, MacKerell AD. Robustness in the fitting of molecular mechanics parameters. J Comput Chem 2015; 36:1083-101. [PMID: 25826578 PMCID: PMC4412823 DOI: 10.1002/jcc.23897] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/28/2015] [Accepted: 02/21/2015] [Indexed: 12/21/2022]
Abstract
Automated methods for force field parametrization have attracted renewed interest of the community, but the robustness issues associated with the often ill-conditioned nature of parameter optimization have been vastly underappreciated in the recent literature. For this reason, this article offers a detailed description of the origin and nature of these issues. This includes a discussion of the restrained electrostatic potential fit (RESP) charge model, which does contain explicit robustness-enhancing measures albeit not in the context of bonded parameters, and which forms an inspiration for the present work. It is also discussed how all the bonded parameters in a Class I force field can be simultaneously fit using the linear least squares (LLS) procedure, and a novel restraining strategy is presented that overcomes robustness issues in the LLS fitting of bonded parameters while minimally impacting the fitted values of well-behaved parameters. Two variants of this methodology are then validated through a number of case studies, including the fitting of bond-charge increments, which illustrates the method's potential for robustly solving general LLS problems beyond force field parametrization.
Collapse
Affiliation(s)
- Kenno Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Mingjun Yang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| | - Alexander D. MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201
| |
Collapse
|
3289
|
Khadka NK, Cheng X, Ho CS, Katsaras J, Pan J. Interactions of the anticancer drug tamoxifen with lipid membranes. Biophys J 2015; 108:2492-2501. [PMID: 25992727 PMCID: PMC4457044 DOI: 10.1016/j.bpj.2015.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 04/06/2015] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Interactions of the hydrophobic anticancer drug tamoxifen (TAM) with lipid model membranes were studied using calcein-encapsulated vesicle leakage, attenuated total reflection Fourier transform infrared (FTIR) spectroscopy, small-angle neutron scattering (SANS), atomic force microscopy (AFM) based force spectroscopy, and all-atom molecular dynamics (MD) simulations. The addition of TAM enhances membrane permeability, inducing calcein to translocate from the interior to the exterior of lipid vesicles. A large decrease in the FTIR absorption band's magnitude was observed in the hydrocarbon chain region, suggesting suppressed bond vibrational dynamics. Bilayer thickening was determined from SANS data. Force spectroscopy measurements indicate that the lipid bilayer area compressibility modulus KA is increased by a large amount after the incorporation of TAM. MD simulations show that TAM decreases the lipid area and increases chain order parameters. Moreover, orientational and positional analyses show that TAM exhibits a highly dynamic conformation within the lipid bilayer. Our detailed experimental and computational studies of TAM interacting with model lipid membranes shed new light on membrane modulation by TAM.
Collapse
Affiliation(s)
- Nawal K Khadka
- Department of Physics, University of South Florida, Tampa, Florida
| | - Xiaolin Cheng
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Chian Sing Ho
- Department of Physics, University of South Florida, Tampa, Florida
| | - John Katsaras
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee; Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee; Joint Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jianjun Pan
- Department of Physics, University of South Florida, Tampa, Florida.
| |
Collapse
|
3290
|
Mei Y, Simmonett AC, Pickard FC, DiStasio RA, Brooks BR, Shao Y. Numerical study on the partitioning of the molecular polarizability into fluctuating charge and induced atomic dipole contributions. J Phys Chem A 2015; 119:5865-82. [PMID: 25945749 DOI: 10.1021/acs.jpca.5b03159] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to carry out a detailed analysis of the molecular static polarizability, which is the response of the molecule to a uniform external electric field, the molecular polarizability was computed using the finite-difference method for 21 small molecules, using density functional theory. Within nine charge population schemes (Löwdin, Mulliken, Becke, Hirshfeld, CM5, Hirshfeld-I, NPA, CHELPG, MK-ESP) in common use, the charge fluctuation contribution is found to dominate the molecular polarizability, with its ratio ranging from 59.9% with the Hirshfeld or CM5 scheme to 96.2% with the Mulliken scheme. The Hirshfeld-I scheme is also used to compute the other contribution to the molecular polarizability coming from the induced atomic dipoles, and the atomic polarizabilities in eight small molecules and water pentamer are found to be highly anisotropic for most atoms. Overall, the results suggest that (a) more emphasis probably should be placed on the charge fluctuation terms in future polarizable force field development and (b) an anisotropic polarizability might be more suitable than an isotropic one in polarizable force fields based entirely or partially on the induced atomic dipoles.
Collapse
Affiliation(s)
- Ye Mei
- †State Key Laboratory of Precision Spectroscopy, Department of Physics and Institute of Theoretical and Computational Science, East China Normal University, Shanghai 200062, China.,‡NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, China.,⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Andrew C Simmonett
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Frank C Pickard
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Robert A DiStasio
- §Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Bernard R Brooks
- ⊥Laboratory of Computational Biology, National Institutes of Health, National Heart, Lung and Blood Institute, 5635 Fishers Lane, T-900 Suite, Rockville, Maryland 20852, United States
| | - Yihan Shao
- ∥Q-Chem Inc., 6601 Owens Drive, Suite 105, Pleasanton, California 94588, United States
| |
Collapse
|
3291
|
Chen LY. Computing membrane-AQP5-phosphatidylserine binding affinities with hybrid steered molecular dynamics approach. Mol Membr Biol 2015; 32:19-25. [PMID: 25955791 DOI: 10.3109/09687688.2015.1006275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In order to elucidate how phosphatidylserine (PS6) interacts with AQP5 in a cell membrane, we developed a hybrid steered molecular dynamics (hSMD) method that involved: (1) Simultaneously steering two centers of mass of two selected segments of the ligand, and (2) equilibrating the ligand-protein complex with and without biasing the system. Validating hSMD, we first studied vascular endothelial growth factor receptor 1 (VEGFR1) in complex with N-(4-Chlorophenyl)-2-((pyridin-4-ylmethyl)amino)benzamide (8ST), for which the binding energy is known from in vitro experiments. In this study, our computed binding energy well agreed with the experimental value. Knowing the accuracy of this hSMD method, we applied it to the AQP5-lipid-bilayer system to answer an outstanding question relevant to AQP5's physiological function: Will the PS6, a lipid having a single long hydrocarbon tail that was found in the central pore of the AQP5 tetramer crystal, actually bind to and inhibit AQP5's central pore under near-physiological conditions, namely, when AQP5 tetramer is embedded in a lipid bilayer? We found, in silico, using the CHARMM 36 force field, that binding PS6 to AQP5 was a factor of 3 million weaker than "binding" it in the lipid bilayer. This suggests that AQP5's central pore will not be inhibited by PS6 or a similar lipid in a physiological environment.
Collapse
Affiliation(s)
- Liao Y Chen
- Department of Physics, University of Texas at San Antonio , One UTSA Circle, San Antonio, Texas , USA
| |
Collapse
|
3292
|
Ogrizek M, Turk S, Lešnik S, Sosič I, Hodošček M, Mirković B, Kos J, Janežič D, Gobec S, Konc J. Molecular dynamics to enhance structure-based virtual screening on cathepsin B. J Comput Aided Mol Des 2015; 29:707-12. [PMID: 25947277 DOI: 10.1007/s10822-015-9847-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Molecular dynamics (MD) and molecular docking are commonly used to study molecular interactions in drug discovery. Most docking approaches consider proteins as rigid, which can decrease the accuracy of predicted docked poses. Therefore MD simulations can be used prior to docking to add flexibility to proteins. We evaluated the contribution of using MD together with docking in a docking study on human cathepsin B, a well-studied protein involved in numerous pathological processes. Using CHARMM biomolecular simulation program and AutoDock Vina molecular docking program, we found, that short MD simulations significantly improved molecular docking. Our results, expressed with the area under the receiver operating characteristic curves, show an increase in discriminatory power i.e. the ability to discriminate active from inactive compounds of molecular docking, when docking is performed to selected snapshots from MD simulations.
Collapse
Affiliation(s)
- Mitja Ogrizek
- National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3293
|
Khan S, Ahmad K, Alshammari EMA, Adnan M, Baig MH, Lohani M, Somvanshi P, Haque S. Implication of Caspase-3 as a Common Therapeutic Target for Multineurodegenerative Disorders and Its Inhibition Using Nonpeptidyl Natural Compounds. BIOMED RESEARCH INTERNATIONAL 2015; 2015:379817. [PMID: 26064904 PMCID: PMC4434175 DOI: 10.1155/2015/379817] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/13/2015] [Accepted: 04/14/2015] [Indexed: 12/27/2022]
Abstract
Caspase-3 has been identified as a key mediator of neuronal apoptosis. The present study identifies caspase-3 as a common player involved in the regulation of multineurodegenerative disorders, namely, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The protein interaction network prepared using STRING database provides a strong evidence of caspase-3 interactions with the metabolic cascade of the said multineurodegenerative disorders, thus characterizing it as a potential therapeutic target for multiple neurodegenerative disorders. In silico molecular docking of selected nonpeptidyl natural compounds against caspase-3 exposed potent leads against this common therapeutic target. Rosmarinic acid and curcumin proved to be the most promising ligands (leads) mimicking the inhibitory action of peptidyl inhibitors with the highest Gold fitness scores 57.38 and 53.51, respectively. These results were in close agreement with the fitness score predicted using X-score, a consensus based scoring function to calculate the binding affinity. Nonpeptidyl inhibitors of caspase-3 identified in the present study expeditiously mimic the inhibitory action of the previously identified peptidyl inhibitors. Since, nonpeptidyl inhibitors are preferred drug candidates, hence, discovery of natural compounds as nonpeptidyl inhibitors is a significant transition towards feasible drug development for neurodegenerative disorders.
Collapse
Affiliation(s)
- Saif Khan
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Khurshid Ahmad
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Eyad M. A. Alshammari
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohd Adnan
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, Ha'il 2440, Saudi Arabia
| | - Mohd Hassan Baig
- School of Biotechnology, Yeungnam University, Gyeongsan 712749, Republic of Korea
| | - Mohtashim Lohani
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| | - Pallavi Somvanshi
- Department of Biotechnology, TERI University, New Delhi 110070, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
3294
|
Prakash P, Hancock JF, Gorfe AA. Binding hotspots on K-ras: consensus ligand binding sites and other reactive regions from probe-based molecular dynamics analysis. Proteins 2015; 83:898-909. [PMID: 25740554 PMCID: PMC4400267 DOI: 10.1002/prot.24786] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/16/2015] [Accepted: 02/24/2015] [Indexed: 01/21/2023]
Abstract
We have used probe-based molecular dynamics (pMD) simulations to search for interaction hotspots on the surface of the therapeutically highly relevant oncogenic K-Ras G12D. Combining the probe-based query with an ensemble-based pocket identification scheme and an analysis of existing Ras-ligand complexes, we show that (i) pMD is a robust and cost-effective strategy for binding site identification, (ii) all four of the previously reported ligand binding sites are suitable for structure-based ligand design, and (iii) in some cases probe binding and expanded sampling of configurational space enable pocket expansion and increase the likelihood of site identification. Furthermore, by comparing the distribution of hotspots in nonpocket-like regions with known protein- and membrane-interacting interfaces, we propose that pMD has the potential to predict surface patches responsible for protein-biomolecule interactions. These observations have important implications for future drug design efforts and will facilitate the search for potential interfaces responsible for the proposed transient oligomerization or interaction of Ras with other biomolecules in the cellular milieu.
Collapse
Affiliation(s)
- Priyanka Prakash
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - John F. Hancock
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| | - Alemayehu A. Gorfe
- University of Texas Health Science Center at Houston, Department of Integrative Biology and Pharmacology, 6431 Fannin St., Houston, Texas 77030
| |
Collapse
|
3295
|
He X, Lakkaraju SK, Hanscom M, Zhao Z, Wu J, Stoica B, MacKerell AD, Faden AI, Xue F. Acyl-2-aminobenzimidazoles: a novel class of neuroprotective agents targeting mGluR5. Bioorg Med Chem 2015; 23:2211-20. [PMID: 25801156 PMCID: PMC4697443 DOI: 10.1016/j.bmc.2015.02.054] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/13/2015] [Accepted: 02/26/2015] [Indexed: 01/08/2023]
Abstract
Positive allosteric modulators (PAMs) of the metabotropic glutamate receptor 5 (mGluR5) are promising therapeutic agents for treating traumatic brain injury (TBI). Using computational and medicinal methods, the structure-activity relationship of a class of acyl-2-aminobenzimidazoles (1-26) is reported. The new compounds are designed based on the chemical structure of 3,3'-difluorobenzaldazine (DFB), a known mGluR5 PAM. Ligand design and prediction of binding affinities of the new compounds have been performed using the site identification by ligand competitive saturation (SILCS) method. Binding affinities of the compounds to the transmembrane domain of mGluR5 have been evaluated using nitric oxide (NO) production assay, while the safety of the compounds is tested. One new compound found in this study, compound 22, showed promising activity with an IC₅₀ value of 6.4 μM, which is ∼20 fold more potent than that of DFB. Compound 22 represents a new lead for possible development as a treatment for TBI and related neurodegenerative conditions.
Collapse
Affiliation(s)
- Xinhua He
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Sirish K Lakkaraju
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Marie Hanscom
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Zaorui Zhao
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Junfang Wu
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Bogdan Stoica
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States
| | - Alan I Faden
- Department of Anesthesiology and Center for Shock, Trauma and Anesthesiology Research (STAR), University of Maryland School of Medicine, Baltimore, MD 21201, United States
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD 21201, United States.
| |
Collapse
|
3296
|
Vanommeslaeghe K, MacKerell AD. CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1850:861-871. [PMID: 25149274 PMCID: PMC4334745 DOI: 10.1016/j.bbagen.2014.08.004] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/10/2014] [Accepted: 08/12/2014] [Indexed: 11/29/2022]
Abstract
BACKGROUND Molecular Mechanics (MM) is the method of choice for computational studies of biomolecular systems owing to its modest computational cost, which makes it possible to routinely perform molecular dynamics (MD) simulations on chemical systems of biophysical and biomedical relevance. SCOPE OF REVIEW As one of the main factors limiting the accuracy of MD results is the empirical force field used, the present paper offers a review of recent developments in the CHARMM additive force field, one of the most popular biomolecular force fields. Additionally, we present a detailed discussion of the CHARMM Drude polarizable force field, anticipating a growth in the importance and utilization of polarizable force fields in the near future. Throughout the discussion emphasis is placed on the force fields' parametrization philosophy and methodology. MAJOR CONCLUSIONS Recent improvements in the CHARMM additive force field are mostly related to newly found weaknesses in the previous generation of additive force fields. Beyond the additive approximation is the newly available CHARMM Drude polarizable force field, which allows for MD simulations of up to 1μs on proteins, DNA, lipids and carbohydrates. GENERAL SIGNIFICANCE Addressing the limitations ensures the reliability of the new CHARMM36 additive force field for the types of calculations that are presently coming into routine computational reach while the availability of the Drude polarizable force fields offers an inherently more accurate model of the underlying physical forces driving macromolecular structures and dynamics. This article is part of a Special Issue entitled "Recent developments of molecular dynamics".
Collapse
Affiliation(s)
- K Vanommeslaeghe
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - A D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA.
| |
Collapse
|
3297
|
Fletcher S, Yu W, Huang J, Kwasny SM, Chauhan J, Opperman TJ, MacKerell AD, de Leeuw EPH. Structure-activity exploration of a small-molecule Lipid II inhibitor. Drug Des Devel Ther 2015; 9:2383-94. [PMID: 25987836 PMCID: PMC4422293 DOI: 10.2147/dddt.s79504] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have recently identified low-molecular weight compounds that act as inhibitors of Lipid II, an essential precursor of bacterial cell wall biosynthesis. Lipid II comprises specialized lipid (bactoprenol) linked to a hydrophilic head group consisting of a peptidoglycan subunit (N-acetyl glucosamine [GlcNAc]–N-acetyl muramic acid [MurNAc] disaccharide coupled to a short pentapeptide moiety) via a pyrophosphate. One of our lead compounds, a diphenyl-trimethyl indolene pyrylium, termed BAS00127538, interacts with the MurNAc moiety and the isoprenyl tail of Lipid II. Here, we report on the structure–activity relationship of BAS00127538 derivatives obtained by in silico analyses and de novo chemical synthesis. Our results indicate that Lipid II binding and bacterial killing are related to three features: the diphenyl moiety, the indolene moiety, and the positive charge of the pyrylium. Replacement of the pyrylium moiety with an N-methyl pyridinium, which may have importance in stability of the molecule, did not alter Lipid II binding or antibacterial potency.
Collapse
Affiliation(s)
- Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Wenbo Yu
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Jing Huang
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | | - Jay Chauhan
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | | | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland, School of Pharmacy, Baltimore, MD, USA ; Computer-Aided Drug Design Center, University of Maryland, School of Pharmacy, Baltimore, MD, USA
| | - Erik P H de Leeuw
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland, School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3298
|
Pan X, Schwartz SD. Free energy surface of the Michaelis complex of lactate dehydrogenase: a network analysis of microsecond simulations. J Phys Chem B 2015; 119:5430-6. [PMID: 25831215 DOI: 10.1021/acs.jpcb.5b01840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has long been recognized that the structure of a protein creates a hierarchy of conformations interconverting on multiple time scales. The conformational heterogeneity of the Michaelis complex is of particular interest in the context of enzymatic catalysis in which the reactant is usually represented by a single conformation of the enzyme/substrate complex. Lactate dehydrogenase (LDH) catalyzes the interconversion of pyruvate and lactate with concomitant interconversion of two forms of the cofactor nicotinamide adenine dinucleotide (NADH and NAD(+)). Recent experimental results suggest that multiple substates exist within the Michaelis complex of LDH, and they show a strong variance in their propensity toward the on-enzyme chemical step. In this study, microsecond-scale all-atom molecular dynamics simulations were performed on LDH to explore the free energy landscape of the Michaelis complex, and network analysis was used to characterize the distribution of the conformations. Our results provide a detailed view of the kinetic network of the Michaelis complex and the structures of the substates at atomistic scales. They also shed light on the complete picture of the catalytic mechanism of LDH.
Collapse
Affiliation(s)
- Xiaoliang Pan
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | - Steven D Schwartz
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| |
Collapse
|
3299
|
Wang B, Weng J, Wang W. Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB. Front Microbiol 2015; 6:302. [PMID: 25918513 PMCID: PMC4394701 DOI: 10.3389/fmicb.2015.00302] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/27/2015] [Indexed: 11/25/2022] Open
Abstract
The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states [access (A), binding (B) and extrusion (E)] support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE to BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB.
Collapse
Affiliation(s)
- Beibei Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University Shanghai, China ; Institutes of Biomedical Sciences, Fudan University Shanghai, China
| |
Collapse
|
3300
|
Gaete-Eastman C, Morales-Quintana L, Herrera R, Moya-León MA. In-silico analysis of the structure and binding site features of an α-expansin protein from mountain papaya fruit (VpEXPA2), through molecular modeling, docking, and dynamics simulation studies. J Mol Model 2015; 21:115. [PMID: 25863690 DOI: 10.1007/s00894-015-2656-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 03/16/2015] [Indexed: 11/25/2022]
Abstract
Fruit softening is associated to cell wall modifications produced by a set of hydrolytic enzymes and proteins. Expansins are proteins with no catalytic activity, which have been associated with several processes during plant growth and development. A role for expansins has been proposed during softening of fruits, and many fruit-specific expansins have been identified in a variety of species. A 3D model for VpEXPA2, an α-expansin involved in softening of Vasconcellea pubescens fruit, was built for the first time by comparative modeling strategy. The model was validated and refined by molecular dynamics simulation. The VpEXPA2 model shows a cellulose binding domain with a β-sandwich structure, and a catalytic domain with a similar structure to the catalytic core of endoglucanase V (EGV) from Humicola insolens, formed by six β-strands with interconnected loops. VpEXPA2 protein contains essential structural moieties related to the catalytic mechanism of EGV, such as the conserved HFD motif. Nevertheless, changes in the catalytic environment are observed in the protein model, influencing its mode of action. The lack of catalytic activity of this expansin and its preference for cellulose are discussed in light of the structural information obtained from the VpEXPA2 protein model, regarding the distance between critical amino acid residues. Finally, the VpEXPA2 model improves our understanding on the mechanism of action of α-expansins on plant cell walls during softening of V. pubescens fruit.
Collapse
Affiliation(s)
- Carlos Gaete-Eastman
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Casilla 747, Talca, Chile,
| | | | | | | |
Collapse
|