301
|
|
302
|
Klenkler BJ, Sheardown H. Characterization of EGF coupling to aminated silicone rubber surfaces. Biotechnol Bioeng 2006; 95:1158-66. [PMID: 16817187 DOI: 10.1002/bit.21083] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tethering of growth factors to biomaterial substrates via a polyethylene glycol (PEG) spacer has been established as a means of controlling dosage and conformation of the protein at the material surface, while retaining biological activity. However, the extent of modification through a comparison of bound versus unbound protein has not generally been characterized. In this work, covalent tethering of epidermal growth factor (EGF) to allylamine plasma modified polydimethylsiloxane (PDMS) substrates is characterized to determine the nature of the bound growth factor and to optimize the conditions for the reaction. Tethering is achieved via conjugation of EGF with homobifunctional N-hydroxysuccinimide (NHS) ester of PEG-butanoic acid (SBA2-PEG) in solution, followed by exposure of the pegylated EGF to the aminated surfaces (solution first reaction). SDS-PAGE analysis indicates that a low ratio of EGF:PEG is required to maximize the yield of the EGF-PEG reaction; a relatively short reaction time is needed to limit hydrolysis of the NHS ester. With increasing amounts of PEG and a higher reaction time, a higher fraction of the EGF can be covalently tethered to the surfaces, as shown by binding of 125I-labeled EGF and subsequent washing with sodium dodecyl sulfate (SDS) to remove adsorbed protein. However, even under the optimal reaction conditions established by the SDS-PAGE analysis, higher molecular weight EGF-PEG complexes are observed by SDS-PAGE and matrix-assisted laser desorption/ionization (MALDI). The presence of these complexes, as well as unreacted growth factor, can lead to a surface of heterogeneous composition. While these surfaces were found to have biological activity, stimulating the adhesion and growth of corneal epithelial cells versus PDMS controls, further optimization of reaction conditions, including the use of a homobifunctional PEG linker and possibly separation of reaction species are required to achieve a uniformly active and well-defined biomaterial surface.
Collapse
Affiliation(s)
- Bettina J Klenkler
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | | |
Collapse
|
303
|
Basinska T. Hydrophilic Core-Shell Microspheres: A Suitable Support for Controlled Attachment of Proteins and Biomedical Diagnostics. Macromol Biosci 2005; 5:1145-68. [PMID: 16294370 DOI: 10.1002/mabi.200500138] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional hydrophilic microspheres (latex particles) have found various applications in life sciences and in medicine - particularly in latex diagnostic tests. This paper presents a comprehensive review of studies on latex particles with a hydrophilic interfacial layer composed of various hydrophilic polymers with reactive groups at the ends of macromolecules or at each monomeric unit along the chain. Typical examples of these hydrophilic polymers are poly(2-hydroxyethyl methyl methacrylate), poly(acrylic acid), poly(N,N-dimethylacrylamide), polysaccharides, poly(ethylene oxide) and polyglycidol. Hydrophilic microspheres with different morphologies (uniform or core-shell, see Figure) have been synthesized by emulsion and dispersion polymerizations. The chemical structure of polymers which constitute the interfacial layer of microspheres has been investigated using a variety of instrumental techniques (such as XPS, SSIMS and NMR) and analytical methods based on specific chemical reactions suitable for the determination of particular functional groups. Microspheres are exposed to contact with proteins in the majority of medical applications. This paper presents examples of studies on the attachment of these biomacromolecules to microspheres. The relation between the structure of the interfacial layer of microspheres and the ability of these particles for the covalent binding of proteins is discussed. Several examples of diagnostic tests, in which hydrophilic microspheres with adsorbed or covalently immobilized proteins were used as reagents, are presented. The paper also contains a short review of the application of magnetic hydrophilic particles for protein separation. Examples of hydrophilic latex particles used for hemoperfusion or heavy metal ion separation are presented. Hydrophilic microspheres with uniform or core-shell morphologies.
Collapse
Affiliation(s)
- Teresa Basinska
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, ul. Sienkiewicza 112, 90-363 Lodz, Poland.
| |
Collapse
|
304
|
Klenkler BJ, Griffith M, Becerril C, West-Mays JA, Sheardown H. EGF-grafted PDMS surfaces in artificial cornea applications. Biomaterials 2005; 26:7286-96. [PMID: 16019066 DOI: 10.1016/j.biomaterials.2005.05.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lack of epithelial cell coverage has remained a persistent problem in the design of an artificial cornea. In this work, polydimethylsiloxane (PDMS) surfaces were modified with epidermal growth factor (EGF) to improve the growth of corneal epithelial cells. The EGF was covalently tethered to PDMS substrates aminated by plasma polymerization of allylamine via a homobifunctional polyethylene glycol (PEG) spacer. Surface modification was confirmed by contact angle and X-ray photoelectron spectroscopy measurements. By varying the ratio of EGF to PEG from 1:50 to 1:5, EGF amounts from 40 to 90 ng/cm2 could be bound, as determined by surface plasmon resonance (SPR) and 125I radiolabelling. Human corneal epithelial cells on the various modified surfaces were cultured both in the presence and absence of EGF in the culture medium to determine the effect of covalently bound EGF on the cells. The results demonstrated that covalently bound EGF on the surfaces is active with respect to promoting epithelial cell coverage. This was significant when compared to unmodified controls.
Collapse
Affiliation(s)
- B J Klenkler
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada L8S 4L7
| | | | | | | | | |
Collapse
|
305
|
DeLong SA, Gobin AS, West JL. Covalent immobilization of RGDS on hydrogel surfaces to direct cell alignment and migration. J Control Release 2005; 109:139-48. [PMID: 16290119 DOI: 10.1016/j.jconrel.2005.09.020] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 08/15/2005] [Indexed: 11/30/2022]
Abstract
This study extends the capability for directing cell behavior using PEG-based hydrogels in tissue-engineering applications to include control over the spatial distribution of the adhesive peptide, RGDS. A continuous linear gradient was formed by simultaneously using a gradient maker to combine precursor solutions and using photopolymerization to lock the RGDS gradient in place. Hydrogels containing entrapped gradients of bovine serum albumin (BSA) were characterized using Coomassie brilliant blue stain, which indicated that BSA concentration increases along the hydrogel's length and that the steepness of the gradient's slope can be varied by changing the relative BSA concentrations in the precursor solutions. Human dermal fibroblasts responded to covalently immobilized RGDS gradients by changing their morphology to align in the direction of increasing RGDS concentration. After 24 h, approximately 46% of fibroblasts were aligned with the RGDS-gradient axis. This proportion of cells further increased to approximately 53% (p < 0.05) and approximately 58% after 48 and 96 h, respectively. Also, fibroblasts migrated differentially depending on the concentration of RGDS. Fibroblasts migrated approximately 48% further going up the concentration gradient (0 to 6 micromol/ml PEG-RGDS) than going down the concentration gradient. Migration up the concentration gradient was also approximately 33% greater than migration on control surfaces with a constant concentration of RGDS (2 micromol/ml), while migration down the gradient was reduced approximately 12% relative to the control surface. In addition, directed migration was further enhanced by increasing the RGDS gradient's slope. This hydrogel system is expected to be useful for directing cell migration to enhance the formation of engineered tissues.
Collapse
Affiliation(s)
- Solitaire A DeLong
- Rice University, Department of Bioengineering, Houston, TX 77251-1892, USA
| | | | | |
Collapse
|
306
|
Longo G, Szleifer I. Ligand-receptor interactions in tethered polymer layers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:11342-51. [PMID: 16285809 DOI: 10.1021/la051685p] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The binding of small proteins to ligands that are attached to the free ends of polymers tethered to a planar surface is studied using a molecular theory. The effects of changing the intrinsic binding equilibrium constant of the ligand-receptor pair, the polymer surface coverage, the polymer molecular weight, and the protein size are studied. The results are also compared with the case where ligands are directly attached to the surface without a polymer acting as a spacer. We found that within the biological range of binding constants the protein adsorption is enhanced by the presence of the polymer spacers. There is always an optimal surface coverage for which ligand-receptor binding is a maximum. This maximum increases as the binding energy and/or the polymer molecular weight increase. The presence of the maximum is due to the ability of the polymer-bound proteins to form a thick layer by dispersing the ligands in space to optimize binding and minimize lateral repulsions. The fraction of bound receptors is unity for a very small surface coverage of ligands. The very sharp decrease in the fraction of bound ligand-receptor pairs with surface coverage depends on the polymer spacer chain length. We found that the binding of proteins is reduced as the size of the protein increases. The orientation of the bound proteins can be manipulated by proper choice of the grafted layer conditions. At high polymer surface coverage the bound proteins are predominantly perpendicular to the surface, while at low surface coverage there is a more random distribution of orientations. To avoid nonspecific adsorption on the surface, we studied the case where the surface is covered by a mixture of a relatively high molecular weight polymer with a ligand attached to its free end and a low molecular weight polymer without ligand. These systems present a maximum in the binding of proteins, which is of the same magnitude as when only the long polymer-ligand is present. Moreover, when the total surface coverage in the mixed layers of polymers is high enough, nonspecific adsorption of the proteins on the surface is suppressed. The use of the presented theoretical results for the design of surface modifiers with tailored abilities for specific binding of proteins and optimal nonfouling capabilities is discussed.
Collapse
Affiliation(s)
- Gabriel Longo
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
307
|
Tyrode E, Johnson CM, Kumpulainen A, Rutland MW, Claesson PM. Hydration State of Nonionic Surfactant Monolayers at the Liquid/Vapor Interface: Structure Determination by Vibrational Sum Frequency Spectroscopy. J Am Chem Soc 2005; 127:16848-59. [PMID: 16316231 DOI: 10.1021/ja053289z] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The OH stretching region of water molecules in the vicinity of nonionic surfactant monolayers has been investigated using vibrational sum frequency spectroscopy (VSFS) under the polarization combinations ssp, ppp, and sps. The surface sensitivity of the VSFS technique has allowed targeting the few water molecules present at the surface with a net orientation and, in particular, the hydration shell around alcohol, sugar, and poly(ethylene oxide) headgroups. Dramatic differences in the hydration shell of the uncharged headgroups were observed, both in comparison to each another and in comparison to the pure water surface. The water molecules around the rigid glucoside and maltoside sugar rings were found to form strong hydrogen bonds, similar to those observed in tetrahedrally coordinated water in ice. In the case of the poly(ethylene oxide) surfactant monolayer a significant ordering of both strongly and weakly hydrogen bonded water was observed. Moreover, a band common to all the surfactants studied, clearly detected at relatively high frequencies in the polarization combinations ppp and sps, was assigned to water species located in proximity to the surfactant hydrocarbon tail phase, with both hydrogen atoms free from hydrogen bonds. An orientational analysis provided additional information on the water species responsible for this band.
Collapse
Affiliation(s)
- Eric Tyrode
- Department of Chemistry, Surface Chemistry, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
308
|
Feller LM, Cerritelli S, Textor M, Hubbell JA, Tosatti SGP. Influence of Poly(propylene sulfide-block-ethylene glycol) Di- and Triblock Copolymer Architecture on the Formation of Molecular Adlayers on Gold Surfaces and Their Effect on Protein Resistance: A Candidate for Surface Modification in Biosensor Research. Macromolecules 2005. [DOI: 10.1021/ma051424m] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lydia M. Feller
- BioInterface Group, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Integrative Biosciences Institute and Institute for Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Simona Cerritelli
- BioInterface Group, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Integrative Biosciences Institute and Institute for Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marcus Textor
- BioInterface Group, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Integrative Biosciences Institute and Institute for Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- BioInterface Group, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Integrative Biosciences Institute and Institute for Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Samuele G. P. Tosatti
- BioInterface Group, Laboratory for Surface Science and Technology, Swiss Federal Institute of Technology (ETH), ETH Hönggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland, and Integrative Biosciences Institute and Institute for Chemical Science and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
309
|
Arica MY, Bayramoglu G, Arica B, Yalçin E, Ito K, Yagci Y. Novel Hydrogel Membrane Based on Copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for Biomedical Applications: Properties and Drug Release Characteristics. Macromol Biosci 2005; 5:983-92. [PMID: 16208632 DOI: 10.1002/mabi.200500091] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of this study was to synthesize and characterize a novel biocompatible polymeric membrane system and demonstrate its potential use in various biomedical applications. Synthetic hydrogels based on poly(hydroxyethyl methacrylate), poly(HEMA), have been widely studied and used in biomedical fields. A novel copolymer hydrogel was prepared in the membrane form using 2-hydroxyethyl methacrylate monomer (HEMA) and a macromonomer p-vinylbenzyl-poly(ethylene oxide) (V-PEO) via photoinitiated polymerization. A series of poly(HEMA/V-PEO) copolymer membranes with different compositions was prepared. The membranes were characterized using infrared, thermal and SEM analysis. The thermal stabilities of the copolymer membranes were found to be lowered by an increase in the ratio of macromonomer (V-PEO) in the membrane structure. Because of the incorporation of PEO segments, the copolymers exhibited significantly higher hydrophilic surface properties than pure poly(HEMA), as demonstrated by contact angle measurements. Equilibrium swelling studies were conducted to investigate the swelling behavior of the membranes. The equilibrium water uptake was reached in about 4 h. Moreover, the blood protein adsorption and platelet adhesion were significantly reduced on the surface of the PEO containing copolymer membranes compared to control pure poly(HEMA). Drug release experiments were performed in a continuous release system using model drug (vancomycin) loaded copoly(HEMA/V-PEO) membranes. A specific poly(HEMA/V-PEO) membrane formulation possessing the highest PEO content (with a HEMA:V-PEO (mmol:mmol) feed ratio of 112:1 and loaded with 40 mg antibiotic/g polymer) released about 81% of the total loaded drug in 24 h at pH 7.4. This membrane composition provided the best results and can be considered as a potential candidate for a transdermal antibiotic carrier and various biomedical and biotechnological applications.
Collapse
Affiliation(s)
- M Yakup Arica
- Biochemical Processing and Biomaterial Research Laboratory, Faculty of Science, Kirikkale University, 71450-Yahşihan-Kirikkale, Turkey.
| | | | | | | | | | | |
Collapse
|
310
|
Roosjen A, de Vries J, van der Mei HC, Norde W, Busscher HJ. Stability and effectiveness against bacterial adhesion of poly(ethylene oxide) coatings in biological fluids. J Biomed Mater Res B Appl Biomater 2005; 73:347-54. [PMID: 15736286 DOI: 10.1002/jbm.b.30227] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Poly(ethylene oxide) (PEO) coatings have been shown to reduce the adhesion of different microbial strains and species and thus are promising as coatings to prevent biomaterial-centered infection of medical implants. Clinically, however, PEO coatings are not yet applied, as little is known about their stability and effectiveness in biological fluids. In this study, PEO coatings coupled to a glass substratum through silyl ether bonds were exposed for different time intervals to saliva, urine, or phosphate-buffered saline (PBS) as a reference at 37 degrees C. After exposure, the effectiveness of the coatings against bacterial adhesion was assessed in a parallel plate flow chamber. The coatings appeared effective against Staphylococcus epidermidis adhesion for 24, 48, and 0.5 h in PBS, urine, and saliva, respectively. Using XPS and contact-angle measurements, the variations in effectiveness could be attributed to conditioning film formation. The overall short stability results from hydrolysis of the coupling of the PEO chains to the substratum.
Collapse
Affiliation(s)
- Astrid Roosjen
- Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
311
|
Fang F, Satulovsky J, Szleifer I. Kinetics of protein adsorption and desorption on surfaces with grafted polymers. Biophys J 2005; 89:1516-33. [PMID: 15994887 PMCID: PMC1366657 DOI: 10.1529/biophysj.104.055079] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 06/02/2005] [Indexed: 11/18/2022] Open
Abstract
The kinetics of protein adsorption are studied using a generalized diffusion approach which shows that the time-determining step in the adsorption is the crossing of the kinetic barrier presented by the polymers and already adsorbed proteins. The potential of mean-force between the adsorbing protein and the polymer-protein surface changes as a function of time due to the deformation of the polymer layers as the proteins adsorb. Furthermore, the range and strength of the repulsive interaction felt by the approaching proteins increases with grafted polymer molecular weight and surface coverage. The effect of molecular weight on the kinetics is very complex and different than its role on the equilibrium adsorption isotherms. The very large kinetic barriers make the timescale for the adsorption process very long and the computational effort increases with time, thus, an approximate kinetic approach is developed. The kinetic theory is based on the knowledge that the time-determining step is crossing the potential-of-mean-force barrier. Kinetic equations for two states (adsorbed and bulk) are written where the kinetic coefficients are the product of the Boltzmann factor for the free energy of adsorption (desorption) multiplied by a preexponential factor determined from a Kramers-like theory. The predictions from the kinetic approach are in excellent quantitative agreement with the full diffusion equation solutions demonstrating that the two most important physical processes are the crossing of the barrier and the changes in the barrier with time due to the deformation of the polymer layer as the proteins adsorb/desorb. The kinetic coefficients can be calculated a priori allowing for systematic calculations over very long timescales. It is found that, in many cases where the equilibrium adsorption shows a finite value, the kinetics of the process is so slow that the experimental system will show no adsorption. This effect is particularly important at high grafted polymer surface coverage. The construction of guidelines for molecular weight/surface coverage necessary for kinetic prevention of protein adsorption in a desired timescale is shown. The time-dependent desorption is also studied by modeling how adsorbed proteins leave the surface when in contact with a pure water solution. It is found that the kinetics of desorption are very slow and depend in a nonmonotonic way in the polymer chain length. When the polymer layer thickness is shorter than the size of the protein, increasing polymer chain length, at fixed surface coverage, makes the desorption process faster. For polymer layers with thickness larger than the protein size, increases in molecular weight results in a longer time for desorption. This is due to the grafted polymers trapping the adsorbed proteins and slowing down the desorption process. These results offer a possible explanation to some experimental data on adsorption. Limitations and extension of the developed approaches for practical applications are discussed.
Collapse
Affiliation(s)
- Fang Fang
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
312
|
Salchert K, Gouzy MF, Glorius M, Kühn A, Nitschke M, Werner C. Immobilization of an anticoagulant benzamidine derivative: effect of spacer arms and carrier hydrophobicity on thrombin binding. Acta Biomater 2005; 1:441-9. [PMID: 16701825 DOI: 10.1016/j.actbio.2005.04.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2004] [Revised: 03/02/2005] [Accepted: 04/07/2005] [Indexed: 11/29/2022]
Abstract
Prevention of blood coagulation is very often a prerequisite for successful medical devices. For that purpose, passivation of the key coagulation enzyme thrombin through the derivatization of the material's surface with an amidine-based molecule has been found to be promising. To further enhance the efficiency of this approach, thin layers of maleic anhydride copolymers offering different physico-chemical characteristics were tethered with carboxyl terminated polyethylene glycol to covalently immobilize a benzamidine-type derivative. The free carboxyl surface groups produced by the attachment of polyethylene glycol (PEG) were quantified by Ag(+) labeling and subsequent XPS detection. The film thickness as well as the carboxyl group content were found to be clearly dependent on the copolymer hydrophobicity and the nature of the PEG molecule. For the assessment of the anchorage of the thrombin to the benzamidine-derivative functionalized surfaces, the substrates were immersed in a buffered thrombin solution and the enzyme adsorption was studied using immunostaining/confocal laser scanning microscopy. Higher degrees of thrombin binding were observed for substrates configured with the hydrophilic compared to the more hydrophobic copolymer. Moreover, surface-bound spacers based on alpha,omega-heterobifunctional PEG amino acids (alphaAm,omegaAc-PEG) also enhanced the benzamidine surface density in comparison to homofunctional PEG diacids (alphaAc,omegaAc-PEG) because of a lower degree of carboxyl inactivation due to PEG 'bridging'. Altogether, the choice of copolymer coatings and the type of PEG spacers were demonstrated to enhance the efficiency of the thrombin scavenging by the covalently immobilized coagulation inhibitor.
Collapse
Affiliation(s)
- Katrin Salchert
- Department of Biomaterials, Leibniz Institute of Polymer Research Dresden eV and the Max Bergmann Center of Biomaterials Dresden, Germany
| | | | | | | | | | | |
Collapse
|
313
|
Bosker WTE, Iakovlev PA, Norde W, Cohen Stuart MA. BSA adsorption on bimodal PEO brushes. J Colloid Interface Sci 2005; 286:496-503. [PMID: 15897063 DOI: 10.1016/j.jcis.2005.01.091] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2004] [Accepted: 01/24/2005] [Indexed: 11/26/2022]
Abstract
BSA adsorption onto bimodal PEO brushes at a solid surface was measured using optical reflectometry. Bimodal brushes consist of long (N=770) and short (N=48) PEO chains and were prepared on PS surfaces, applying mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) block copolymers and using the Langmuir-Blodgett technique. Pi-A isotherms of (mixtures of) the block copolymers were measured to establish the brush regime. The isotherms of PS(29)-PEO(48) show hysteresis between compression and expansion cycles, indicating aggregation of the PS(29)-PEO(48) upon compression. Mixtures of PS(29)-PEO(48) and PS(37)-PEO(770) demonstrate a similar hysteresis effect, which eventually vanishes when the ratio of PS(37)-PEO(770) to PS(29)-PEO(48) is increased. The adsorption of BSA was determined at brushes for which the grafting density of the long PEO chains was varied, while the total grafting density was kept constant. BSA adsorption onto monomodal PEO(48) and PEO(770) brushes was determined for comparison. The BSA adsorption behavior of the bimodal brushes is similar to the adsorption of BSA at PEO(770) monomodal brushes. The maximum of BSA adsorption at low grafting density of PEO(770) can be explained by ternary adsorption, implying an attraction between BSA and PEO. The contribution of primary adsorption to the total adsorbed amount is negligible.
Collapse
Affiliation(s)
- W T E Bosker
- Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6703 HB Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
314
|
Kim YW, Shick Ahn W, Kim JJ, Ha Kim Y. In situ fabrication of self-transformable and hydrophilic poly(ethylene glycol) derivative-modified polysulfone membranes. Biomaterials 2005; 26:2867-75. [PMID: 15603782 DOI: 10.1016/j.biomaterials.2004.08.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Accepted: 08/10/2004] [Indexed: 11/21/2022]
Abstract
A self-transformable sulfonated poly(ethylene glycol) acrylate diblock copolymer (PEG-SO3A/OA) entrapped into polysulfone membrane was studied. The asymmetric membrane structure was prepared by a phase inversion process. The induced hydrophilicity by reorientation of diblock copolymer at the interface was evaluated by contact angle measurement, platelet adhesion test, and electron spectroscopy for chemical analysis (ESCA) depth profiling with ion sputtering. Molecular dynamic (MD) simulations as a function of copolymer density were also performed to obtain optimum interfacial structure information. The dependency of water clustering behavior as a hydrophilicity parameter was described in terms of an atom-atom radial distribution function (RDF). The results showed that the sulfonated diblock copolymer enhanced the hydrophilicity and long-term stability more than the copolymer having no hydrophobic block. Also, according to the ESCA, oxygen composition significantly began to decrease along the membrane depth, indicating the reorientation of diblock chains. The copolymer-entrapped surfaces significantly induced the degree of water clustering, and the resulting equilibrium rearrangement of interfacial structure was distinctly dependent upon the density of the copolymer.
Collapse
Affiliation(s)
- Yong-Wan Kim
- Department of Chemical and Biomolecular Engineering, Sogang University, 1 Sinsu-Dong, Mapo-Gu, Seoul 121-742, Korea.
| | | | | | | |
Collapse
|
315
|
DeLong SA, Moon JJ, West JL. Covalently immobilized gradients of bFGF on hydrogel scaffolds for directed cell migration. Biomaterials 2005; 26:3227-34. [PMID: 15603817 DOI: 10.1016/j.biomaterials.2004.09.021] [Citation(s) in RCA: 317] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2004] [Accepted: 09/08/2004] [Indexed: 12/01/2022]
Abstract
Basic fibroblast growth factor (bFGF) was immobilized to hydrogel scaffolds with retention of mitogenic and chemotactic activity. The bFGF was functionalized in order to incorporate it covalently within polyethylene glycol (PEG) hydrogel scaffolds by reaction with acryloyl-PEG-NHS. Hydrogels were formed by exposing aqueous solutions of PEG diacrylate, acryloyl-PEG-RGDS, and acryloyl-PEG-bFGF to long-wavelength ultraviolet light in the presence of a photoinitiator. These bFGF-modified hydrogels with RGD adhesion sites were evaluated for their effect on vascular smooth muscle cell (SMC) behavior, increasing SMC proliferation by approximately 41% and migration by approximately 15%. A covalently immobilized bFGF gradient was formed using a gradient maker to pour the hydrogel precursor solutions and then photopolymerizing to lock in the concentration gradient. Silver staining was used to detect the bFGF gradient, which increased linearly along the hydrogel's length. Cells were observed to align on hydrogels modified with a bFGF gradient in the direction of increasing tethered bFGF concentration as early as 24 h after seeding. SMCs also migrated differentially, up the concentration gradient, on bFGF-gradient hydrogels compared to control hydrogels with and without a constant bFGF concentration. These hydrogel scaffolds may be useful for studying protein gradient effects on cell behavior and for directing cell migration in tissue-engineering applications.
Collapse
Affiliation(s)
- Solitaire A DeLong
- Department of Bioengineering, Rice University, 6100 Main St., MS 142, Houston, TX 77005, USA
| | | | | |
Collapse
|
316
|
Meadows PY, Walker GC. Force microscopy studies of fibronectin adsorption and subsequent cellular adhesion to substrates with well-defined surface chemistries. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:4096-4107. [PMID: 15835980 DOI: 10.1021/la047241v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular force spectroscopy was used to study the mechanical behavior of plasma fibronectin (FN) on mica, gold, poly(ethylene glycol), and -CH(3), -OH, and -COOH terminated alkanethiol self-assembled monolayers. Proteins were examined at two concentrations, one resulting in a saturated surface with multiple intermolecular interactions referred to as the aggregate state and another resulting in a semiaggregate state where the proteins were neither completely isolated nor completely aggregated. Modeling of the force-extension data using two different theories resulted in similar trends for the fitted thermodynamic parameters from which insight into the protein's binding state could be obtained. Aggregated proteins adsorbed on hydrophobic surfaces adopted more rigid conformations apparently as a result of increased surface denaturation and tighter binding while looser conformations were observed on more hydrophilic surfaces. Studies of FN in a semiaggregate state showed heterogeneity in the model's thermodynamic parameters suggesting that, in the early stages of nonspecific adsorption, multiple protein conformations exist, each having bound irreversibly to the substrate. Proteins in this state all demonstrated a more rigid conformation than in the corresponding aggregate studies due to the greater number of substrate contacts available to the protein. Finally, the force spectroscopy experiments were examined for any biocompatibility correlation by seeding substrates with human umbilical vascular endothelial cells. As predicted from the models used in this work, surfaces with aggregated FN promoted cellular deposition while surfaces with FN in a semiaggregate state appeared to hinder cellular deposition and growth. The atomic force microscope's use as a means for projecting surface biocompatibility, although requiring additional testing, does look promising.
Collapse
Affiliation(s)
- Pamela Y Meadows
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
317
|
Ruckenstein E, Li ZF. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Colloid Interface Sci 2005; 113:43-63. [PMID: 15763238 DOI: 10.1016/j.cis.2004.07.009] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 07/27/2004] [Indexed: 11/22/2022]
Abstract
The modification of a surface at the molecular level with precise control of the building blocks generates an integrated molecular system. This field has progressed rapidly in recent years through the use of self-assembled monolayer (SAM) interfaces. Recent developments on surface-initiated chemical reactions, functionalization, and graft polymerization on SAM interfaces are emphasized in the present review. A number of surface modifications by grafting are reviewed. The grafting of polyaniline on a glass surface, previously modified with a silane self-assembled monolayer (SAM), is examined in detail for both planar and 3-D systems, such as fibers, nanoparticles, and even polymer patterned surfaces. We also discuss the graft polymerization of water-soluble polymers on the surface of silicon nanoparticles, which generate stable aqueous colloidal solutions and have numerous applications. Finally, we compare and review some surface-modification techniques on the surfaces of polymers, such as two-solvent entrapment, polymer blending, and chemical grafting, which improve their biocompatibility.
Collapse
Affiliation(s)
- E Ruckenstein
- Department of Chemical and Biological Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA.
| | | |
Collapse
|
318
|
Lan S, Veiseh M, Zhang M. Surface modification of silicon and gold-patterned silicon surfaces for improved biocompatibility and cell patterning selectivity. Biosens Bioelectron 2005; 20:1697-708. [PMID: 15681184 DOI: 10.1016/j.bios.2004.06.025] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2004] [Revised: 06/03/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
Clean silicon and gold-patterned silicon platforms were modified with methoxy-polyethylene glycol (M-PEG silane) via a self-assembly technique, which significantly improved their plasma protein resistance capability and cell patterning selectivity. Fibrinogen and IgG were used as model plasma proteins to study the efficacy of PEG layers in resisting protein adsorption. Selective cell patterning on the gold regions of a gold-patterned silicon substrate and tissue compatibility were studied with macrophage and fibroblast cells. The research also revealed how the presence of gold electrodes on a silicon substrate would influence the cell patterning selectivity. Our experimental results showed that the PEG-modified silicon surfaces had a high resistivity to protein and cell attachment and that the PEG-modified gold-patterned silicon surfaces nearly completely eliminated the protein adsorption and cell attachment on silicon. This study provides a new approach to developing biocompatible surfaces for silicon-based BioMEMS devices, particularly for biosensors where a metal-insulator format must be enforced.
Collapse
Affiliation(s)
- Sheeny Lan
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
319
|
Kim H, Doh J, Irvine DJ, Cohen RE, Hammond PT. Large area two-dimensional B cell arrays for sensing and cell-sorting applications. Biomacromolecules 2005; 5:822-7. [PMID: 15132667 DOI: 10.1021/bm034341r] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Regular arrays of nonadherent B cells over large areas were produced with the use of micropatterned molecular templates consisting of a newly designed poly(allylamine)-g-poly(ethylene glycol) polycation graft copolymer. Polymer-on-polymer stamping (POPS) techniques were applied successfully to create micron scale patterns of the graft copolymer on negatively charged multilayer surfaces without losing resistance to the nonspecific adsorption of proteins. To generate templates for B cell arrays, the characteristics of the patterned surface were modified via introduction of surface biotinylation and specific protein adsorption. The qualities of B cell arrays resulting from each template suggest the binding strength between nonadherent B cells and the template surface is the controlling factor in the fabrication of clean and regular arrays of immobilized lymphocytes over large areas, which is critical in many bio-technological and immunological applications.
Collapse
Affiliation(s)
- Heejae Kim
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | |
Collapse
|
320
|
Johnston EE, Bryers JD, Ratner BD. Plasma deposition and surface characterization of oligoglyme, dioxane, and crown ether nonfouling films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:870-881. [PMID: 15667162 DOI: 10.1021/la036274s] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plasma-deposited PEG-like films are emerging as promising materials for preventing protein and bacterial attachment to surfaces. To date, there has not been a detailed surface analysis to examine the chemistry and molecular structure of these films as a function of both precursor size and structure. In this paper, we describe radio-frequency plasma deposition of a series of short-chain oligoglymes, dioxane, and crown ethers onto glass cover slips to create poly(ethylene glycol)-like coatings. The resultant films were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (TOF-SIMS), dynamic contact angle goniometry, and radiolabeled fibrinogen adsorption. Detailed analysis of the high-mass (120-300 m/z) TOF-SIMS oligoglyme film spectra revealed six classes of significant fragments. Two new models are proposed to describe how these fragments could be formed by distinct film-building processes: incorporation of intact and fragmented precursor molecules. The models also provide for the incorporation of hydrocarbon--a species that is not present in the precursors but is evidenced in XPS C(1s) spectra of these films. Two additional models describe the effects of incorporating intact and fragmented cyclic precursors.
Collapse
Affiliation(s)
- Erika E Johnston
- University of Washington Engineered Biomaterials, Box 351720 Bagley Hall #484, Seattle, WA 98195-1720, USA
| | | | | |
Collapse
|
321
|
Zhu AP, Chan-Park MB, Gao JX. Foldable micropatterned hydrogel film made from biocompatible PCL-b-PEG-b-PCL diacrylate by UV embossing. J Biomed Mater Res B Appl Biomater 2005; 76:76-84. [PMID: 16134176 DOI: 10.1002/jbm.b.30348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Foldable hydrogel films with micropatterns measuring 480 microm by 45 microm by 54 microm by 2 cm (width of microchannel by width of microwall by height of wall by length of pattern) were made by UV embossing of a block copolymer of polycaprolactone (PCL) and poly(ethylene glycol) (PEG), specifically PCL-b-PEG-b-PCL-diacrylate (DA), with a polydimethylsiloxane mold. The mold was treated with Ar/CF(4) plasma to simultaneously promote microchannel filling and demolding, and the glass substrate was modified with 3-(trimethoxysilyl) propyl acrylate to promote hydrogel adhesion to avoid delamination of the gel during demolding. The micropatterned hydrogel film was detached from the glass substrate by freeze-drying. As the films were demolded, the microstructured pattern was well replicated in the hydrogel. The gel pattern dimensions shrank with freeze-drying and increased with water swelling, but under both conditions, the gel micropattern morphology was perfectly preserved. PCL-b-PEG-b-PCL-DA hydrogel was found to have good biocompatibility compared with PEGDA hydrogel. A micropattern with a smaller microchannel width of 50 microm was also made. Micropatterned foldable and biocompatible hydrogel films have potential applications in the construction of tissue-engineering scaffolds.
Collapse
Affiliation(s)
- Ai Ping Zhu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | | | | |
Collapse
|
322
|
Li J, Gong Y, Zhao N, Zhang X. Preparation ofN-butyl chitosan and study of its physical and biological properties. J Appl Polym Sci 2005. [DOI: 10.1002/app.22212] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
323
|
Dong B, Manolache S, Somers EB, Lee Wong AC, Denes FS. Generation of antifouling layers on stainless steel surfaces by plasma-enhanced crosslinking of polyethylene glycol. J Appl Polym Sci 2005. [DOI: 10.1002/app.21766] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
324
|
Gorbet MB, Sefton MV. Complement inhibition reduces material-induced leukocyte activation with PEG modified polystyrene beads (Tentagel™) but not polystyrene beads. J Biomed Mater Res A 2005; 74:511-22. [PMID: 16035062 DOI: 10.1002/jbm.a.30354] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With isolated leukocytes, inhibiting complement reduced material-induced leukocyte activation (CD11b) with polyethylene glycol modified polystyrene beads (PS-PEG), but not with polystyrene beads (PS). The PS-PEG beads (TentaGel) were complement activating as measured by SC5b-9 levels consistent with the sensitivity of these beads to leukocyte inhibition with complement inhibitors. Following contact with PS and PS-PEG beads, isolated leukocytes in plasma and in the absence in platelets were found to significantly upregulate CD11b, while TF expression and exposure of phosphatidylserine remained at background levels. Complement inhibition by means of sCR1 partially reduced CD11b upregulation on PS-PEG beads, but had no effect with PS beads. Pyridoxal-5-phosphate (P5P) was able to significantly reduce both CD11b upregulation and exposure of phosphatidylserine with PS-PEG beads, although it did not appear to inhibit SC5b-9 production. Pentamidine and NAAGA inhibited complement and were effective in reducing CD11b upregulation with both PS and PS-PEG. However, they also had an inhibitory effect on leukocyte signaling mechanisms, precluding their utility for further study in this context. Leukocyte adhesion occurred to similar extents on both PS and PS-PEG beads. While sCR1 and P5P blocked adhesion and activation (for adherent leukocytes) on PS-PEG beads, they had no effect on leukocytes adherent to PS beads. The role of complement in leukocyte activation and adhesion was found to be material-dependent. Thus, leukocyte-material compatibility may be resolved by complement inhibition in some but not all cases. For these other materials (example here was PS), other mechanisms, such as fibrinogen adsorption and direct leukocyte release, may need exploitation to minimize leukocyte activation and adhesion.
Collapse
Affiliation(s)
- M B Gorbet
- Department of Chemical Engineering and Applied Chemistry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | | |
Collapse
|
325
|
Hong Y, Krsko P, Libera M. Protein surface patterning using nanoscale PEG hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:11123-11126. [PMID: 15568866 DOI: 10.1021/la048651m] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have used focused electron-beam cross-linking to create nanosized hydrogels and thus present a new method with which to bring the attractive biocompatibility associated with macroscopic hydrogels into the submicron length-scale regime. Using amine-terminated poly(ethylene glycol) thin films on silicon substrates, we generate nanohydrogels with lateral dimensions of order 200 nm which can swell by a factor of at least five, depending on the radiative dose. With the focused electron beam, high-density arrays of such nanohydrogels can be flexibly patterned onto silicon surfaces. Significantly, the amine groups remain functional after e-beam exposure, and we show that they can be used to covalently bind proteins and other molecules. We use bovine serum albumin to amplify the number of amine groups, and we further demonstrate that different proteins can be covalently bound to different hydrogel pads on the same substrate to create multifunctional surfaces useful in emerging bio/proteomic and sensor technologies.
Collapse
Affiliation(s)
- Ye Hong
- Department of Chemical, Biomedical, and Materials Engineering, Stevens Institute of Technology, Hoboken, New Jersey 07030, USA
| | | | | |
Collapse
|
326
|
Roosjen A, van der Mei HC, Busscher HJ, Norde W. Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:10949-10955. [PMID: 15568845 DOI: 10.1021/la048469l] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glass surfaces were modified by end-grafting poly(ethylene oxide) (PEO) chains having molecular weights of 526, 2000, or 9800 Da. Characterization using water contact angles, ellipsometry, and X-ray photoelectron spectroscopy confirmed the presence of the PEO brushes on the surface with estimated lengths in water of 2.8-, 7.5-, and 23.7-nm, respectively. Adhesion of two bacterial (Staphylococcus epidermidis and Pseudomonas aeruginosa) and two yeast (Candida albicans and Candida tropicalis) strains to these brushes was studied and compared to their adhesion to bare glass. For the bacterium P. aeruginosa and the yeast C. tropicalis, adhesion to the 2.8-nm brush was comparable to their adhesion on bare glass, whereas adhesion to the 7.5- and 23.7-nm brushes was greatly reduced. For S. epidermidis, adhesion was only slightly higher to the 2.8-nm brush than that to the longer brushes. Adhesion of the yeast C. albicans to the PEO brushes was lower than that to glass, but no differences in adhesion were found between the three brush lengths. After passage of an air bubble, nearly all microorganisms adhering to a brush were removed, irrespective of brush length, whereas retention of the adhering organisms on glass was much higher. No significant differences were found in adhesion nor retention between experiments conducted at 20 and those conducted at 37 degrees C.
Collapse
Affiliation(s)
- Astrid Roosjen
- Department of Biomedical Engineering, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
327
|
Archambault JG, Brash JL. Protein resistant polyurethane surfaces by chemical grafting of PEO: amino-terminated PEO as grafting reagent. Colloids Surf B Biointerfaces 2004; 39:9-16. [PMID: 15542334 DOI: 10.1016/j.colsurfb.2004.08.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2004] [Indexed: 10/26/2022]
Abstract
The objective of this work was to gain a better understanding of the mechanism of resistance to protein adsorption of surfaces grafted with poly(ethylene oxide) (PEO). A polyurethane-urea was used as a substrate to which PEO was grafted. Grafting was carried out by introducing isocyanate groups into the surface followed by reaction with amino-terminated PEO. Surfaces grafted with PEO of various chain lengths (PUU-NPEO) were prepared and characterized by water contact angle and X-ray photoelectron spectroscopy (XPS). XPS data indicated higher graft densities on the PUU-NPEO surfaces than on analogous surfaces prepared using hydroxy-PEO (PUU-OPEO) as reported previously [J.G. Archambault, J.L. Brash, Colloids Surf. B: Biointerf. 33 (2004) 111-120]. Protein adsorption experiments using radiolabeled myoglobin, concanavalin A, albumin, fibrinogen and ferritin as single proteins in buffer showed that adsorption was reduced on the PEO-grafted surfaces by up to 95% compared to the control. Adsorption decreased with increasing PEO chain length and reached a minimum at a PEO MW of 2000. Adsorption levels on surfaces with 5000 and 2000 MW grafts were similar. There was no clear effect of protein size on resistance to protein adsorption. Adsorption on the PUU-NPEO surfaces was significantly lower than on the corresponding PUU-OPEO surfaces, again suggesting higher graft densities on the former. Adsorption of fibrinogen from plasma was also greatly reduced on the grafted surfaces. From analysis (SDS-PAGE, immunoblotting) of the proteins eluted after plasma exposure, it was found that the grafted surfaces and the unmodified substrate adsorbed the same proteins in roughly the same proportions, suggesting that adsorption to the PEO surfaces occurs on patches of bare substrate. The PEO grafts did not apparently cause differential access to the substrate based on protein size.
Collapse
Affiliation(s)
- Jacques G Archambault
- Department of Chemical Engineering, McMaster University, Hamilton, Ont., Canada L8S 4L7
| | | |
Collapse
|
328
|
Fisher JP, Lalani Z, Bossano CM, Brey EM, Demian N, Johnston CM, Dean D, Jansen JA, Wong MEK, Mikos AG. Effect of biomaterial properties on bone healing in a rabbit tooth extraction socket model. J Biomed Mater Res A 2004; 68:428-38. [PMID: 14762922 DOI: 10.1002/jbm.a.20073] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this work we sought to understand the effect of biomaterial properties upon healing bone tissue. We hypothesized that a hydrophilic polymer gel implanted into a bone tissue defect would impede the healing process owing to the biomaterial's prevention of protein adsorption and thus cell adhesion. To test this hypothesis, healing bone was investigated within a rabbit incisor extraction socket, a subcritical size bone defect that resists significant soft tissue invasion by virtue of its conformity. After removal of the incisor teeth, one tooth socket was left as an empty control, one was filled with crosslinked polymer networks formed from the hydrophobic polymer poly(propylene fumarate) (PPF), and one was filled with a hydrogel formed from the hydrophilic oligomer oligo(poly(ethylene glycol) fumarate) (OPF). At five different times (4 days as well as 1, 2, 4, and 8 weeks), jaw bone specimens containing the tooth sockets were removed. We analyzed bone healing by histomorphometrical analysis of hematoxylin and eosin stained sections as well as immunohistochemically stained sections. The proposed hypothesis, that a hydrophilic material would hinder bone healing, was supported by the histomorphometrical results. In addition, the immunohistochemical results reflect molecular signaling indicative of the early invasion of platelets, the vascularization of wound-healing tissue, the differentiation of migrating progenitor cells, and the formation and remodeling of bone tissue. Finally, the results emphasize the need to consider biomaterial properties and their differing effects upon endogenous growth factors, and thus bone healing, during the development of tissue engineering devices.
Collapse
Affiliation(s)
- John P Fisher
- Department of Bioengineering, Rice University, PO Box 1892, MS 142, Houston, Texas 77251, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Gouzy MF, Sperling C, Salchert K, Pompe T, Streller U, Uhlmann P, Rauwolf C, Simon F, Böhme F, Voit B, Werner C. In vitro blood compatibility of polymeric biomaterials through covalent immobilization of an amidine derivative. Biomaterials 2004; 25:3493-501. [PMID: 15020123 DOI: 10.1016/j.biomaterials.2003.10.091] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Accepted: 10/20/2003] [Indexed: 11/26/2022]
Abstract
We present a surface coating with anticoagulant characteristics showing significantly reduced coagulation activation. The synthesis of a monomeric conjugate containing a benzamidine moiety was carried out and its inhibitory activity against human thrombin, the key enzyme of the blood coagulation cascade, was determined using a chromogenic assay. Based on that, low-thrombogenic interfaces were prepared by covalent attachment of this low-molecular weight thrombin inhibitor on poly(octadecene-alt-maleic anhydride) copolymer thin films and characterized using ellipsometry, XPS and dynamic contact angle measurements. The in vitro hemocompatibility tests using freshly drawn human whole blood showed, in agreement with the SEM images, that a PO-MA film modified with a benzamidine moiety using a PEG spacer decreased the activation of coagulation, platelets and the complement system. The decreased protein adsorption, in addition to the specific inhibition of thrombin, effectively enhanced the short-term hemocompatibility characteristics.
Collapse
Affiliation(s)
- M-F Gouzy
- Institute of Polymer Research Dresden and The Max Bergmann Center of Biomaterials Dresden, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
Li Y, Neoh KG, Kang ET. Plasma protein adsorption and thrombus formation on surface functionalized polypyrrole with and without electrical stimulation. J Colloid Interface Sci 2004; 275:488-95. [PMID: 15178277 DOI: 10.1016/j.jcis.2004.02.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2003] [Accepted: 02/24/2004] [Indexed: 10/26/2022]
Abstract
A surface modification technique was developed in which heparin was covalently immobilized onto electrically conductive polypyrrole (PPY) film through poly(ethylene glycol) methacrylate (PEGMA) graft copolymerization and subsequent cyanuric chloride activation. In vitro plasma protein adsorption and thrombus formation experiments were carried out on the various films. The PEGMA-graft-copolymerized PPY surfaces with immobilized heparin have good bioactivity indicated by low level of protein adsorption, high ratio of albumin to fibrinogen adsorption, and low thrombus formation, making them potentially good candidates for biomedical applications. Since the PPY film retained significant electrical conductivity after surface modification, the effect of electrical stimulation on protein adsorption and thrombus formation was also evaluated. The covalently immobilized heparin on the PPY film was able to retain its bioactivity after 4 days of immersion in PBS. The film after long-term immersion in PBS also retained sufficient electrical conductivity for electrical stimulation still to be effective for reducing protein adsorption.
Collapse
Affiliation(s)
- Yali Li
- Department of Chemical and Environmental Engineering, National University of Singapore, Kent Ridge, Singapore 119260
| | | | | |
Collapse
|
331
|
Gunn JW, Turner SD, Mann BK. Adhesive and mechanical properties of hydrogels influence neurite extension. ACTA ACUST UNITED AC 2004; 72:91-7. [PMID: 15536643 DOI: 10.1002/jbm.a.30203] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photopolymerizable polyethylene glycol (PEG) hydrogels conjugated with bioactive ligands were examined for their use as scaffolds in peripheral nerve regeneration applications. The bioactivity and mechanical properties of PEG hydrogels can be tailored through the integration of bioactive factors (adhesion ligands, proteolytic sites, growth factors) and the alteration of PEG concentrations, respectively. For peripheral nerve regeneration, it will be important to determine the type and concentration of the bioactive molecules required to improve neurite extension. In this study, cell adhesion ligands (RGDS, IKVAV, and YIGSR) were covalently attached to PEG hydrogels. Both the type and concentration of cell adhesion ligand used affected neurite extension. Extension from PC12 cells was greater on hydrogels with RGDS incorporated than IKVAV, and the optimal concentration for each ligand was different. Cells adhered to but did not extend neurites on hydrogels with YIGSR. Cells did not adhere to hydrogels containing RGES. Furthermore, different combinations of these ligands affected neurite extension to different degrees. The mechanical properties of the hydrogels also significantly affected neurite extension. PC12 cells grown on more flexible hydrogels exhibited the greatest degree of neurite extension. PEG hydrogels have thus been developed with varying biochemical and mechanical properties that may enhance nerve regeneration.
Collapse
Affiliation(s)
- Jonathan W Gunn
- Keck Graduate Institute, 535 Watson Drive, Claremont, California 91711, USA
| | | | | |
Collapse
|
332
|
CELL–MATERIAL INTERACTIONS. ADVANCES IN CHEMICAL ENGINEERING: MOLECULAR AND CELLULAR FOUNDATIONS OF BIOMATERIALS 2004. [DOI: 10.1016/s0065-2377(03)29002-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
333
|
Li ZF, Ruckenstein E. Grafting of poly(ethylene oxide) to the surface of polyaniline films through a chlorosulfonation method and the biocompatibility of the modified films. J Colloid Interface Sci 2004; 269:62-71. [PMID: 14651896 DOI: 10.1016/s0021-9797(03)00606-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Poly(ethylene oxide) (PEO) could be grafted on the surface of polyaniline (PANI) films by chlorosulfonating the films with chlorosulfonic acid followed by reacting the modified films with PEO in a pyridine solution. The modified PANI films were examined by X-ray photoelectron spectroscopy and water droplet contact angles. The surface of the PEO grafted to hydrophobic PANI films became hydrophilic and the amounts of bovine serum albumin and human blood plasma platelet adsorbed onto it were decreased by more than 80%. For comparison purposes, and because the water wetting angle can be used as a measure of biocompatibility, wetting angle experiments have been also carried out for Pluronic triblock copolymer grafted to PANI and PEO or Pluronic molecules entrapped on the surfaces of PANI films. PANI was selected as substrate because one can easily change its surface properties by PEO grafting and because being conductive can be used as a sensor.
Collapse
Affiliation(s)
- Z F Li
- Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | |
Collapse
|
334
|
Archambault JG, Brash JL. Protein repellent polyurethane-urea surfaces by chemical grafting of hydroxyl-terminated poly(ethylene oxide): effects of protein size and charge. Colloids Surf B Biointerfaces 2004. [DOI: 10.1016/j.colsurfb.2003.09.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
335
|
Patel JD, Ebert M, Stokes K, Ward R, Anderson JM. Inhibition of bacterial and leukocyte adhesion under shear stress conditions by material surface chemistry. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 14:279-95. [PMID: 12713100 DOI: 10.1163/156856203763572725] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Biomaterial-centered infections, initiated by bacterial adhesion, persist due to a compromised host immune response. Altering implant materials with surface modifying endgroups (SMEs) may enhance their biocompatibility by reducing bacterial and inflammatory cell adhesion. A rotating disc model, which generates shear stress within physiological ranges, was used to characterize adhesion of leukocytes and Staphylococcus epidermidis on polycarbonate-urethanes and polyetherurethanes modified with SMEs (polyethylene oxide, fluorocarbon and dimethylsiloxane) under dynamic flow conditions. Bacterial adhesion in the absence of serum was found to be mediated by shear stress and surface chemistry, with reduced adhesion exhibited on materials modified with polydimethylsiloxane and polyethylene oxide SMEs. In contrast, bacterial adhesion was enhanced on materials modified with fluorocarbon SMEs. In the presence of serum, bacterial adhesion was primarily neither material nor shear dependent. However, bacterial adhesion in serum was significantly reduced to < or = 10% compared to adhesion in serum-free media. Leukocyte adhesion in serum exhibited a shear dependency with increased adhesion occurring in regions exposed to lower shear-stress levels of < or = 7 dyne/cm2. Additionally, polydimethylsiloxane and polyethylene oxide SMEs reduced leukocyte adhesion on polyether-urethanes. In conclusion, these results suggest that surface chemistry and shear stress can mediate bacterial and cellular adhesion. Furthermore, materials modified with polyethylene oxide SMEs are capable of inhibiting bacterial adhesion, consequently minimizing the probability of biomaterial-centered infections.
Collapse
Affiliation(s)
- Jasmine D Patel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
336
|
Kawasaki K, Kambara M, Matsumura H, Norde W. Protein adsorption at polymer-grafted surfaces: comparison between a mixture of saliva proteins and some well-defined model proteins. BIOFOULING 2003; 19:355-363. [PMID: 14768464 DOI: 10.1080/08927010310001615853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Grafting a dense layer of soluble polymers onto a surface is a well-established method for controlling protein adsorption. In the present study, polyethylene oxide (PEO) layers of three different grafting densities were prepared, i.e. 10-15 nm2, 5.5 nm2 and 4 nm2 per polymer chain, respectively. The adsorption of different proteins on the PEO grafted surfaces was measured in real time by reflectometry. Furthermore, the change of the zeta-potential of such surfaces resulting from adsorption of the proteins was determined using the streaming potential method. Both the protein adsorption and the zeta-potential were monitored for 1 h after exposure of the protein solution to the surface. The adsorption pattern for a mixture of saliva proteins was compared to those observed for a number of well-defined model-proteins (lysozyme, human serum albumin, beta-lactoglobulin and ovalbumin). The results of the adsorption kinetics and streaming potential measurements indicate that the effect of the PEO layer on protein adsorption primarily depends on the size and the charge of the protein molecules. The saliva proteins are strongly blocked for adsorption, whereas the change in the zeta-potential is larger than for the other proteins (except lysozyme). It is concluded that positively charged protein molecules, having dimensions larger than those of lysozyme, are involved in the initial stage of adsorption from saliva onto a negatively charged surface.
Collapse
Affiliation(s)
- K Kawasaki
- Osaka Dental University, 8-1, Kuzuhahanazono-cho, Hirakata-shi, Osaka, 573-1121, Japan.
| | | | | | | |
Collapse
|
337
|
Surface characterization of biocompatible polysulfone membranes modified with poly(ethylene glycol) derivatives. KOREAN J CHEM ENG 2003. [DOI: 10.1007/bf02706955] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
338
|
Kumar Dey R, Ray AR. Synthesis, characterization, and blood compatibility of copolymers of polyamidoamines andn-vinylpyrrolidone. J Appl Polym Sci 2003. [DOI: 10.1002/app.12977] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
339
|
Abstract
Arterial occlusive disease remains the leading cause of death in western countries and often requires vascular reconstructive surgery. The limited supply of suitable small-diameter vascular grafts has led to the development of tissue engineered blood vessel substitutes. Many different approaches have been examined, including natural scaffolds containing one or more ECM proteins and degradable polymeric scaffolds. For optimal graft development, many efforts have modified the culture environment to enhance ECM synthesis and organization using bioreactors under physiologic conditions and biochemical supplements. In the past couple of decades, a great deal of progress on TEVGs has been made. Many challenges remain and are being addressed, particularly with regard to the prevention of thrombosis and the improvement of graft mechanical properties. To develop a patent TEVG that grossly resembles native tissue, required culture times in most studies exceed 8 weeks. Even with further advances in the field, TEVGs will likely not be used in emergency situations because of the time necessary to allow for cell expansion, ECM production and organization, and attainment of desired mechanical strength. Furthermore, TEVGs will probably require the use of autologous tissue to prevent an immunogenic response, unless advances in immune acceptance render allogenic and xenogenic tissue use feasible. TEVGs have not yet been subjected to clinical trials, which will determine the efficacy of such grafts in the long term. Finally, off-the-shelf availability and cost will become the biggest hurdles in the development of a feasible TEVG product. Although many obstacles exist in the effort to develop a small-diameter TEVG, the potential benefits of such an achievement are exciting. In the near future, a nonthrombogenic TEVG with sufficient mechanical strength may be developed for clinical trials. Such a graft will have the minimum characteristics of biological tissue necessary to remain patent over a period comparable to current vein graft therapies. As science and technology advance, TEVGs may evolve into complex blood vessel substitutes. TEVGs may become living grafts, capable of growing, remodeling, and responding to mechanical and biochemical stimuli in the surrounding environment. These blood vessel substitutes will closely resemble native vessels in almost every way, including structure, composition, mechanical properties, and function. They will possess vasoactive properties and be able to dilate and constrict in response to stimuli. Close mimicry of native blood vessels may aid in the engineering of other tissues dependent upon vasculature to sustain function. With further understanding of the factors involved in cardiovascular development and function combined with the foundation of knowledge already in place, the development of TEVGs should one day lead to improved quality of life for those with vascular disease and other life-threatening conditions.
Collapse
Affiliation(s)
- Rachael H Schmedlen
- Department of Bioengineering, Rice University, 6100 Main Street, MS 142 Houston, TX 77005-1892, USA
| | | | | | | |
Collapse
|
340
|
Lee HJ, Hong JK, Goo HC, Lee WK, Park KD, Kim SH, Yoo YM, Kim YH. Improved blood compatibility and decreased VSMC proliferation of surface-modified metal grafted with sulfonated PEG or heparin. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:939-52. [PMID: 12463512 DOI: 10.1163/156856202320401979] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the technique of coronary stenting has remarkably improved long-term results in recent years, (sub)acute thrombosis and late restenosis still remain problems to be solved. Metallic surfaces were regarded as thrombogenic, due to their positive surface charges, and stenosis resulted from the activation and proliferation of vascular smooth muscle cells (VSMCs). In this study, a unique surface modification method for metallic surfaces was studied using a self-assembled monolayer (SAM) technique. The method included the deposition of thin gold layers, the chemisorption of disulfides containing functional groups, and the subsequent coupling of PEG derivatives or heparin utilizing the functional groups of the disulfides. All the reactions were confirmed by ATR-FTIR and XPS. The surface modified with sulfonated PEG (Au-S-PEG-SO3) or heparinized PEG (Au-S-PEG-Hep) exhibited decreased static contact angles and therefore increased hydrophilicity to a great extent, which resulted from the coupling of PEG and the ionic groups attached. In vitro fibrinogen adsorption and platelet adhesion onto the Au-S-PEG-SO3 or Au-S-PEG-Hep surfaces decreased to a great extent, indicating enhanced blood compatibility. This decreased interaction of the modified surfaces should be attributed to the non-adhesive property of PEG and the synergistic effect of sulfonated PEG. The effect of the surface modification on the adhesion and proliferation of VSMCs was also investigated. The modified Au-S-PEG-SO3 or Au-S-PEG-Hep surfaces also exhibited decreased adhesion of VSMCs, while the deposited gold layer itself was effective. The enhanced blood compatibility and the decreased adhesion of VSMCs on the modified metallic surfaces may help to decrease thrombus formation and suppress restenosis. It would therefore be very useful to apply these modified surfaces to stents for improved functions. A long-term in vivo study using animal models is currently under way.
Collapse
Affiliation(s)
- Hee Jung Lee
- Biomaterials Research Center, Korea Institute of Science and Technology, PO Box 131, Cheongnyang, Seoul 130-650, Korea
| | | | | | | | | | | | | | | |
Collapse
|
341
|
Kim YH, Han DK, Park KD, Kim SH. Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials 2003; 24:2213-23. [PMID: 12699657 DOI: 10.1016/s0142-9612(03)00023-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In our laboratory sulfonated PEO (PEO-SO(3)) was designed as a "negative cilia model" to investigate a synergistic effect of PEO and negatively charged SO(3) groups. PEO-SO(3) itself exhibited a heparin-like anticoagulant activity of 14% of free heparin. Polyurethane grafted with PEO-SO(3) (PU-PEO-SO(3)) increased the albumin adsorption to a great extent but suppressed other proteins, while PU-PEO decreased the adsorption of all the proteins. The platelet adhesion was decreased on PU-PEO but least on PU-PEO-SO(3) to demonstrate an additional effect of SO(3) groups. The enhanced blood compatibility of PU-PEO-SO(3) in the ex vivo rabbit and in vivo canine implanting tests was confirmed. Furthermore, PU-PEO-SO(3) exhibited an improved biostability and suppressed calcification in addition to the enhanced antithrombogenicity. The in vivo antithrombogenicity and biostability were improved in the order of PU<PU-PEO<PU-PEO-SO(3). The calcium amounts deposited was decreased in the order of PU>PU-PEO>PU-PEO-SO(3) in spite of the possible attraction between negative SO(3) groups and positive calcium ions. The bioprosthetic tissue (BT) was grafted with H(2)N-PEO-SO(3) via glutaraldehyde (GA) residues after conventional GA fixation. BT-PEO-SO(3) also displayed the decreased calcification by in vivo animal models. The application of PEO-SO(3) was extended by designing amphiphilic copolymers containing PEO-SO(3) moiety and hydrophobic long alkyl groups as anchors. The superior effect of PEO-SO(3) groups on thromboresistance compared to PEO was confirmed also in the case of copolymers coated or blended with other polymers and the systems coupled by UV irradiation, photoreaction or gold/sulfur or silane coupling technology, and therefore it might be very useful for the medical devices.
Collapse
Affiliation(s)
- Young Ha Kim
- Biomaterials Research Center, Korea Institute of Science and Technology, Seoul 130-650, Republic of Korea.
| | | | | | | |
Collapse
|
342
|
Bohner M, Ring TA, Rapoport N, Caldwell KD. Fibrinogen adsorption by PS latex particles coated with various amounts of a PEO/PPO/PEO triblock copolymer. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:733-46. [PMID: 12182554 DOI: 10.1163/156856202320269184] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polystyrene (PS) latex particles of different sizes were adsorption coated with the polymeric surfactant Pluronic F108 (PEO129-PPO56-PEO129). The commercial surfactant was found to have a bimodal molecular weight distribution. However, the maximum surface concentrations resulting from adsorption of either the purified high molecular weight component or the composite were identical. An increase in the copolymer surface concentration on 252-nm particles was found to decrease their fibrinogen uptake exponentially. At maximum copolymer surface concentration, the fibrinogen uptake was two orders of magnitude lower than that of bare particles (down from 3.3 mg/m2 to 0.03 mg/m2). This surface protection was equally effective whether the adsorption involved the bimodal polymer surfactant or the purified high molecular weight fraction. The PEO tail mobility was investigated with electron paramagnetic resonance (EPR), and found to increase with an increase in polymer surface concentration. The comparatively slow motion of the PEO chains at low surface concentration indicated that not only the PPO block, but also the PEO blocks interacted hydrophobically with the PS surface. When the copolymer surface concentration was increased, the PEO tails were gradually being released, acquiring higher mobility as the surface became covered by the more strongly binding PPO blocks. Results obtained with F108 coated particles of different sizes showed that particle size had a significant effect on the fibrinogen uptake, with larger particles showing larger fibrinogen uptakes.
Collapse
Affiliation(s)
- M Bohner
- Center for Biopolymers at Interfaces, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
343
|
Gopalan SM, Flaim C, Bhatia SN, Hoshijima M, Knoell R, Chien KR, Omens JH, McCulloch AD. Anisotropic stretch-induced hypertrophy in neonatal ventricular myocytes micropatterned on deformable elastomers. Biotechnol Bioeng 2003; 81:578-87. [PMID: 12514807 DOI: 10.1002/bit.10506] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Because cell shape and alignment, cell-matrix adhesion, and cell-cell contact can all affect growth, and because mechanical strains in vivo are multiaxial and anisotropic, we developed an in vitro system for engineering aligned, rod-shaped, neonatal cardiac myocyte cultures. Photolithographic and microfluidic techniques were used to micropattern extracellular matrices in parallel lines on deformable silicone elastomers. Confluent, elongated, aligned myocytes were produced by varying the micropattern line width and collagen density. An elliptical cell stretcher applied 2:1 anisotropic strain statically to the elastic substrate, with the axis of greatest stretch (10%) either parallel or transverse to the myofibrils. After 24 h, the principal strain parallel to myocytes did not significantly alter myofibril accumulation or expression of atrial natriuretic factor (ANF), connexin-43 (Cx-43), or N-cadherin (by indirect immunofluorescent antibody labeling and immunoblotting) compared with unstretched controls. In contrast, 10% transverse principal strain resulted in continuous staining of actin filaments (rhodamine phalloidin); increased immunofluorescent labeling of ANF, Cx-43, and N-cadherin; and upregulation of protein signal intensity by western blotting. By using microfabrication and microfluidics to control cell shape and alignment on an elastic substrate, we found greater effects for transverse than for longitudinal stretch in regulating sarcomere organization, hypertrophy, and cell-to-cell junctions.
Collapse
Affiliation(s)
- Sindhu M Gopalan
- Department of Bioengineering, Whitaker Institute for Biomedical Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0412, USA
| | | | | | | | | | | | | | | |
Collapse
|
344
|
|
345
|
Currie EPK, Norde W, Cohen Stuart MA. Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv Colloid Interface Sci 2003; 100-102:205-65. [PMID: 12668330 DOI: 10.1016/s0001-8686(02)00061-1] [Citation(s) in RCA: 306] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this review the grafting of polymer chains to solid supports or interfaces and the subsequent impact on colloidal properties is examined. We start by examining theoretical models for densely grafted polymers (brushes), experimental techniques for their preparation and the properties of the ensuing structures. Our aim is to present a broad overview of the state of the art in this field, rather than an in-depth study. In the second section the interactions of surfaces with tethered polymers with the surrounding environment and the impact on colloidal properties are considered. Various theoretical models for such interactions are discussed. We then review the properties of colloids with tethered polymer chains, interactions between planar brushes and nanocolloids, interactions between brushes and biocolloids and the impact of grafted polymers on wetting properties of surfaces, using the ideas presented in the first section. The review closes with an outlook to possible new directions of research.
Collapse
Affiliation(s)
- E P K Currie
- Material Science Center, DSM Research, 6160 MD, Geleen, The Netherlands
| | | | | |
Collapse
|
346
|
Zhang J, Roberts CJ, Shakesheff KM, Davies MC, Tendler SJB. Micro- and Macrothermal Analysis of a Bioactive Surface-Engineered Polymer Formed by Physical Entrapment of Poly(ethylene glycol) into Poly(lactic acid). Macromolecules 2003. [DOI: 10.1021/ma0213551] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jianxin Zhang
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, and Tissue Engineering Group, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Clive J. Roberts
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, and Tissue Engineering Group, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - K. M. Shakesheff
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, and Tissue Engineering Group, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martyn C. Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, and Tissue Engineering Group, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Saul J. B. Tendler
- Laboratory of Biophysics and Surface Analysis, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK, and Tissue Engineering Group, School of Pharmaceutical Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
347
|
Abstract
The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology--consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium--has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Microfabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types.
Collapse
Affiliation(s)
- Nianzhen Li
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
348
|
Kurusu F, Ohno H, Kaneko M, Nagasaki Y, Kataoka K. Functionalization of gold electrode surface with heterobifunctional poly(ethylene oxide)s having both mercapto and aldehyde groups. POLYM ADVAN TECHNOL 2003. [DOI: 10.1002/pat.286] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
349
|
Gupta B, Anjum N. Plasma and Radiation-Induced Graft Modification of Polymers for Biomedical Applications. RADIATION EFFECTS ON POLYMERS FOR BIOLOGICAL USE 2003. [DOI: 10.1007/3-540-45668-6_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
350
|
Barber TA, Golledge SL, Castner DG, Healy KE. Peptide-modified p(AAm-co-EG/AAc) IPNs grafted to bulk titanium modulate osteoblast behavior in vitro. J Biomed Mater Res A 2003; 64:38-47. [PMID: 12483694 DOI: 10.1002/jbm.a.10321] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interpenetrating polymer networks (IPNs) of poly(acrylamide-co-ethylene glycol/acrylic acid) (p(AAm-co-EG/AAc) applied to model surfaces prevent protein adsorption and cell adhesion. Subsequently, IPN surfaces functionalized with the RGD cell-binding domain from rat bone sialoprotein (BSP) modulated bone cell adhesion, proliferation, and matrix mineralization. The objective of this study was to utilize the same biomimetic modification strategy to produce functionally similar p(AAm-co-EG/AAc) IPNs on clinically relevant titanium surfaces. Contact angle goniometry and X-ray photoelectron spectroscopy (XPS) data were consistent with the presence of the intended surface modifications. Cellular response was gauged by challenging the surfaces with primary rat calvarial osteoblast (RCO) surfaces in serum-containing media. IPN modified titanium and negative control (RGE-IPN) surfaces inhibit cell adhesion and proliferation, while RGD-modified IPNs on titanium supported osteoblast attachment and spreading. Furthermore, the latter surfaces supported significant mineralization despite exhibiting lower levels of proliferation than positive control surfaces. These results suggest that with the appropriate optimization, this approach may be practical for surface engineering of osseous implants.
Collapse
Affiliation(s)
- Thomas A Barber
- Department of Bioengineering, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|