301
|
Tavian D, Maggi L, Mora M, Morandi L, Bragato C, Missaglia S. A novel PNPLA2 mutation causing total loss of RNA and protein expression in two NLSDM siblings with early onset but slowly progressive severe myopathy. Genes Dis 2021; 8:73-78. [PMID: 33569515 PMCID: PMC7859421 DOI: 10.1016/j.gendis.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Neutral lipid storage disease with myopathy (NLSDM) is a rare autosomal recessive disorder, due to an enzymatic error of lipid metabolism. Patients present always with skeletal muscle myopathy and variable cardiac and hepatic involvement. NLSDM is caused by mutations in the PNPLA2 gene, which encodes the adipose triglyceride lipase (ATGL). Here we report the molecular characterization and clinical findings of two NLSDM siblings carrying the novel c.187+1G > C homozygous PNPLA2 mutation, localized in the splice site of intron 2. Molecular analyses revealed that neither aberrant PNPLA2 mRNA isoforms, nor ATGL mutated protein were detectable in patient's cells. Clinically, both patients presented early onset muscle weakness, in particular of proximal upper limb muscles. In almost 15 years, muscle damage affected also distal upper limbs. This is a NLSDM family, displaying a severe PNPLA2 mutation in two siblings with clinical presentation characterized by an early onset, but a slowly evolution of severe myopathy.
Collapse
Affiliation(s)
- Daniela Tavian
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, pz Buonarroti 30, Milan, 20145, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan, 20123, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Lucia Morandi
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
- PhD program in Neuroscience, University of Milano-Bicocca, Via Cadore 48, Monza, 20900, Italy
| | - Sara Missaglia
- Laboratory of Cellular Biochemistry and Molecular Biology, CRIBENS, Università Cattolica del Sacro Cuore, pz Buonarroti 30, Milan, 20145, Italy
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli 1, Milan, 20123, Italy
| |
Collapse
|
302
|
Saadah OI, Banaganapalli B, Kamal NM, Sahly AN, Alsufyani HA, Mohammed A, Ahmad A, Nasser KK, Al-Aama JY, Shaik NA, Elango R. Identification of a Rare Exon 19 Skipping Mutation in ALMS1 Gene in Alström Syndrome Patients From Two Unrelated Saudi Families. Front Pediatr 2021; 9:652011. [PMID: 33981653 PMCID: PMC8107379 DOI: 10.3389/fped.2021.652011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/17/2021] [Indexed: 01/23/2023] Open
Abstract
Background: Alström syndrome (AS) is a very rare childhood disorder characterized by cardiomyopathy, progressive hearing loss and blindness. Inherited genetic variants of ALMS1 gene are the known molecular cause of this disease. The objective of this study was to characterize the genetic basis and understand the genotype-phenotype relationship in Saudi AS patients. Methods: Clinical phenotyping and whole-exome sequencing (WES) analysis were performed on six AS patients belonging to two unrelated consanguineous Saudi families. Sanger sequencing was performed to determine the mode of inheritance of ALMS1 variant in first-degree family relatives and also to ensure its rare prevalence in 100 healthy population controls. Results: We identified that Alström patients from both the families were sharing a very rare ALMS1, 3'-splice site acceptor (c.11873-2 A>T) variant, which skips entire exon-19 and shortens the protein by 80 amino acids. This disease variant was inherited by AS patients in autosomal recessive mode and is not yet reported in any population-specific genetic databases. AS patients carrying this mutation showed heterogeneity in clinical presentations. Computational analysis of the mutant centroid structure of ALMS1 mRNA revealed that exon-19 skipping enlarges the hairpin loop and decreases the free energy, eventually affecting its folding pattern, stability, and function. Hence, we propose c.11873-2A as an AS causative potential founder mutation in Saudi Arabia because it is found in two families lacking a common lineage. Conclusions: We conclude that WES analysis potentially helps in clinical phenotyping, early diagnosis, and better clinical management of Alström patients showing variable clinical expressivity.
Collapse
Affiliation(s)
- Omar I Saadah
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Pediatric Gastroenterology Unit, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Babajan Banaganapalli
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Naglaa M Kamal
- Department of Pediatrics, Al-Hada Armed Forces Hospital, Taif, Saudi Arabia.,Pediatric Hepatology Unit, Department of Pediatrics, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed N Sahly
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Jeddah, Saudi Arabia
| | - Hadeel A Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Mohammed
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Aftab Ahmad
- Department of Health Information Technology, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalidah Khalid Nasser
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jumana Y Al-Aama
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Noor Ahmad Shaik
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ramu Elango
- Princess Al-Jawhara Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Genetic Medicine, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
303
|
Programmed Cell Death 2-Like ( Pdcd2l) Is Required for Mouse Embryonic Development. G3-GENES GENOMES GENETICS 2020; 10:4449-4457. [PMID: 33055224 PMCID: PMC7718740 DOI: 10.1534/g3.120.401714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Globozoospermia is a rare form of male infertility where men produce round-headed sperm that are incapable of fertilizing an oocyte naturally. In a previous study where we undertook a whole exome screen to define novel genetic causes of globozoospermia, we identified homozygous mutations in the gene PDCD2L. Two brothers carried a p.(Leu225Val) variant predicted to introduce a novel splice donor site, thus presenting PDCD2L as a potential regulator of male fertility. In this study, we generated a Pdcd2l knockout mouse to test its role in male fertility. Contrary to the phenotype predicted from its testis-enriched expression pattern, Pdcd2l null mice died during embryogenesis. Specifically, we identified that Pdcd2l is essential for post-implantation embryonic development. Pdcd2l−/− embryos were resorbed at embryonic days 12.5-17.5 and no knockout pups were born, while adult heterozygous Pdcd2l males had comparable fertility to wildtype males. To specifically investigate the role of PDCD2L in germ cells, we employed Drosophila melanogaster as a model system. Consistent with the mouse data, global knockdown of trus, the fly ortholog of PDCD2L, resulted in lethality in flies at the third instar larval stage. However, germ cell-specific knockdown with two germ cell drivers did not affect male fertility. Collectively, these data suggest that PDCD2L is not essential for male fertility. By contrast, our results demonstrate an evolutionarily conserved role of PDCD2L in development.
Collapse
|
304
|
Colak FK, Guleray N, Azapagasi E, Yazıcı MU, Aksoy E, Ceylan N. An intronic variant in BRAT1 creates a cryptic splice site, causing epileptic encephalopathy without prominent rigidity. Acta Neurol Belg 2020; 120:1425-1432. [PMID: 33040300 PMCID: PMC7547818 DOI: 10.1007/s13760-020-01513-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/28/2020] [Indexed: 12/31/2022]
Abstract
BRAT1-related neurodevelopmental disorders are characterized by heterogeneous phenotypes with varying levels of clinical severity. Since the discovery of BRAT1 variants as the molecular etiology of lethal neonatal rigidity and multifocal seizure syndrome (RMFSL, OMIM 614498), these variants have also been identified in patients with milder clinical forms including neurodevelopmental disorder with cerebellar atrophy and with or without seizures (NEDCAS, OMIM 618056), epilepsy of infancy with migrating focal seizures (EIMFS), and congenital ataxia (CA). This study aims to examine the consequences and pathogenicity of a novel homozygous splice site variant in BRAT1 in a patient presenting with migrating focal seizures since birth without prominent rigidity. The patient was born from a consanguineous marriage and has had seizures since the neonatal period. He presented with dysmorphic features, pontocerebellar hypoplasia, and migrating focal seizures. Despite supportive treatment, his symptoms rapidly progressed to intractable myoclonic seizures, bouts of apnea and bradycardia, and arrest of head growth, with no acquisition of developmental milestones. Clinical exome sequencing yielded a novel homozygous splice variant in BRAT1. Genetic analysis based on reverse transcription of the patient’s RNA followed by PCR amplifications performed on synthesized cDNA and Sanger sequencing was undertaken, and the functional effect of a BRAT1 variant on splicing machinery was demonstrated for the first time. The severe clinical presentation of migrating focal seizures and pontocerebellar hypoplasia in the absence of rigidity further expands the genotypic and phenotypic spectrum of BRAT1-related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fatma Kurt Colak
- Department of Medical Genetics, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey.
| | - Naz Guleray
- Department of Medical Genetics, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | - Ebru Azapagasi
- Division of Pediatric Intensive Care Unit, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | - Mutlu Uysal Yazıcı
- Division of Pediatric Intensive Care Unit, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | - Erhan Aksoy
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| | - Nesrin Ceylan
- Department of Pediatric Neurology, Dr. Sami Ulus Maternity and Children's Training and Research Hospital, Ankara, Turkey
| |
Collapse
|
305
|
Hildebrandt K, Bach N, Kolb D, Walldorf U. The homeodomain transcription factor Orthopedia is involved in development of the Drosophila hindgut. Hereditas 2020; 157:46. [PMID: 33213520 PMCID: PMC7678101 DOI: 10.1186/s41065-020-00160-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/11/2020] [Indexed: 12/20/2022] Open
Abstract
Background The Drosophila hindgut is commonly used model for studying various aspects of organogenesis like primordium establishment, further specification, patterning, and morphogenesis. During embryonic development of Drosophila, many transcriptional activators are involved in the formation of the hindgut. The transcription factor Orthopedia (Otp), a member of the 57B homeobox gene cluster, is expressed in the hindgut and nervous system of developing Drosophila embryos, but due to the lack of mutants no functional analysis has been conducted yet. Results We show that two different otp transcripts, a hindgut-specific and a nervous system-specific form, are present in the Drosophila embryo. Using an Otp antibody, a detailed expression analysis during hindgut development was carried out. Otp was not only expressed in the embryonic hindgut, but also in the larval and adult hindgut. To analyse the function of otp, we generated the mutant otp allele otpGT by ends-out gene targeting. In addition, we isolated two EMS-induced otp alleles in a genetic screen for mutants of the 57B region. All three otp alleles showed embryonic lethality with a severe hindgut phenotype. Anal pads were reduced and the large intestine was completely missing. This phenotype is due to apoptosis in the hindgut primordium and the developing hindgut. Conclusion Our data suggest that Otp is another important factor for hindgut development of Drosophila. As a downstream factor of byn Otp is most likely present only in differentiated hindgut cells during all stages of development rather than in stem cells.
Collapse
Affiliation(s)
- Kirsten Hildebrandt
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Nicole Bach
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Dieter Kolb
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Building 61, 66421, Homburg/Saar, Saarland, Germany.
| |
Collapse
|
306
|
Abstract
The DMD gene is the largest in the human genome, with a total intron content exceeding 2.2Mb. In the decades since DMD was discovered there have been numerous reported cases of pseudoexons (PEs) arising in the mature DMD transcripts of some individuals, either as the result of mutations or as low-frequency errors of the spliceosome. In this review, I collate from the literature 58 examples of DMD PEs and examine the diversity and commonalities of their features. In particular, I note the high frequency of PEs that arise from deep intronic SNVs and discuss a possible link between PEs induced by distal mutations and the regulation of recursive splicing.
Collapse
Affiliation(s)
- Niall P Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University and Perron Institute, Perth, Australia
| |
Collapse
|
307
|
Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families. Genes (Basel) 2020; 11:genes11111329. [PMID: 33187236 PMCID: PMC7709052 DOI: 10.3390/genes11111329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 12/30/2022] Open
Abstract
The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes.
Collapse
|
308
|
Espejo I, Di Croce L, Aranda S. The changing chromatome as a driver of disease: A panoramic view from different methodologies. Bioessays 2020; 42:e2000203. [PMID: 33169398 DOI: 10.1002/bies.202000203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/27/2020] [Indexed: 12/16/2022]
Abstract
Chromatin-bound proteins underlie several fundamental cellular functions, such as control of gene expression and the faithful transmission of genetic and epigenetic information. Components of the chromatin proteome (the "chromatome") are essential in human life, and mutations in chromatin-bound proteins are frequently drivers of human diseases, such as cancer. Proteomic characterization of chromatin and de novo identification of chromatin interactors could, thus, reveal important and perhaps unexpected players implicated in human physiology and disease. Recently, intensive research efforts have focused on developing strategies to characterize the chromatome composition. In this review, we provide an overview of the dynamic composition of the chromatome, highlight the importance of its alterations as a driving force in human disease (and particularly in cancer), and discuss the different approaches to systematically characterize the chromatin-bound proteome in a global manner.
Collapse
Affiliation(s)
- Isabel Espejo
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain.,UniversitatPompeuFabra (UPF), Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Sergi Aranda
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain
| |
Collapse
|
309
|
Implications of Splicing Alterations in the Onset and Phenotypic Variability of a Family with Subclinical Manifestation of Peutz-Jeghers Syndrome: Bioinformatic and Molecular Evidence. Int J Mol Sci 2020; 21:ijms21218201. [PMID: 33147782 PMCID: PMC7662643 DOI: 10.3390/ijms21218201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/21/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Peutz–Jeghers Syndrome (PJS) is an autosomal dominant pre-cancerous disorder caused in 80–90% of cases by germline mutations in the tumor suppressor gene STK11. We performed a genetic test of the STK11 gene in two Italian young sisters suspected of PJS, since they showed pathognomonic café au lait spots in absence of other symptoms and familiarity. Sequencing of all exons of STK11 gene and other 8 genes, suggested to be involved in hamartomatous syndromes, (PTEN, BMPR1A, SDHB, SDHD, SMAD4, AKT1, ENG, PIK3CA) led to the identification in both the probands of a novel germline silent mutation named c.597 G>A, hitting the last nucleotide of exon 4. Interestingly, genetic testing of the two probands’ parents showed that their unaffected father was carrier of this mutation. Moreover, he carried a second intronic substitution named c.465-51 T>C (rs2075606) which was not inherited by his daughters. We also observed that all the family members carrying the c.597 G>A mutation presented an aberrant splice variant of STK11 mRNA lacking exon 4. Furthermore, in silico analysis of c.465-51 T>C substitution showed that it may activate an Enhancer Splicing Element. Finally, qRT-PCR analysis of STK11 expression levels showed a slight downregulation of the wild type allele in the father and a 2-fold downregulation in the probands compared to the unaffected mother. Our results have led the hypothesis that the c.465-51 T>C intronic variant, which segregates with the wild type allele, could increase the splicing effectiveness of STK11 wild-type allele and compensate the side effect of the c.597 G>A splicing mutation, being responsible for the phenotypic variability observed within this family. This finding highlight the importance of RNA analysis in genetic testing, remarking that silent DNA variant can often be splicing variant involved in disease onset and progression. The identification of these variants has a crucial role to ensure an appropriate follow-up and cancer prevention in at-risk individuals.
Collapse
|
310
|
Abstract
Diagnostic processes typically rely on traditional and laborious methods, that are prone to human error, resulting in frequent misdiagnosis of diseases. Computational approaches are being increasingly used for more precise diagnosis of the clinical pathology, diagnosis of genetic and microbial diseases, and analysis of clinical chemistry data. These approaches are progressively used for improving the reliability of testing, resulting in reduced diagnostic errors. Artificial intelligence (AI)-based computational approaches mostly rely on training sets obtained from patient data stored in clinical databases. However, the use of AI is associated with several ethical issues, including patient privacy and data ownership. The capacity of AI-based mathematical models to interpret complex clinical data frequently leads to data bias and reporting of erroneous results based on patient data. In order to improve the reliability of computational approaches in clinical diagnostics, strategies to reduce data bias and analyzing real-life patient data need to be further refined.
Collapse
Affiliation(s)
- Mohammed A Alaidarous
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Kingdom of Saudi Arabia. E-mail.
| |
Collapse
|
311
|
Reis LM, Basel D, McCarrier J, Weinberg DV, Semina EV. Compound heterozygous splicing CDON variants result in isolated ocular coloboma. Clin Genet 2020; 98:486-492. [PMID: 32729136 PMCID: PMC8341436 DOI: 10.1111/cge.13824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/25/2020] [Indexed: 12/20/2022]
Abstract
Ocular coloboma is caused by failure of optic fissure closure during development and recognized as part of the microphthalmia, anophthalmia, and coloboma (MAC) spectrum. While many genes are known to cause colobomatous microphthalmia, relatively few have been reported in coloboma with normal eye size. Genetic analysis including trio exome sequencing and Sanger sequencing was undertaken in a family with two siblings affected with bilateral coloboma of the iris, retina, and choroid. Pathogenic variants in MAC genes were excluded. Trio analysis identified compound heterozygous donor splice site variants in CDON, a cell-surface receptor known to function in the Sonic Hedgehog pathway, c.928 + 1G > A and c.2650 + 1G > T, in both affected individuals. Heterozygous missense and truncating CDON variants are associated with dominant holoprosencephaly (HPE) with incomplete penetrance and Cdon-/- mice display variable HPE and coloboma. A homozygous nonsense allele of uncertain significance was recently identified in a consanguineous patient with coloboma and a second molecular diagnosis. We report the first compound heterozygous variants in CDON as a cause of isolated coloboma. CDON is the first HPE gene identified to cause recessive coloboma. Given the phenotypic overlap, further examination of HPE genes in coloboma is indicated.
Collapse
Affiliation(s)
- Linda M Reis
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - Donald Basel
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - Julie McCarrier
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
| | - David V Weinberg
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Elena V Semina
- Department of Pediatrics, Children’s Research Institute, Medical College of Wisconsin and Children’s Wisconsin, Milwaukee, WI 53226
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
312
|
Prevalence of germline variants in consensus moderate-to-high-risk predisposition genes to hereditary breast and ovarian cancer in BRCA1/2-negative Brazilian patients. Breast Cancer Res Treat 2020; 185:851-861. [PMID: 33128190 DOI: 10.1007/s10549-020-05985-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/15/2020] [Indexed: 12/23/2022]
Abstract
PURPOSE This study aimed to identify and classify genetic variants in consensus moderate-to-high-risk predisposition genes associated with Hereditary Breast and Ovarian Cancer Syndrome (HBOC), in BRCA1/2-negative patients from Brazil. METHODS The study comprised 126 index patients who met NCCN clinical criteria and tested negative for all coding exons and intronic flanking regions of BRCA1/2 genes. Multiplex PCR-based assays were designed to cover the complete coding regions and flanking splicing sites of six genes implicated in HBOC. Sequencing was performed on HiSeq2500 Genome Analyzer. RESULTS Overall, we identified 488 unique variants. We identified five patients (3.97%) that harbored pathogenic or likely pathogenic variants in four genes: ATM (1), CHEK2 (2), PALB2 (1), and TP53 (1). One hundred and thirty variants were classified as variants of uncertain significance (VUS), 10 of which were predicted to disrupt mRNA splicing (seven non-coding variants and three coding variants), while other six missense VUS were classified as probably damaging by prediction algorithms. CONCLUSION A detailed mutational profile of non-BRCA genes is still being described in Brazil. In this study, we contributed to filling this gap, by providing important data on the diversity of genetic variants in a Brazilian high-risk patient cohort. ATM, CHEK2, PALB2 and TP53 are well established as HBOC predisposition genes, and the identification of deleterious variants in such actionable genes contributes to clinical management of probands and relatives.
Collapse
|
313
|
Baeza-Centurion P, Miñana B, Valcárcel J, Lehner B. Mutations primarily alter the inclusion of alternatively spliced exons. eLife 2020; 9:59959. [PMID: 33112234 PMCID: PMC7673789 DOI: 10.7554/elife.59959] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
Genetic analyses and systematic mutagenesis have revealed that synonymous, non-synonymous and intronic mutations frequently alter the inclusion levels of alternatively spliced exons, consistent with the concept that altered splicing might be a common mechanism by which mutations cause disease. However, most exons expressed in any cell are highly-included in mature mRNAs. Here, by performing deep mutagenesis of highly-included exons and by analysing the association between genome sequence variation and exon inclusion across the transcriptome, we report that mutations only very rarely alter the inclusion of highly-included exons. This is true for both exonic and intronic mutations as well as for perturbations in trans. Therefore, mutations that affect splicing are not evenly distributed across primary transcripts but are focussed in and around alternatively spliced exons with intermediate inclusion levels. These results provide a resource for prioritising synonymous and other variants as disease-causing mutations.
Collapse
Affiliation(s)
- Pablo Baeza-Centurion
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Belén Miñana
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ben Lehner
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
314
|
Joynt AT, Evans TA, Pellicore MJ, Davis-Marcisak EF, Aksit MA, Eastman AC, Patel SU, Paul KC, Osorio DL, Bowling AD, Cotton CU, Raraigh KS, West NE, Merlo CA, Cutting GR, Sharma N. Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies. PLoS Genet 2020; 16:e1009100. [PMID: 33085659 PMCID: PMC7605713 DOI: 10.1371/journal.pgen.1009100] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/02/2020] [Accepted: 09/08/2020] [Indexed: 12/21/2022] Open
Abstract
Elucidating the functional consequence of molecular defects underlying genetic diseases enables appropriate design of therapeutic options. Treatment of cystic fibrosis (CF) is an exemplar of this paradigm as the development of CFTR modulator therapies has allowed for targeted and effective treatment of individuals harboring specific genetic variants. However, the mechanism of these drugs limits effectiveness to particular classes of variants that allow production of CFTR protein. Thus, assessment of the molecular mechanism of individual variants is imperative for proper assignment of these precision therapies. This is particularly important when considering variants that affect pre-mRNA splicing, thus limiting success of the existing protein-targeted therapies. Variants affecting splicing can occur throughout exons and introns and the complexity of the process of splicing lends itself to a variety of outcomes, both at the RNA and protein levels, further complicating assessment of disease liability and modulator response. To investigate the scope of this challenge, we evaluated splicing and downstream effects of 52 naturally occurring CFTR variants (exonic = 15, intronic = 37). Expression of constructs containing select CFTR intronic sequences and complete CFTR exonic sequences in cell line models allowed for assessment of RNA and protein-level effects on an allele by allele basis. Characterization of primary nasal epithelial cells obtained from individuals harboring splice variants corroborated in vitro data. Notably, we identified exonic variants that result in complete missplicing and thus a lack of modulator response (e.g. c.2908G>A, c.523A>G), as well as intronic variants that respond to modulators due to the presence of residual normally spliced transcript (e.g. c.4242+2T>C, c.3717+40A>G). Overall, our data reveals diverse molecular outcomes amongst both exonic and intronic variants emphasizing the need to delineate RNA, protein, and functional effects of each variant in order to accurately assign precision therapies. Genetic variants that impact pre-mRNA splicing are a common cause of genetic disease and have varying downstream molecular consequences. As a result, precision therapies that function at the protein level are not always effective for these variants and thus careful assessment is necessary. Here we evaluate RNA-level effects of 52 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and show that study of splicing and its consequences allows for more accurate assignment of precision therapies.
Collapse
Affiliation(s)
- Anya T. Joynt
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Taylor A. Evans
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Matthew J. Pellicore
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Emily F. Davis-Marcisak
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melis A. Aksit
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alice C. Eastman
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Shivani U. Patel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Kathleen C. Paul
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Derek L. Osorio
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Alyssa D. Bowling
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Calvin U. Cotton
- Departments of Pediatrics, Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Karen S. Raraigh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Natalie E. West
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Christian A. Merlo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland, United States of America
| | - Garry R. Cutting
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (GRC); (NS)
| | - Neeraj Sharma
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail: (GRC); (NS)
| |
Collapse
|
315
|
Riedmayr LM, Böhm S, Biel M, Becirovic E. Enigmatic rhodopsin mutation creates an exceptionally strong splice acceptor site. Hum Mol Genet 2020; 29:295-304. [PMID: 31816042 DOI: 10.1093/hmg/ddz291] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/16/2023] Open
Abstract
The c.620 T > G mutation in rhodopsin found in the first mapped autosomal dominant retinitis pigmentosa (adRP) locus is associated with severe, early-onset RP. Intriguingly, another mutation affecting the same nucleotide (c.620 T > A) is related to a mild, late-onset RP. Assuming that both mutations are missense mutations (Met207Arg and Met207Lys) hampering the ligand-binding pocket, previous work addressed how they might differentially impair rhodopsin function. Here, we investigated the impact of both mutations at the mRNA and protein level in HEK293 cells and in the mouse retina. We show that, in contrast to c.620 T > A, c.620 T > G is a splicing mutation, which generates an exceptionally strong splice acceptor site (SAS) resulting in a 90 bp in-frame deletion and protein mislocalization in vitro and in vivo. Moreover, we identified the core element underlying the c.620 T > G SAS strength. Finally, we demonstrate that the c.620 T > G SAS is very flexible in branch point choice, which might explain its remarkable performance. Based on these results, we suggest that (i) point mutations should be routinely tested for mRNA splicing to avoid dispensable analysis of mutations on protein level, which do not naturally exist. (ii) Puzzling disease courses of mutations in other genes might also correlate with their effects on mRNA splicing. (iii) Flexibility in branch point choice might be another factor influencing the SAS strength. (iv) The core splice element identified in this study could be useful for biotechnological applications requiring effective SAS.
Collapse
Affiliation(s)
- Lisa M Riedmayr
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sybille Böhm
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Elvir Becirovic
- Center for Integrated Protein Science Munich (CIPSM), 81377 Munich, Germany.,Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| |
Collapse
|
316
|
Jain S, Kaur J, Prasad S, Roy I. Nucleic acid therapeutics: a focus on the development of aptamers. Expert Opin Drug Discov 2020; 16:255-274. [PMID: 32990095 DOI: 10.1080/17460441.2021.1829587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Aptamers provide exciting opportunities for the development of specific and targeted therapeutic approaches. AREAS COVERED In this review, the authors discuss different therapeutic options available with nucleic acids, including aptamers, focussing on similarities and differences between them. The authors concentrate on case studies with specific aptamers, which exemplify their distinct advantages. The reasons for failure, wherever available, are deliberated upon. Attempts to accelerate the in vitro selection process have been discussed. Challenges with aptamers in terms of their specificity and targeted delivery and strategies to overcome these are described. Examples of precise regulation of systemic half-life of aptamers using antidotes are discussed. EXPERT OPINION Despite their nontoxic nature, a variety of reasons limit the therapeutic potential of aptamers in the clinic. The analysis of adverse effects observed with the pegnivacogin/anivamersen pair has highlighted the need to screen for preexisting PEG antibodies in any clinical trial involving pegylated molecules. Surprisingly, and promisingly, the ability of nucleic acid therapeutics to breach the blood brain barrier seems achievable. The recognition of specific motifs, e.g. G-quadruplex in thrombin-binding aptamers, or a 'nucleation' zone while designing aptamer-antidote pairs, is likely to accelerate the discovery of therapeutically efficacious molecules.
Collapse
Affiliation(s)
- Swati Jain
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Jaskirat Kaur
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Shivcharan Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Punjab, India
| |
Collapse
|
317
|
Nonsense-associated altered splicing of MAP3K1 in two siblings with 46,XY disorders of sex development. Sci Rep 2020; 10:17375. [PMID: 33060765 PMCID: PMC7567082 DOI: 10.1038/s41598-020-74405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/29/2020] [Indexed: 01/31/2023] Open
Abstract
Although splicing errors due to single nucleotide variants represent a common cause of monogenic disorders, only a few variants have been shown to create new splice sites in exons. Here, we report an MAP3K1 splice variant identified in two siblings with 46,XY disorder of sex development. The patients carried a maternally derived c.2254C>T variant. The variant was initially recognized as a nonsense substitution leading to nonsense-mediated mRNA decay (p.Gln752Ter); however, RT-PCR for lymphoblastoid cell lines showed that this variant created a new splice donor site and caused 39 amino acid deletion (p.Gln752_Arg790del). All transcripts from the variant allele appeared to undergo altered splicing. The two patients exhibited undermasculinized genitalia with and without hypergonadotropism. Testosterone enanthate injections and dihydrotestosterone ointment applications yielded only slight increase in their penile length. Dihydrotestosterone-induced APOD transactivation was less significant in patients’ genital skin fibroblasts compared with that in control samples. This study provides an example of nonsense-associated altered splicing, in which a highly potent exonic splice site was created. Furthermore, our data, in conjunction with the previous data indicating the association between MAP3K1 and androgen receptor signaling, imply that the combination of testicular dysgenesis and androgen insensitivity may be a unique phenotype of MAP3K1 abnormalities.
Collapse
|
318
|
Pace NP, Pace Bardon M, Borg I. A respiratory/Hirschsprung phenotype in a three-generation family associated with a novel pathogenic PHOX2B splice donor mutation. Mol Genet Genomic Med 2020; 8:e1528. [PMID: 33047879 PMCID: PMC7767558 DOI: 10.1002/mgg3.1528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/22/2020] [Accepted: 09/25/2020] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Mutations in the PHOX2B gene cause congenital central hypoventilation syndrome (CCHS), a rare autonomic nervous system dysfunction disorder characterized by a decreased ventilatory response to hypercapnia. Affected subjects develop alveolar hypoventilation requiring ventilatory support particularly during the non-REM phase of sleep. In more severe cases, hypoventilation may extend into wakefulness. CCHS is associated with disorders characterized by the defective migration/differentiation of neural crest derivatives, including aganglionic megacolon or milder gastrointestinal phenotypes, such as constipation. Most cases of CCHS are de novo, caused by heterozygosity for polyalanine repeat expansion mutations (PARMs) in exon 3. About 10% of cases are due to heterozygous non-PARM missense, nonsense or frameshift mutations. METHODS We describe a three-generation Maltese-Caucasian family with a variable respiratory/Hirschsprung phenotype, characterized by chronic constipation, three siblings with Hirschsprung disease necessitating surgery, chronic hypoxia, and alveolar hypoventilation requiring non-invasive ventilation. RESULTS The sequencing of PHOX2B revealed a novel heterozygous c.241+2delT splice variant in exon 1 that segregates with the CCHS/Hirschsprung phenotype in the family. The mutation generates a non-functional splice site with a deleterious effect on protein structure and is pathogenic according to ACMG P VS1, PM2, and PP1 criteria. CONCLUSION This report is significant as no PHOX2B splice-site mutations have been reported. Additionally, it highlights the variability in clinical expression and disease severity of non-PARM mutations.
Collapse
Affiliation(s)
- Nikolai Paul Pace
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | | - Isabella Borg
- Centre for Molecular Medicine and Biobanking, Faculty of Medicine and Surgery, University of Malta, Msida, Malta.,Medical Genetics Unit, Department of Pathology, Mater Dei Hospital, Msida, Malta.,Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| |
Collapse
|
319
|
Cristofoli F, Moss T, Moore HW, Devriendt K, Flanagan-Steet H, May M, Jones J, Roelens F, Fons C, Fernandez A, Martorell L, Selicorni A, Maitz S, Vitiello G, Van der Hoeven G, Skinner SA, Bollen M, Vermeesch JR, Steet R, Van Esch H. De Novo Variants in LMNB1 Cause Pronounced Syndromic Microcephaly and Disruption of Nuclear Envelope Integrity. Am J Hum Genet 2020; 107:753-762. [PMID: 32910914 PMCID: PMC7536573 DOI: 10.1016/j.ajhg.2020.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
Lamin B1 plays an important role in the nuclear envelope stability, the regulation of gene expression, and neural development. Duplication of LMNB1, or missense mutations increasing LMNB1 expression, are associated with autosomal-dominant leukodystrophy. On the basis of its role in neurogenesis, it has been postulated that LMNB1 variants could cause microcephaly. Here, we confirm this hypothesis with the identification of de novo mutations in LMNB1 in seven individuals with pronounced primary microcephaly (ranging from -3.6 to -12 SD) associated with relative short stature and variable degree of intellectual disability and neurological features as the core symptoms. Simplified gyral pattern of the cortex and abnormal corpus callosum were noted on MRI of three individuals, and these individuals also presented with a more severe phenotype. Functional analysis of the three missense mutations showed impaired formation of the LMNB1 nuclear lamina. The two variants located within the head group of LMNB1 result in a decrease in the nuclear localization of the protein and an increase in misshapen nuclei. We further demonstrate that another mutation, located in the coil region, leads to increased frequency of condensed nuclei and lower steady-state levels of lamin B1 in proband lymphoblasts. Our findings collectively indicate that de novo mutations in LMNB1 result in a dominant and damaging effect on nuclear envelope formation that correlates with microcephaly in humans. This adds LMNB1 to the growing list of genes implicated in severe autosomal-dominant microcephaly and broadens the phenotypic spectrum of the laminopathies.
Collapse
Affiliation(s)
- Francesca Cristofoli
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Tonya Moss
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Hannah W Moore
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Koen Devriendt
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Heather Flanagan-Steet
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Melanie May
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Julie Jones
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Filip Roelens
- Pediatric Neurology, Department of Pediatrics, AZ Delta, Brugsesteenweg 90, 8800 Roeselare, Belgium
| | - Carmen Fons
- Pediatric Neurology Department, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Anna Fernandez
- Pediatric Neurology Department, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Loreto Martorell
- Department of Genetic and Molecular Medicine IPER, Institut de Recerca, Sant Joan de Déu Hospital, Passeig de Sant Joan de Déu 2, 08950 Barcelona, Spain
| | - Angelo Selicorni
- Pediatric Department, ASST Lariana, Sant'Anna Hospital, Via Ravona 20, 22042 Como, Italy
| | - Silvia Maitz
- Clinical Pediatric Genetics Unit, MBBM Foundation, S. Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy
| | - Giuseppina Vitiello
- Department of Translational Medicine and Molecular Medicine and Medical Biotechnologies, Federico II University, via Pansini 5, 80131 Naples, Italy
| | - Gerd Van der Hoeven
- Laboratory of Biosignalling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Steven A Skinner
- Greenwood Genetic Center, 106 Gregor Mendel Circle, Greenwood, SC 29646, USA
| | - Mathieu Bollen
- Laboratory of Biosignalling & Therapeutics, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Joris R Vermeesch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Richard Steet
- JC Self Research Institute, Greenwood Genetic Center, 113 Gregor Mendel Circle, Greenwood, SC 29646, USA.
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium; Laboratory for the Genetics of Cognition, Department of Human Genetics, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
320
|
Oldt RF, Bussey KJ, Settles ML, Fass JN, Roberts JA, Reader JR, Komandoor S, Abrich VA, Kanthaswamy S. MYBPC3 Haplotype Linked to Hypertrophic Cardiomyopathy in Rhesus Macaques ( Macaca mulatta). Comp Med 2020; 70:358-367. [PMID: 32753092 PMCID: PMC7574221 DOI: 10.30802/aalas-cm-19-000108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 02/07/2020] [Indexed: 11/05/2022]
Abstract
In humans, abnormal thickening of the left ventricle of the heart clinically defines hypertrophic cardiomyopathy (HCM), a common inherited cardiovascular disorder that can precede a sudden cardiac death event. The wide range of clinical presentations in HCM obscures genetic variants that may influence an individual's susceptibility to sudden cardiac death. Although exon sequencing of major sarcomere genes can be used to detect high-impact causal mutations, this strategy is successful in only half of patient cases. The incidence of left ventricular hypertrophy (LVH) in a managed research colony of rhesus macaques provides an excellent comparative model in which to explore the genomic etiology of severe HCM and sudden cardiac death. Because no rhesus HCM-associated mutations have been reported, we used a next-generation genotyping assay that targets 7 sarcomeric rhesus genes within 63 genomic sites that are orthologous to human genomic regions known to harbor HCM disease variants. Amplicon sequencing was performed on 52 macaques with confirmed LVH and 42 unrelated, unaffected animals representing both the Indian and Chinese rhesus macaque subspecies. Bias-reduced logistic regression uncovered a risk haplotype in the rhesus MYBPC3 gene, which is frequently disrupted in both human and feline HCM; this haplotype implicates an intronic variant strongly associated with disease in either homozygous or carrier form. Our results highlight that leveraging evolutionary genomic data provides a unique, practical strategy for minimizing population bias in complex disease studies.
Collapse
Affiliation(s)
- Robert F Oldt
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona;,
| | - Kimberly J Bussey
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; BEYOND Center for Fundamental Concepts in Science, Arizona State University at the West Campus, Glendale, Arizona
| | - Matthew L Settles
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Joseph N Fass
- Bioinformatics Core, UC Davis Genome Center, University of California, Davis, California
| | - Jeffrey A Roberts
- California National Primate Research Center, University of California, Davis, California
| | - J Rachel Reader
- California National Primate Research Center, University of California, Davis, California
| | | | - Victor A Abrich
- Division of Cardiovascular Diseases, Mayo Clinic, Scottsdale, Arizona
| | - Sreetharan Kanthaswamy
- School of Mathematical and Natural Sciences, Arizona State University at the West Campus, Glendale, Arizona; Evolutionary Biology Graduate Program, School of Life Sciences, Arizona State University at the West Campus, Glendale, Arizona; California National Primate Research Center, University of California, Davis, California
| |
Collapse
|
321
|
Beyond Back Splicing, a Still Poorly Explored World: Non-Canonical Circular RNAs. Genes (Basel) 2020; 11:genes11091111. [PMID: 32972011 PMCID: PMC7565381 DOI: 10.3390/genes11091111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022] Open
Abstract
Most of the circRNAs reported to date originate from back splicing of a pre-mRNA, and these exonic circRNAs are termed canonical circRNAs. Our objective was to provide an overview of all other (non-canonical) circRNAs that do not originate from the junction of two exons and to characterize their common properties. Those generated through a failure of intron lariat debranching are the best known, even though studies on them are rare. These circRNAs retain the 2′–5′ bond derived from the intron lariat, and this feature probably explains the difficulties in obtaining efficient reverse transcription through the circular junction. Here, we provide an unprecedented overview of non-canonical circRNAs (lariat-derived intronic circRNAs, sub-exonic circRNAs, intron circles, tricRNAs), which all derive from non-coding sequences. As there are few data suggesting their involvement in cellular regulatory processes, we believe that it is early to propose a general function for circRNAs, even for lariat-derived circRNAs. We suggest that their small size and probably strong secondary structures could be major obstacles to their reliable detection. Nevertheless, we believe there are still several possible ways to advance our knowledge of this class of non-coding RNA.
Collapse
|
322
|
Diagnostic utility of whole-genome sequencing for nephronophthisis. NPJ Genom Med 2020; 5:38. [PMID: 33024573 PMCID: PMC7506526 DOI: 10.1038/s41525-020-00147-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/19/2020] [Indexed: 11/09/2022] Open
Abstract
Next-generation sequencing has revolutionized the molecular diagnosis of individuals affected by genetic kidney diseases. Indeed, rapid genetic testing in individuals with suspected inherited nephropathy has not only important implications for diagnosis and prognosis but also for genetic counseling. Nephronophthisis (NPHP) and related syndromes, a leading cause of end-stage renal failure, are autosomal recessive disorders characterized by the variable presentation and considerable locus heterogeneity with more than 90 genes described as single-gene causes. In this case report, we demonstrate the utility of whole-genome sequencing (WGS) for the molecular diagnosis of NPHP by identifying two putative disease-causing intronic mutations in the NPHP3 gene, including one deep intronic variant. We further show that both intronic variants, by affecting splicing, result in a truncated nephrocystin-3 protein. This study provides a framework for applying WGS as a first-line diagnostic tool for highly heterogeneous disease such as NPHP and further suggests that deep intronic variations are an important underestimated cause of monogenic disorders.
Collapse
|
323
|
Fioretti T, Ungari S, Savarese M, Cattaneo F, Pirozzi E, Esposito G. A putative frameshift variant in the CHM gene is associated with an unexpected splicing alteration in a choroideremia patient. Mol Genet Genomic Med 2020; 8:e1490. [PMID: 32949230 PMCID: PMC7667377 DOI: 10.1002/mgg3.1490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/29/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Background Due to the limited availability of mRNA analysis data, the number of exonic variants resulting in splicing impairment is underestimated although aberrant splicing correction is a promising therapeutic option to treat monogenic diseases, including choroideremia (CHM), a rare X‐linked eye disorder arising from sequence alteration of the CHM gene. Herein we report an exonic frameshift variant associated with an mRNA splicing alteration that leads to a CHM hypomorphic allele. Methods Total RNA and genomic DNA were extracted from peripheral blood of a patient affected by a mild form of CHM. The CHM gene was analyzed by PCR‐based methods and Sanger sequencing. Results Besides the known c.1335dup frameshift variant, mRNA analysis revealed a splicing alteration that restored the reading frame of the mutant transcript, likely leading to an aberrant protein with residual activity. Bioinformatic analyses identified novel putative exonic splicing enhancer elements and provided clues that also pre‐mRNA secondary structure should be taken into account when exploring splicing mechanisms. Conclusion A careful molecular characterization of the c.1335dup variant's effect explains the relationship between genotype and phenotype severity in a CHM patient and provides new perspectives for the study of therapeutic strategies based on splicing correction in human diseases.
Collapse
Affiliation(s)
| | - Silvana Ungari
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy
| | | | - Fabio Cattaneo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Enza Pirozzi
- Azienda Ospedaliera S. Croce e Carle, Cuneo, Italy
| | - Gabriella Esposito
- CEINGE - Advanced Biotechnologies, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
324
|
Baskin SM, Morris SA, Vara A, Hecht JT, Farach LS. The first reported case of Loeys-Dietz syndrome in a patient with biallelic SMAD3 variants. Am J Med Genet A 2020; 182:2755-2760. [PMID: 32935439 DOI: 10.1002/ajmg.a.61844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022]
Abstract
Loeys-Dietz syndrome (LDS), a connective tissue disorder characterized by its vascular, skeletal, craniofacial, and cutaneous manifestations is caused by mutations in one of six genes (TGFBR1, TGFBR2, SMAD2, SMAD3, TGFB2, and TGFB3). Until recently, all reported cases of LDS have been attributed to heterozygous pathogenic variants in these genes. Here, we report the first case of Loeys-Dietz syndrome due to SMAD3 biallelic likely pathogenic variants in a 15-year-old male with classic Loeys-Dietz features, including dysmorphic facial features, significant scoliosis, and pectus excavatum, arachnodactyly, severe aortic root dilation, and diffuse arterial tortuosity. His parents are each heterozygous for the likely pathogenic variant and are more mildly affected. To our knowledge, this represents the first reported case of biallelic SMAD3-related Loeys-Dietz syndrome and the third case in the literature of biallelic LDS, indicating that there are multiple genetic modes of inheritance underlying this disorder.
Collapse
Affiliation(s)
- Stephanie M Baskin
- Department of Pediatrics, University of Texas Health Science at Houston, Houston, Texas, USA
| | - Shaine A Morris
- Department of Pediatrics, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas, USA
| | - Autumn Vara
- UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, Texas, USA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School and School of Dentistry UT Health at Houston, Houston, Texas, USA
| | - Laura S Farach
- Department of Pediatrics, University of Texas Health Science at Houston, Houston, Texas, USA
| |
Collapse
|
325
|
Bahmanpour Z, Daneshmandpour Y, Kazeminasab S, Khalil Khalili S, Alehabib E, Chapi M, Soosanabadi M, Darvish H, Emamalizadeh B. A novel splice site mutation in the SDCCAG8 gene in an Iranian family with Bardet-Biedl syndrome. Int Ophthalmol 2020; 41:389-397. [PMID: 32926352 DOI: 10.1007/s10792-020-01588-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
PURPOSE Bardet-Biedl syndrome (BBS: OMIM 209,900) is a rare ciliopathic human genetic disorder that affects many parts of the body systems. BBS is a genetically heterogeneous disorder with a wide spectrum of clinical manifestations which makes its diagnosis and management more challenging. RetNet reports 18 genes that cause BBS and each of genes has had several known mutations. Genetic studies suggesting that serologically defined colon cancer antigen 8 (SDCCAG8) gene mutations are a major cause of BBS. MATERIALS AND METHODS In this section, we investigated the consanguineous Iranian family members with BBS. Whole-exome sequencing and Sanger sequencing, were performed to screen and confirm the suspicious pathogenic mutations. The identified mutation was investigated using bioinformatics tools to predict the effect of the mutation on protein structure. RESULTS Sequential analysis identified a novel splice site mutation c.1221 + 2 T > A in the SDCCAG8 gene in BBS patients. Structure-based approaches have predicted significant structural alterations in SDCCAG8 protein. CONCLUSIONS This study was conducted to show the aberrant alternative splicing as one of the single splicing mutations identified can cause BBS by affecting the function of SDCCAG8 protein.
Collapse
Affiliation(s)
- Zahra Bahmanpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Kazeminasab
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabeh Khalil Khalili
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Alehabib
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Chapi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohsen Soosanabadi
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Darvish
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran. .,Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| | - Babak Emamalizadeh
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
326
|
The genetics of asthma and the promise of genomics-guided drug target discovery. THE LANCET RESPIRATORY MEDICINE 2020; 8:1045-1056. [PMID: 32910899 DOI: 10.1016/s2213-2600(20)30363-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 12/27/2022]
Abstract
Asthma is an inflammatory airway disease that is estimated to affect 339 million people globally. The symptoms of about 5-10% of patients with asthma are not adequately controlled with current therapy, and little success has been achieved in developing drugs that target the underlying mechanisms of asthma rather than suppressing symptoms. Over the past 3 years, well powered genetic studies of asthma have increased the number of independent asthma-associated genetic loci to 128. In this Series paper, we describe the immense progress in asthma genetics over the past 13 years and link asthma genetic variants to possible drug targets. Further studies are needed to establish the functional significance of gene variants associated with asthma in subgroups of patients and to describe the biological networks within which they function. The genomics-guided discovery of plausible drug targets for asthma could pave the way for the repurposing of existing drugs for asthma and the development of new treatments.
Collapse
|
327
|
Ryu JS, Lee HY, Cho EH, Yoon KA, Kim MK, Joo J, Lee ES, Kang HS, Lee S, Lee DO, Lim MC, Kong SY. Exon splicing analysis of intronic variants in multigene cancer panel testing for hereditary breast/ovarian cancer. Cancer Sci 2020; 111:3912-3925. [PMID: 32761968 PMCID: PMC7540976 DOI: 10.1111/cas.14600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/29/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
The use of multigene panel testing for patients with a predisposition to breast/ovarian cancer is increasing as the identification of variants is useful for diagnosis and disease management. We identified pathogenic and likely pathogenic (P/LP) variants of high-and moderate-risk genes using a 23-gene germline cancer panel in 518 patients with hereditary breast and ovarian cancers (HBOC). The frequency of P/LP variants was 12.4% (64/518) for high- and moderate-penetrant genes, namely, BRCA2 (5.6%), BRCA1 (3.3%), CHEK2 (1.2%), MUTYH (0.8%), PALB2 (0.8%), MLH1 (0.4%), ATM (0.4%), BRIP1 (0.4%), TP53 (0.2%), and PMS2 (0.2%). Five patients possessed two P/LP variants in BRCA1/2 and other genes. We also compared the results from in silico splicing predictive tools and exon splicing patterns from patient samples by analyzing RT-PCR product sequences in six P/LP intronic variants and two intronic variants of unknown significance (VUS). Altered transcriptional fragments were detected for P/LP intronic variants in BRCA1, BRIP1, CHEK2, PARB2, and PMS2. Notably, we identified an in-frame deletion of the BRCA1 C-terminal (BRCT) domain by exon skipping in BRCA1 c.5152+6T>C-as known VUS-indicating a risk for HBOC. Thus, exon splicing analysis can improve the identification of veiled intronic variants that would aid decision making and determination of hereditary cancer risk.
Collapse
Affiliation(s)
- Jin-Sun Ryu
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Hye-Young Lee
- Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea
| | - Eun Hae Cho
- Genomic research center, Green Cross Genome, Yongin, Korea
| | - Kyong-Ah Yoon
- College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | - Min-Kyeong Kim
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea
| | - Jungnam Joo
- Division of Cancer Epidemiology and Management, Research Institute, National Cancer Center, Goyang, Korea
| | - Eun-Sook Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Han-Sung Kang
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Seeyoun Lee
- Center for Breast Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Dong Ock Lee
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea
| | - Myong Cheol Lim
- Center for Gynecologic Cancer, Hospital, National Cancer Center, Goyang, Korea.,Division of Tumor Immunology and Center for Clinical Trial, Research Institute, National Cancer Center, Goyang, Korea
| | - Sun-Young Kong
- Division of Translational Science, Research Institute, National Cancer Center, Goyang, Korea.,Department of Laboratory Medicine, Hospital, National Cancer Center, Goyang, Korea.,Department of Cancer Biomedical Science, National Cancer Center Graduate School of Cancer Science and Policy, Goyang, Korea
| |
Collapse
|
328
|
Domingo D, Nawaz U, Corbett M, Espinoza JL, Tatton-Brown K, Coman D, Wilkinson MF, Gecz J, Jolly LA. A synonymous UPF3B variant causing a speech disorder implicates NMD as a regulator of neurodevelopmental disorder gene networks. Hum Mol Genet 2020; 29:2568-2578. [PMID: 32667670 PMCID: PMC10893962 DOI: 10.1093/hmg/ddaa151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
Loss-of-function mutations of the X-chromosome gene UPF3B cause male neurodevelopmental disorders (NDDs) via largely unknown mechanisms. We investigated initially by interrogating a novel synonymous UPF3B variant in a male with absent speech. In silico and functional studies using cell lines derived from this individual show altered UPF3B RNA splicing. The resulting mRNA species encodes a frame-shifted protein with a premature termination codon (PTC) predicted to elicit degradation via nonsense-mediated mRNA decay (NMD). UPF3B mRNA was reduced in the cell line, and no UPF3B protein was produced, confirming a loss-of-function allele. UPF3B is itself involved in the NMD mechanism which degrades both PTC-bearing mutant transcripts and also many physiological transcripts. RNAseq analysis showed that ~1.6% of mRNAs exhibited altered expression. These mRNA changes overlapped and correlated with those we identified in additional cell lines obtained from individuals harbouring other UPF3B mutations, permitting us to interrogate pathogenic mechanisms of UPF3B-associated NDDs. We identified 102 genes consistently deregulated across all UPF3B mutant cell lines. Of the 51 upregulated genes, 75% contained an NMD-targeting feature, thus identifying high-confidence direct NMD targets. Intriguingly, 22 of the dysregulated genes encoded known NDD genes, suggesting UPF3B-dependent NMD regulates gene networks critical for cognition and behaviour. Indeed, we show that 78.5% of all NDD genes encode a transcript predicted to be targeted by NMD. These data describe the first synonymous UPF3B mutation in a patient with prominent speech and language disabilities and identify plausible mechanisms of pathology downstream of UPF3B mutations involving the deregulation of NDD-gene networks.
Collapse
Affiliation(s)
- Deepti Domingo
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Urwah Nawaz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | - Mark Corbett
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| | | | - Katrina Tatton-Brown
- St George’s University of London, London SW17, UK
- Southwest Thames Regional Genetics Centre, St George’s Healthcare NHS Trust, London SW17, UK
| | - David Coman
- School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Miles F Wilkinson
- Department of Reproductive Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jozef Gecz
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Lachlan A Jolly
- University of Adelaide and Robinson Research Institute, Adelaide, SA 5005, Australia
| |
Collapse
|
329
|
Lee H, Kim HK, Yang DH, Hong YS, Lee W, Lim SB, Byeon JS, Chun S, Min WK. A Novel Splice Variant (c.438T>A) of APC, Suspected by Family History and Confirmed by RNA Sequencing. Ann Lab Med 2020; 41:123-125. [PMID: 32829589 PMCID: PMC7443526 DOI: 10.3343/alm.2021.41.1.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/21/2020] [Accepted: 07/17/2020] [Indexed: 11/19/2022] Open
Affiliation(s)
- Heerah Lee
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Hyun-Ki Kim
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Dong-Hoon Yang
- Department of Gastroenterology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Yong Sang Hong
- Department of Oncology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Woochang Lee
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Seok-Byung Lim
- Department of Surgery, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Jeong-Sik Byeon
- Department of Gastroenterology, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Sail Chun
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| | - Won-Ki Min
- Department of Laboratory Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Korea
| |
Collapse
|
330
|
Sylvester B, Brindopke F, Suzuki A, Giron M, Auslander A, Maas RL, Tsai B, Gao H, Magee W, Cox TC, Sanchez-Lara PA. A Synonymous Exonic Splice Silencer Variant in IRF6 as a Novel and Cryptic Cause of Non-Syndromic Cleft Lip and Palate. Genes (Basel) 2020; 11:genes11080903. [PMID: 32784565 PMCID: PMC7465030 DOI: 10.3390/genes11080903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/28/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Missense, nonsense, splice site and regulatory region variants in interferon regulatory factor 6 (IRF6) have been shown to contribute to both syndromic and non-syndromic forms of cleft lip and/or palate (CL/P). We report the diagnostic evaluation of a complex multigeneration family of Honduran ancestry with a pedigree structure consistent with autosomal-dominant inheritance with both incomplete penetrance and variable expressivity. The proband's grandmother bore children with two partners and CL/P segregates on both sides of each lineage. Through whole-exome sequencing of five members of the family, we identified a single shared synonymous variant, located in the middle of exon 7 of IRF6 (p.Ser307Ser; g.209963979 G>A; c.921C>T). The variant was shown to segregate in the seven affected individuals and through three unaffected obligate carriers, spanning both sides of this pedigree. This variant is very rare, only being found in three (all of Latino ancestry) of 251,352 alleles in the gnomAD database. While the variant did not create a splice acceptor/donor site, in silico analysis predicted it to impact an exonic splice silencer element and the binding of major splice regulatory factors. In vitro splice assays supported this by revealing multiple abnormal splicing events, estimated to impact >60% of allelic transcripts. Sequencing of the alternate splice products demonstrated the unmasking of a cryptic splice site six nucleotides 5' of the variant, as well as variable utilization of cryptic splice sites in intron 6. The ectopic expression of different splice regulatory proteins altered the proportion of abnormal splicing events seen in the splice assay, although the alteration was dependent on the splice factor. Importantly, each alternatively spliced mRNA is predicted to result in a frame shift and prematurely truncated IRF6 protein. This is the first study to identify a synonymous variant as a likely cause of NS-CL/P and highlights the care that should be taken by laboratories when considering and interpreting variants.
Collapse
Affiliation(s)
- Beau Sylvester
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
| | | | - Akiko Suzuki
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO 64108, USA; (A.S.); (T.C.C.)
| | - Melissa Giron
- Operación Sonrisa Honduras, Tegucigalpa 11101, Honduras;
| | - Allyn Auslander
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
- Department of Preventive Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Richard L. Maas
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Becky Tsai
- Fulgent Genetics, Temple City, CA 91780, USA; (B.T.); (H.G.)
| | - Hanlin Gao
- Fulgent Genetics, Temple City, CA 91780, USA; (B.T.); (H.G.)
| | - William Magee
- Division of Plastic and Maxillofacial Surgery, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA; (B.S.); (A.A.); (W.M.III)
| | - Timothy C. Cox
- Department of Oral & Craniofacial Sciences, University of Missouri-Kansas City School of Dentistry, Kansas City, MO 64108, USA; (A.S.); (T.C.C.)
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Pedro A. Sanchez-Lara
- Department of Pediatrics, Cedars-Sinai Medical Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90048, USA
- Correspondence: ; Tel.: +1-(310)-423-4461
| |
Collapse
|
331
|
Di Scipio M, Tavares E, Deshmukh S, Audo I, Green-Sanderson K, Zubak Y, Zine-Eddine F, Pearson A, Vig A, Tang CY, Mollica A, Karas J, Tumber A, Yu CW, Billingsley G, Wilson MD, Zeitz C, Héon E, Vincent A. Phenotype Driven Analysis of Whole Genome Sequencing Identifies Deep Intronic Variants that Cause Retinal Dystrophies by Aberrant Exonization. Invest Ophthalmol Vis Sci 2020; 61:36. [PMID: 32881472 PMCID: PMC7443117 DOI: 10.1167/iovs.61.10.36] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To demonstrate the effectiveness of combining retinal phenotyping and focused variant filtering from genome sequencing (GS) in identifying deep intronic disease causing variants in inherited retinal dystrophies. Methods Affected members from three pedigrees with classical enhanced S-cone syndrome (ESCS; Pedigree 1), congenital stationary night blindness (CSNB; Pedigree 2), and achromatopsia (ACHM; Pedigree 3), respectively, underwent detailed ophthalmologic evaluation, optical coherence tomography, and electroretinography. The probands underwent panel-based genetic testing followed by GS analysis. Minigene constructs (NR2E3, GPR179 and CNGB3) and patient-derived cDNA experiments (NR2E3 and GPR179) were performed to assess the functional effect of the deep intronic variants. Results The electrophysiological findings confirmed the clinical diagnosis of ESCS, CSNB, and ACHM in the respective pedigrees. Panel-based testing revealed heterozygous pathogenic variants in NR2E3 (NM_014249.3; c.119-2A>C; Pedigree 1) and CNGB3 (NM_019098.4; c.1148delC/p.Thr383Ilefs*13; Pedigree 3). The GS revealed heterozygous deep intronic variants in Pedigrees 1 (NR2E3; c.1100+1124G>A) and 3 (CNGB3; c.852+4751A>T), and a homozygous GPR179 variant in Pedigree 2 (NM_001004334.3; c.903+343G>A). The identified variants segregated with the phenotype in all pedigrees. All deep intronic variants were predicted to generate a splice acceptor gain causing aberrant exonization in NR2E3 [89 base pairs (bp)], GPR179 (197 bp), and CNGB3 (73 bp); splicing defects were validated through patient-derived cDNA experiments and/or minigene constructs and rescued by antisense oligonucleotide treatment. Conclusions Deep intronic mutations contribute to missing heritability in retinal dystrophies. Combining results from phenotype-directed gene panel testing, GS, and in silico splice prediction tools can help identify these difficult-to-detect pathogenic deep intronic variants.
Collapse
Affiliation(s)
- Matteo Di Scipio
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Erika Tavares
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Shriya Deshmukh
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, INSERM-DGOS CIC1423, Paris, France
- University College London Institute of Ophthalmology, London, United Kingdom
| | - Kit Green-Sanderson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Yuliya Zubak
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Fayçal Zine-Eddine
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Alexander Pearson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anjali Vig
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Chen Yu Tang
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Antonio Mollica
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Jonathan Karas
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caberry W. Yu
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Gail Billingsley
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
| | - Michael D. Wilson
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Elise Héon
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genomic Biology, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| |
Collapse
|
332
|
Bustamante-Marin XM, Horani A, Stoyanova M, Charng WL, Bottier M, Sears PR, Yin WN, Daniels LA, Bowen H, Conrad DF, Knowles MR, Ostrowski LE, Zariwala MA, Dutcher SK. Mutation of CFAP57, a protein required for the asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes primary ciliary dyskinesia. PLoS Genet 2020; 16:e1008691. [PMID: 32764743 PMCID: PMC7444499 DOI: 10.1371/journal.pgen.1008691] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 08/19/2020] [Accepted: 02/22/2020] [Indexed: 01/10/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass tag (TMT) mass spectroscopy shows that FAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced, but the FAP57 paralog FBB7 is increased. Together, our data identify a homozygous variant in CFAP57 that causes PCD that is likely due to a defect in the inner dynein arm assembly process.
Collapse
Affiliation(s)
- Ximena M. Bustamante-Marin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Amjad Horani
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mihaela Stoyanova
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Wu-Lin Charng
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Mathieu Bottier
- Department of Mechanical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Patrick R. Sears
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Wei-Ning Yin
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Leigh Anne Daniels
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Hailey Bowen
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Donald F. Conrad
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Division of Genetics, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael R. Knowles
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Lawrence E. Ostrowski
- Department of Medicine, Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Maimoona A. Zariwala
- Department of Pathology and Laboratory Medicine and the Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
333
|
The Role of Noncoding Variants in Heritable Disease. Trends Genet 2020; 36:880-891. [PMID: 32741549 DOI: 10.1016/j.tig.2020.07.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/26/2022]
Abstract
The genetic basis of disease has largely focused on coding regions. However, it has become clear that a large proportion of the noncoding genome is functional and harbors genetic variants that contribute to disease etiology. Here, we review recent examples of inherited noncoding alterations that are responsible for Mendelian disorders or act to influence complex traits. We explore both rare and common genetic variants and discuss the wide range of mechanisms by which they affect gene regulation to promote disease. We also debate the challenges and progress associated with identifying and interpreting the functional and clinical significance of genetic variation in the context of the noncoding regulatory landscape.
Collapse
|
334
|
Carrington B, Weinstein RN, Sood R. BE4max and AncBE4max Are Efficient in Germline Conversion of C:G to T:A Base Pairs in Zebrafish. Cells 2020; 9:cells9071690. [PMID: 32674364 PMCID: PMC7407168 DOI: 10.3390/cells9071690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The ease of use and robustness of genome editing by CRISPR/Cas9 has led to successful use of gene knockout zebrafish for disease modeling. However, it still remains a challenge to precisely edit the zebrafish genome to create single-nucleotide substitutions, which account for ~60% of human disease-causing mutations. Recently developed base editing nucleases provide an excellent alternate to CRISPR/Cas9-mediated homology dependent repair for generation of zebrafish with point mutations. A new set of cytosine base editors, termed BE4max and AncBE4max, demonstrated improved base editing efficiency in mammalian cells but have not been evaluated in zebrafish. Therefore, we undertook this study to evaluate their efficiency in converting C:G to T:A base pairs in zebrafish by somatic and germline analysis using highly active sgRNAs to twist and ntl genes. Our data demonstrated that these improved BE4max set of plasmids provide desired base substitutions at similar efficiency and without any indels compared to the previously reported BE3 and Target-AID plasmids in zebrafish. Our data also showed that AncBE4max produces fewer incorrect and bystander edits, suggesting that it can be further improved by codon optimization of its components for use in zebrafish.
Collapse
|
335
|
Suñé-Pou M, Limeres MJ, Moreno-Castro C, Hernández-Munain C, Suñé-Negre JM, Cuestas ML, Suñé C. Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease. Front Genet 2020; 11:731. [PMID: 32760425 PMCID: PMC7373156 DOI: 10.3389/fgene.2020.00731] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies. In recent decades, research has helped to elucidate the mechanisms regulating alternative splicing and, in some cases, to reveal how dysregulation of these mechanisms leads to disease. The resulting knowledge has enabled the design of novel therapeutic strategies for correction of splicing-derived pathologies. In this review, we focus primarily on therapeutic approaches targeting splicing, and we highlight nanotechnology-based gene delivery applications that address the challenges and barriers facing nucleic acid-based therapeutics.
Collapse
Affiliation(s)
- Marc Suñé-Pou
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María J Limeres
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| | - Josep M Suñé-Negre
- Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - María L Cuestas
- Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), Granada, Spain
| |
Collapse
|
336
|
Wachs AS, Bohne J. Two sides of the same medal: Noncoding mutations reveal new pathological mechanisms and insights into the regulation of gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1616. [PMID: 32633083 DOI: 10.1002/wrna.1616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022]
Abstract
Noncoding sequences constitute the major part of the human genome and also of pre-mRNAs. Single nucleotide variants in these regions are often overlooked, but may be responsible for much of the variation of phenotypes observed. Mutations in the noncoding part of pre-mRNAs often reveal new and meaningful insights into the regulation of cellular gene expression. Thus, the mechanistic analysis of the pathological mechanism of such mutations will both foster a deeper understanding of the disease and the underlying cellular pathways. Even synonymous mutations can cause diseases, since the primary mRNA sequence not only encodes amino acids, but also encrypts information on RNA-binding proteins and secondary structure. In fact, the RNA sequence directs assembly of a specific mRNP complex, which in turn dictates the fate of the mRNA or regulates its biogenesis. The accumulation of genomic sequence information is increasing at a rapid pace. However, much of the diversity uncovered may not explain the phenotype of a certain syndrome or disease. For this reason, we also emphasize the value of mechanistic studies on pathological mechanisms being complementary to genome-wide studies and bioinformatic approaches. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Amelie S Wachs
- Institute of Virology, Hannover Medical School, Hanover, Germany
| | - Jens Bohne
- Institute of Virology, Hannover Medical School, Hanover, Germany
| |
Collapse
|
337
|
Recondo G, Che J, Jänne PA, Awad MM. Targeting MET Dysregulation in Cancer. Cancer Discov 2020; 10:922-934. [PMID: 32532746 PMCID: PMC7781009 DOI: 10.1158/2159-8290.cd-19-1446] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022]
Abstract
Aberrant MET signaling can drive tumorigenesis in several cancer types through a variety of molecular mechanisms including MET gene amplification, mutation, rearrangement, and overexpression. Improvements in biomarker discovery and testing have more recently enabled the selection of patients with MET-dependent cancers for treatment with potent, specific, and novel MET-targeting therapies. We review the known oncologic processes that activate MET, discuss therapeutic strategies for MET-dependent malignancies, and highlight emerging challenges in acquired drug resistance in these cancers. SIGNIFICANCE: Increasing evidence supports the use of MET-targeting therapies in biomarker-selected cancers that harbor molecular alterations in MET. Diverse mechanisms of resistance to MET inhibitors will require the development of novel strategies to delay and overcome drug resistance.
Collapse
Affiliation(s)
- Gonzalo Recondo
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts
| | - Jianwei Che
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts
| | - Pasi A Jänne
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mark M Awad
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
338
|
Olthof AM, Rasmussen JS, Campeau PM, Kanadia RN. Disrupted minor intron splicing is prevalent in Mendelian disorders. Mol Genet Genomic Med 2020; 8:e1374. [PMID: 32573973 PMCID: PMC7507305 DOI: 10.1002/mgg3.1374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Background Splicing is crucial for proper gene expression, and is predominately executed by the major spliceosome. Conversely, 722 introns in 699 human minor intron‐containing genes (MIGs) are spliced by the minor spliceosome. Splicing of these minor introns is disrupted in diseases caused by pathogenic variants in the minor spliceosome, ultimately leading to the aberrant expression of a subset of these MIGs. However, the effect of variants in minor introns and MIGs on diseases remains unexplored. Methods Variants in MIGs and associated clinical manifestations were identified using ClinVar. The HPO database was then used to curate the related symptoms and affected organ systems. Results: We found pathogenic variants in 211 MIGs, which commonly resulted in intellectual disability, seizures and microcephaly. This revealed a subset of MIGs whose aberrant splicing may contribute to the pathogenesis of minor spliceosome‐related diseases. Moreover, we identified 51 pathogenic variants in minor intron splice sites that reduce the splice site strength and can induce alternative splicing. Conclusion These findings highlight that disrupted minor intron splicing has a broader impact on human diseases than previously appreciated. The hope is that this knowledge will aid in the development of therapeutic strategies that incorporate the minor intron splicing pathway.
Collapse
Affiliation(s)
- Anouk M Olthof
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Jeffrey S Rasmussen
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | | | - Rahul N Kanadia
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
339
|
Splicing mutations in inherited retinal diseases. Prog Retin Eye Res 2020; 80:100874. [PMID: 32553897 DOI: 10.1016/j.preteyeres.2020.100874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
Abstract
Mutations which induce aberrant transcript splicing represent a distinct class of disease-causing genetic variants in retinal disease genes. Such mutations may either weaken or erase regular splice sites or create novel splice sites which alter exon recognition. While mutations affecting the canonical GU-AG dinucleotides at the splice donor and splice acceptor site are highly predictive to cause a splicing defect, other variants in the vicinity of the canonical splice sites or those affecting additional cis-acting regulatory sequences within exons or introns are much more difficult to assess or even to recognize and require additional experimental validation. Splicing mutations are unique in that the actual outcome for the transcript (e.g. exon skipping, pseudoexon inclusion, intron retention) and the encoded protein can be quite different depending on the individual mutation. In this article, we present an overview on the current knowledge about and impact of splicing mutations in inherited retinal diseases. We introduce the most common sub-classes of splicing mutations including examples from our own work and others and discuss current strategies for the identification and validation of splicing mutations, as well as therapeutic approaches, open questions, and future perspectives in this field of research.
Collapse
|
340
|
Huang S, Niu Y, Li J, Gao M, Zhang Y, Yan J, Ma S, Gao X, Gao Y. Complex preimplantation genetic tests for Robertsonian translocation, HLA, and X-linked hyper IgM syndrome caused by a novel mutation of CD40LG gene. J Assist Reprod Genet 2020; 37:2025-2031. [PMID: 32500460 DOI: 10.1007/s10815-020-01846-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
PURPOSE To perform complex preimplantation genetic tests (PGT) for aneuploidy screening, Robertsonian translocation, HLA-matching, and X-linked hyper IgM syndrome (XHIGM) caused by a novel mutation c.156 G>T of CD40LG gene. METHODS Reverse transcription PCR (RT-PCR) and Sanger sequencing were carried out to confirm the causative variant of CD40LG gene in the proband and parents. Day 5 and D6 blastocysts, obtained by in vitro fertilization (IVF) with intracytoplasmic sperm injection, underwent trophectoderm (TE) biopsy and whole genomic amplification (WGA) and next generation sequencing (NGS)-based PGT to detect the presence of a maternal CD40LG mutation, aneuploidy, Robertsonian translocation carrier, and human leukocyte antigen (HLA) haplotype. RESULTS Sanger sequencing data of the genomic DNA showed that the proband has a hemizygous variant of c. 156 G>T in the CD40LG gene, while his mother has a heterozygous variant at the same position. Complementary DNA (cDNA) of CD40LG amplification and sequencing displayed that no cDNA of CD40LG was found in proband, while only wild-type cDNA of CD40LG was amplified in the mother. PGT results showed that only one of the six tested embryos is free of the variant c.156 G>T and aneuploidy and having the consistent HLA type as the proband. Meanwhile, the embryo is a Robertsonian translocation carrier. The embryo was transplanted into the mother's uterus. Amniotic fluid testing results are consistent with that of PGT. A healthy baby girl was delivered, and the peripheral blood testing data was also consistent with the testing results of transplanted embryo. CONCLUSIONS The novel mutation of c. 156 G>T in CD40LG gene probably leads to XHIGM by nonsense-meditated mRNA decay (NMD), and complex PGT of preimplantation genetic testing for monogenic disease (PGT-M), aneuploidy (PGT-A), structural rearrangement (PGT-SR), and HLA-matching (PGT-HLA) can be performed in pedigree with both X-linked hyper IgM syndrome and Robertsonian translocation.
Collapse
Affiliation(s)
- Sexin Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yuping Niu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Jie Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Ming Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Zhang
- Shandong Provincial Hospital, Jinan, 250001, Shandong, China
| | - Junhao Yan
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Shuiying Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Xuan Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
341
|
Komaki R, Hashimoto Y, Mori-Yoshimura M, Oya Y, Takizawa H, Minami N, Nishino I, Aoki Y, Takahashi Y. Severe cardiac involvement with preserved truncated dystrophin expression in Becker muscular dystrophy by +1G>A DMD splice-site mutation: a case report. J Hum Genet 2020; 65:903-909. [PMID: 32504006 PMCID: PMC7449875 DOI: 10.1038/s10038-020-0788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 05/21/2020] [Indexed: 01/16/2023]
Abstract
Becker muscular dystrophy (BMD) is caused by specific mutations in the DMD gene that causes progressive muscle weakness and primarily affects skeletal and cardiac muscle. Although cardiac involvement is a significant cause of mortality in BMD, the genetic–phenotype correlation for skeletal and cardiac muscles has not been elucidated. Here, we described a 39-year-old man with BMD, who presented with subtle skeletal muscle weakness in the right leg in his 20s and underwent left ventricular restoration for severe dilated cardiomyopathy at the age of 29. He had difficulty climbing stairs after the age of 35. Neither duplication nor deletion of exons was detected by multiplex ligation-dependent probe amplification. A hemizygous c.264 + 1G>A mutation in intron 4 of the DMD was identified by next-generation sequencing. Furthermore, exon 4 skipping of the DMD was confirmed in both skeletal and cardiac muscles evaluated by reverse transcriptase PCR. Endomyocardial and skeletal muscle biopsies revealed dystrophic pathology characterized by muscle fiber atrophy and hypertrophy with a mild degree of interstitial fibrosis. Interestingly, dystrophin immunohistochemistry demonstrated patchy and faint staining of the skeletal muscle membranes but almost normal staining of the cardiac muscle membranes. Western blot analysis revealed a decreased amount of truncated dystrophin in skeletal muscle but surprisingly almost normal amount in cardiac muscle. This case indicates that BMD patients may have severe cardiac dysfunction despite preserved cardiac truncated dystrophin expression.
Collapse
Affiliation(s)
- Ryouhei Komaki
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasumasa Hashimoto
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Madoka Mori-Yoshimura
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Yasushi Oya
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Hotake Takizawa
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Narihiro Minami
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitsugu Aoki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.
| | - Yuji Takahashi
- Department of Neurology, National Center Hospital, National Center of Neurology and Psychiatry, Kodaira, Japan
| |
Collapse
|
342
|
Ivanoshchuk DE, Shakhtshneider EV, Ovsyannikova AK, Mikhailova SV, Rymar OD, Oblaukhova VI, Yurchenko AA, Voevoda MI. A rare splice site mutation in the gene encoding glucokinase/hexokinase 4 in a patient with MODY type 2. Vavilovskii Zhurnal Genet Selektsii 2020. [PMID: 33659812 PMCID: PMC7716520 DOI: 10.18699/vj20.41-o] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The article presents a variant of maturity onset diabetes of the young type 2, caused by a rare mutation
in the GCK gene. Maturity onset diabetes of the young (MODY) is a hereditary form of diabetes with an autosomal
dominant type of inheritance, an onset at a young age, and a primary defect in pancreatic β-cell function. This
type of diabetes is different from classical types of diabetes mellitus (DM1 and DM2) in its clinical course, treatment
strategies, and prognosis. Clinical manifestations of MODY are heterogeneous and may vary even among
members of the same family, i. e., carriers of identical mutations. This phenotypic variation is due to the interaction
of mutations with different genetic backgrounds and the influence of environmental factors (e. g., lifestyle). Using
next-generation sequencing technology, the c.580–1G>A substitution (IVS5 –1G>A, rs1554335421) located in an
acceptor splice site of intron 5 of the GCK gene was found in a proband. The identified variant cosegregated with
a pathological phenotype in the examined family members. The GCK gene encodes glucokinase (hexokinase 4),
which catalyzes the first step in a large number of glucose metabolic pathways such as glycolysis. Mutations in this
gene are the cause of MODY2. The illness is characterized by an insignificant increase in the fasting glucose level, is
a well-controlled disease without medication, and has a low prevalence of micro- and macrovascular complications
of diabetes. The presented case of MODY2 reveals the clinical significance of a mutation in the splice site of the
GCK gene. When nonclassical diabetes mellitus is being diagnosed in young people and pregnant women, genetic
testing is needed to verify the diagnosis and to select the optimal treatment method.
Key words: human; maturity onset diabetes of the young; MODY2; glucokinase gene; next-generation sequencing;
genetic analysis; bioinformatics.
Collapse
Affiliation(s)
- D. E. Ivanoshchuk
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - E. V. Shakhtshneider
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. K. Ovsyannikova
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - S. V. Mikhailova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - O. D. Rymar
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - V. I. Oblaukhova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - A. A. Yurchenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - M. I. Voevoda
- Research Institute of Internal and Preventive Medicine – Branch of the Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences; Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
343
|
Güemes M, Martín-Rivada Á, Ortiz-Cabrera NV, Martos-Moreno GÁ, Pozo-Román J, Argente J. LZTR1: Genotype Expansion in Noonan Syndrome. Horm Res Paediatr 2020; 92:269-275. [PMID: 31533111 DOI: 10.1159/000502741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/14/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND LZTR1 participates in RAS protein degradation, hence limiting the RAS/MAPK cascade. Pathogenic mutations in LZTR1 (MIM:600574) have been described in a few patients with Noonan syndrome (NS). Three patients with LZTR1 mutations of different genetic transmission and NS phenotype are herein characterized. CLINICAL CASES Case 1 is a 5-year-old boy with NS phenotype. Sanger sequencing of PTPN11 and SOS1 identified no mutations. Whole exome sequencing (WES) detected a heterozygous missense mutation in LZTR1:c.742G>A (p.Gly248Arg) (exon 8, Kelch 4 functional domain). Bioinformatic algorithms predict a deleterious effect of this variant, previously described to cause NS. Case 2 is a 4-year-old boy with NS phenotype. Direct sequencing of 8 genes associated with NS identified no mutations. WES localized a homozygous missense mutation in LZTR1:c.2074T>C (p.Phe692Leu, exon 18). This mutation has not been reported before and is predicted to have a deleterious effect on the protein. Case 3 is an 8-year-old boy who shares NS phenotype with his mother. A multigene panel for RASopathies showed a heterozygous missense variant in LZTR1:c.730T>C (p.Ser244Pro) (exon 8; Kelch 4 functional domain) that was maternally inherited. This variant has not been previously described; however, in silico predictors classify it as deleterious. Familial segregation suggests its pathogenicity. CONCLUSIONS The molecular approach for syndromic phenotypes associated with various genes should involve complete/updated panels or WES rather than gene-by-gene sequencing. RASopathy genetic panels should incorporate LZTR1. Patients with pathogenic mutations in LZTR1 exhibit a characteristic NS gestalt but variable cardiac, height, and neurodevelopment expressions, with recessive inheritance possibly associating with a more severe phenotype.
Collapse
Affiliation(s)
- María Güemes
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,La Princesa Research Institute, Madrid, Spain
| | - Álvaro Martín-Rivada
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Gabriel Ángel Martos-Moreno
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,La Princesa Research Institute, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Pozo-Román
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.,La Princesa Research Institute, Madrid, Spain.,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Argente
- Departments of Pediatrics and Pediatric Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain, .,La Princesa Research Institute, Madrid, Spain, .,Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain, .,Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutriciόn (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain, .,IMDEA, Food Institute, CEIUAM+CSI, Madrid, Spain,
| |
Collapse
|
344
|
Mittwollen R, Wohlfart S, Park J, Grosch E, Has C, Hohenester E, Schneider H, Hammersen J. Aberrant splicing as potential modifier of the phenotype of junctional epidermolysis bullosa. J Eur Acad Dermatol Venereol 2020; 34:2127-2134. [PMID: 32124492 DOI: 10.1111/jdv.16332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND A lack or dysfunction of the anchoring protein laminin-332 in the basement membrane leads to the skin blistering disorder junctional epidermolysis bullosa (JEB). The mutation c.628G>A in the gene LAMB3 encoding the laminin β3-chain is associated with generalized intermediate JEB; it may introduce an amino acid substitution (p.Glu210Lys) or disrupt splicing. OBJECTIVE This retrospective study aimed at determining the effects of aberrant splicing on the JEB phenotype. METHODS LAMB3 transcription was analysed in two siblings compound heterozygous for the LAMB3 mutations p.Glu210Lys and p.Arg635* with a diverging JEB phenotype from late childhood on. Laminin-332 levels in skin sections and in cultured keratinocytes were investigated by immunofluorescence staining. Real-time PCR was used to quantify LAMB3 expression in keratinocytes. RNA splice variants were identified by subcloning of a LAMB3 cDNA fraction and subsequent DNA sequencing. Structural models of laminin-332 helped to assess the impact of certain mutations on laminin-332 folding. RESULTS Both siblings showed diminished LAMB3 expression. Laminin-332 was equally reduced in skin sections obtained during infancy but differed in keratinocytes isolated during adolescence. Although aberrant LAMB3 splicing with 26 variants was detected in both patients, splicing differed significantly: the full-length LAMB3 transcript harbouring the p.Glu210Lys mutation was found more often in the patient affected less severely (14/108 vs. 5/106 clones; P = 0.03). Structural modelling predicted that several deletions in LAMB3, but not the point mutation p.Glu210Lys, have an effect on laminin-332 folding and secretion. CONCLUSIONS Differential LAMB3 mRNA splicing in the patients may explain the disparate JEB phenotype. By elucidating the regulation of laminin-332 gene expression, these findings may contribute to the development of therapeutic strategies for JEB and might help to understand phenotype modification by splice-site mutations in other hereditary diseases.
Collapse
Affiliation(s)
- R Mittwollen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - S Wohlfart
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Park
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - E Grosch
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - C Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg, Germany
| | - E Hohenester
- Department of Life Sciences, Imperial College London, London, UK
| | - H Schneider
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| | - J Hammersen
- Department of Pediatrics, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
345
|
Famà R, Borroni E, Zanolini D, Merlin S, Bruscaggin V, Walker GE, Olgasi C, Babu D, Agnelli Giacchello J, Valeri F, Giordano M, Borchiellini A, Follenzi A. Identification and functional characterization of a novel splicing variant in the F8 coagulation gene causing severe hemophilia A. J Thromb Haemost 2020; 18:1050-1064. [PMID: 32078252 DOI: 10.1111/jth.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND We have identified a synonymous F8 variation in a severe hemophilia A (HA) patient who developed inhibitors following factor VIII (FVIII) prophylaxis. The unreported c.6273 G > A variant targets the consensus splicing site of exon 21. OBJECTIVES To determine the impact of c.6273 G > A nucleotide substitution on F8 splicing and its translated protein. METHODS Patient peripheral blood mononuclear cells were isolated and differentiated into monocyte-derived macrophages (MDMs). FVIII distribution in cell compartments was evaluated by immunofluorescence. The splicing of mutated exon 21 was assessed by exon trapping. Identified FVIII splicing variants were generated by site-directed mutagenesis, inserted into a lentiviral vector (LV) to transduce Chinese hamster ovary (CHO) cells, and inject into B6/129 HA-mice. FVIII activity was assessed by activated partial thromboplastin time, whereas anti-FVIII antibodies and FVIII antigen, by ELISA. RESULTS HA-MDMs demonstrated a predominant retention of FVIII around the endoplasmic reticulum. Exon trapping revealed the production of two isoforms: one retaining part of intron 21 and the other skipping exon 21. These variants, predicted to truncate FVIII in the C1 domain, were detected in the patient. CHO cells transduced with the two FVIII transcripts confirmed protein retention and absence of the C2 domain. HA mice injected with LV carrying FVIII mutants, partially recovered FVIII activity without the appearance of anti-FVIII antibodies. CONCLUSIONS Herein, we demonstrate the aberrant impact of a FVIII synonymous mutation on its transcription, activity, and pathological outcomes. Our data underline the importance of increasing the knowledge regarding the functional consequences of F8 mutations and their link to inhibitor development and an effective replacement therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Deepak Babu
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Federica Valeri
- Hemostasis and Thrombosis Unit, Città Della Salute e Della Scienza, Molinette, Turin, Italy
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
346
|
Galmozzi E. Letter to the Editor: Does the HSD17B13 rs72613567 Splice Variant Actually Yield a New Type of Alternative Splicing? Hepatology 2020; 71:1885-1886. [PMID: 31755564 DOI: 10.1002/hep.31044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Enrico Galmozzi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
347
|
Häuser F, Gökce S, Werner G, Danckwardt S, Sollfrank S, Neukirch C, Beyer V, Hennermann JB, Lackner KJ, Mengel E, Rossmann H. A non-invasive diagnostic assay for rapid detection and characterization of aberrant mRNA-splicing by nonsense mediated decay inhibition. Mol Genet Metab 2020; 130:27-35. [PMID: 32222271 DOI: 10.1016/j.ymgme.2020.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/09/2023]
Abstract
BACKGROUND Interpretation of genetic variants detected by sequencing of genomic DNA, which may cause splicing defects, regularly requires mRNA analysis. Usually, only bioinformatic testing is provided, because simple and non-invasive assay protocols are lacking. Furthermore, the detection of mis-splicing is often hampered by nonsense mediated mRNA decay (NMD). METHODS Starting from a case of Pompe disease with two potential splicing variants an assay for the analysis of splice defects in general was developed. We analyzed the transcripts from the gene of interest by standard methods after short-term culture of the patient's lymphocytes in the presence and absence of a NMD inhibitor. Variant and wild type transcript expression were quantified by allele specific PCR in the patient and both parents and the expression ratio with/without NMD inhibition was calculated for each transcript. RESULTS NMD detection in lymphocytes was optimized and evaluated by analyzing a naturally occurring NMD transcript. Several compounds inhibited NMD successfully, including potential therapeutic agents. Sample storage for up to 4 days at room temperature prior to lymphocyte isolation did not affect results. In a proof of concept we identified two candidate variants as severe splicing variants in a patient with Pompe disease, but the strategy can also be used to screen for any mis-spliced transcripts prone to NMD. CONCLUSIONS We developed a simple, non-invasive assay for the detection and characterization of potential splicing variants. This is essential, because early and near-term diagnosis and disease classification is required to facilitate therapy in many genetic diseases.
Collapse
Affiliation(s)
- Friederike Häuser
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Seyfullah Gökce
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Gesa Werner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Sven Danckwardt
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stefanie Sollfrank
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Carolin Neukirch
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Vera Beyer
- Institute of Human Genetics, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Julia B Hennermann
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Karl J Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Eugen Mengel
- Center for Pediatric and Adolescent Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Heidi Rossmann
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Mainz, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
348
|
Bronstein R, Capowski EE, Mehrotra S, Jansen AD, Navarro-Gomez D, Maher M, Place E, Sangermano R, Bujakowska KM, Gamm DM, Pierce EA. A combined RNA-seq and whole genome sequencing approach for identification of non-coding pathogenic variants in single families. Hum Mol Genet 2020; 29:967-979. [PMID: 32011687 PMCID: PMC7158377 DOI: 10.1093/hmg/ddaa016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/23/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal degenerations (IRDs) are at the focus of current genetic therapeutic advancements. For a genetic treatment such as gene therapy to be successful, an accurate genetic diagnostic is required. Genetic diagnostics relies on the assessment of the probability that a given DNA variant is pathogenic. Non-coding variants present a unique challenge for such assessments as compared to coding variants. For one, non-coding variants are present at much higher number in the genome than coding variants. In addition, our understanding of the rules that govern the non-coding regions of the genome is less complete than our understanding of the coding regions. Methods that allow for both the identification of candidate non-coding pathogenic variants and their functional validation may help overcome these caveats allowing for a greater number of patients to benefit from advancements in genetic therapeutics. We present here an unbiased approach combining whole genome sequencing (WGS) with patient-induced pluripotent stem cell (iPSC)-derived retinal organoids (ROs) transcriptome analysis. With this approach, we identified and functionally validated a novel pathogenic non-coding variant in a small family with a previously unresolved genetic diagnosis.
Collapse
Affiliation(s)
- Revital Bronstein
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Elizabeth E Capowski
- Waisman Center Stem Cell Research Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sudeep Mehrotra
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Alex D Jansen
- Waisman Center Stem Cell Research Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Daniel Navarro-Gomez
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Mathew Maher
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Emily Place
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Riccardo Sangermano
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - Kinga M Bujakowska
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| | - David M Gamm
- Department of Ophthalmology and Visual Sciences, Waisman Center Stem Cell Research Program, McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Eric A Pierce
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Ocular Genomics Institute, Boston, MA 02114, USA
| |
Collapse
|
349
|
Batista RL, Mendonca BB. Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide. APPLICATION OF CLINICAL GENETICS 2020; 13:83-96. [PMID: 32346305 PMCID: PMC7167369 DOI: 10.2147/tacg.s198178] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/20/2020] [Indexed: 12/12/2022]
Abstract
Introduction The conversion of testosterone into dihydrotestosterone is catalyzed by the 5α-reductase type 2 enzyme which plays a crucial role in the external genitalia virilization. It is encoded by the SRD5A2 gene. Allelic variants in this gene cause a 46,XY DSD with no genotype-phenotype relationship. It was firstly reported in the early 70s from isolated clusters. Since then, several cases have been reported. Putting together, it will expand the knowledge on the molecular bases of androgen milieu. Methods We searched for SRD5A2 allelic variants (AV) in the literature (PubMed, Embase, MEDLINE) and websites (ensembl, HGMD, ClinVar). Only cases with AV in both alleles, either in homozygous or compound heterozygous were included. The included cases were analyzed according to ethnicity, exon, domain, aminoacid (aa) conservation, age at diagnosis, sex assignment, gender reassignment, external genitalia virilization and functional studies. External genitalia virilization was scored using Sinnecker scale. Conservation analysis was carried out using the CONSURF platform. For categorical variables, we used X2 test and Cramer's V. Continuous variables were analyzed by t test or ANOVA. Concordance was estimated by Kappa. Results We identified 434 cases of 5ARD2 deficiencies from 44 countries. Most came from Turkey (23%), China (17%), Italy (9%), and Brazil (7%). Sixty-nine percent were assigned as female. There were 70% of homozygous allelic variants and 30% compound heterozygous. Most were missense variants (76%). However, small indels (11%), splicing (5%) and large deletions (4%) were all reported. They were distributed along with all exons with exon 1 (33%) and exon 4 (25%) predominance. Allelic variants in the exon 4 (NADPH-binding domain) resulted in lower virilization (p<0.0001). The codons 55, 65, 196, 235 and 246 are hotspots making up 25% of all allelic variants. Most of them (76%) were located at conserved aa. However, allelic variants at non-conserved aa were more frequently indels (28% vs 6%; p<0.01). The overall rate of gender change from female to male ranged from 16% to 70%. The lowest rate of gender change from female to male occurred in Turkey and the highest in Brazil. External genitalia virilization was similar between those who changed and those who kept their assigned gender. The gender change rate was significantly different across the countries (V=0.44; p<0.001) even with similar virilization scores. Conclusion 5ARD2 deficiency has a worldwide distribution. Allelic variants at the NADPH-ligand region cause lower virilization. Genitalia virilization influenced sex assignment but not gender change which was influenced by cultural aspects across the countries. Molecular diagnosis influenced on sex assignment, favoring male sex assignment in newborns with 5α-reductase type 2 deficiency.
Collapse
Affiliation(s)
- Rafael Loch Batista
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, do Departamento de Clínica Médica, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
350
|
Yazdani S, Badjatiya A, Dorrani N, Lee H, Grody WW, Nelson SF, Dipple KM. Genetic characterization and long-term management of severely affected siblings with intellectual developmental disorder with cardiac arrhythmia syndrome. Mol Genet Metab Rep 2020; 23:100582. [PMID: 32280589 PMCID: PMC7138921 DOI: 10.1016/j.ymgmr.2020.100582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 11/30/2022] Open
Abstract
We report two brothers with severe global cognitive and motor delay, cortical visual impairment and sick sinus syndrome who were born to consanguineous parents. Standard genetic evaluations did not reveal the cause of their mental retardation. As expected, chromosomal microarray (CMA) revealed extensive regions of homozygosity. Exome sequencing revealed that both affected boys were homozygous for a nonsense mutation in the G-protein β5 (GNB5) gene (NM_016194.3:c.1032C > G; Tyr344Ter), and that the parents were carriers of this mutation. No other DNA variants that were explanatory for the sick sinus or the developmental delay/intellectual disability were identified, and no other clinical parameters are likely to have contributed to this unusual combination of phenotypes. The neurologic features of our patients are more severe than those of most of the other patients previously reported with GNB5 variants, probably because of the homozygous, complete loss-of-function (nonsense/stop-gain) nature of their variant, and their clinical course has been monitored for longer duration.
Collapse
Affiliation(s)
- Shahram Yazdani
- Departments of Pediatrics and Mattel Children's Hospital at UCLA, Los Angeles, CA, United States of America
| | - Anish Badjatiya
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Naghmeh Dorrani
- Departments of Pediatrics and Mattel Children's Hospital at UCLA, Los Angeles, CA, United States of America
| | - Hane Lee
- Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America.,Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Wayne W Grody
- Departments of Pediatrics and Mattel Children's Hospital at UCLA, Los Angeles, CA, United States of America.,Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America.,Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Stanley F Nelson
- Departments of Pediatrics and Mattel Children's Hospital at UCLA, Los Angeles, CA, United States of America.,Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America.,Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| | - Katrina M Dipple
- Departments of Pediatrics and Mattel Children's Hospital at UCLA, Los Angeles, CA, United States of America.,Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America
| |
Collapse
|