301
|
Gao Y, Liu JF, Zhang C, Liu L, Liu YP, Zhang SL, Zhao LM. Enzyme-injected method of enzymatic dispersion at low temperature is effective for isolation of smooth muscle cells from human esophagogastric junction. Exp Ther Med 2020; 19:2933-2948. [PMID: 32256779 PMCID: PMC7086163 DOI: 10.3892/etm.2020.8560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 01/09/2020] [Indexed: 11/29/2022] Open
Abstract
The present study was conducted to examine the feasibility of in vitro isolation and primary culture of smooth muscle cells (SMCs) from the esophagogastric junction (EGJ). Smooth muscles of EGJ were harvested from 23 patients with esophageal cancer during esophagostomy from January 2015 to December 2017. Enzymatic dispersion (ED) was performed for isolation. Collagenase II and Trypsin/EDTA were applied by enzyme injection (EI) into tissue fragments or immersion of tissue fragments into enzyme solution. Growth characteristics and proliferation [Cell Counting Kit-8 (CCK-8)] of cells were recorded for both smooth muscle cell medium (SMCM) and DMEM/F12 containing 10% newborn bovine serum (10%-F12). All ED methods could isolate primary cells; EI was the most effective method with low collagenase II concentration (0.5 mg/ml) at 4˚C for 14-24 h. Primary cells demonstrated mainly spindle- and long-spindle-shaped with ‘hills and valleys’ morphology. The CCK-8 assay in SMCM showed better proliferation results than in 10%-F12. After passaging for 4-8 generations in SMCM or 2-4 generations in 10%-F12, cells enlarged gradually with passages and lost spindle structures. mRNA and proteins of α-smooth muscle actin (α-SMA), smooth muscle 22 α (SM22α), vimentin, desmin, CD90 and proliferating cell nuclear antigen were detected in tissues and cells with different levels of expression. SMCs of esophageal circular muscle, esophageal longitudinal muscle, gastric circular muscle near sling in gastric bottom and gastric circular muscle near clasp in lesser gastric curvature, all cultured in 10%-F12, exhibited superior smooth muscle phenotypes compared with SMCs cultured in SMCM in terms of α-SMA, SM22α and vimentin expression. The EI method of ED at low temperature appears effective for isolation and primary culture of SMCs from human EGJ in vitro.
Collapse
Affiliation(s)
- Yang Gao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China.,Graduate School of Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jun-Feng Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Chao Zhang
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Liang Liu
- Tumor Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yue-Ping Liu
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Sheng-Lei Zhang
- Department of Nephrology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Lian-Mei Zhao
- Research Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
302
|
Løvmo SD, Madaro A, Whatmore P, Bardal T, Ostensen MA, Sandve SR, Olsen RE. Mid and hindgut transcriptome profiling analysis of Atlantic salmon ( Salmon salar) under unpredictable chronic stress. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191480. [PMID: 32257316 PMCID: PMC7062075 DOI: 10.1098/rsos.191480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/31/2020] [Indexed: 06/11/2023]
Abstract
The intestinal epithelium is a selectively permeable barrier for nutrients, electrolytes and water, while maintaining effective protection against pathogens. Combinations of stressors throughout an animal's life, especially in agriculture and aquaculture settings, may affect the regular operativity of this organ with negative consequences for animal welfare. In the current study, we report the effects of a three-week unpredictable chronic stress (UCS) period on the intestinal morphology and transcriptome response of Atlantic salmon (Salmon salar) parr midgut and hindgut. Midgut and hindgut from both control and UCS fish were collected for histology and RNA-sequencing analysis to identify respective changes in the membrane structures and putative genes and pathways responding to UCS. Histological analysis did not show any significant effect on morphometric parameters. In the midgut, 1030 genes were differentially expressed following UCS, resulting in 279 genes which were involved in 13 metabolic pathways, including tissue repair pathways. In the hindgut, following UCS, 591 differentially expressed genes were detected with 426 downregulated and 165 upregulated. A total of 53 genes were related to three pathways. Downregulated genes include cellular senescence pathways, p53 signalling and cytokine-cytokine receptor pathways. The overall results corroborate that salmon parr were at least partly habituating to the UCS treatment. In midgut, the main upregulation was related to cell growth and repair, while in the hindgut there were indications of the activated apoptotic pathway, reduced cell repair and inhibited immune/anti-inflammatory capacity. This may be the trade-off between habituating to UCS and health resilience. This study suggests possible integrated genetic regulatory mechanisms that are tuned when farmed Atlantic salmon parr attempt to cope with UCS.
Collapse
Affiliation(s)
- Signe Dille Løvmo
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Angelico Madaro
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
| | - Paul Whatmore
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
| | - Tora Bardal
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Mari-Ann Ostensen
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | | | - Rolf Erik Olsen
- Institute of Marine Research, Animal Welfare Science Group, Matredal 5984, Norway
- Department of Biology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| |
Collapse
|
303
|
Wu F, Yin C, Qi J, Duan D, Jiang X, Yu J, Luo Z. miR-362-5p promotes cell proliferation and cell cycle progression by targeting GAS7 in acute myeloid leukemia. Hum Cell 2020; 33:405-415. [PMID: 31925702 PMCID: PMC7080691 DOI: 10.1007/s13577-019-00319-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/24/2019] [Indexed: 11/27/2022]
Abstract
Recently, miR-362-5p has attracted special interest as a novel prognostic predictor in acute myeloid leukemia (AML). However, its biological function and underlying molecular mechanism in AML remain to be further defined. Herein, we found that a significant increase in miR-362-5p expression was observed in AML patients and cell lines using quantitative real-time PCR. The expression of miR-362-5p was altered in THP-1 and HL-60 cells by transfecting with miR-362-5p mimic or inhibitor. A series of experiments showed that inhibition of miR-362-5p expression significantly suppressed cell proliferation, induced G0/G1 phase arrest and attenuated tumor growth in vivo. On the contrary, ectopic expression of miR-362-5p resulted in enhanced cell proliferation, cell cycle progression and tumor growth. Moreover, growth arrest-specific 7 (GAS7) was confirmed as a direct target gene of miR-362-5p and was negatively modulated by miR-362-5p. GAS7 overexpression imitated the tumor suppressive effect of silenced miR-362-5p on THP-1 cells. Furthermore, miR-362-5p knockdown or GAS7 overexpression obviously down-regulated the expression levels of PCNA, CDK4 and cyclin D1, but up-regulated p21 expression. Collectively, our findings demonstrate that miR-362-5p exerts oncogenic effects in AML by directly targeting GAS7, which might provide a promising therapeutic target for AML.
Collapse
Affiliation(s)
- Fuqun Wu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China. .,Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China.
| | - Changxin Yin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Junhua Qi
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Deyu Duan
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Xi Jiang
- Department of Clinical Laboratory, The Seventh Affiliated Hospital of Sun-Yat-Sen University, No. 628, Zhenyuan Road, Guangming District, Shenzhen, 518017, Guangdong, China
| | - Jianhua Yu
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| | - Zhaofan Luo
- Department of Hematology, Kanghua Hospital, Dongguan, 523080, Guangdong, China
| |
Collapse
|
304
|
Qiu HZ, Huang J, Xiang CC, Li R, Zuo ED, Zhang Y, Shan L, Cheng X. Screening and Discovery of New Potential Biomarkers and Small Molecule Drugs for Cervical Cancer: A Bioinformatics Analysis. Technol Cancer Res Treat 2020; 19:1533033820980112. [PMID: 33302814 PMCID: PMC7734488 DOI: 10.1177/1533033820980112] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/09/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cervical cancer (CC) is the second most common type of malignant tumor survival rate is low in advanced stage, metastatic, and recurrent CC patients. This study aimed at identifying potential genes and drugs for CC diagnosis and targeting therapies. METHODS Three GEO mRNA microarray datasets of CC tissues and non-cancerous tissues were analyzed for differentially expressed genes (DEGs) by limma package. GO (Gene Ontologies) and KEGG (Kyoto Encyclopedia of Genes and Genomes) were used to explore the relationships between the DEGs. Protein-protein interaction (PPI) of these genes was established by the STRING database. MCODE was used for screening significant modules in the PPI networks to select hub genes. Biochemical mechanisms of the hub genes were investigated with Metascape. GEPIA database was used for validating the core genes. According to these DEGs, molecular candidates for CC were recognized from the CMAP database. RESULTS We identified 309 overlapping DEGs in the 2 tissue-types. Pathway analysis revealed that the DEGs were involved in cell cycle, DNA replication, and p53 signaling. PPI networks between overlapping DEGs showed 68 high-connectivity DEGs that were chosen as hub genes. The GEPIA database showed that the expression levels of RRM2, CDC45, GINS2, HELLS, KNTC1, MCM2, MYBL2, PCNA, RAD54 L, RFC4, RFC5, TK1, TOP2A, and TYMS in CC tissues were significantly different from those in the healthy tissues and were significantly relevant to the OS of CC. We found 10 small molecules from the CMAP database that could change the trend of gene expression in CC tissues, including piperlongumine and chrysin. CONCLUSIONS The 14 DEGs identified in this study could serve as novel prognosis biomarkers for the detection and forecasting of CC. Small molecule drugs like piperlongumine and chrysin could be potential therapeutic drugs for CC treatment.
Collapse
Affiliation(s)
- Hui-Zhu Qiu
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Ji Huang
- Department of Pharmacy, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Cheng-Cheng Xiang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Rong Li
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Er-Dong Zuo
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Yuan Zhang
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Li Shan
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| | - Xu Cheng
- Department of Hematology and Oncology, Soochow University Affiliated Taicang Hospital (The First People’s Hospital of Taicang), Jiangsu, China
| |
Collapse
|
305
|
Xu J, Bai S, Cao Y, Liu L, Fang Y, Du J, Luo L, Chen M, Shen B, Zhang Q. miRNA-221-3p in Endothelial Progenitor Cell-Derived Exosomes Accelerates Skin Wound Healing in Diabetic Mice. Diabetes Metab Syndr Obes 2020; 13:1259-1270. [PMID: 32368119 PMCID: PMC7183783 DOI: 10.2147/dmso.s243549] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Patients with diabetic cutaneous ulcers experience financial burden and a lower quality of life and life expectancy. Endothelial progenitor cell (EPC)-derived exosomes facilitate skin wound healing by positively modulating vascular endothelial cell function. Exosomes play their important regulatory role through microRNA (miRNA). We explored the potential role and molecular mechanisms of miRNA in EPC-derived exosome healing of diabetic skin wounds. METHODS Exosomes were isolated from the media of EPCs derived from mice bone marrow. High-throughput sequencing was used to detect the expression of exosome miRNA, and miRNA target genes were predicted using online databases. A diabetic mouse skin wound model was established, and wounds were treated with exosomes, miRNA-221-3p, or phosphate-buffered saline. RESULTS Exosomes from EPCs accelerated skin wound healing in both control and diabetic mice. High-throughput sequencing showed that miRNA-221-3p was highly expressed in EPC-derived exosomes. Skin wound healing in control and diabetic mice was significantly enhanced by EPC-derived exosomes and miRNA-221-3p administration. Immunohistochemical analyses showed that EPC-derived exosomes and miRNA-221-3p increased protein expression levels of the angiogenesis-related factors VEGF, CD31 and cell proliferation marker Ki67. Bioinformatics analyses indicated that miRNA-221-3p may be involved in the AGE-RAGE signaling pathway in diabetic complications, cell cycle, and the p53 signaling pathway. CONCLUSION We concluded that miRNA-221-3p is one of the high-expressed miRNAs in EPC-derived exosomes and promoted skin wound healing in diabetic mice. The finding uncovers the molecular mechanism of EPC-derived exosomes and provides a potential novel approach to the clinical treatment of diabetic skin wounds.
Collapse
Affiliation(s)
- Juan Xu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
| | - Suwen Bai
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, People’s Republic of China
| | - Yadi Cao
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
| | - Lei Liu
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
| | - Yang Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, People’s Republic of China
| | - Juan Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, People’s Republic of China
| | - Li Luo
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
| | - Mingwei Chen
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
| | - Bing Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui230032, People’s Republic of China
- Bing Shen Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Road, Hefei, Anhui230022, People’s Republic of ChinaTel +86-551-65161132Fax +86-551-65161126 Email
| | - Qiu Zhang
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui230022, People’s Republic of China
- Correspondence: Qiu Zhang Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui230022, People’s Republic of China Tel/Fax +86-551-62923631 Email
| |
Collapse
|
306
|
Ferreira SR, Goyeneche AA, Heber MF, Abruzzese GA, Telleria CM, Motta AB. Prenatally androgenized female rats develop uterine hyperplasia when adult. Mol Cell Endocrinol 2020; 499:110610. [PMID: 31589912 DOI: 10.1016/j.mce.2019.110610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 12/20/2022]
Abstract
Prenatal hyperandrogenization (PH) is hypothesized as one of the main factors contributing to the development of polycystic ovary syndrome (PCOS). In this study, we aimed to investigate the impact of prenatal exposure to androgen excess on the uterus when animals reach their adulthood. We found that PH altered the morphology of the uteri that show a hyperplastic morphology with increased total uterine thickness as well as luminal epithelium thickness, with both enhanced and altered distribution of glands as compared with controls. Morphological alterations were associated with an unbalanced homeostasis as assessed by the expression of regulators of cell cycle progression and cell death dynamics. PH also causes disturbances in the cell cycle of the uterine tissue and dysregulates cell death and survival pathways leading to the development of uterine hyperplasia. These findings suggest that PH may have a deleterious effect on the uterus.
Collapse
Affiliation(s)
- Silvana Rocío Ferreira
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina.
| | - Alicia Alejandra Goyeneche
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - María Florencia Heber
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Giselle Adriana Abruzzese
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| | - Carlos Marcelo Telleria
- Experimental Pathology Unit, Department of Pathology, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada
| | - Alicia Beatriz Motta
- Laboratorio de Fisio-Patología Ovárica, Centro de Estudios Farmacológicos y Botánicos (CEFYBO), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Medicina, Universidad de Buenos Aires (UBA), Argentina
| |
Collapse
|
307
|
Hou B, Li W, Li J, Ma J, Xia P, Liu Z, Zeng Q, Zhang X, Chang D. Tumor suppressor LHPP regulates the proliferation of colorectal cancer cells via the PI3K/AKT pathway. Oncol Rep 2019; 43:536-548. [PMID: 31894339 PMCID: PMC6967159 DOI: 10.3892/or.2019.7442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly diagnosed cancer and the fourth leading cause of cancer-related mortality worldwide. Thus, identification of the mechanisms involved in the progression of CRC has become a crucial element of facilitating early CRC diagnosis and targeted therapy for patients with advanced CRC. Currently, Phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP), a type of histidine phosphatase protein, has been confirmed as a tumor suppressor in hepatocellular carcinoma (HCC) and cervical cancer. However, the functions and molecular mechanisms underlying LHPP in CRC remain undefined. The present study revealed that dysregulation of LHPP was frequently observed in CRC tissues and was positively correlated with tumor severity and poor prognosis. Functional experiments demonstrated that overexpression of LHPP impeded CRC cell growth and proliferation in vitro, and was associated with a change in p53 expression and PI3K/AKT activity. In contrast, silencing of LHPP significantly promoted cell growth and proliferation by modulating the PI3K/AKT signaling pathway. Notably, the anti-CRC effects of LHPP were also observed in nude mouse in vivo experiments. Overall, the data obtained in the present study suggested that LHPP may be exploited as a diagnostic and prognostic candidate for patients with CRC.
Collapse
Affiliation(s)
- Bin Hou
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wenhan Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Jia Ma
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 10068, P.R. China
| | - Peng Xia
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zhao Liu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
308
|
Muthu M, Kumar R, Syed Khaja AS, Gilthorpe JD, Persson JL, Nordström A. GLUL Ablation Can Confer Drug Resistance to Cancer Cells via a Malate-Aspartate Shuttle-Mediated Mechanism. Cancers (Basel) 2019; 11:cancers11121945. [PMID: 31817360 PMCID: PMC6966511 DOI: 10.3390/cancers11121945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Glutamate-ammonia ligase (GLUL) is important for acid-base homeostasis, ammonia detoxification, cell signaling, and proliferation. Here, we reported that GLUL ablation conferred resistance to several anticancer drugs in specific cancer cell lines while leaving other cell lines non-resistant to the same drugs. To understand the biochemical mechanics supporting this drug resistance, we compared drug-resistant GLUL knockout (KO) A549 non-small-cell lung carcinoma (NSCLC) cells with non-resistant GLUL KO H1299 NSCLC cells and found that the resistant A549 cells, to a larger extent, depended on exogenous glucose for proliferation. As GLUL activity is linked to the tricarboxylic acid (TCA) cycle via reversed glutaminolysis, we probed carbon flux through both glycolysis and TCA pathways by means of 13C5 glutamine, 13C5 glutamate, and 13C6 glucose tracing. We observed increased labeling of malate and aspartate in A549 GLUL KO cells, whereas the non-resistant GLUL KO H1299 cells displayed decreased 13C-labeling. The malate and aspartate shuttle supported cellular NADH production and was associated with cellular metabolic fitness. Inhibition of the malate-aspartate shuttle with aminooxyacetic acid significantly impacted upon cell viability with an IC50 of 11.5 μM in resistant GLUL KO A549 cells compared to 28 μM in control A549 cells, linking resistance to the malate-aspartate shuttle. Additionally, rescuing GLUL expression in A549 KO cells increased drug sensitivity. We proposed a novel metabolic mechanism in cancer drug resistance where the increased capacity of the malate-aspartate shuttle increased metabolic fitness, thereby facilitating cancer cells to escape drug pressure.
Collapse
Affiliation(s)
- Magesh Muthu
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | - Ranjeet Kumar
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | | | - Jonathan D. Gilthorpe
- Department of Pharmacology and Clinical Neuroscience, Umeå University, 90187 Umeå, Sweden;
| | - Jenny L. Persson
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
| | - Anders Nordström
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden; (M.M.); (R.K.); (A.S.S.K.); (J.L.P.)
- Correspondence: ; Tel.: +46-90-785-25-61; Fax: +46-90-77-26-30
| |
Collapse
|
309
|
Liu F, Zhang H, Zhang Z, Lu Y, Lu X. MiR-208a aggravates H2O2-induced cardiomyocyte injury by targeting APC. Eur J Pharmacol 2019; 864:172668. [DOI: 10.1016/j.ejphar.2019.172668] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
|
310
|
Kønig SM, Rissler V, Terkelsen T, Lambrughi M, Papaleo E. Alterations of the interactome of Bcl-2 proteins in breast cancer at the transcriptional, mutational and structural level. PLoS Comput Biol 2019; 15:e1007485. [PMID: 31825969 PMCID: PMC6927658 DOI: 10.1371/journal.pcbi.1007485] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/23/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Apoptosis is an essential defensive mechanism against tumorigenesis. Proteins of the B-cell lymphoma-2 (Bcl-2) family regulate programmed cell death by the mitochondrial apoptosis pathway. In response to intracellular stress, the apoptotic balance is governed by interactions of three distinct subgroups of proteins; the activator/sensitizer BH3 (Bcl-2 homology 3)-only proteins, the pro-survival, and the pro-apoptotic executioner proteins. Changes in expression levels, stability, and functional impairment of pro-survival proteins can lead to an imbalance in tissue homeostasis. Their overexpression or hyperactivation can result in oncogenic effects. Pro-survival Bcl-2 family members carry out their function by binding the BH3 short linear motif of pro-apoptotic proteins in a modular way, creating a complex network of protein-protein interactions. Their dysfunction enables cancer cells to evade cell death. The critical role of Bcl-2 proteins in homeostasis and tumorigenesis, coupled with mounting insight in their structural properties, make them therapeutic targets of interest. A better understanding of gene expression, mutational profile, and molecular mechanisms of pro-survival Bcl-2 proteins in different cancer types, could help to clarify their role in cancer development and may guide advancement in drug discovery. Here, we shed light on the pro-survival Bcl-2 proteins in breast cancer using different bioinformatic approaches, linking -omics with structural data. We analyzed the changes in the expression of the Bcl-2 proteins and their BH3-containing interactors in breast cancer samples. We then studied, at the structural level, a selection of interactions, accounting for effects induced by mutations found in the breast cancer samples. We find two complexes between the up-regulated Bcl2A1 and two down-regulated BH3-only candidates (i.e., Hrk and Nr4a1) as targets associated with reduced apoptosis in breast cancer samples for future experimental validation. Furthermore, we predict L99R, M75R as damaging mutations altering protein stability, and Y120C as a possible allosteric mutation from an exposed surface to the BH3-binding site.
Collapse
Affiliation(s)
- Simon Mathis Kønig
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Vendela Rissler
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Thilde Terkelsen
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Matteo Lambrughi
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark
- Translational Disease Systems Biology, Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
311
|
The Anticancer Activity of Lycium barbarum Polysaccharide by Inhibiting Autophagy in Human Skin Squamous Cell Carcinoma Cells In Vitro and In Vivo. INT J POLYM SCI 2019. [DOI: 10.1155/2019/5065920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Objective. This study is aimed at investigating the effects of Lycium barbarum polysaccharide (LBP) on the proliferation and apoptosis of human cutaneous squamous cell carcinoma A431 cells in vitro and in vivo via its regulation on autophagy. Methods. In vitro experiment: A431 cells were treated with different concentrations of LBP, and cell viability was measured by the CCK8 method. Flow cytometry was used to detect the cell apoptosis rate. The expression of Ki67, PCNA, cl-caspase-3, Bcl-2, and LC3II and the phosphorylation status of JNK and ERK1/2, as well as the effect of SP600125 cotreatment on the expression of autophagy and apoptosis-associated proteins, were determined via Western blot. In vivo experiment: a transplanted tumor model was established by subcutaneous injection of A431 cells to the nude mice. 50 mg/kg LBP was injected into the mice intraperitoneally; the survival rate of mice, volume, and weight of tumor were determined on the 30th day. The expression of Ki67 and MMP-2 proteins was measured by immunohistochemistry. Results. LBP at concentrations of 400 μg/ml and above was significantly cytotoxic to A431 cells, whereas, within the dose range of 50 μg/ml~200 μg/ml, LBP significantly inhibited the expression of Ki67 and PCNA proteins, promoted the expression of cl-caspase-3, inhibited the expression of Bcl-2 protein, downregulated the expression of autophagy marker LC3II, and reduced the phosphorylation of ERK1/2, whereas the level of JNK phosphorylation was upregulated. At the same time, the regulation of Beclin1, LC3II, Bcl-2, and cl-caspase-3 by LBP was effectively reversed by the cotreatment of SP600125. In addition, LBP increased the survival rate of transplanted nude mice, reduced tumor volume and weight, and downregulated the expression of Ki67 and MMP-2. Conclusion. LBP can induce apoptosis of A431 cells by inhibiting autophagy and can inhibit tumor growth in vivo.
Collapse
|
312
|
Gao J, Qin W, Kang P, Xu Y, Leng K, Li Z, Huang L, Cui Y, Zhong X. Up-regulated LINC00261 predicts a poor prognosis and promotes a metastasis by EMT process in cholangiocarcinoma. Pathol Res Pract 2019; 216:152733. [PMID: 31812439 DOI: 10.1016/j.prp.2019.152733] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVE LINC00261 plays a vital role in tumorigenesis and metastasis of digestive system cancer. However, an influence of LINC00261 on cholangiocarcinoma has a little research. There, we investigated clinical role and molecular mechanisms of LINC00261 in cholangiocarcinoma. METHODS The qRT-PCR was performed for the detection of LINC00261 level in 50 paired specimens from CCA patients and six cell lines. Cell proliferation were explored by CCK-8 and colony formation assays in QBC939 and RBE cells after transfected with si-LINC00261 or si-NC. Then, AO/EB double fluorescence staining and flow cytometric assays were performed to assess cell apoptosis. Transwell and wound healing assays were selected to evaluate migratory and invasive property of cells. Protein levels, such as PCNA, Bax, Bcl-2, and several epithelial-to-mesenchymal transition markers, including E-cadherin, N-cadherin and Vimentin, were detected by western blot assays. Furthermore, we use a R2 platform to evaluate the correlation between LINC00261 and EMT makers and predict the overall survival and relapse-free survival for CCA patients by the expression of LINC00261/ EMT makers. RESULTS LINC00261 was overexpressed in cancerous tissues and CCA cell lines compared with adjacent tissues and HIBEC, respectively. Up-regulation of LINC00261 was related to larger tumor size (p = 0.009), positive lymph node metastasis (p = 0.021), advanced TNM stages (p = 0.017) and higher postoperative recurrence (p = 0.009) for CCA patients. Additionally, univariate and multivariate analysis displayed that LINC00261 an independent prognostic factor in CCA patients. Knockdown of LINC00261 expression in RBE and QBC939 cell lines inhibited cell proliferation, migration and invasion property and increased cell apoptosis and the EMT progression. Moreover, there was a strong correlation between LINC00261 and E-cadherin (CDH1) (p < 0.05), and low expression of E-cadherin (CDH1) has a poor overall survival and relapse-free survival in CCA patients (p < 0.05). CONCLUSION Overall, high level of LINC00261 in CCA predicts a poor prognosis, and promotes a metastasis via EMT process. Thus, LINC00261 could be a promising biomarker and therapeutic target for CCA, and in the high level of LINC00261 in CCA, E-cadherin or CDH1 might be an effective factor for tumor metastasis or poor prognosis.
Collapse
Affiliation(s)
- Jianjun Gao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Qin
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Pengcheng Kang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Kaiming Leng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Zhenglong Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Heilongjiang Province, China
| | - Lining Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Xiangyu Zhong
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
313
|
The effects of oxygen concentration on cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in precision-cut lung slices. Sci Rep 2019; 9:16239. [PMID: 31700101 PMCID: PMC6838147 DOI: 10.1038/s41598-019-52813-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/23/2019] [Indexed: 12/19/2022] Open
Abstract
Although animal models are often used in drug research, alternative experimental models are becoming more popular as they reduce animal use and suffering. Of particular interest are precision-cut lung slices, which refer to explants – with a reproducible thickness and diameter – that can be cultured ex vivo. Because lung slices (partially) reflect functional and structural features of whole tissue, they are often applied in the field of immunology, pharmacology, toxicology, and virology. Nevertheless, previous research failed to adequately address concerns with respect to the viability of lung slices. For instance, the effect of oxygen concentration on lung slice viability has never been thoroughly investigated. Therefore, the main goal of this study was to investigate the effect of oxygen concentration (20 vs. 80% O2) on the degree of cell death, anti-oxidant transcription, acute inflammation, and cell proliferation in lung slices. According to the results, slices incubated at 20% O2 displayed less cell death, anti-oxidant transcription, and acute inflammation, as well as more cell proliferation, demonstrating that these slices were considerably more viable than slices cultured at 80% O2. These findings expand our knowledge on lung slices and their use as an alternative experimental model in drug research.
Collapse
|
314
|
Drabik A, Ner-Kluza J, Hartman K, Mayer G, Silberring J. Changes in Protein Glycosylation as a Result of Aptamer Interactions with Cancer Cells. Proteomics Clin Appl 2019; 14:e1800186. [PMID: 31550741 DOI: 10.1002/prca.201800186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/04/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Based on the recent aptamer-related breast cancer studies, which indicate the therapeutic role of specific oligonucleotide sequences, experiments have been designed in an attempt to unravel the molecular targets of this mechanism. This article describes the study on glycoproteome changes in breast cancer cells as a result of their interactions with aptamers. EXPERIMENTAL DESIGN Aberrations in protein glycosylation play an important role in tumorigenesis and influence cancer progression, metastasis, immunoresponse, and chemoresistance, therefore this study is focused on the identification of the alterations in glycan expression on the surface of proteins as a potential and innovative tool for biomedical applications of aptamers in cancer treatment. RESULTS Two proteins, kinesin-like protein (KI13B) and proliferating cell nuclear antigen (PCNA), have been identified that carry N-glycan epitopes after conjugation with aptamer sequences. CONCLUSIONS AND CLINICAL RELEVANCE Multiple features of aptamers as an alternative to protein antibodies are utilized for various biomedical applications ranging from biomarker discovery, bioimaging, targeted therapy, drug delivery, and drug pharmacokinetics and biodistribution. Frequently, aptamers bind to their target molecules and modulate their function. Such therapeutic aptamers can modify the biological pathways for treatment of many types of diseases, such as cancer.
Collapse
Affiliation(s)
- Anna Drabik
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Joanna Ner-Kluza
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Kinga Hartman
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, 30-059, Poland
| | - Günter Mayer
- Department of Chemical Biology, Life and Medical Sciences Institute, University of Bonn, 53113, Bonn, Germany.,Center of Aptamer Research and Development, University of Bonn, 53113, Bonn, Germany
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, 30-059, Poland.,Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, 41-819, Poland
| |
Collapse
|
315
|
Zhang J, Wang Q, Wang Q, Guo P, Wang Y, Xing Y, Zhang M, Liu F, Zeng Q. Chrysophanol exhibits anti-cancer activities in lung cancer cell through regulating ROS/HIF-1a/VEGF signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:469-480. [PMID: 31655854 DOI: 10.1007/s00210-019-01746-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
In the present study, we explored the anti-tumor and anti-angiogenesis effects of chrysophanol, and to investigate the underlying mechanism of the chrysophanol on anti-tumor and anti-angiogenesis in human lung cancer. The viability of cells was measured by CCK-8 assay, cell apoptosis was measured by Annexin-FITC/PI staining assay, and the cell migration and invasion were analyzed by wound-healing assay and transwell assay. ROS generation and mitochondrial membrane potential were analyzed by DCFH-DA probe and mitochondrial staining kit. Angiogenesis was analyzed by tube formation assay. The expression of CD31 was analyzed by immunofluorescence. The levels of proteins were measured by western blot assay. The anti-tumor effects of chrysophanol in vivo were detected by established xenograft mice model. In this study, we found that the cell proliferation, migration, invasion, tube formation, the mitochondrial membrane potential, and the expression of CD31 were inhibited by chrysophanol in a dose-dependent manner, but cell apoptotic ratios and ROS levels were increased by chrysophanol in a dose-dependent manner. Furthermore, the effects of chrysophanol on A549, H738, and HUVEC cell apoptotic rates were reversed by the ROS inhibitor NAC. Besides, the effects of chrysophanol on HUVEC cell tube formation were reversed by the HIF-1α inhibitor KC7F2 and the VEGF inhibitor axitinib in vitro. Moreover, tumor growth was reduced by chrysophanol, and the expression of CD31, CD34, and angiogenin was suppressed by chrysophanol in vivo. Our finding demonstrated that chrysophanol is a highly effective and low-toxic drug for inhibition of tumor growth especially in high vascularized lung cancer.
Collapse
Affiliation(s)
- Jie Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qian Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China.,Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China
| | - Qiang Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Peng Guo
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yong Wang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yuqing Xing
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Mengmeng Zhang
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Fujun Liu
- Shandong Provincial Hospital affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Qingyun Zeng
- Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, 250011, Shandong, China.
| |
Collapse
|
316
|
Cui Y, Fan Y, Zhao G, Zhang Q, Bao Y, Cui Y, Ye Z, Chen G, Piao X, Guo F, Wang J, Bai Y, Yu D. Novel lncRNA PSMG3‑AS1 functions as a miR‑143‑3p sponge to increase the proliferation and migration of breast cancer cells. Oncol Rep 2019; 43:229-239. [PMID: 31661146 PMCID: PMC6908943 DOI: 10.3892/or.2019.7390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are considered to be important regulators in breast cancer. In the present study, the potential mechanisms and functional roles of lncRNA PSMG3-antisense (AS)1 were investigated in vivo and in vitro. The relative expression levels of lncRNA PSMG3-AS1 and microRNA (miR)-143-3p were determined using reverse-transcription quantitative PCR. The protein expression levels of collagen type 1 alpha 1 (COL1A1) and proliferating cell nuclear antigen (PCNA) were obtained using western blot analysis. Bioinformatics analysis was used to identify the relationship between PSMG3-AS1, miR-143-3p and COL1A1. Colony forming and Cell Counting Kit-8 assays were used to detect cell proliferation. Transwell and wound-healing assays were used to determine cell migration. The results of the present study demonstrated that PSMG3-AS1 expression was increased in breast cancer tumor tissues and cell lines, and that of miR-143-3p was decreased. Knockdown of PSMG3-AS1 increased the level of miR-143-3p expression, which led to the mitigation of proliferation and migration capacity in breast carcinoma cells. Additionally, PSMG3-AS1 knockdown was demonstrated to reduce the mRNA and protein expression levels of COL1A1. miR-143-3p mimic transfection reduced proliferation and migration in MDA-MB-231 and MCF-7 cell lines. Furthermore, miR-143-3p inhibition significantly increased the proliferation and migration of breast cancer cells compared with the negative control group. The mRNA and protein expression levels of PCNA were reduced in the MCF-7 cell line when transfected with miR-143-3p mimics and si-PSMG3-AS1. However, PCNA expression was increased in cells transfected with a miR-143-3p inhibitor. In conclusion, the results of the present study identified a novel lncRNA PSMG3-AS1, which serves as a sponge for miR-143-3p in the pathogenesis of breast cancer. PSMG3-AS1 may be used as a potential therapeutic target gene in breast cancer treatment.
Collapse
Affiliation(s)
- Yue Cui
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Yuhua Fan
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Guangcai Zhao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Qibing Zhang
- Department of Breast Surgery of Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Ying Bao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Yuanri Cui
- Department of Breast Surgery of Daqing Oilfield General Hospital, Daqing, Heilongjiang 163001, P.R. China
| | - Zengjie Ye
- School of Nursing, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P.R. China
| | - Guoyou Chen
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Xianji Piao
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Fang Guo
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| | - Jinghao Wang
- Department of Pharmacy, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong 510006, P.R. China
| | - Yuhua Bai
- Department of Pathology, Harbin Medical University, Daqing, Heilongjiang 163319, P.R. China
| | - Dejun Yu
- Central Laboratory of The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163711, P.R. China
| |
Collapse
|
317
|
Ding Q, Zhang W, Cheng C, Mo F, Chen L, Peng G, Cai X, Wang J, Yang S, Liu X. Dioscin inhibits the growth of human osteosarcoma by inducing G2/M-phase arrest, apoptosis, and GSDME-dependent cell death in vitro and in vivo. J Cell Physiol 2019; 235:2911-2924. [PMID: 31535374 DOI: 10.1002/jcp.29197] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022]
Abstract
Pyroptosis is a form of programmed cell death (PCD) that plays a vital role in immunity and diseases. Although it was recently reported that chemotherapy drugs can induce pyroptosis through caspase-3-dependent cleavage of gasdermin E (GSDME), the role of pyroptosis in osteosarcoma (OS) with dioscin is less understood. In this study, we explored the effects of dioscin on OS in vitro and in vivo and further elucidated the underlying molecular mechanisms and found that dioscin-triggered pyroptosis in GSDME-dependent cell death and that GSDME-N was generated by caspase-3. Furthermore, dioscin inhibited cancer cell growth by inducing G2/M arrest and apoptosis through the JNK/p38 pathway. In vivo, dioscin significantly inhibited OS proliferation. Taken together, our results demonstrate that dioscin can induce apoptosis through the JNK/p38 pathway and GSDME-dependent pyroptosis in OS, identifying it as a potential therapeutic drug for treatment of this disease.
Collapse
Affiliation(s)
- Qiuyue Ding
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenda Zhang
- Department of Orthopaedics, The People's Hospital of China Three Gorges University, The First People's Hospital of YiChang, Yichang, China
| | - Cheng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengbo Mo
- Department of Orthopedics, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Lei Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guangfu Peng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianyi Cai
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinglong Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuhua Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xianzhe Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
318
|
Lee J, Park J, Kim YH, Lee NH, Song KM. Irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation. PLoS One 2019; 14:e0222559. [PMID: 31518371 PMCID: PMC6743866 DOI: 10.1371/journal.pone.0222559] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/03/2019] [Indexed: 11/18/2022] Open
Abstract
Irisin is an exercise-induced myokine that has various physiological functions, such as roles in energy expenditure, glucose/lipid metabolism, and muscle development. In muscle development, myoblast proliferation is known to be a first step, and recent studies have reported that an increased irisin level is involved in the promotion of cell proliferation in various cell types, including myoblasts. However, the exact mechanism of action by which irisin promotes myoblast proliferation has not been reported. In this study, we aimed to determine the pro-proliferative effect of irisin on C2C12 myoblasts and its mechanism of action. Irisin induced C2C12 cell proliferation and upregulated the mRNA levels of markers of proliferation Pcna, Mki67, and Mcm2. Irisin increased extracellular signal-regulated kinase (ERK) phosphorylation, and U0126, an ERK pathway inhibitor, suppressed irisin-induced C2C12 cell proliferation. Transcriptomic and qRT-PCR analysis showed that Ccl2, Ccl7, Ccl8, and C3 are potential downstream regulators of ERK signaling that promote C2C12 cell proliferation. Knockdown of Ccl7 revealed that irisin upregulates chemokine (C-C motif) ligand 7 (CCL7) and subsequently promotes C2C12 cell proliferation. These results suggest that irisin promotes C2C12 myoblast proliferation via ERK-dependent CCL7 upregulation and may aid in understanding how irisin contributes to muscle development.
Collapse
Affiliation(s)
- Jangho Lee
- Research Division of Food Functionality, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Joon Park
- Research Division of Food Functionality, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
- Department of Food Biotechnology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Young Ho Kim
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Nam Hyouck Lee
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Kyung-Mo Song
- Research Division of Strategic Food Technology, Korea Food Research Institute, Iseo-myeon, Wanju-gun, Jeollabuk-do, Republic of Korea
- * E-mail:
| |
Collapse
|
319
|
PFN2a Suppresses C2C12 Myogenic Development by Inhibiting Proliferation and Promoting Apoptosis via the p53 Pathway. Cells 2019; 8:cells8090959. [PMID: 31450751 PMCID: PMC6770762 DOI: 10.3390/cells8090959] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle plays a crucial role in physical activity and in regulating body energy and protein balance. Myoblast proliferation, differentiation, and apoptosis are indispensable processes for myoblast myogenesis. Profilin 2a (PFN2a) is a ubiquitous actin monomer-binding protein and promotes lung cancer growth and metastasis through suppressing the nuclear localization of histone deacetylase 1 (HDAC1). However, how PFN2a regulates myoblast myogenic development is still not clear. We constructed a C2C12 mouse myoblast cell line overexpressing PFN2a. The CRISPR/Cas9 system was used to study the function of PFN2a in C2C12 myogenic development. We find that PFN2a suppresses proliferation and promotes apoptosis and consequentially downregulates C2C12 myogenic development. The suppression of PFN2a also decreases the amount of HDAC1 in the nucleus and increases the protein level of p53 during C2C12 myogenic development. Therefore, we propose that PFN2a suppresses C2C12 myogenic development via the p53 pathway. Si-p53 (siRNA-p53) reverses the PFN2a inhibitory effect on C2C12 proliferation and the PFN2a promotion effect on C2C12 apoptosis, and then attenuates the suppression of PFN2a on myogenic differentiation. Our results expand understanding of PFN2a regulatory mechanisms in myogenic development and suggest potential therapeutic targets for muscle atrophy-related diseases.
Collapse
|
320
|
Carossino M, Dini P, Kalbfleisch TS, Loynachan AT, Canisso IF, Cook RF, Timoney PJ, Balasuriya UBR. Equine arteritis virus long-term persistence is orchestrated by CD8+ T lymphocyte transcription factors, inhibitory receptors, and the CXCL16/CXCR6 axis. PLoS Pathog 2019; 15:e1007950. [PMID: 31356622 PMCID: PMC6692045 DOI: 10.1371/journal.ppat.1007950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 08/13/2019] [Accepted: 06/29/2019] [Indexed: 12/16/2022] Open
Abstract
Equine arteritis virus (EAV) has the unique ability to establish long-term persistent infection in the reproductive tract of stallions and be sexually transmitted. Previous studies showed that long-term persistent infection is associated with a specific allele of the CXCL16 gene (CXCL16S) and that persistence is maintained despite the presence of local inflammatory and humoral and mucosal antibody responses. Here, we performed transcriptomic analysis of the ampullae, the primary site of EAV persistence in long-term EAV carrier stallions, to understand the molecular signatures of viral persistence. We demonstrated that the local CD8+ T lymphocyte response is predominantly orchestrated by the transcription factors eomesodermin (EOMES) and nuclear factor of activated T-cells cytoplasmic 2 (NFATC2), which is likely modulated by the upregulation of inhibitory receptors. Most importantly, EAV persistence is associated with an enhanced expression of CXCL16 and CXCR6 by infiltrating lymphocytes, providing evidence of the implication of this chemokine axis in the pathogenesis of persistent EAV infection in the stallion reproductive tract. Furthermore, we have established a link between the CXCL16 genotype and the gene expression profile in the ampullae of the stallion reproductive tract. Specifically, CXCL16 acts as a "hub" gene likely driving a specific transcriptional network. The findings herein are novel and strongly suggest that RNA viruses such as EAV could exploit the CXCL16/CXCR6 axis in order to modulate local inflammatory and immune responses in the male reproductive tract by inducing a dysfunctional CD8+ T lymphocyte response and unique lymphocyte homing in the reproductive tract.
Collapse
Affiliation(s)
- Mariano Carossino
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - Pouya Dini
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Theodore S. Kalbfleisch
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States of America
| | - Alan T. Loynachan
- University of Kentucky Veterinary Diagnostic Laboratory, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Igor F. Canisso
- Department of Veterinary Clinical Medicine, and Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois Urbana-Champaign, Urbana, IL, United States of America
| | - R. Frank Cook
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Peter J. Timoney
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States of America
| | - Udeni B. R. Balasuriya
- Louisiana Animal Disease Diagnostic Laboratory and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
- * E-mail:
| |
Collapse
|
321
|
Withanolides, Extracted from Datura Metel L. Inhibit Keratinocyte Proliferation and Imiquimod-Induced Psoriasis-Like Dermatitis via the STAT3/P38/ERK1/2 Pathway. Molecules 2019; 24:molecules24142596. [PMID: 31319488 PMCID: PMC6680890 DOI: 10.3390/molecules24142596] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is an immune-mediated inflammatory dermatosis characterized by epidermal hyperplasia and excessive infiltration of inflammatory cells. Withanolides, extracted from Datura metel L.; are the main effective components for the treatment of psoriasis. However, the precise mechanisms of action of withanolides for the treatment of psoriasis remain unclear. We found that treatment with withanolides alleviated imiquimod (IMQ)-induced epidermal hyperplasia and inflammatory cell infiltration in the effective skin of model mice. In addition, we also found that withanolides suppressed the activation of STAT3, ERK1/2 and P38 signaling pathways in IMQ-stimulated HaCat cells. These results suggest that withanolides possess an anti-inflammatory effect and have significant therapeutic potential for the prevention and treatment of psoriasis.
Collapse
|
322
|
Alshabi AM, Shaikh IA, Vastrad C. Exploring the Molecular Mechanism of the Drug-Treated Breast Cancer Based on Gene Expression Microarray. Biomolecules 2019; 9:biom9070282. [PMID: 31311202 PMCID: PMC6681318 DOI: 10.3390/biom9070282] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/24/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023] Open
Abstract
: Breast cancer (BRCA) remains the leading cause of cancer morbidity and mortality worldwide. In the present study, we identified novel biomarkers expressed during estradiol and tamoxifen treatment of BRCA. The microarray dataset of E-MTAB-4975 from Array Express database was downloaded, and the differential expressed genes (DEGs) between estradiol-treated BRCA sample and tamoxifen-treated BRCA sample were identified by limma package. The pathway and gene ontology (GO) enrichment analysis, construction of protein-protein interaction (PPI) network, module analysis, construction of target genes-miRNA interaction network and target genes-transcription factor (TF) interaction network were performed using bioinformatics tools. The expression, prognostic values, and mutation of hub genes were validated by SurvExpress database, cBioPortal, and human protein atlas (HPA) database. A total of 856 genes (421 up-regulated genes and 435 down-regulated genes) were identified in T47D (overexpressing Split Ends (SPEN) + estradiol) samples compared to T47D (overexpressing Split Ends (SPEN) + tamoxifen) samples. Pathway and GO enrichment analysis revealed that the DEGs were mainly enriched in response to lysine degradation II (pipecolate pathway), cholesterol biosynthesis pathway, cell cycle pathway, and response to cytokine pathway. DEGs (MCM2, TCF4, OLR1, HSPA5, MAP1LC3B, SQSTM1, NEU1, HIST1H1B, RAD51, RFC3, MCM10, ISG15, TNFRSF10B, GBP2, IGFBP5, SOD2, DHF and MT1H) , which were significantly up- and down-regulated in estradiol and tamoxifen-treated BRCA samples, were selected as hub genes according to the results of protein-protein interaction (PPI) network, module analysis, target genes-miRNA interaction network and target genes-TF interaction network analysis. The SurvExpress database, cBioPortal, and Human Protein Atlas (HPA) database further confirmed that patients with higher expression levels of these hub genes experienced a shorter overall survival. A comprehensive bioinformatics analysis was performed, and potential therapeutic applications of estradiol and tamoxifen were predicted in BRCA samples. The data may unravel the future molecular mechanisms of BRCA.
Collapse
Affiliation(s)
- Ali Mohamed Alshabi
- Department of Clinical Pharmacy, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Ibrahim Ahmed Shaikh
- Department of Pharmacology, College of Pharmacy, Najran University, Najran, 66237, Saudi Arabia
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, ChanabasavaNilaya, Bharthinagar, Dharwad 580001, Karnataka, India.
| |
Collapse
|
323
|
Zhou L, Ye M, Xue F, Lu E, Sun LZ, Zhu X. Effects of dynein light chain Tctex-type 3 on the biological behavior of ovarian cancer. Cancer Manag Res 2019; 11:5925-5938. [PMID: 31308737 PMCID: PMC6612992 DOI: 10.2147/cmar.s205158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/27/2019] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE To investigate dynein light chain Tctex-type 3 (DYNLT3) protein expression in ovarian epithelial lesions and explore the effects and related mechanisms of DYNLT3 in terms of the biological behavior of ovarian cancer. MATERIALS AND METHODS Initially, expression of the DYNLT3 protein in ovarian epithelial lesions was detected by immunohistochemical staining, and the prognostic value of DYNLT3 mRNA expression in ovarian cancer patients was assessed using the Kaplan-Meier plotter database. Then, the mRNA and protein expression of DYNLT3 in IOSE80 normal ovarian epithelial cells and SKOV3 ovarian cancer cells was evaluated by quantitative real-time polymerase chain reaction and Western blotting respectively, and the proliferation, apoptosis, migration and invasion of SKOV3 cells after DYNLT3 over-expression and under-expression were investigated by CCK-8 assays and immunofluorescence staining, flow cytometry, wound healing assays and Transwell invasion assays, respectively. Furthermore, the expression of the proliferation-related proteins PCNA and Ki-67 and the invasion- and migration-related proteins Ezrin, Fascin, MMP2 and MMP9 in cells was examined by Western blotting. RESULTS The protein expression of DYNLT3 gradually increased during the progression of ovarian epithelial lesions, and was related to the development of ovarian cancer. High expression of DYNLT3 mRNA was related to poor overall survival and progression free survival, especially in serous ovarian cancer patients. In addition, overexpression of DYNLT3 promoted SKOV3 cell proliferation, invasion and migration. The corresponding results were also verified by a DYNLT3 knockdown assay. Moreover, DYNLT3 increased cell proliferation, which was related to Ki-67 expression. Besides, DYNLT3 enhanced cell invasion and migration through regulating Ezrin, but not Fascin, MMP2 or MMP9. CONCLUSION DYNLT3 exerts pro-tumoral effects on ovarian cancer through promoting cell proliferation, migration and invasion, possibly via regulating the protein expression of Ki-67 and Ezrin. DYNLT3 may be a potential prognostic predictor in ovarian cancer.
Collapse
Affiliation(s)
- Lulu Zhou
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Miaomiao Ye
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Ermei Lu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| | - Lu-Zhe Sun
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou325027, People’s Republic of China
| |
Collapse
|
324
|
High expression of meningioma 1 is correlated with reduced survival rates in colorectal cancer patients. Acta Histochem 2019; 121:628-637. [PMID: 31133374 DOI: 10.1016/j.acthis.2019.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 02/08/2023]
Abstract
The identification of prognostic markers for colorectal cancer (CRC) has important clinical implications. However, the association between meningioma 1 (MN1) expression and clinical outcomes of CRC has not been fully investigated. The aim of this study was to investigate the expression of MN1 in the clinical context of CRC. We first used immunohistochemistry (IHC) staining to examine and compare MN1 expression between multiple human cancer tissues and normal tissues. Initial screening revealed that the expression of MN1 proteins was significantly higher in tumor tissues of the breast, colon, and liver than in normal tissues. In further testing conducted on 59 paired CRC samples, we observed that the expression of MN1 in CRC tissue samples was significantly higher than in adjacent normal tissues. Moreover, high MN1 expression was not significantly associated with clinicopathological characteristics. Kaplan-Meier survival analysis revealed that high expression of MN1 mRNA or MN1 protein was significantly associated with poor CRC prognosis. Furthermore, univariate Cox analysis revealed that a high MN1 score was significantly associated with prognostic factors. Multivariate Cox analysis further indicated that gender, histologic grade, tumor-node-metastasis (TNM) stage, and a high MN1 score were independent factors of overall CRC survival rates. Finally, MN1 and PCNA protein levels were positively correlated, which suggests that MN1 may be involved in the cell proliferation process during CRC formation. Our results, which confirm those of other studies, indicate that (1) high levels of MN1 expression contribute to poor CRC prognosis and (2) MN1 can serve as a novel potential biomarker in predicting the prognosis of CRC patients.
Collapse
|
325
|
Teranishi Y, Jin D, Takano S, Sunami K, Takai S. Decrease in number of mast cells in resected nasal polyps as an indicator for postoperative recurrence of chronic rhinosinusitis. IMMUNITY INFLAMMATION AND DISEASE 2019; 7:191-200. [PMID: 31210032 PMCID: PMC6688085 DOI: 10.1002/iid3.261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 05/21/2019] [Indexed: 11/13/2022]
Abstract
Background In the clinical setting, chronic rhinosinusitis with nasal polyps (CRSwNP) is usually divided into eosinophilic‐CRS (ECRS) and non‐ECRS (NECRS) in Japan. Patients with the former are believed to be at risk for postoperative recurrence of CRS. However, some patients have been missed according to these phenotypic classifications due to the low number of infiltrating eosinophils in polyp tissues. Objective In the present study, we attempted to identify cellular or molecular candidate markers to predict nasal polyp recurrence. Methods Nasal polyps were collected from 32 patients with CRSwNP who had undergone an endoscopic sinus surgery. These patients were divided into ECRS and NECRS groups in accordance with the Japanese Epidemiological Survey of Refractory Eosinophilic Chronic Rhinosinusitis (JESREC) scoring system and the number of eosinophils in polyp tissues. Unclassifiable patients were referred to as the unknown group. Results Eosinophil infiltration in resected nasal polyps was most evident in the ECRS group. However, the number of mast cells and tryptase‐positive cells in nasal polyps were significantly lower in ECRS and unknown groups compared with the NECRS group. A significant positive correlation was detected between the JESREC score and number of eosinophils. The numbers of mast cells and tryptase‐positive cells were negatively correlated with the JESREC score in all included samples. Significant positive correlations were detected between the number of transforming growth factor β1‐positive cells and the number of mast cells, tryptase‐positive cells, and chymase‐positive cells mast cells. Conclusions and clinical relevance These findings indicated that the enumeration of mast cells in resected polyps may be another approach to predict postoperative polyp recurrence in CRSwNP patients.
Collapse
Affiliation(s)
- Yuichi Teranishi
- Department of Otolaryngology, Head and Neck Surgery, Osaka City University Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Sakurako Takano
- Department of Otolaryngology, Head and Neck Surgery, Osaka City University Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Kishiko Sunami
- Department of Otolaryngology, Head and Neck Surgery, Osaka City University Graduate School of Medicine, Osaka City University, Osaka-City, Osaka, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
326
|
Chi JR, Yu ZH, Liu BW, Zhang D, Ge J, Yu Y, Cao XC. SNHG5 Promotes Breast Cancer Proliferation by Sponging the miR-154-5p/PCNA Axis. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:138-149. [PMID: 31255976 PMCID: PMC6606894 DOI: 10.1016/j.omtn.2019.05.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/20/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
Abstract
Breast cancer is the most common malignant tumor and the main cause of cancer-associated mortality in females worldwide. Long non-coding RNAs (lncRNAs) have been reported to play vital roles in breast cancer development and progression; however, our understanding of most lncRNAs in breast cancer is still limited. In this study, we demonstrated that small nucleolar RNA host gene 5 (SNHG5) promotes breast cancer cell proliferation both in vitro and in vivo, and depletion of SNHG5 significantly led to cell-cycle arrest at G1 phase. Accumulating evidence has shown that many lncRNA transcripts could function as competing endogenous RNAs (ceRNAs) by competitively binding common microRNAs (miRNAs). We found that SNHG5 acts as a sponge for miR-154-5p, reducing its ability to repress proliferating cell nuclear antigen (PCNA). SNHG5 promoted breast cancer proliferation and cell-cycle progression by upregulation of PCNA expression. Clinically, we observed an increased SNHG5 expression in breast cancer, whereas miR-154-5p was decreased in breast cancer tissues compared with the adjacent normal breast tissues. Furthermore, the SNHG5 expression was significantly negatively correlated with miR-154-5p expression. Taken together, our data uncover the SNHG5-miR-154-5p-PCNA axis and provide a novel mechanism to explain breast cancer proliferation.
Collapse
Affiliation(s)
- Jiang-Rui Chi
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Zhi-Hao Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Bo-Wen Liu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Di Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Jie Ge
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| | - Xu-Chen Cao
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China; Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China; Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.
| |
Collapse
|
327
|
Abd Eldaim MA, Tousson E, El Sayed IET, Abd El-Aleim AEAH, Elsharkawy HN. Grape seeds proanthocyanidin extract ameliorates Ehrlich solid tumor induced renal tissue and DNA damage in mice. Biomed Pharmacother 2019; 115:108908. [PMID: 31108378 DOI: 10.1016/j.biopha.2019.108908] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 04/10/2019] [Accepted: 04/22/2019] [Indexed: 12/30/2022] Open
Abstract
The current study was carried out to evaluate the protective effect of grape seed proanthocyanidins extract (GSPE) against Ehrlich solid tumor (EST) induced renal injury, with the respect to DNA fragmentation and P53 and PCNA proteins expression in renal tissue. A total of 50 female mice were randomly assigned into five groups. Control mice were injected with physiological saline solution. Mice of the 2nd group were administered with GSPE (50 mg/kg bw/every 2day/per OS) for 2 weeks and injected with physiological saline solution. Mice of the 3rd group were injected subcutaneously with 2.5 million cells of EAC/mouse. Mice of the 4th group were injected with EAC as the 3rd group and administered with GSPE as the 2nd group simultaneously for 2 weeks. Mice of the 5th group were injected with EAC as the 3rd group and left for 2 weeks (till development of solid tumor), then treated with GSPE for another 2 weeks. EST significantly increased serum levels of urea, creatinine, potassium and chloride. In addition, it induced renal tissue and DNA injuries and increased P53, PCNA and ki67 proteins expression in renal tissues. On the other hand, it decreased serum levels of sodium and calcium ions. However, treatment of EST bearing mice with GSPE normalized serum levels of the above-mentioned parameters and improved renal tissue structure and reduced renal tissue DNA damage and P53, PCNA and ki67 proteins expression. These results indicated that GSPE is a promising nephron protective agent against EST induced renal injury.
Collapse
Affiliation(s)
- Mabrouk Attia Abd Eldaim
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Menoufia University, Shebin Elkom, Menoufia, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Egypt.
| | | | | | | |
Collapse
|
328
|
Peng B, Ortega J, Gu L, Chang Z, Li GM. Phosphorylation of proliferating cell nuclear antigen promotes cancer progression by activating the ATM/Akt/GSK3β/Snail signaling pathway. J Biol Chem 2019; 294:7037-7045. [PMID: 30858175 PMCID: PMC6497965 DOI: 10.1074/jbc.ra119.007897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 03/03/2019] [Indexed: 12/19/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) and its posttranslational modifications regulate DNA metabolic reactions, including DNA replication and repair, at replication forks. PCNA phosphorylation at Tyr-211 (PCNA-Y211p) inhibits DNA mismatch repair and induces misincorporation during DNA synthesis. Here, we describe an unexpected role of PCNA-Y211p in cancer promotion and development. Cells expressing phosphorylation-mimicking PCNA, PCNA-Y211D, show elevated hallmarks specific to the epithelial-mesenchymal transition (EMT), including the up-regulation of the EMT-promoting factor Snail and the down-regulation of EMT-inhibitory factors E-cadherin and GSK3β. The PCNA-Y211D-expressing cells also exhibited active cell migration and underwent G2/M arrest. Interestingly, all of these EMT-associated activities required the activation of ATM and Akt kinases, as inactivating these protein kinases by gene knockdown or inhibitors blocked EMT-associated signaling and cell migration. We concluded that PCNA phosphorylation promotes cancer progression via the ATM/Akt/GSK3β/Snail signaling pathway. In conclusion, this study identifies a novel PCNA function and reveals the molecular basis of phosphorylated PCNA-mediated cancer development and progression.
Collapse
Affiliation(s)
- Bo Peng
- From the Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China 100084 and
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Zhijie Chang
- From the Department of Basic Medical Sciences, Tsinghua University School of Medicine, Beijing, China 100084 and
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| |
Collapse
|
329
|
Low dose photodynamic therapy harmonizes with radiation therapy to induce beneficial effects on pancreatic heterocellular spheroids. Oncotarget 2019; 10:2625-2643. [PMID: 31080554 PMCID: PMC6499000 DOI: 10.18632/oncotarget.26780] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Photodynamic therapy (PDT) has seen long standing interest as a therapy for resistant cancers, but the main Achilles’ heel for its successful clinical exploitation is the use of poorly penetrating visible light. This limitation could be overcome by using radioluminescent nanoparticles, which can be excited during radiation therapy (RT) with penetrating X-rays. When infused in tumors, X-ray activated-nanoscintillators act as internal light sources and excite nearby photosensitizers. Recent studies demonstrated that it is realistic to achieve low dose PDT with current nanoscintillators. However, as the origin of enhanced RT efficacy with nanoscintillators may have varying origins, we aimed to answer the basic question: Is a combination of low-dose PDT beneficial to the RT efficacy in clinically relevant models of cancer? Pancreatic cancer (PanCa) remains a lethal disease for which RT is part of the palliative care and for which PDT demonstrated promising results in clinical trial. We thus evaluated the combination of low-dose PDT and RT delivered in absence of nanoscintillators on various heterocellular spheroid models that recapitulate the clinical heterogeneity of PanCa. Although therapeutic effects emerged at different timepoints in each model, the RT/PDT combination uniformly achieved favorable outcomes. With RT providing stunted tumor growth while PDT drove adjuvant apoptotic and necrotic cell death, the combination produced significantly smaller and less viable PanCa spheroids. In conclusion, the beneficial RT/PDT treatment outcomes encourage the further development of nanoscinitillators for X-ray-activated PDT. Assessment of such combination treatments should encompass multiparametric and temporally-spaced assessment of treatment effects in preclinical cancer models.
Collapse
|
330
|
Adhikary S, Chakravarti D, Terranova C, Sengupta I, Maitituoheti M, Dasgupta A, Srivastava DK, Ma J, Raman AT, Tarco E, Sahin AA, Bassett R, Yang F, Tapia C, Roy S, Rai K, Das C. Atypical plant homeodomain of UBR7 functions as an H2BK120Ub ligase and breast tumor suppressor. Nat Commun 2019; 10:1398. [PMID: 30923315 PMCID: PMC6438984 DOI: 10.1038/s41467-019-08986-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/09/2019] [Indexed: 12/17/2022] Open
Abstract
The roles of Plant Homeodomain (PHD) fingers in catalysis of histone modifications are unknown. We demonstrated that the PHD finger of Ubiquitin Protein Ligase E3 Component N-Recognin7 (UBR7) harbors E3 ubiquitin ligase activity toward monoubiquitination of histone H2B at lysine120 (H2BK120Ub). Purified PHD finger or full-length UBR7 monoubiquitinated H2BK120 in vitro, and loss of UBR7 drastically reduced H2BK120Ub genome-wide binding sites in MCF10A cells. Low UBR7 expression was correlated with occurrence of triple-negative breast cancer and metastatic tumors. Consistently, UBR7 knockdown enhanced the invasiveness, induced epithelial-to-mesenchymal transition and promoted metastasis. Conversely, ectopic expression of UBR7 restored these cellular phenotypes and reduced tumor growth. Mechanistically, UBR7 loss reduced H2BK120Ub levels on cell adhesion genes, including CDH4, and upregulated the Wnt/β-Catenin signaling pathway. CDH4 overexpression could partially revert UBR7-dependent cellular phenotypes. Collectively, our results established UBR7 as a histone H2B monoubiquitin ligase that suppresses tumorigenesis and metastasis of triple-negative breast cancer.
Collapse
Affiliation(s)
- Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Deepavali Chakravarti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Isha Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India
| | - Mayinuer Maitituoheti
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Anirban Dasgupta
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Dushyant Kumar Srivastava
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Junsheng Ma
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ayush T Raman
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Emily Tarco
- Department of Translational Molecular Pathology and Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Aysegul A Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roland Bassett
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Yang
- Department of Translational Molecular Pathology and Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Coya Tapia
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Siddhartha Roy
- Structural Biology and Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India.
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata, 700064, India.
| |
Collapse
|
331
|
Yuan Y, Wang Y, Liu Z, Sun Y, Yao Y, Yu W, Shen Z. MAT2B promotes proliferation and inhibits apoptosis in osteosarcoma by targeting epidermal growth factor receptor and proliferating cell nuclear antigen. Int J Oncol 2019; 54:2019-2029. [PMID: 30942439 PMCID: PMC6521932 DOI: 10.3892/ijo.2019.4764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most commonly diagnosed bone tumor in young people with poor prognosis. At present, the mechanisms underlying tumorigenesis in OS are not well understood. The methionine adnosyltransferase 2B (MAT2B) gene encodes the regulatory subunit of methionine adenosyltransferase (MAT). Recent studies demonstrated that it is highly expressed in a number of human malignancies; however, is undefined in OS. In the present study, MAT2B expression was investigated in tumor samples and cell lines. In vivo and in vitro, lentivirus‑mediated small hairpin RNA was constructed to target the MAT2B gene and examine the role of MAT2B in OS proliferation. Microarray analysis was performed to examine the possible downstream molecular target of MAT2B in OS. MAT2B was markedly increased in OS specimens compared with the normal bone tissues, and it was additionally abundantly expressed in OS cell lines. Inhibition of MAT2B expression caused a marked decrease in proliferation and significant increase in apoptosis. In vivo, MAT2B silencing significantly inhibited OS cell growth. Microarray analysis suggested that epidermal growth factor receptor (EGFR) and proliferating cell nuclear antigen (PCNA) may function as downstream targets of MAT2B in OS, as confirmed by reverse transcription‑quantitative polymerase chain reaction assays and western blotting. Collectively, these results suggested that MAT2B serves a critical role in the proliferation of OS by regulating EGFR and PCNA and that it may be a potential therapeutic target and prognostic factor of OS.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yonggang Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zimei Liu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yong Sun
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Yang Yao
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Wenxi Yu
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Zan Shen
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
332
|
Wei Y, Huang C, Wu H, Huang J. Estrogen Receptor Beta (ERβ) Mediated-CyclinD1 Degradation via Autophagy Plays an Anti-Proliferation Role in Colon Cells. Int J Biol Sci 2019; 15:942-952. [PMID: 31182915 PMCID: PMC6535788 DOI: 10.7150/ijbs.30930] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/10/2019] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of autophagic degradation machinery causes tumorigenesis, including colorectal cancer (CRC). Overexpression of CyclinD1 in CRC has been reported. Recent evidence also suggests that ERβ deficiency is related to the pathogenesis of CRC. Very little is known, however, about the detailed molecular mechanisms underlying the relationship among ERβ, autophagy, and CyclinD1 in CRC. Here, results showed that ERβ played an anti-proliferation role in HCT116 through impairing cell cycle but not apoptosis. Additionally, CyclinD1 accumulation was increased in response to chloroquine (CQ) or in MEF Atg7 knockout cells. Further, ERβ could inhibit the mammalian target of rapamycin (mTOR) or activate Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) to promote autophagy in HCT116. In summary, these results indicate that ERβ-mediated CyclinD1 degradation can inhibit colon cancer cell growth via autophagy.
Collapse
Affiliation(s)
- Yong Wei
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| | - Can Huang
- Wuhan Agricultural Inspection Center, Hubei, P.R China
| | - Haoyu Wu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| | - Jian Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, P.R China
| |
Collapse
|
333
|
Pieters TT, Falke LL, Nguyen TQ, Verhaar MC, Florquin S, Bemelman FJ, Kers J, Vanhove T, Kuypers D, Goldschmeding R, Rookmaaker MB. Histological characteristics of Acute Tubular Injury during Delayed Graft Function predict renal function after renal transplantation. Physiol Rep 2019; 7:e14000. [PMID: 30821122 PMCID: PMC6395310 DOI: 10.14814/phy2.14000] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/11/2022] Open
Abstract
Acute Tubular Injury (ATI) is the leading cause of Delayed Graft Function (DGF) after renal transplantation (RTX). Biopsies taken 1 week after RTX often show extensive tubular damage, which in most cases resolves due to the high regenerative capacity of the kidney. Not much is known about the relation between histological parameters of renal damage and regeneration immediately after RTX and renal outcome in patients with DGF. We retrospectively evaluated 94 patients with DGF due to ATI only. Biopsies were scored for morphological characteristics of renal damage (edema, casts, vacuolization, and dilatation) by three independent blinded observers. The regenerative potential was quantified by tubular cells expressing markers of proliferation (Ki67) and dedifferentiation (CD133). Parameters were related to renal function after recovery (CKD-EPI 3, 6, and 12 months posttransplantation). Quantification of morphological characteristics was reproducible among observers (Kendall's W ≥ 0.56). In a linear mixed model, edema and casts significantly associated with eGFR within the first year independently of clinical characteristics. Combined with donor age, edema and casts outperformed the Nyberg score, a well-validated clinical score to predict eGFR within the first year after transplantation (R2 = 0.29 vs. R2 = 0.14). Although the number of Ki67+ cells correlated to the extent of acute damage, neither CD133 nor Ki67 correlated with renal functional recovery. In conclusion, the morphological characteristics of ATI immediately after RTX correlate with graft function after DGF. Despite the crucial role of regeneration in recovery after ATI, we did not find a correlation between dedifferentiation marker CD133 or proliferation marker Ki67 and renal recovery after DGF.
Collapse
Affiliation(s)
- Tobias T. Pieters
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lucas L. Falke
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
- Department of Internal MedicineDiakonessenhuisUtrechtThe Netherlands
| | - Tri Q. Nguyen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Sandrine Florquin
- Department of PathologyAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Frederike J. Bemelman
- Department of NephrologyAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Jesper Kers
- Department of PathologyAmsterdam University Medical CentersAmsterdamThe Netherlands
- University of AmsterdamVan ‘t Hoff Institute for Molecular Sciences (HIMS)AmsterdamThe Netherlands
| | - Thomas Vanhove
- Department of NephrologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Dirk Kuypers
- Department of NephrologyUniversity Hospitals of LeuvenLeuvenBelgium
| | - Roel Goldschmeding
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Maarten B. Rookmaaker
- Department of Nephrology and HypertensionUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
334
|
Conedera FM, Pousa AMQ, Mercader N, Tschopp M, Enzmann V. Retinal microglia signaling affects Müller cell behavior in the zebrafish following laser injury induction. Glia 2019; 67:1150-1166. [PMID: 30794326 DOI: 10.1002/glia.23601] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 12/21/2022]
Abstract
Microglia are the resident tissue macrophages of the central nervous system including the retina. Under pathophysiological conditions, microglia can signal to Müller cells, the major glial component of the retina, affecting their morphological, molecular, and functional responses. Microglia-Müller cell interactions appear to be bidirectional shaping the overall injury response in the retina. Hence, microglia and Müller cell responses to disease and injury have been ascribed both positive and negative outcomes. However, Müller cell reactivity and survival in the absence of immune cells after injury have not been investigated in detail in adult zebrafish. Here, we develop a model of focal retinal injury combined with pharmacological treatments for immune cell depletion in zebrafish. The retinal injury was induced by a diode laser to damage photoreceptors. Two pharmacological treatments were used to deplete either macrophage-microglia (PLX3397) or selectively eliminate peripheral macrophages (clodronate liposomes). We show that PLX3397 treatment hinders retinal regeneration in zebrafish, which is reversed by microglial repopulation. On the other hand, selective macrophage elimination did not affect the kinetics of retinal regeneration. The absence of retinal microglia and macrophages leads to dysregulated Müller cell behavior. In the untreated fish, Müller cells react after injury induction showing glial fibrillary acidic protein (GFAP), Phospho-p44/42 MAPK (Erk1/2), and PCNA upregulation. However, in the immunosuppressed animals, GFAP and phospho-p44/42 MAPK (Erk1/2) expression was not upregulated overtime and the reentry in the cell cycle was not affected. Thus, microglia and Müller cell signaling is pivotal to unlock the regenerative potential of Müller cells in order to repair the damaged retina.
Collapse
Affiliation(s)
- Federica Maria Conedera
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ana Maria Quintela Pousa
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Nadia Mercader
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Markus Tschopp
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Volker Enzmann
- Department of Ophthalmology, University Hospital of Bern, University of Bern, Bern, Switzerland.,Department of BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
335
|
Curcumae Radix Extract Decreases Mammary Tumor-Derived Lung Metastasis via Suppression of C-C Chemokine Receptor Type 7 Expression. Nutrients 2019; 11:nu11020410. [PMID: 30781353 PMCID: PMC6412318 DOI: 10.3390/nu11020410] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022] Open
Abstract
Curcumae radix is the dry root of Curcuma longa L. (turmeric) that can be used either as a spice or traditional medicine. The aim of this study was to investigate the survival benefits and the anti-metastatic activity of curcumae radix extract (CRE) in MCF7 cells and in MMTV-PyMT transgenic mice—a mouse model of breast cancer metastasis. In vitro wound scratch assay revealed that CRE treatment inhibited cell motility and cell migration in a dose-dependent manner. To investigate the effect of CRE in breast cancer metastasis, MMTV-PyMT transgenic female virgin mice were used and randomly divided into two groups. For survival curve analysis, CRE was administered in a dose of 50 mg/kg to 8–20-week-old mice. Interestingly, CRE treatment significantly increased the median and prolonged survival of MMTV-PyMT mice. Furthermore, CRE treatment decreased tumor burden and inhibited cell proliferation in primary breast tumor, and also suppressed mammary tumor-derived lung metastasis. The size of the lung metastases substantially decreased in the CRE-treated group compared with the ones in the control group. Curcumae radix extract showed anti-metastatic activity through regulating the expression of metastasis markers including C-C Chemokine Receptor Type 7, Matrix Metalloproteinase 9 and the proto-oncogenes c-fos and c-jun. We demonstrated that these metastatic regulators were decreased when CCR7 expression was suppressed in MCF7 cells transfected with CCR7 siRNA. The results of this study show that curcumae radix exerts antitumor and anti-metastatic activities, and we suggest that curcumae radix might be a potential supplement for the treatment and prevention of breast cancer metastasis.
Collapse
|
336
|
Dexamethasone mediated downregulation of PGC-1α and visfatin regulates testosterone synthesis and antioxidant system in mouse testis. Acta Histochem 2019; 121:182-188. [PMID: 30579591 DOI: 10.1016/j.acthis.2018.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/29/2018] [Accepted: 12/14/2018] [Indexed: 01/09/2023]
Abstract
Dexamethasone, a synthetic glucocorticoid has been used as an immunosuppressive and anti-inflammatory and affects reproduction. It has been suggested that testicular steroidogenesis involves PGC-1α and visfatin as key regulators. Previous studies have shown that dexamethasone down-regulates PGC-1α and visfatin expression in muscle and mammary epithelial cells respectively. However, the effect of dexamethasone on testicular visfatin and PGC-1α expressions has not been investigated. The aims of the present study were to investigate the effect of dexamethasone, on the expression of PGC-1α, visfatin and antioxidant enzymes activities in mouse testis. The results of the present study showed that dexamethasone treatment significantly decreased the expression of visfatin and PGC-1α in mice testis, along with significant decreased in testicular antioxidant enzymes activates. Further, dexamethasone treatment also significantly increased the testicular lipid peroxidation and decreased testosterone synthesis. The dexamethasone induced changes in PGC-1α and visfatin in the testis were significantly correlated with changes in serum testosterone concentrations and antioxidant enzymes activities. Thus, dexamethasone induced testicular toxicity may involve the PGC-1α and visfatin as important molecules to exhibit its effects.
Collapse
|
337
|
Westermeyer HD, Salmon B, Baynes R, Yeatts J, Khattab A, Oh A, Mowat F. Safety and efficacy of topically applied 0.5% and 1% pirfenidone in a canine model of subconjunctival fibrosis. Vet Ophthalmol 2019; 22:502-509. [DOI: 10.1111/vop.12619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Hans D. Westermeyer
- Department of Clinical Sciences College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - Beth Salmon
- Department of Clinical Sciences College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - Ronald Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - James Yeatts
- Center for Chemical Toxicology Research and Pharmacokinetics Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - Ahlam Khattab
- Center for Chemical Toxicology Research and Pharmacokinetics Department of Population Health and Pathobiology College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - Annie Oh
- Department of Clinical Sciences College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| | - Freya Mowat
- Department of Clinical Sciences College of Veterinary Medicine North Carolina State University Raleigh North Carolina
| |
Collapse
|
338
|
Expression of Neural Crest Markers GLDC and ERRFI1 is Correlated with Melanoma Prognosis. Cancers (Basel) 2019; 11:cancers11010076. [PMID: 30641895 PMCID: PMC6356846 DOI: 10.3390/cancers11010076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 11/17/2022] Open
Abstract
Regulation of particular genes during the formation of neural crest (NC) cells is also described during progression of malignant melanoma. In this context, it is of paramount importance to develop neural crest models allowing the identification of candidate genes, which could be used as biomarkers for melanoma prognosis. Here, we used a human induced Pluripotent Stem Cells (iPSC)-based approach to present novel NC-associated genes, expression of which was upregulated in melanoma. A list of 8 candidate genes, based on highest upregulation, was tested for prognostic value in a tissue microarray analysis containing samples from advanced melanoma (good versus bad prognosis) as well as from high-risk primary melanomas (early metastasizing versus non or late-metastasizing). CD271, GLDC, and ERRFI1 showed significantly higher expression in metastatic patients who died early than the ones who survived at least 30 months. In addition, GLDC and TWIST showed a significantly higher immunohistochemistry (IHC) score in primary melanomas from patients who developed metastases within 12 months versus those who did not develop metastases in 30 months. In conclusion, our iPSC-based study reveals a significant association of NC marker GLDC protein expression with melanoma prognosis.
Collapse
|
339
|
Chen X, Yi Z, Chen G, Ma X, Su W, Cui X, Li X. DOX-assisted functionalization of green tea polyphenol nanoparticles for effective chemo-photothermal cancer therapy. J Mater Chem B 2019. [DOI: 10.1039/c9tb00751b] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Green tea polyphenol nanoparticles with chemotherapeutic and photothermal performance exhibited effective anti-tumor effects in vivo with intravenous injection.
Collapse
Affiliation(s)
- Xiangyu Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Zeng Yi
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Guangcan Chen
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xiaomin Ma
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Wen Su
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xinxing Cui
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| | - Xudong Li
- Engineering Research Center in Biomaterials
- Sichuan University
- Chengdu 610064
- P. R. China
- National Engineering Research Center for Biomaterials
| |
Collapse
|
340
|
El-behery EI, El-naseery NI, El-Ghazali HM, Elewa YH, Mahdy EA, El-Hady E, Konsowa MM. The efficacy of chronic zinc oxide nanoparticles using on testicular damage in the streptozotocin-induced diabetic rat model. Acta Histochem 2019; 121:84-93. [PMID: 30413282 DOI: 10.1016/j.acthis.2018.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 10/05/2018] [Accepted: 10/23/2018] [Indexed: 01/01/2023]
Abstract
Testicular impairment is a common complication of Diabetes mellitus (DM). Zinc Oxide Nanoparticles (ZnO NPs) are a novel agent for Zn delivery with antidiabetic and antioxidant activities. However, few reports were recorded on it. The current study aimed to investigate the possible ameliorating effect of ZnO NPs treatment on testicular tissues alterations in streptozotocin (STZ)-induced diabetic rats. Therefore, thirty mature male Wistar rats were divided into three main groups: Control group (n = 18) was subdivided equally into three subgroups (negative control, vehicle and ZnO NPs), Diabetic group (n = 6) and ZnO NPs-treated diabetic group (n = 6). Induction of diabetes was done by a single intraperitoneal injection of STZ (60 mg/kg bw). The rats were orally treated by ZnO NPs (10 mg/kg bw) for 30 constitutive days. At the end of the experiment, blood glucose and serum testosterone levels were measured. Also, testicular tissues were obtained for histopathological investigations and immunohistochemical staining with anti-PCNA (proliferating cell marker), anti-ssDNA (apoptotic cell marker), anti-SOX9 (Sertoli cell marker), anti-Stella (spermatogonia marker), anti-STRA8 (preleptotene and early-leptotene spermatocytes marker), anti-DMC1 (leptotene and zygotene spermatocytes marker), anti-Dnmt3a (a marker for cells under DNA methylation) and anti-α-SMA (peritubular myoid cell marker). The biochemical analysis revealed that diabetes resulted in a significant elevation in blood glucose level and a reduction in serum testosterone level. Moreover, histopathological investigations revealed disorganized seminiferous epithelium and sever hyalinization with vacuolization of the testicular interstitium containing Leydig cells. The immunohistochemical findings support spermatogenesis impairment in the diabetic group. However, ZnO NPs treatment restores architecture of seminiferous epithelium and Leydig cells. Furthermore, more PCNA, SOX9, Stella, STRA8, DMC1 and Dnmt3a immunopositive cells with an improvement of peritubular α-SMA immunopositive expression, as well as few ssDNA-immunopositive cells were detected in the seminiferous epithelium. This study suggested the possible protective role of orally administered ZnO NPs on testicular alterations in the STZ-induced diabetic group via steroidogenesis and spermatogenesis enhancement. In addition, further researches are acquired for evaluation mechanism of ZnO NPs treatment via oral or parenteral routes in a dose-dependent manner to identify the more effective route and dose in the treatment of testicular diabetic complications.
Collapse
|
341
|
Samal R, Sappa PK, Gesell Salazar M, Wenzel K, Reinke Y, Völker U, Felix SB, Hammer E, Könemann S. Global secretome analysis of resident cardiac progenitor cells from wild-type and transgenic heart failure mice: Why ambience matters. J Cell Physiol 2018; 234:10111-10122. [PMID: 30575044 DOI: 10.1002/jcp.27677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/04/2018] [Indexed: 01/08/2023]
Abstract
Resident cardiac progenitor cells (CPCs) have gained attention in cardiac regenerative medicine primarily due to their paracrine activity. In our current study we determined the role of pathological conditions such as heart failure on the autocrine-paracrine action of stem cell antigen-1 (Sca-1) expressing CPC. This comparative secretome profiling of Sca-1+ cells derived from transgenic heart failure (αMHC-cyclin-T1/Gαq overexpression [Cyc] cells) versus healthy (wild-type [Wt] cells) mice, achieved via mass-spectrometric quantification, enabled the identification of over 700 proteins. Our results demonstrate that the heart failure milieu caused a 2-fold enrichment of extracellular matrix proteins (ECM) like biglycan, versican, collagen XII, and angiogenic factors like heparan sulfate proteoglycan 2, plasminogen activator inhibitor 1 in the secretome. We further elucidated the direct influence of the secretome on the functional behavior of Sca-1 + cells via in vitro tube forming assay. Secreted factors present in the diseased milieu induced tube formation in Cyc cells (1.7-fold; p < 0.01) when compared with Wt cells after 24 hr of exposure. The presence of conditioned media moderately increased the proliferation of Cyc cells but had a more pronounced effect on Wt cells. Overall, these findings revealed global modifications in the secretory activity of adult Sca-1 + cells in the heart failure milieu. The secretion of ECM proteins and angiogenic factors, which are crucial for cardiac remodeling and recovery, was notably enriched in the supernatant of Cyc cells. Thus, during heart failure the microenvironment of Sca-1 + cells might favor angiogenesis and proliferation suggesting their potential to recover the damaged heart.
Collapse
Affiliation(s)
- Rasmita Samal
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Praveen Kumar Sappa
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,Department of Hematology and Oncology, Internal Medicine C, University Greifswald, Greifswald, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kristin Wenzel
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Yvonne Reinke
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephan Burkhard Felix
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| | - Stephanie Könemann
- Department of Internal Medicine B, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Center for Cardiovascular Research, partner site Greifswald), Greifswald, Germany
| |
Collapse
|
342
|
Zhao WP, Wang HW, Liu J, Tan PP, Luo XL, Zhu SQ, Chen XL, Zhou BH. Positive PCNA and Ki-67 Expression in the Testis Correlates with Spermatogenesis Dysfunction in Fluoride-Treated Rats. Biol Trace Elem Res 2018; 186:489-497. [PMID: 29748930 DOI: 10.1007/s12011-018-1338-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/05/2018] [Indexed: 01/15/2023]
Abstract
The present study aimed to evaluate the effect of fluoride (F) on spermatogenesis in male rats. F- at 50 and 100 mg/L was administered for 70 days, after which the testicular and epididymis tissues were collected to observe the histopathological structure under a light microscope. The ultrastructure of the testis and sperm was also examined via transmission electron microscopy. The apoptosis of spermatogenic cells was measured through terminal deoxynucleotidyl transferase dUTP nick end labeling staining. The expression of proliferation factors, namely, proliferating cell nuclear antigen (PCNA) and Ki-67, in the testicular and epididymis tissues, were assayed through immunohistochemistry. F- at 50 and 100 mg/L significantly damaged the structure of the testis and epididymis, and the testis and sperm ultrastructure exhibited various changes, including mitochondrial swelling and vacuolization, and apsilated and raised sperm membrane. F treatment significantly increased spermatogenic cell apoptosis in the testis. PCNA (P < 0.01) and Ki-67 (P < 0.01) also presented positive expression in the testis. By comparison, no significant changes occurred in the epididymis. In summary, excessive F intake results in spermatogenesis dysfunction by damaging the testicular structure and inducing spermatogenic cell apoptosis in male rats. The positive expression level of PCNA and Ki-67 was a good response to spermatogenesis dysfunction.
Collapse
Affiliation(s)
- Wen-Peng Zhao
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Hong-Wei Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| | - Jing Liu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Pan-Pan Tan
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Xiang-Long Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Shi-Quan Zhu
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Xue-Li Chen
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China
| | - Bian-Hua Zhou
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang, 471000, Henan, People's Republic of China.
| |
Collapse
|
343
|
Ban X, Yan J, Yu S, Lu Z, Chang X, Jia C, Gao C, Shao H, Wu Y, Mao X, Zhang Y, Li Y, Chen J. High minichromosome maintenance protein 7 proliferation indices: a powerful predictor of progression in pancreatic neuroendocrine neoplasms without distant metastasis at the time of surgery. Hum Pathol 2018; 85:101-111. [PMID: 30447299 DOI: 10.1016/j.humpath.2018.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/26/2018] [Accepted: 10/31/2018] [Indexed: 12/28/2022]
Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) have an unpredictable clinical course that varies from indolent to highly malignant. No immunohistochemical markers are available for reliable prediction of the biological behavior of early stage PanNENs. Minichromosome maintenance protein 7 (MCM7) is a putative powerful marker of cell proliferation. Whether the expression of MCM7 is related to the risk of PanNENs progression remains unclear. We assessed the clinical behavior of 156 PanNENs with respect to stage, grade, Ki-67 index, MCM7 index, and other pathologic features. A high MCM7 index was significantly associated with larger tumor size (P < .001), nonfunctioning tumor (P < .001), increased grade (P < .0001), and later TNM stage (P < .001). In multivariate analysis, G2/G3 (hazard ratio [HR], 2.21; 95% confidence interval [CI], 1.35-3.62; P < .001), stage III/IV (HR, 2.11; 95% CI, 1.31-3.41; P < .001), and MCM7 labeling index >5% (HR, 3.81; 95% CI, 1.30-11.17; P = .02) were independent negative prognostic factors related to the risk of tumor progression in stage I-IV disease. MCM7 labeling index >5% was associated with an increased risk of progression in stages I-V, I-III, and I-II. Our study confirms that MCM7 is a valuable marker for assessing the progression of PanNENs, especially in patients with early stage disease and without distant metastasis.
Collapse
Affiliation(s)
- Xinchao Ban
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Jie Yan
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Shuangni Yu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Zhaohui Lu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Xiaoyan Chang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Congwei Jia
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Cen Gao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Huilin Shao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yan Wu
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Xinxin Mao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yue Zhang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Yuan Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China
| | - Jie Chen
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences-Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
344
|
Vuong NH, Cook DP, Forrest LA, Carter LE, Robineau-Charette P, Kofsky JM, Hodgkinson KM, Vanderhyden BC. Single-cell RNA-sequencing reveals transcriptional dynamics of estrogen-induced dysplasia in the ovarian surface epithelium. PLoS Genet 2018; 14:e1007788. [PMID: 30418965 PMCID: PMC6258431 DOI: 10.1371/journal.pgen.1007788] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 11/26/2018] [Accepted: 10/25/2018] [Indexed: 12/30/2022] Open
Abstract
Estrogen therapy increases the risk of ovarian cancer and exogenous estradiol accelerates the onset of ovarian cancer in mouse models. Both in vivo and in vitro, ovarian surface epithelial (OSE) cells exposed to estradiol develop a subpopulation that loses cell polarity, contact inhibition, and forms multi-layered foci of dysplastic cells with increased susceptibility to transformation. Here, we use single-cell RNA-sequencing to characterize this dysplastic subpopulation and identify the transcriptional dynamics involved in its emergence. Estradiol-treated cells were characterized by up-regulation of genes associated with proliferation, metabolism, and survival pathways. Pseudotemporal ordering revealed that OSE cells occupy a largely linear phenotypic spectrum that, in estradiol-treated cells, diverges towards cell state consistent with the dysplastic population. This divergence is characterized by the activation of various cancer-associated pathways including an increase in Greb1 which was validated in fallopian tube epithelium and human ovarian cancers. Taken together, this work reveals possible mechanisms by which estradiol increases epithelial cell susceptibility to tumour initiation.
Collapse
Affiliation(s)
- Nhung H. Vuong
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Laura A. Forrest
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Lauren E. Carter
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Pascale Robineau-Charette
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Joshua M. Kofsky
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Kendra M. Hodgkinson
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Barbara C. Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
- * E-mail:
| |
Collapse
|
345
|
Hu Y, Maisey K, Subramani PA, Liu F, Flores-Kossack C, Imarai M, Secombes CJ, Wang T. Characterisation of rainbow trout peripheral blood leucocytes prepared by hypotonic lysis of erythrocytes, and analysis of their phagocytic activity, proliferation and response to PAMPs and proinflammatory cytokines. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:104-113. [PMID: 30009927 DOI: 10.1016/j.dci.2018.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Rapid and high quality preparation of peripheral blood leucocytes (PBL) is important in fish immunology research and in particular for fish vaccine development, where multiple immune parameters can be monitored on the same fish over time. Fish PBL are currently prepared by density separation using Percoll or Hispaque-1.077, which is time consuming, costly and prone to erythrocyte contamination. We present here a modified PBL preparation method that includes a 20 s hypotonic lysis of erythrocytes and a subsequent separation of PBL from cell debris by a cell strainer. This method is simple, rapid and cost effective. The PBL obtained are similar in cellular composition to those prepared by density separation but have less erythrocyte contamination as demonstrated by FACS analysis and the expression of cell marker genes. Marker gene analysis also suggested that PBL prepared by hypotonic lysis are superior to those obtained by the gradient method in that some high-density cells (certain B cell types and neutrophils) might be lost using the latter. The PBL prepared in this way can proliferate in response to the T cell mitogen PHA, and both lymphoid and myeloid cells can phagocytose fluorescent beads and bacteria, with the latter enhanced by treatment with pro-inflammatory cytokines (IL-1β and IL-6). Furthermore, the PBL can respond to stimulation with PAMPs (LPS, poly I:C) and cytokines (IL-1β and IFNγ) in terms of upregulation of proinflammatory cytokine gene expression. Such data demonstrate the utility of this approach (hypotonic lysis of erythrocytes) for PBL isolation and will enable more studies of their role in disease protection in future immunological and vaccine development research in fish.
Collapse
Affiliation(s)
- Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Kevin Maisey
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Parasuraman Aiya Subramani
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Camila Flores-Kossack
- Laboratorio de Immunología Comparativa, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Mónica Imarai
- Laboratorio de Immunología, Centro de Biotecnología Acuícola, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Alameda 3363, Santiago, Chile
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom.
| |
Collapse
|
346
|
Awad A, Khalil SR, Farag MR, Nassan MA. Differential susceptibility of kidneys and livers to proliferative processes and transcriptional level of the genes encoding desmin, vimentin, connexin 43, and nestin in rats exposed to furan. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:235-244. [PMID: 29990736 DOI: 10.1016/j.ecoenv.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/05/2018] [Accepted: 07/01/2018] [Indexed: 06/08/2023]
Abstract
In this study, we aimed to assess the differential toxic impact, induced by furan exposure, on the liver and kidney tissues by estimating reactive oxygen species (ROS) level, total antioxidant capacity (TAC), oxidative damage, and the tissue injury markers in a male rat model. To explain such impacts, 20 rats were assigned into two groups: a control group, where rats were administered corn oil as a vehicle, and a furan-administered group, where furan was orally administered to rats at a dose of 16 mg/kg b wt/day (five days per week over eight weeks). The transcriptional levels of intermediate filament proteins (desmin, vimentin, nestin, and connexin 43) were assessed by using quantitative real-time polymerase chain reaction (PCR), and the cell proliferation markers (proliferating cell nuclear antigen [PCNA] and proliferation-associated nuclear antigen [Ki-67]) were recognized by immunohistochemical analysis. Furthermore, the ultrastructural changes of liver and kidney were monitored using electron microscopy. Our findings showed that furan exposure could induce hepatic and renal damage to different extents. Furan can increase the ROS content, oxidative damage indices, and liver tissue injury indices but not kidney injury indices. Furthermore, it decreases the TAC in the serum of exposed rats. In addition, furan exposure was associated with changes in the mRNA expression pattern of intermediate filament proteins in both kidney and liver tissues. Moreover, furan enhances the expression of PCNA and Ki-67 in the liver tissues but not in the kidney tissues. The ultrastructure evaluation revealed the incidence of glomerular podocyte degeneration and hepatocyte injury. These results conclusively demonstrate that the deleterious effects of furan are caused by promoting fibrosis and hepatocyte proliferation in liver tissues and triggering podocyte injury in the kidney tissues.
Collapse
Affiliation(s)
- Ashraf Awad
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samah R Khalil
- Forensic Medicine and Toxicology, Department, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt.
| | - Mayada Ragab Farag
- Forensic Medicine and Toxicology, Department, Faculty of Veterinary Medicine, Zagazig University, 44511 Zagazig, Egypt
| | - Mohamed Abdo Nassan
- Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
347
|
Kaszak I, Ruszczak A, Kanafa S, Kacprzak K, Król M, Jurka P. Current biomarkers of canine mammary tumors. Acta Vet Scand 2018; 60:66. [PMID: 30373614 PMCID: PMC6206704 DOI: 10.1186/s13028-018-0417-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/20/2018] [Indexed: 12/22/2022] Open
Abstract
Mammary tumors are the second most common neoplasia in dogs. Due to the high similarity of canine mammary tumors (CMT) to human breast cancers (HBC), human biomarkers of HBC are also detectable in cases of CMT. The evaluation of biomarkers enables clinical diagnoses, treatment options and prognosis for bitches suffering from this disease. The aim of this article is to give a short summary of the biomarkers of CMT based on current literature. Very promising biomarkers are miRNAs, cancer stem cells, and circulating tumor cells, as well as mutations of the breast cancer 1 gene (BRCA1) and breast cancer 2 gene (BRCA2). Until now, the most studied and reliable biomarkers of CMT have remained antigen Ki-67 (Ki-67), endothelial growth factor receptor, human epidermal growth factor receptor 2 (HER-2), estrogen receptor, progesterone receptor and cyclooxygenase 1 (COX-2), which can be detected in both serum and tissue samples using different molecular methods. However, carcinoembryonic antigen and cancer antigen 15-3 (CA 15-3), while poorly studied, seem to be good biomarkers, especially for the early detection and prognosis of CMT. We will also mention the following: proliferative cell nuclear antigen, tumor protein p53 (p53), E-cadherin, vascular endothelial growth factor, microRNAs, cancer stem cells and circulating tumor cells, which can also be useful biomarkers. Although many studies have been conducted so far, the estimation of biomarkers in cases of CMT is still not a common practice, and more detailed research should be done.
Collapse
|
348
|
Fluoro-Chromogenic Labelling for Detection of MCM2 to Assess Proliferation Activity in HER2-amplified Breast Carcinomas. Appl Immunohistochem Mol Morphol 2018; 28:175-186. [PMID: 30358612 DOI: 10.1097/pai.0000000000000716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Minichromosome Maintenance Protein 2 (MCM2) is critical in initiating DNA replication during the cell division process. As expressed intensively in all phases of the active cell cycle, MCM2 has been proposed as a novel biomarker to determine cellular proliferation. We aimed at clarifying the prevalence and clinical significance of MCM2 in HER2-amplified breast cancer subtype. MCM2 expression was studied in 142 primary HER2-amplified breast carcinomas by applying a novel fluoro-chromogenic immunohistochemistry and tailored digital image analysis to determine labelling index (MCM2-LI). The presence of MCM2 was detected with HRP-conjugated polymer and visualized with 3, 3'-diaminobenzidine tetrahydrochloride, in cytokeratin (CK)-positive and Cy2-IgG-labelled breast cancer cells of epithelial origin. Stained slides were digitized by scanning sequentially under bright field (for MCM2) and fluorescence (for CK) illumination. Multilayer JPEG2000 images were analyzed with ImmunoRatio 2.5 (accessory in SlideVantage 1.2 software) utilizing its bright field and fluorescence image-blending mode to display MCM2-CK dual-positive cells. MCM2-LI was retrospectively compared with histopathologic characteristics and patients' clinical outcome. MCM2 protein-expressing cells (median MCM2-LI, 63.5%) were more frequent than those of Ki67 (median Ki67 labelling index, 33%). Significant correlations were found between high MCM2-LI, high Ki67 labelling index, negative hormone receptor (ER, PR) statuses, high grade of malignancy, and high cyclin E expression. MCM2-LI was not shown to be predictive of disease recurrence during the median follow-up of 5.3 years but was shown to be useful to distinguish aggressive-type HER2-amplified breast carcinomas with high malignancy grade and hormone receptor negativity. The fluoro-chromogenic double-labelling immunohistochemistry accompanied with digital image analysis provides an accurate carcinoma-specific determination of MCM2-LI on a single tumor section.
Collapse
|
349
|
Chang MM, Lai MS, Hong SY, Pan BS, Huang H, Yang SH, Wu CC, Sun HS, Chuang JI, Wang CY, Huang BM. FGF9/FGFR2 increase cell proliferation by activating ERK1/2, Rb/E2F1, and cell cycle pathways in mouse Leydig tumor cells. Cancer Sci 2018; 109:3503-3518. [PMID: 30191630 PMCID: PMC6215879 DOI: 10.1111/cas.13793] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/19/2022] Open
Abstract
Fibroblast growth factor 9 (FGF9) promotes cancer progression; however, its role in cell proliferation related to tumorigenesis remains elusive. We investigated how FGF9 affected MA‐10 mouse Leydig tumor cell proliferation and found that FGF9 significantly induced cell proliferation by activating ERK1/2 and retinoblastoma (Rb) phosphorylations within 15 minutes. Subsequently, the expressions of E2F1 and the cell cycle regulators: cyclin D1, cyclin E1 and cyclin‐dependent kinase 4 (CDK4) in G1 phase and cyclin A1, CDK2 and CDK1 in S‐G2/M phases were increased at 12 hours after FGF9 treatment; and cyclin B1 in G2/M phases were induced at 24 hours after FGF9 stimulation, whereas the phosphorylations of p53, p21 and p27 were not affected by FGF9. Moreover, FGF9‐induced effects were inhibited by MEK inhibitor PD98059, indicating FGF9 activated the Rb/E2F pathway to accelerate MA‐10 cell proliferation by activating ERK1/2. Immunoprecipitation assay and ChIP‐quantitative PCR results showed that FGF9‐induced Rb phosphorylation led to the dissociation of Rb‐E2F1 complexes and thereby enhanced the transactivations of E2F1 target genes, Cyclin D1, Cyclin E1 and Cyclin A1. Silencing of FGF receptor 2 (FGFR2) using lentiviral shRNA inhibited FGF9‐induced ERK1/2 phosphorylation and cell proliferation, indicating that FGFR2 is the obligate receptor for FGF9 to bind and activate the signaling pathway in MA‐10 cells. Furthermore, in a severe combined immunodeficiency mouse xenograft model, FGF9 significantly promoted MA‐10 tumor growth, a consequence of increased cell proliferation and decreased apoptosis. Conclusively, FGF9 interacts with FGFR2 to activate ERK1/2, Rb/E2F1 and cell cycle pathways to induce MA‐10 cell proliferation in vitro and tumor growth in vivo.
Collapse
Affiliation(s)
- Ming-Min Chang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Shao Lai
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Siou-Ying Hong
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Syong Pan
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Hsin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shang-Hsun Yang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jih-Ing Chuang
- Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yih Wang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bu-Miin Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
350
|
Jiang ZJ, Shen QH, Chen HY, Yang Z, Shuai MQ, Zheng SS. Galectin-1 gene silencing inhibits the activation and proliferation but induces the apoptosis of hepatic stellate cells from mice with liver fibrosis. Int J Mol Med 2018; 43:103-116. [PMID: 30365068 PMCID: PMC6257862 DOI: 10.3892/ijmm.2018.3950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/09/2018] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a serious threat to human health, and there is currently no effective clinical drug for treatment of the disease. Although Galectin-1 is effective, its role in liver function, inflammation, matrix metalloproteinases and the activation of hepatic stellate cells (HSCs) remains to be elucidated. The aim of the present study was to elucidate the effect of Galectin-1 on the activation, proliferation and apoptosis of HSCs in a mouse model of liver fibrosis. Following successful model establishment and tissue collection, mouse HSCs (mHSCs) were identified and an mHSC line was constructed. Subsequently, to determine the role of Galectin-1 in liver fibrosis, the expression levels of transforming growth factor (TGF)-β1, connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA) pre- and post-transfection were evaluated by reverse transcription-quantitative polymerase chain reaction and western blot analyses. In addition, the effects of Galectin-1 on the biological behavior and mitochondrial function of mHSCs were determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, flow cytometry and a scratch test. It was first observed that the expression levels of Galectin-1, TGF-β1, CTGF and α-SMA were downregulated by silencing the gene expression of Galectin-1. Additionally, silencing the gene expression of Galectin-1 inhibited cell cycle progression, proliferation and migration but induced the apoptosis of mHSCs from mice with liver fibrosis. Furthermore, the in vivo experimental results suggested that silencing the gene expression of Galectin-1 improved liver fibrosis. Collectively, it was concluded that silencing the gene expression of Galectin-1 ameliorates liver fibrosis and that functionally suppressing Galectin-1 may be a future therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Zhi-Jun Jiang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Qing-Hua Shen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine (Jinyun Branch), Jinyun, Zhejiang 321400, P.R. China
| | - Hai-Yong Chen
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Zhe Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Ming-Qi Shuai
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| |
Collapse
|