301
|
Mazza A, Gat-Viks I, Farhan H, Sharan R. A minimum-labeling approach for reconstructing protein networks across multiple conditions. Algorithms Mol Biol 2014; 9:1. [PMID: 24507724 PMCID: PMC3933684 DOI: 10.1186/1748-7188-9-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 01/22/2014] [Indexed: 11/13/2022] Open
Abstract
Background The sheer amounts of biological data that are generated in recent years have driven the development of network analysis tools to facilitate the interpretation and representation of these data. A fundamental challenge in this domain is the reconstruction of a protein-protein subnetwork that underlies a process of interest from a genome-wide screen of associated genes. Despite intense work in this area, current algorithmic approaches are largely limited to analyzing a single screen and are, thus, unable to account for information on condition-specific genes, or reveal the dynamics (over time or condition) of the process in question. Results We propose a novel formulation for the problem of network reconstruction from multiple-condition data and devise an efficient integer program solution for it. We apply our algorithm to analyze the response to influenza infection and ER export regulation in humans. By comparing to an extant, single-condition tool we demonstrate the power of our new approach in integrating data from multiple conditions in a compact and coherent manner, capturing the dynamics of the underlying processes.
Collapse
|
302
|
Brodin P, Valentini D, Uhlin M, Mattsson J, Zumla A, Maeurer MJ. Systems level immune response analysis and personalized medicine. Expert Rev Clin Immunol 2014; 9:307-17. [DOI: 10.1586/eci.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
303
|
Tripp RA, Mark Tompkins S. Antiviral effects of inhibiting host gene expression. Curr Top Microbiol Immunol 2014; 386:459-77. [PMID: 25007848 DOI: 10.1007/82_2014_409] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA interference (RNAi) has been used to probe the virus-host interface to understand the requirements for host-gene expression needed for virus replication. The availability of arrayed siRNA libraries has enabled a genome-scale, high-throughput analysis of gene pathways usurped for virus replication. Results from these and related screens have led to the discovery of new host factors that regulate virus replication. While effective delivery continues to limit development of RNAi-based drugs, RNAi-based genome discovery has led to identification of druggable targets. These validated targets enable rational development of novel antiviral drugs, including the rescue and repurposing of existing, approved drugs. Existing drugs with known cytotoxicity and mechanisms of action can potentially be re-targeted to regulate host genes and gene products needed by influenza to replicate. Drug repositioning is more cost-effective, less time-consuming, and more effective for anti-influenza virus drug discovery than traditional methods. In this chapter, a general overview of RNAi screening methods, host-gene discovery, and drug repurposing is examined with emphasis on utilizing RNAi to identify druggable genes that can be targeted for drug development or repurposing.
Collapse
Affiliation(s)
- Ralph A Tripp
- Department of Infectious Disease, University of Georgia, Athens, GA, 30602, USA,
| | | |
Collapse
|
304
|
Dapat C, Saito R, Suzuki H, Horigome T. Quantitative phosphoproteomic analysis of host responses in human lung epithelial (A549) cells during influenza virus infection. Virus Res 2014; 179:53-63. [DOI: 10.1016/j.virusres.2013.11.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/05/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
|
305
|
Ni F, Mbawuike IN, Kondrashkina E, Wang Q. The roles of hemagglutinin Phe-95 in receptor binding and pathogenicity of influenza B virus. Virology 2013; 450-451:71-83. [PMID: 24503069 DOI: 10.1016/j.virol.2013.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Diverged ~4000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1-H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H1-15 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Innocent Nnadi Mbawuike
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
306
|
Lan A, Ziv-Ukelson M, Yeger-Lotem E. A context-sensitive framework for the analysis of human signalling pathways in molecular interaction networks. Bioinformatics 2013; 29:i210-6. [PMID: 23812986 PMCID: PMC3694656 DOI: 10.1093/bioinformatics/btt240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
MOTIVATION A major challenge in systems biology is to reveal the cellular pathways that give rise to specific phenotypes and behaviours. Current techniques often rely on a network representation of molecular interactions, where each node represents a protein or a gene and each interaction is assigned a single static score. However, the use of single interaction scores fails to capture the tendency of proteins to favour different partners under distinct cellular conditions. RESULTS Here, we propose a novel context-sensitive network model, in which genes and protein nodes are assigned multiple contexts based on their gene ontology annotations, and their interactions are associated with multiple context-sensitive scores. Using this model, we developed a new approach and a corresponding tool, ContextNet, based on a dynamic programming algorithm for identifying signalling paths linking proteins to their downstream target genes. ContextNet finds high-ranking context-sensitive paths in the interactome, thereby revealing the intermediate proteins in the path and their path-specific contexts. We validated the model using 18 348 manually curated cellular paths derived from the SPIKE database. We next applied our framework to elucidate the responses of human primary lung cells to influenza infection. Top-ranking paths were much more likely to contain infection-related proteins, and this likelihood was highly correlated with path score. Moreover, the contexts assigned by the algorithm pointed to putative, as well as previously known responses to viral infection. Thus, context sensitivity is an important extension to current network biology models and can be efficiently used to elucidate cellular response mechanisms. AVAILABILITY ContextNet is publicly available at http://netbio.bgu.ac.il/ContextNet. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alexander Lan
- Department of Computer Science, National Center for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | |
Collapse
|
307
|
Abstract
MOTIVATION Several types of studies, including genome-wide association studies and RNA interference screens, strive to link genes to diseases. Although these approaches have had some success, genetic variants are often only present in a small subset of the population, and screens are noisy with low overlap between experiments in different labs. Neither provides a mechanistic model explaining how identified genes impact the disease of interest or the dynamics of the pathways those genes regulate. Such mechanistic models could be used to accurately predict downstream effects of knocking down pathway members and allow comprehensive exploration of the effects of targeting pairs or higher-order combinations of genes. RESULTS We developed methods to model the activation of signaling and dynamic regulatory networks involved in disease progression. Our model, SDREM, integrates static and time series data to link proteins and the pathways they regulate in these networks. SDREM uses prior information about proteins' likelihood of involvement in a disease (e.g. from screens) to improve the quality of the predicted signaling pathways. We used our algorithms to study the human immune response to H1N1 influenza infection. The resulting networks correctly identified many of the known pathways and transcriptional regulators of this disease. Furthermore, they accurately predict RNA interference effects and can be used to infer genetic interactions, greatly improving over other methods suggested for this task. Applying our method to the more pathogenic H5N1 influenza allowed us to identify several strain-specific targets of this infection. AVAILABILITY SDREM is available from http://sb.cs.cmu.edu/sdrem. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anthony Gitter
- Computer Science Department and Lane Center for Computational Biology, School of Computer Science, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
308
|
Josset L, Tisoncik-Go J, Katze MG. Moving H5N1 studies into the era of systems biology. Virus Res 2013; 178:151-67. [PMID: 23499671 PMCID: PMC3834220 DOI: 10.1016/j.virusres.2013.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 02/24/2013] [Indexed: 12/20/2022]
Abstract
The dynamics of H5N1 influenza virus pathogenesis are multifaceted and can be seen as an emergent property that cannot be comprehended without looking at the system as a whole. In past years, most of the high-throughput studies on H5N1-host interactions have focused on the host transcriptomic response, at the cellular or the lung tissue level. These studies pointed out that the dynamics and magnitude of the innate immune response and immune cell infiltration is critical to H5N1 pathogenesis. However, viral-host interactions are multidimensional and advances in technologies are creating new possibilities to systematically measure additional levels of 'omic data (e.g. proteomic, metabolomic, and RNA profiling) at each temporal and spatial scale (from the single cell to the organism) of the host response. Natural host genetic variation represents another dimension of the host response that determines pathogenesis. Systems biology models of H5N1 disease aim at understanding and predicting pathogenesis through integration of these different dimensions by using intensive computational modeling. In this review, we describe the importance of 'omic studies for providing a more comprehensive view of infection and mathematical models that are being developed to integrate these data. This review provides a roadmap for what needs to be done in the future and what computational strategies should be used to build a global model of H5N1 pathogenesis. It is time for systems biology of H5N1 pathogenesis to take center stage as the field moves toward a more comprehensive view of virus-host interactions.
Collapse
Affiliation(s)
- Laurence Josset
- Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195, United States
| | | | | |
Collapse
|
309
|
Protein interaction networks in innate immunity. Trends Immunol 2013; 34:610-9. [DOI: 10.1016/j.it.2013.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/17/2013] [Accepted: 05/13/2013] [Indexed: 01/02/2023]
|
310
|
Warren S, Wan XF, Conant G, Korkin D. Extreme evolutionary conservation of functionally important regions in H1N1 influenza proteome. PLoS One 2013; 8:e81027. [PMID: 24282564 PMCID: PMC3839886 DOI: 10.1371/journal.pone.0081027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 10/08/2013] [Indexed: 12/31/2022] Open
Abstract
The H1N1 subtype of influenza A virus has caused two of the four documented pandemics and is responsible for seasonal epidemic outbreaks, presenting a continuous threat to public health. Co-circulating antigenically divergent influenza strains significantly complicates vaccine development and use. Here, by combining evolutionary, structural, functional, and population information about the H1N1 proteome, we seek to answer two questions: (1) do residues on the protein surfaces evolve faster than the protein core residues consistently across all proteins that constitute the influenza proteome? and (2) in spite of the rapid evolution of surface residues in influenza proteins, are there any protein regions on the protein surface that do not evolve? To answer these questions, we first built phylogenetically-aware models of the patterns of surface and interior substitutions. Employing these models, we found a single coherent pattern of faster evolution on the protein surfaces that characterizes all influenza proteins. The pattern is consistent with the events of inter-species reassortment, the worldwide introduction of the flu vaccine in the early 80's, as well as the differences caused by the geographic origins of the virus. Next, we developed an automated computational pipeline to comprehensively detect regions of the protein surface residues that were 100% conserved over multiple years and in multiple host species. We identified conserved regions on the surface of 10 influenza proteins spread across all avian, swine, and human strains; with the exception of a small group of isolated strains that affected the conservation of three proteins. Surprisingly, these regions were also unaffected by genetic variation in the pandemic 2009 H1N1 viral population data obtained from deep sequencing experiments. Finally, the conserved regions were intrinsically related to the intra-viral macromolecular interaction interfaces. Our study may provide further insights towards the identification of novel protein targets for influenza antivirals.
Collapse
Affiliation(s)
- Samantha Warren
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
| | - Xiu-Feng Wan
- Department of Basic Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Gavin Conant
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Dmitry Korkin
- Department of Computer Science, University of Missouri, Columbia, Missouri, United States of America
- Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
- Bond Life Science Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
311
|
Bao S, Zhou X, Zhang L, Zhou J, To KKW, Wang B, Wang L, Zhang X, Song YQ. Prioritizing genes responsible for host resistance to influenza using network approaches. BMC Genomics 2013; 14:816. [PMID: 24261899 PMCID: PMC4046670 DOI: 10.1186/1471-2164-14-816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 11/06/2013] [Indexed: 01/17/2023] Open
Abstract
Background The genetic make-up of humans and other mammals (such as mice) affects their resistance to influenza virus infection. Considering the complexity and moral issues associated with experiments on human subjects, we have only acquired partial knowledge regarding the underlying molecular mechanisms. Although influenza resistance in inbred mice has been mapped to several quantitative trait loci (QTLs), which have greatly narrowed down the search for host resistance genes, only few underlying genes have been identified. Results To prioritize a list of promising candidates for future functional investigation, we applied network-based approaches to leverage the information of known resistance genes and the expression profiles contrasting susceptible and resistant mouse strains. The significance of top-ranked genes was supported by different lines of evidence from independent genetic associations, QTL studies, RNA interference (RNAi) screenings, and gene expression analysis. Further data mining on the prioritized genes revealed the functions of two pathways mediated by tumor necrosis factor (TNF): apoptosis and TNF receptor-2 signaling pathways. We suggested that the delicate balance between TNF’s pro-survival and apoptotic effects may affect hosts’ conditions after influenza virus infection. Conclusions This study considerably cuts down the list of candidate genes responsible for host resistance to influenza and proposed novel pathways and mechanisms. Our study also demonstrated the efficacy of network-based methods in prioritizing genes for complex traits. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-14-816) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - You-Qiang Song
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
312
|
Tripathi S, White MR, Hartshorn KL. The amazing innate immune response to influenza A virus infection. Innate Immun 2013; 21:73-98. [PMID: 24217220 DOI: 10.1177/1753425913508992] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Influenza A viruses (IAVs) remain a major health threat and a prime example of the significance of innate immunity. Our understanding of innate immunity to IAV has grown dramatically, yielding new concepts that change the way we view innate immunity as a whole. Examples include the role of p53, autophagy, microRNA, innate lymphocytes, endothelial cells and gut commensal bacteria in pulmonary innate immunity. Although the innate response is largely beneficial, it also contributes to major complications of IAV, including lung injury, bacterial super-infection and exacerbation of reactive airways disease. Research is beginning to dissect out which components of the innate response are helpful or harmful. IAV uses its limited genetic complement to maximum effect. Several viral proteins are dedicated to combating innate responses, while other viral structural or replication proteins multitask as host immune modulators. Many host innate immune proteins also multitask, having roles in cell cycle, signaling or normal lung biology. We summarize the plethora of new findings and attempt to integrate them into the larger picture of how humans have adapted to the threat posed by this remarkable virus. We explore how our expanded knowledge suggests ways to modulate helpful and harmful inflammatory responses, and develop novel treatments.
Collapse
Affiliation(s)
- Shweta Tripathi
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Mitchell R White
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| | - Kevan L Hartshorn
- Boston University School of Medicine, Department of Medicine, Boston, MA, USA
| |
Collapse
|
313
|
Abstract
Proteins are not monolithic entities; rather, they can contain multiple domains that mediate distinct interactions, and their functionality can be regulated through post-translational modifications at multiple distinct sites. Traditionally, network biology has ignored such properties of proteins and has instead examined either the physical interactions of whole proteins or the consequences of removing entire genes. In this Review, we discuss experimental and computational methods to increase the resolution of protein-protein, genetic and drug-gene interaction studies to the domain and residue levels. Such work will be crucial for using interaction networks to connect sequence and structural information, and to understand the biological consequences of disease-associated mutations, which will hopefully lead to more effective therapeutic strategies.
Collapse
|
314
|
Memišević V, Zavaljevski N, Pieper R, Rajagopala SV, Kwon K, Townsend K, Yu C, Yu X, DeShazer D, Reifman J, Wallqvist A. Novel Burkholderia mallei virulence factors linked to specific host-pathogen protein interactions. Mol Cell Proteomics 2013; 12:3036-51. [PMID: 23800426 PMCID: PMC3820922 DOI: 10.1074/mcp.m113.029041] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/10/2013] [Indexed: 11/09/2022] Open
Abstract
Burkholderia mallei is an infectious intracellular pathogen whose virulence and resistance to antibiotics makes it a potential bioterrorism agent. Given its genetic origin as a commensal soil organism, it is equipped with an extensive and varied set of adapted mechanisms to cope with and modulate host-cell environments. One essential virulence mechanism constitutes the specialized secretion systems that are designed to penetrate host-cell membranes and insert pathogen proteins directly into the host cell's cytosol. However, the secretion systems' proteins and, in particular, their host targets are largely uncharacterized. Here, we used a combined in silico, in vitro, and in vivo approach to identify B. mallei proteins required for pathogenicity. We used bioinformatics tools, including orthology detection and ab initio predictions of secretion system proteins, as well as published experimental Burkholderia data to initially select a small number of proteins as putative virulence factors. We then used yeast two-hybrid assays against normalized whole human and whole murine proteome libraries to detect and identify interactions among each of these bacterial proteins and host proteins. Analysis of such interactions provided both verification of known virulence factors and identification of three new putative virulence proteins. We successfully created insertion mutants for each of these three proteins using the virulent B. mallei ATCC 23344 strain. We exposed BALB/c mice to mutant strains and the wild-type strain in an aerosol challenge model using lethal B. mallei doses. In each set of experiments, mice exposed to mutant strains survived for the 21-day duration of the experiment, whereas mice exposed to the wild-type strain rapidly died. Given their in vivo role in pathogenicity, and based on the yeast two-hybrid interaction data, these results point to the importance of these pathogen proteins in modulating host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement processes.
Collapse
Affiliation(s)
- Vesna Memišević
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Nela Zavaljevski
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | | | | | - Keehwan Kwon
- §J. Craig Venter Institute, Rockville, Maryland 20850
| | | | - Chenggang Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Xueping Yu
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - David DeShazer
- ¶Bacteriology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland 21702
| | - Jaques Reifman
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| | - Anders Wallqvist
- From the ‡Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland 21702
| |
Collapse
|
315
|
Stewart CR, Keyburn AL, Deffrasnes C, Tompkins SM. Potential directions for chicken immunology research. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 41:463-468. [PMID: 23707787 DOI: 10.1016/j.dci.2013.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 06/02/2023]
Abstract
The importance of poultry, particularly chicken, as a food source continues to increase globally. Moreover, zoonotic infectious diseases such as avian influenza virus not only continue to impact poultry production, but also pose an increasing threat to public health. This review discusses the importance of poultry in both agricultural and public health arenas. Recent developments in avian immunology are described, with an emphasis on host-pathogen interactions and noting differences from mammalian systems. Next generation technologies including functional genomics and targeted gene disruption (e.g. zinc finger nucleases and meganucleases) are discussed as new approaches for not only understanding immune responses in poultry, but also as novel disease intervention strategies.
Collapse
Affiliation(s)
- Cameron R Stewart
- CSIRO Biosecurity Flagship, Australian Animal Health Laboratory, Geelong, Victoria, Australia.
| | | | | | | |
Collapse
|
316
|
Wu X, Wang S, Yu Y, Zhang J, Sun Z, Yan Y, Zhou J. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus. Proteomics 2013; 13:3309-26. [PMID: 24115376 DOI: 10.1002/pmic.201300180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022]
Abstract
Cross-species transmissions of swine influenza viruses (SIVs) raise great public health concerns. In this study, subcellular proteomic profiles of human A549 cells inoculated with H3N2 subtype SIV were used to characterize dynamic cellular responses to infection. By 2DE and MS, 27 differentially expressed (13 upregulated, 14 downregulated) cytoplasmic proteins and 20 differentially expressed (13 upregulated, 7 downregulated) nuclear proteins were identified. Gene ontology analysis suggested that these differentially expressed proteins were mainly involved in cell death, stress response, lipid metabolism, cell signaling, and RNA PTMs. Moreover, 25 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between mock- and virus-infected A549 cells. Western blot analysis confirmed that changes in abundance of identified cellular proteins heterogeneous nuclear ribonucleoprotein (hnRNP) U, hnRNP C, ALDH1A1, tryptophanyl-tRNA synthetase, IFI35, and HSPB1 in H3N2 SIV-infected cells were consistent with results of 2DE analysis. By confocal microscopy, nucleus-to-cytoplasm translocation of hnRNP C and colocalization between the viral nonstructural protein 1 and hnRNP C as well as N-myc (and STAT) interactor were observed upon infection. Ingenuity Pathway Analysis revealed that cellular proteins altered during infection were grouped mainly into NFκB and interferon signaling networks. Collectively, these identified subcellular constituents provide an important framework for understanding host/SIV interactions and underlying mechanisms of SIV cross-species infection and pathogenesis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
317
|
PLC-γ1 signaling plays a subtype-specific role in postbinding cell entry of influenza A virus. J Virol 2013; 88:417-24. [PMID: 24155396 DOI: 10.1128/jvi.02591-13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Host signaling pathways and cellular proteins play important roles in the influenza viral life cycle and can serve as antiviral targets. In this study, we report the engagement of host phosphoinositide-specific phospholipase γ1 (PLC-γ1) in mediating cell entry of influenza virus H1N1 but not H3N2 subtype. Both PLC-γ1-specific inhibitor and short hairpin RNA (shRNA) strongly suppress the replication of H1N1 but not H3N2 viruses in cell culture, suggesting that PLC-γ1 plays an important subtype-specific role in the influenza viral life cycle. Further analyses demonstrate that PLC-γ1 activation is required for viral postbinding cell entry. In addition, H1N1, but not H3N2, infection leads to the phosphorylation of PLC-γ1 at Ser 1248 immediately after infection and independent of viral replication. We have further shown that H1N1-induced PLC-γ1 activation is downstream of epidermal growth factor receptor (EGFR) signaling. Interestingly, both H1N1 and H3N2 infections activate EGFR, but only H1N1 infection leads to PLC-γ1 activation. Taking our findings together, we have identified for the first time the subtype-specific interplay of host PLC-γ1 signaling and H1N1 virus that is critical for viral uptake early in the infection. Our study provides novel insights into how virus interacts with the cellular signaling network by demonstrating that viral determinants can regulate how the host signaling pathways function in virally infected cells.
Collapse
|
318
|
Paquette SG, Banner D, Chi LTB, Leόn AJ, Xu L, Ran L, Huang SSH, Farooqui A, Kelvin DJ, Kelvin AA. Pandemic H1N1 influenza A directly induces a robust and acute inflammatory gene signature in primary human bronchial epithelial cells downstream of membrane fusion. Virology 2013; 448:91-103. [PMID: 24314640 DOI: 10.1016/j.virol.2013.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 12/13/2022]
Abstract
Pandemic H1N1 influenza A (H1N1pdm) elicits stronger pulmonary inflammation than previously circulating seasonal H1N1 influenza A (sH1N1), yet mechanisms of inflammatory activation in respiratory epithelial cells during H1N1pdm infection are unclear. We investigated host responses to H1N1pdm/sH1N1 infection and virus entry mechanisms in primary human bronchial epithelial cells in vitro. H1N1pdm infection rapidly initiated a robust inflammatory gene signature (3 h post-infection) not elicited by sH1N1 infection. Protein secretion inhibition had no effect on gene induction. Infection with membrane fusion deficient H1N1pdm failed to induce robust inflammatory gene expression which was rescued with restoration of fusion ability, suggesting H1N1pdm directly triggered the inflammatory signature downstream of membrane fusion. Investigation of intra-virion components revealed H1N1pdm viral RNA (vRNA) triggered a stronger inflammatory phenotype than sH1N1 vRNA. Thus, our study is first to report H1N1pdm induces greater inflammatory gene expression than sH1N1 in vitro due to direct virus-epithelial cell interaction.
Collapse
Affiliation(s)
- Stéphane G Paquette
- Division of Experimental Therapeutics, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
319
|
Dolan PT, Zhang C, Khadka S, Arumugaswami V, Vangeloff AD, Heaton NS, Sahasrabudhe S, Randall G, Sun R, LaCount DJ. Identification and comparative analysis of hepatitis C virus-host cell protein interactions. MOLECULAR BIOSYSTEMS 2013; 9:3199-209. [PMID: 24136289 DOI: 10.1039/c3mb70343f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hepatitis C virus (HCV) alters the global behavior of the host cell to create an environment conducive to its own replication, but much remains unknown about how HCV proteins elicit these changes. Thus, a better understanding of the interface between the virus and host cell is required. Here we report the results of a large-scale yeast two-hybrid screen to identify protein-protein interactions between HCV genotype 2a (strain JFH1) and cellular factors. Our study identified 112 unique interactions between 7 HCV and 94 human proteins, over 40% of which have been linked to HCV infection by other studies. These interactions develop a more complete picture of HCV infection, providing insight into HCV manipulation of pathways, such as lipid and cholesterol metabolism, that were previously linked to HCV infection and implicating novel targets within microtubule-organizing centers, the complement system and cell cycle regulatory machinery. In an effort to understand the relationship between HCV and related viruses, we compared the HCV 2a interactome to those of other HCV genotypes and to the related dengue virus. Greater overlap was observed between HCV and dengue virus targets than between HCV genotypes, demonstrating the value of parallel screening approaches when comparing virus-host cell interactomes. Using siRNAs to inhibit expression of cellular proteins, we found that five of the ten shared targets tested (CUL7, PCM1, RILPL2, RNASET2, and TCF7L2) were required for replication of both HCV and dengue virus. These shared interactions provide insight into common features of the viral life cycles of the family Flaviviridae.
Collapse
Affiliation(s)
- Patrick T Dolan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, RHPH 514, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
The influenza A viruses cause yearly epidemics and occasional pandemics of respiratory disease, which constitute a serious health and economic burden. Their genome consists of eight single-stranded, negative-polarity RNAs that associate to the RNA polymerase and many nucleoprotein monomers to form ribonucleoprotein complexes (RNPs). Here, we focus on the organization of these RNPs, as well as on the structure and interactions of its constitutive elements and we discuss the mechanisms by which the RNPs transcribe and replicate the viral genome.
Collapse
|
321
|
He J, Sun E, Bujny MV, Kim D, Davidson MW, Zhuang X. Dual function of CD81 in influenza virus uncoating and budding. PLoS Pathog 2013; 9:e1003701. [PMID: 24130495 PMCID: PMC3795033 DOI: 10.1371/journal.ppat.1003701] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 08/29/2013] [Indexed: 12/26/2022] Open
Abstract
As an obligatory pathogen, influenza virus co-opts host cell machinery to harbor infection and to produce progeny viruses. In order to characterize the virus-host cell interactions, several genome-wide siRNA screens and proteomic analyses have been performed recently to identify host factors involved in influenza virus infection. CD81 has emerged as one of the top candidates in two siRNA screens and one proteomic study. The exact role played by CD81 in influenza infection, however, has not been elucidated thus far. In this work, we examined the effect of CD81 depletion on the major steps of the influenza infection. We found that CD81 primarily affected virus infection at two stages: viral uncoating during entry and virus budding. CD81 marked a specific endosomal population and about half of the fused influenza virus particles underwent fusion within the CD81-positive endosomes. Depletion of CD81 resulted in a substantial defect in viral fusion and infection. During virus assembly, CD81 was recruited to virus budding site on the plasma membrane, and in particular, to specific sub-viral locations. For spherical and slightly elongated influenza virus, CD81 was localized at both the growing tip and the budding neck of the progeny viruses. CD81 knockdown led to a budding defect and resulted in elongated budding virions with a higher propensity to remain attached to the plasma membrane. Progeny virus production was markedly reduced in CD81-knockdown cells even when the uncoating defect was compensated. In filamentous virus, CD81 was distributed at multiple sites along the viral filament. Taken together, these results demonstrate important roles of CD81 in both entry and budding stages of the influenza infection cycle. As a “Trojan Horse” that only encodes 13 viral proteins, influenza hijacks host cell machinery for productive infection. In this work, we studied the role of the host protein CD81 in influenza infection. We found that CD81 was important for influenza infection at two distinct stages: virus uncoating and virus budding. Specifically, during virus entry, more than half of internalized virus particles were trafficked into a specific CD81-positive endosomal population for virus uncoating. Depleting CD81 led to a significant defect in viral uncoating and infection. During virus egress, CD81 was recruited to virus assembly site, and incorporated into individual virions at specific sub-viral locations. CD81 depletion resulted in virions that failed to detach from the plasma membrane and a marked decrease in progeny virus production.
Collapse
Affiliation(s)
- Jiang He
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eileen Sun
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Harvard University, Boston, Massachusetts, United States of America
| | - Miriam V. Bujny
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Doory Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Michael W. Davidson
- National High Magnetic Field Laboratory and Department of Biological Science, The Florida State University, Tallahassee, Florida, United States of America
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Physics, Harvard University, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
322
|
Targeting cell division cycle 25 homolog B to regulate influenza virus replication. J Virol 2013; 87:13775-84. [PMID: 24109234 DOI: 10.1128/jvi.01509-13] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus is a worldwide global health concern causing seasonal morbidity mortality and economic burden. Chemotherapeutics is available; however, rapid emergence of drug-resistant influenza virus strains has reduced its efficacy. Thus, there is a need to discover novel antiviral agents. In this study, RNA interference (RNAi) was used to screen host genes required for influenza virus replication. One pro-influenza virus host gene identified was dual-specificity phosphatase cell division cycle 25 B (CDC25B). RNAi screening of CDC25B resulted in reduced influenza A virus replication, and a CDC25B small-molecule inhibitor (NSC95397) inhibited influenza A virus replication in a dose-dependent fashion. Viral RNA synthesis was reduced by NSC95397 in favor of increased beta interferon (IFN-β) expression, and NSC95397 was found to interfere with nuclear localization and chromatin association of NS1, an influenza virus protein. As NS1 has been shown to be chromatin associated and to suppress host transcription, it is likely that CDC25B supports NS1 nuclear function to hijack host transcription machinery in favor of viral RNA synthesis, a process that is blocked by NSC95397. Importantly, NSC95397 treatment protects mice against lethal influenza virus challenge. The findings establish CDC25B as a pro-influenza A virus host factor that may be targeted as a novel influenza A therapeutic strategy.
Collapse
|
323
|
Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza A virus release from the endosome during virus entry. Proc Natl Acad Sci U S A 2013; 110:17516-21. [PMID: 24101521 DOI: 10.1073/pnas.1312374110] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza viruses, like other viruses, rely on host factors to support their life cycle as viral proteins usually "hijack," or collaborate with, cellular proteins to execute their functions. Identification and understanding of these factors can increase the knowledge of molecular mechanisms manipulated by the viruses and facilitate development of antiviral drugs. To this end, we developed a unique genome-wide pooled shRNA screen to search for cellular factors important for influenza A virus (IAV) replication. We identified an E3 ubiquitin ligase, Itch, as an essential factor for an early step in the viral life cycle. In Itch knockdown cells, the incorporation of viral ribonucleoprotein complex into endosomes was normal, but its subsequent release from endosomes and transport to the nucleus was retarded. In addition, upon virus infection, Itch was phosphorylated and recruited to the endosomes, where virus particles were located. Furthermore, Itch interacted with viral M1 protein and ubiquitinated M1 protein. Collectively, our findings unravel a critical role of Itch in mediating IAV release from the endosome and offer insights into the mechanism for IAV uncoating during virus entry. These findings also highlight the feasibility of pooled RNAi screening for exploring the cellular cofactors of lytic viruses.
Collapse
|
324
|
Habjan M, Hubel P, Lacerda L, Benda C, Holze C, Eberl CH, Mann A, Kindler E, Gil-Cruz C, Ziebuhr J, Thiel V, Pichlmair A. Sequestration by IFIT1 impairs translation of 2'O-unmethylated capped RNA. PLoS Pathog 2013; 9:e1003663. [PMID: 24098121 PMCID: PMC3789756 DOI: 10.1371/journal.ppat.1003663] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 08/12/2013] [Indexed: 12/21/2022] Open
Abstract
Viruses that generate capped RNA lacking 2'O methylation on the first ribose are severely affected by the antiviral activity of Type I interferons. We used proteome-wide affinity purification coupled to mass spectrometry to identify human and mouse proteins specifically binding to capped RNA with different methylation states. This analysis, complemented with functional validation experiments, revealed that IFIT1 is the sole interferon-induced protein displaying higher affinity for unmethylated than for methylated capped RNA. IFIT1 tethers a species-specific protein complex consisting of other IFITs to RNA. Pulsed stable isotope labelling with amino acids in cell culture coupled to mass spectrometry as well as in vitro competition assays indicate that IFIT1 sequesters 2'O-unmethylated capped RNA and thereby impairs binding of eukaryotic translation initiation factors to 2'O-unmethylated RNA template, which results in inhibition of translation. The specificity of IFIT1 for 2'O-unmethylated RNA serves as potent antiviral mechanism against viruses lacking 2'O-methyltransferase activity and at the same time allows unperturbed progression of the antiviral program in infected cells.
Collapse
Affiliation(s)
- Matthias Habjan
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Philipp Hubel
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Livia Lacerda
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian Benda
- Department of Structural Cell Biology, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Cathleen Holze
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Christian H. Eberl
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Angelika Mann
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| | - Eveline Kindler
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University, Giessen, Germany
| | - Volker Thiel
- Institute of Immunobiology, Kantonspital St. Gallen, St. Gallen, Switzerland
- Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Andreas Pichlmair
- Innate Immunity Laboratory, Max-Planck Institute of Biochemistry, Martinsried/Munich, Germany
| |
Collapse
|
325
|
Matsuoka Y, Matsumae H, Katoh M, Eisfeld AJ, Neumann G, Hase T, Ghosh S, Shoemaker JE, Lopes TJS, Watanabe T, Watanabe S, Fukuyama S, Kitano H, Kawaoka Y. A comprehensive map of the influenza A virus replication cycle. BMC SYSTEMS BIOLOGY 2013; 7:97. [PMID: 24088197 PMCID: PMC3819658 DOI: 10.1186/1752-0509-7-97] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 09/24/2013] [Indexed: 02/05/2023]
Abstract
Background Influenza is a common infectious disease caused by influenza viruses. Annual epidemics cause severe illnesses, deaths, and economic loss around the world. To better defend against influenza viral infection, it is essential to understand its mechanisms and associated host responses. Many studies have been conducted to elucidate these mechanisms, however, the overall picture remains incompletely understood. A systematic understanding of influenza viral infection in host cells is needed to facilitate the identification of influential host response mechanisms and potential drug targets. Description We constructed a comprehensive map of the influenza A virus (‘IAV’) life cycle (‘FluMap’) by undertaking a literature-based, manual curation approach. Based on information obtained from publicly available pathway databases, updated with literature-based information and input from expert virologists and immunologists, FluMap is currently composed of 960 factors (i.e., proteins, mRNAs etc.) and 456 reactions, and is annotated with ~500 papers and curation comments. In addition to detailing the type of molecular interactions, isolate/strain specific data are also available. The FluMap was built with the pathway editor CellDesigner in standard SBML (Systems Biology Markup Language) format and visualized as an SBGN (Systems Biology Graphical Notation) diagram. It is also available as a web service (online map) based on the iPathways+ system to enable community discussion by influenza researchers. We also demonstrate computational network analyses to identify targets using the FluMap. Conclusion The FluMap is a comprehensive pathway map that can serve as a graphically presented knowledge-base and as a platform to analyze functional interactions between IAV and host factors. Publicly available webtools will allow continuous updating to ensure the most reliable representation of the host-virus interaction network. The FluMap is available at http://www.influenza-x.org/flumap/.
Collapse
Affiliation(s)
- Yukiko Matsuoka
- JST ERATO Kawaoka infection-induced host responses project, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
A small molecule multi-kinase inhibitor reduces influenza A virus replication by restricting viral RNA synthesis. Antiviral Res 2013; 100:29-37. [DOI: 10.1016/j.antiviral.2013.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Revised: 07/08/2013] [Accepted: 07/15/2013] [Indexed: 12/31/2022]
|
327
|
IFITMs restrict the replication of multiple pathogenic viruses. J Mol Biol 2013; 425:4937-55. [PMID: 24076421 PMCID: PMC4121887 DOI: 10.1016/j.jmb.2013.09.024] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 01/23/2023]
Abstract
The interferon-inducible transmembrane protein (IFITM) family inhibits a growing number of pathogenic viruses, among them influenza A virus, dengue virus, hepatitis C virus, and Ebola virus. This review covers recent developments in our understanding of the IFITM's molecular determinants, potential mechanisms of action, and impact on pathogenesis.
Collapse
|
328
|
Knockdown of specific host factors protects against influenza virus-induced cell death. Cell Death Dis 2013; 4:e769. [PMID: 23949218 PMCID: PMC3763457 DOI: 10.1038/cddis.2013.296] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022]
Abstract
Cell death is a characteristic consequence of cellular infection by influenza virus. Mounting evidence indicates the critical involvement of host-mediated cellular death pathways in promoting efficient influenza virus replication. Furthermore, it appears that many signaling pathways, such as NF-κB, formerly suspected to solely promote cell survival, can also be manipulated to induce cell death. Current understanding of the cell death pathways involved in influenza virus-mediated cytopathology and in virus replication is limited. This study was designed to identify host genes that are required for influenza-induced cell death. The approach was to perform genome-wide lentiviral-mediated human gene silencing in A549 cells and determine which genes could be silenced to provide resistance to influenza-induced cell death. The assay proved to be highly reproducible with 138 genes being identified in independent screens. The results were independently validated using siRNA to each of these candidates. Graded protection was observed in this screen with the silencing of any of 19 genes, each providing >85% protection. Three gene products, TNFSF13 (APRIL), TNFSF12-TNFSF13 (TWE-PRIL) and USP47, were selected because of the high levels of protection conferred by their silencing. Protein and mRNA silencing and protection from influenza-induced cell death was confirmed using multiple shRNA clones and siRNA, indicating the specificity of the effects. USP47 knockdown prevented proper viral entry into the host cell, whereas TNFSF12-13/TNFSF13 knockdown blocked a late stage in viral replication. This screening approach offers the means to identify a large number of potential candidates for the analysis of viral-induced cell death. These results may also have much broader applicability in defining regulatory mechanisms involved in cell survival.
Collapse
|
329
|
Lin TY, Brass AL. Host genetic determinants of influenza pathogenicity. Curr Opin Virol 2013; 3:531-6. [PMID: 23933004 DOI: 10.1016/j.coviro.2013.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 10/26/2022]
Abstract
Despite effective vaccines, influenza remains a major global health threat due to the morbidity and mortality caused by seasonal epidemics, as well as the 2009 pandemic. Also of profound concern are the rare but potentially catastrophic transmissions of avian influenza to humans, highlighted by a recent H7N9 influenza outbreak. Murine and human studies reveal that the clinical course of influenza is the result of a combination of both host and viral genetic determinants. While viral pathogenicity has long been the subject of intensive efforts, research to elucidate host genetic determinants, particularly human, is now in the ascendant, and the goal of this review is to highlight these recent insights.
Collapse
Affiliation(s)
- Tsai-Yu Lin
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655, United States
| | | |
Collapse
|
330
|
Griffiths SJ, Koegl M, Boutell C, Zenner HL, Crump CM, Pica F, Gonzalez O, Friedel CC, Barry G, Martin K, Craigon MH, Chen R, Kaza LN, Fossum E, Fazakerley JK, Efstathiou S, Volpi A, Zimmer R, Ghazal P, Haas J. A systematic analysis of host factors reveals a Med23-interferon-λ regulatory axis against herpes simplex virus type 1 replication. PLoS Pathog 2013; 9:e1003514. [PMID: 23950709 PMCID: PMC3738494 DOI: 10.1371/journal.ppat.1003514] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/24/2013] [Indexed: 11/24/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic virus causing vesicular oral or genital skin lesions, meningitis and other diseases particularly harmful in immunocompromised individuals. To comprehensively investigate the complex interaction between HSV-1 and its host we combined two genome-scale screens for host factors (HFs) involved in virus replication. A yeast two-hybrid screen for protein interactions and a RNA interference (RNAi) screen with a druggable genome small interfering RNA (siRNA) library confirmed existing and identified novel HFs which functionally influence HSV-1 infection. Bioinformatic analyses found the 358 HFs were enriched for several pathways and multi-protein complexes. Of particular interest was the identification of Med23 as a strongly anti-viral component of the largely pro-viral Mediator complex, which links specific transcription factors to RNA polymerase II. The anti-viral effect of Med23 on HSV-1 replication was confirmed in gain-of-function gene overexpression experiments, and this inhibitory effect was specific to HSV-1, as a range of other viruses including Vaccinia virus and Semliki Forest virus were unaffected by Med23 depletion. We found Med23 significantly upregulated expression of the type III interferon family (IFN-λ) at the mRNA and protein level by directly interacting with the transcription factor IRF7. The synergistic effect of Med23 and IRF7 on IFN-λ induction suggests this is the major transcription factor for IFN-λ expression. Genotypic analysis of patients suffering recurrent orofacial HSV-1 outbreaks, previously shown to be deficient in IFN-λ secretion, found a significant correlation with a single nucleotide polymorphism in the IFN-λ3 (IL28b) promoter strongly linked to Hepatitis C disease and treatment outcome. This paper describes a link between Med23 and IFN-λ, provides evidence for the crucial role of IFN-λ in HSV-1 immune control, and highlights the power of integrative genome-scale approaches to identify HFs critical for disease progression and outcome.
Collapse
Affiliation(s)
| | - Manfred Koegl
- Preclinical Target Development and Genomics and Proteomics Core Facilities, German Cancer Research Center, Heidelberg, Germany
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Helen L. Zenner
- Division of Virology, Department of Pathology Cambridge University, Cambridge, United Kingdom
| | - Colin M. Crump
- Division of Virology, Department of Pathology Cambridge University, Cambridge, United Kingdom
| | | | - Orland Gonzalez
- Institute for Informatics, Ludwig-Maximilians Universität München, München, Germany
| | - Caroline C. Friedel
- Institute for Informatics, Ludwig-Maximilians Universität München, München, Germany
| | - Gerald Barry
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Kim Martin
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Marie H. Craigon
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Rui Chen
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Lakshmi N. Kaza
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Even Fossum
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - John K. Fazakerley
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Stacey Efstathiou
- Division of Virology, Department of Pathology Cambridge University, Cambridge, United Kingdom
| | | | - Ralf Zimmer
- Institute for Informatics, Ludwig-Maximilians Universität München, München, Germany
| | - Peter Ghazal
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Systems Biology at Edinburgh, University of Edinburgh, Edinburgh, United Kingdom
| | - Jürgen Haas
- Division of Pathway Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Max von Pettenkofer Institut, Ludwig-Maximilians Universität München, München, Germany
| |
Collapse
|
331
|
Dual myxovirus screen identifies a small-molecule agonist of the host antiviral response. J Virol 2013; 87:11076-87. [PMID: 23926334 DOI: 10.1128/jvi.01425-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
As we are confronted with an increasing number of emerging and reemerging viral pathogens, the identification of novel pathogen-specific and broad-spectrum antivirals has become a major developmental objective. Targeting of host factors required for virus replication presents a tangible approach toward obtaining novel hits with a broadened indication range. However, the identification of developable host-directed antiviral candidates remains challenging. We describe a novel screening protocol that interrogates the myxovirus host-pathogen interactome for broad-spectrum drug candidates and simultaneously probes for conventional, pathogen-directed hits. With resource efficiency and pan-myxovirus activity as the central developmental parameters, we explored coscreening against two distinct, independently traceable myxoviruses in a single-well setting. Having identified a pair of unrelated pathogenic myxoviruses (influenza A virus and measles virus) with comparable replication kinetics, we observed unimpaired coreplication of both viruses, generated suitable firefly and Renilla luciferase reporter constructs, respectively, and validated the protocol for up to a 384-well plate format. Combined with an independent counterscreen using a recombinant respiratory syncytial virus luciferase reporter, implementation of the protocol identified candidates with a broadened antimyxovirus profile, in addition to pathogen-specific hits. Mechanistic characterization revealed a newly discovered broad-spectrum lead that does not block viral entry but stimulates effector pathways of the innate cellular antiviral response. In summary, we provide proof of concept for the efficient discovery of broad-spectrum myxovirus inhibitors in parallel to para- and orthomyxovirus-specific hit candidates in a single screening campaign. The newly identified compound provides a basis for the development of a novel broad-spectrum small-molecule antiviral class.
Collapse
|
332
|
Beyleveld G, White KM, Ayllon J, Shaw ML. New-generation screening assays for the detection of anti-influenza compounds targeting viral and host functions. Antiviral Res 2013; 100:120-32. [PMID: 23933115 DOI: 10.1016/j.antiviral.2013.07.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 01/08/2023]
Abstract
Current options for influenza antiviral therapy are limited to the neuraminidase inhibitors, and knowledge that high levels of oseltamivir resistance have been seen among previously circulating H1N1 viruses increases the urgency to find new influenza therapeutics. To feed this pipeline, assays that are appropriate for use in high-throughput screens are being developed and are discussed in this review. Particular emphasis is placed on cell-based assays that capture both inhibitors of viral functions as well as the host functions that facilitate optimal influenza virus replication. Success in this area has been fueled by a greater understanding of the genome structure of influenza viruses and the ability to generate replication-competent recombinant viruses that carry a reporter gene, allowing for easy monitoring of viral infection in a high-throughput setting. This article forms part of a symposium in Antiviral Research on "Treatment of influenza: targeting the virus or the host."
Collapse
Affiliation(s)
- Grant Beyleveld
- Department of Microbiology and Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | |
Collapse
|
333
|
Hartshorn KL. Why does pandemic influenza virus kill? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1125-1127. [PMID: 23916382 DOI: 10.1016/j.ajpath.2013.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
334
|
Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, Webb-Robertson BJM, Tilton SC, Tchitchek N, Josset L, Li C, Ellis AL, Chang JH, Heegel RA, Luna ML, Schepmoes AA, Shukla AK, Metz TO, Neumann G, Benecke AG, Smith RD, Baric RS, Kawaoka Y, Katze MG, Waters KM. A network integration approach to predict conserved regulators related to pathogenicity of influenza and SARS-CoV respiratory viruses. PLoS One 2013; 8:e69374. [PMID: 23935999 PMCID: PMC3723910 DOI: 10.1371/journal.pone.0069374] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 06/07/2013] [Indexed: 12/02/2022] Open
Abstract
Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel “crowd-based” approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models.
Collapse
Affiliation(s)
- Hugh D. Mitchell
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| | - Amie J. Eisfeld
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy C. Sims
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason E. McDermott
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Melissa M. Matzke
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Bobbi-Jo M. Webb-Robertson
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Susan C. Tilton
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Nicolas Tchitchek
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Laurence Josset
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Chengjun Li
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy L. Ellis
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jean H. Chang
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Robert A. Heegel
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Maria L. Luna
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Anil K. Shukla
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Thomas O. Metz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Arndt G. Benecke
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Université Pierre et Marie Curie, Centre National de la Recherche Scientifique UMR7224, Paris, France
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- ERATO Infection-Induced Host Responses Project, Saitama, Japan
| | - Michael G. Katze
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
- Washington National Primate Research Center, University of Washington, Seattle, Washington, United States of America
| | - Katrina M. Waters
- Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
335
|
Dankar SK, Miranda E, Forbes NE, Pelchat M, Tavassoli A, Selman M, Ping J, Jia J, Brown EG. Influenza A/Hong Kong/156/1997(H5N1) virus NS1 gene mutations F103L and M106I both increase IFN antagonism, virulence and cytoplasmic localization but differ in binding to RIG-I and CPSF30. Virol J 2013; 10:243. [PMID: 23886034 PMCID: PMC3733596 DOI: 10.1186/1743-422x-10-243] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 07/23/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The genetic basis for avian to mammalian host switching in influenza A virus is largely unknown. The human A/HK/156/1997 (H5N1) virus that transmitted from poultry possesses NS1 gene mutations F103L + M106I that are virulence determinants in the mouse model of pneumonia; however their individual roles have not been determined. The emergent A/Shanghai/patient1/2013(H7N9)-like viruses also possess these mutations which may contribute to their virulence and ability to switch species. METHODS NS1 mutant viruses were constructed by reverse genetics and site directed mutagenesis on human and mouse-adapted backbones. Mouse infections assessed virulence, virus yield, tissue infection, and IFN induction. NS1 protein properties were assessed for subcellular distribution, IFN antagonism (mouse and human), CPSF30 and RIG-I domain binding, host transcription (microarray); and the natural prevalence of 103L and 106I mutants was assessed. RESULTS Each of the F103L and M106I mutations contributes additively to virulence to reduce the lethal dose by >800 and >3,200 fold respectively by mediating alveolar tissue infection with >100 fold increased infectious yields. The 106I NS1 mutant lost CPSF binding but the 103L mutant maintained binding that correlated with an increased general decrease in host gene expression in human but not mouse cells. Each mutation positively modulated the inhibition of IFN induction in mouse cells and activation of the IFN-β promoter in human cells but not in combination in human cells indicating negative epistasis. Each of the F103L and M106I mutations restored a defect in cytoplasmic localization of H5N1 NS1 in mouse cells. Human H1N1 and H3N2 NS1 proteins bound to the CARD, helicase and RD RIG-I domains, whereas the H5N1 NS1 with the same consensus 103F and 106M mutations did not bind these domains, which was totally or partially restored by the M106I or F103L mutations respectively. CONCLUSIONS The F103L and M106I mutations in the H5N1 NS1 protein each increased IFN antagonism and mediated interstitial pneumonia in mice that was associated with increased cytoplasmic localization and altered host factor binding. These mutations may contribute to the ability of previous HPAI H5N1 and recent LPAI H7N9 and H6N1 (NS1-103L+106M) viruses to switch hosts and cause disease in humans.
Collapse
Affiliation(s)
- Samar K Dankar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Hauser MJ, Dlugolenski D, Culhane MR, Wentworth DE, Tompkins SM, Tripp RA. Antiviral responses by Swine primary bronchoepithelial cells are limited compared to human bronchoepithelial cells following influenza virus infection. PLoS One 2013; 8:e70251. [PMID: 23875024 PMCID: PMC3707852 DOI: 10.1371/journal.pone.0070251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.
Collapse
Affiliation(s)
- Mary J. Hauser
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Daniel Dlugolenski
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - S. Mark Tompkins
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
337
|
de Chassey B, Aublin-Gex A, Ruggieri A, Meyniel-Schicklin L, Pradezynski F, Davoust N, Chantier T, Tafforeau L, Mangeot PE, Ciancia C, Perrin-Cocon L, Bartenschlager R, André P, Lotteau V. The interactomes of influenza virus NS1 and NS2 proteins identify new host factors and provide insights for ADAR1 playing a supportive role in virus replication. PLoS Pathog 2013; 9:e1003440. [PMID: 23853584 PMCID: PMC3701712 DOI: 10.1371/journal.ppat.1003440] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 05/06/2013] [Indexed: 12/24/2022] Open
Abstract
Influenza A NS1 and NS2 proteins are encoded by the RNA segment 8 of the viral genome. NS1 is a multifunctional protein and a virulence factor while NS2 is involved in nuclear export of viral ribonucleoprotein complexes. A yeast two-hybrid screening strategy was used to identify host factors supporting NS1 and NS2 functions. More than 560 interactions between 79 cellular proteins and NS1 and NS2 proteins from 9 different influenza virus strains have been identified. These interacting proteins are potentially involved in each step of the infectious process and their contribution to viral replication was tested by RNA interference. Validation of the relevance of these host cell proteins for the viral replication cycle revealed that 7 of the 79 NS1 and/or NS2-interacting proteins positively or negatively controlled virus replication. One of the main factors targeted by NS1 of all virus strains was double-stranded RNA binding domain protein family. In particular, adenosine deaminase acting on RNA 1 (ADAR1) appeared as a pro-viral host factor whose expression is necessary for optimal viral protein synthesis and replication. Surprisingly, ADAR1 also appeared as a pro-viral host factor for dengue virus replication and directly interacted with the viral NS3 protein. ADAR1 editing activity was enhanced by both viruses through dengue virus NS3 and influenza virus NS1 proteins, suggesting a similar virus-host co-evolution. Viruses are obligate intracellular parasites that rely on cellular functions for efficient replication. As most biological processes are sustained by protein-protein interactions, the identification of interactions between viral and host proteins can provide a global overview about the cellular functions engaged during viral replication. Influenza viruses express 13 viral proteins, including NS1 and NS2, which are translated from an alternatively spliced RNA derived from the same genome segment. We present here a comprehensive overview of possible interactions of cellular proteins with NS1 and NS2 from 9 viral strains. Seventy nine cellular proteins were identified to interact with NS1, NS2 or both NS1 and NS2. These interacting host cell proteins are potentially involved in many steps of the virus life cycle and 7 can directly control the viral replication. Most of the cellular targets are shared by the majority of the virus strains, especially the double-stranded RNA binding domain protein family that is strikingly targeted by NS1. One of its members, ADAR1, is essential for influenza virus replication. ADAR1 colocalizes with NS1 in nuclear structures and its editing activity is enhanced by NS1 expressed on its own and during virus infection. A similar phenomenon is observed for dengue virus whose NS3 protein also interacts with ADAR1, suggesting a parallel virus-host co-evolution.
Collapse
Affiliation(s)
- Benoît de Chassey
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Laboratory of Virology, Lyon, France
| | - Anne Aublin-Gex
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Alessia Ruggieri
- Department for Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Laurène Meyniel-Schicklin
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Fabrine Pradezynski
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Nathalie Davoust
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Thibault Chantier
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Lionel Tafforeau
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Philippe-Emmanuel Mangeot
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Claire Ciancia
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Laure Perrin-Cocon
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Ralf Bartenschlager
- Department for Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Patrice André
- Hospices Civils de Lyon, Hôpital de la Croix Rousse, Laboratory of Virology, Lyon, France
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
| | - Vincent Lotteau
- CIRI, International Center for Infectiology Research, EVIR Team, Université de Lyon, Lyon, France
- Inserm, U1111, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France
- CNRS, UMR5308, Lyon, France
- * E-mail:
| |
Collapse
|
338
|
Munier S, Rolland T, Diot C, Jacob Y, Naffakh N. Exploration of binary virus-host interactions using an infectious protein complementation assay. Mol Cell Proteomics 2013; 12:2845-55. [PMID: 23816991 DOI: 10.1074/mcp.m113.028688] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A precise mapping of pathogen-host interactions is essential for comprehensive understanding of the processes of infection and pathogenesis. The most frequently used techniques for interactomics are the yeast two-hybrid binary methodologies, which do not recapitulate the pathogen life cycle, and the tandem affinity purification mass spectrometry co-complex methodologies, which cannot distinguish direct from indirect interactions. New technologies are thus needed to improve the mapping of pathogen-host interactions. In the current study, we detected binary interactions between influenza A virus polymerase and host proteins during the course of an actual viral infection, using a new strategy based on trans-complementation of the Gluc1 and Gluc2 fragments of Gaussia princeps luciferase. Infectious recombinant influenza viruses that encode a Gluc1-tagged polymerase subunit were engineered to infect cultured cells transiently expressing a selected set of Gluc2-tagged cellular proteins involved in nucleocytoplasmic trafficking pathways. A random set and a literature-curated set of Gluc2-tagged cellular proteins were tested in parallel. Our assay allowed the sensitive and accurate recovery of previously described interactions, and it revealed 30% of positive, novel viral-host protein-protein interactions within the exploratory set. In addition to cellular proteins involved in the nuclear import pathway, components of the nuclear pore complex such as NUP62 and mRNA export factors such as NXF1, RMB15B, and DDX19B were identified for the first time as interactors of the viral polymerase. Gene silencing experiments further showed that NUP62 is required for efficient viral replication. Our findings give new insights regarding the subversion of host nucleocytoplasmic trafficking pathways by influenza A viruses. They also demonstrate the potential of our infectious protein complementation assay for high-throughput exploration of influenza virus interactomics in infected cells. With more infectious reverse genetics systems becoming available, this strategy should be widely applicable to numerous pathogens.
Collapse
Affiliation(s)
- Sandie Munier
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France
| | | | | | | | | |
Collapse
|
339
|
Identification of Host Kinase Genes Required for Influenza Virus Replication and the Regulatory Role of MicroRNAs. PLoS One 2013; 8:e66796. [PMID: 23805279 PMCID: PMC3689682 DOI: 10.1371/journal.pone.0066796] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/14/2013] [Indexed: 01/07/2023] Open
Abstract
Human protein kinases (HPKs) have profound effects on cellular responses. To better understand the role of HPKs and the signaling networks that influence influenza virus replication, a small interfering RNA (siRNA) screen of 720 HPKs was performed. From the screen, 17 HPKs (NPR2, MAP3K1, DYRK3, EPHA6, TPK1, PDK2, EXOSC10, NEK8, PLK4, SGK3, NEK3, PANK4, ITPKB, CDC2L5 (CDK13), CALM2, PKN3, and HK2) were validated as essential for A/WSN/33 influenza virus replication, and 6 HPKs (CDK13, HK2, NEK8, PANK4, PLK4 and SGK3) were identified as vital for both A/WSN/33 and A/New Caledonia/20/99 influenza virus replication. These HPKs were found to affect multiple host pathways and regulated by miRNAs induced during infection. Using a panel of miRNA agonists and antagonists, miR-149* was found to regulate NEK8 expression, miR-548d-3p was found to regulate MAPK1 transcript expression, and miRs -1228 and -138 to regulate CDK13 expression. Up-regulation of miR-34c induced PLK4 transcript and protein expression and enhanced influenza virus replication, while miR-34c inhibition reduced viral replication. These findings identify HPKs important for influenza viral replication and show the miRNAs that govern their expression.
Collapse
|
340
|
Kroeker AL, Ezzati P, Coombs KM, Halayko AJ. Influenza A Infection of Primary Human Airway Epithelial Cells Up-Regulates Proteins Related to Purine Metabolism and Ubiquitin-Related Signaling. J Proteome Res 2013; 12:3139-51. [DOI: 10.1021/pr400464p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Andrea L. Kroeker
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Peyman Ezzati
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
- Manitoba Center for Proteomics
and Systems Biology, Room 799 John Buhler Research Centre, University of Manitoba, Winnipeg R3E 3P4, Canada
- Department of Medical Microbiology,
Faculty of Medicine, University of Manitoba, Winnipeg R3E 0J9, Canada
| | - Andrew J. Halayko
- Department of Physiology, Faculty
of Medicine, University of Manitoba, Winnipeg
R3E 0J9, Canada
- Manitoba
Institute of Child
Health, Room 641 John Buhler Research Center, University of Manitoba, Winnipeg R3E 3P4, Canada
| |
Collapse
|
341
|
York A, Fodor E. Biogenesis, assembly, and export of viral messenger ribonucleoproteins in the influenza A virus infected cell. RNA Biol 2013; 10:1274-82. [PMID: 23807439 PMCID: PMC3817148 DOI: 10.4161/rna.25356] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The flow of genetic information from sites of transcription within the nucleus to the cytoplasmic translational machinery of eukaryotic cells is obstructed by a physical blockade, the nuclear double membrane, which must be overcome in order to adhere to the central dogma of molecular biology, DNA makes RNA makes protein. Advancement in the field of cellular and molecular biology has painted a detailed picture of the molecular mechanisms from transcription of genes to mRNAs and their processing that is closely coupled to export from the nucleus. The rules that govern delivering messenger transcripts from the nucleus must be obeyed by influenza A virus, a member of the Orthomyxoviridae that has adopted a nuclear replication cycle. The negative-sense genome of influenza A virus is segmented into eight individual viral ribonucleoprotein (vRNP) complexes containing the viral RNA-dependent RNA polymerase and single-stranded RNA encapsidated in viral nucleoprotein. Influenza A virus mRNAs fall into three major categories, intronless, intron-containing unspliced and spliced. During evolutionary history, influenza A virus has conceived a way of negotiating the passage of viral transcripts from the nucleus to cytoplasmic sites of protein synthesis. The major mRNA nuclear export NXF1 pathway is increasingly implicated in viral mRNA export and this review considers and discusses the current understanding of how influenza A virus exploits the host mRNA export pathway for replication.
Collapse
Affiliation(s)
- Ashley York
- Sir William Dunn School of Pathology; University of Oxford; Oxford, United Kingdom
| | | |
Collapse
|
342
|
Baril M, Es-Saad S, Chatel-Chaix L, Fink K, Pham T, Raymond VA, Audette K, Guenier AS, Duchaine J, Servant M, Bilodeau M, Cohen É, Grandvaux N, Lamarre D. Genome-wide RNAi screen reveals a new role of a WNT/CTNNB1 signaling pathway as negative regulator of virus-induced innate immune responses. PLoS Pathog 2013; 9:e1003416. [PMID: 23785285 PMCID: PMC3681753 DOI: 10.1371/journal.ppat.1003416] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/26/2013] [Indexed: 12/24/2022] Open
Abstract
To identify new regulators of antiviral innate immunity, we completed the first genome-wide gene silencing screen assessing the transcriptional response at the interferon-β (IFNB1) promoter following Sendai virus (SeV) infection. We now report a novel link between WNT signaling pathway and the modulation of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-dependent innate immune responses. Here we show that secretion of WNT2B and WNT9B and stabilization of β-catenin (CTNNB1) upon virus infection negatively regulate expression of representative inducible genes IFNB1, IFIT1 and TNF in a CTNNB1-dependent effector mechanism. The antiviral response is drastically reduced by glycogen synthase kinase 3 (GSK3) inhibitors but restored in CTNNB1 knockdown cells. The findings confirm a novel regulation of antiviral innate immunity by a canonical-like WNT/CTNNB1 signaling pathway. The study identifies novel avenues for broad-spectrum antiviral targets and preventing immune-mediated diseases upon viral infection.
Collapse
Affiliation(s)
- Martin Baril
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Salwa Es-Saad
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Laurent Chatel-Chaix
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Karin Fink
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
| | - Tram Pham
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Valérie-Ann Raymond
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
| | - Karine Audette
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Anne-Sophie Guenier
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Jean Duchaine
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
| | - Marc Servant
- Faculté de Pharmacie, Université de Montréal, Montréal, Québec, Canada
| | - Marc Bilodeau
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Éric Cohen
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Daniel Lamarre
- Institut de Recherche en Immunologie et en Cancérologie (IRIC), Université de Montréal, Montréal, Québec, Canada
- Centre de Recherche du CHUM (CRCHUM), Hôpital Saint-Luc, Montréal, Québec, Canada
- Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
343
|
Basha O, Tirman S, Eluk A, Yeger-Lotem E. ResponseNet2.0: Revealing signaling and regulatory pathways connecting your proteins and genes--now with human data. Nucleic Acids Res 2013; 41:W198-203. [PMID: 23761447 PMCID: PMC3692079 DOI: 10.1093/nar/gkt532] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing and transcriptomic profiling are two widely used approaches for the identification of human disease pathways. However, each approach typically provides a limited view of disease pathways: Genome sequencing can identify disease-related mutations but rarely reveals their mode-of-action, while transcriptomic assays do not reveal the series of events that lead to the transcriptomic change. ResponseNet is an integrative network-optimization approach that we developed to fill these gaps by highlighting major signaling and regulatory molecular interaction paths that connect disease-related mutations and genes. The ResponseNet web-server provides a user-friendly interface to ResponseNet. Specifically, users can upload weighted lists of proteins and genes and obtain a sparse, weighted, molecular interaction subnetwork connecting them, that is biased toward regulatory and signaling pathways. ResponseNet2.0 enhances the functionality of the ResponseNet web-server in two important ways. First, it supports analysis of human data by offering a human interactome composed of proteins, genes and micro-RNAs. Second, it offers a new informative view of the output, including a randomization analysis, to help users assess the biological relevance of the output subnetwork. ResponseNet2.0 is available at http://netbio.bgu.ac.il/respnet .
Collapse
Affiliation(s)
- Omer Basha
- Department of Clinical Biochemistry & Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
344
|
Ramanunninair M, Le J, Onodera S, Fulvini AA, Pokorny BA, Silverman J, Devis R, Arroyo JM, He Y, Boyne A, Bera J, Halpin R, Hine E, Spiro DJ, Bucher D. Molecular signature of high yield (growth) influenza a virus reassortants prepared as candidate vaccine seeds. PLoS One 2013; 8:e65955. [PMID: 23776579 PMCID: PMC3679156 DOI: 10.1371/journal.pone.0065955] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Background Human influenza virus isolates generally grow poorly in embryonated chicken eggs. Hence, gene reassortment of influenza A wild type (wt) viruses is performed with a highly egg adapted donor virus, A/Puerto Rico/8/1934 (PR8), to provide the high yield reassortant (HYR) viral ‘seeds’ for vaccine production. HYR must contain the hemagglutinin (HA) and neuraminidase (NA) genes of wt virus and one to six ‘internal’ genes from PR8. Most studies of influenza wt and HYRs have focused on the HA gene. The main objective of this study is the identification of the molecular signature in all eight gene segments of influenza A HYR candidate vaccine seeds associated with high growth in ovo. Methodology The genomes of 14 wt parental viruses, 23 HYRs (5 H1N1; 2, 1976 H1N1-SOIV; 2, 2009 H1N1pdm; 2 H2N2 and 12 H3N2) and PR8 were sequenced using the high-throughput sequencing pipeline with big dye terminator chemistry. Results Silent and coding mutations were found in all internal genes derived from PR8 with the exception of the M gene. The M gene derived from PR8 was invariant in all 23 HYRs underlining the critical role of PR8 M in high yield phenotype. None of the wt virus derived internal genes had any silent change(s) except the PB1 gene in X-157. The highest number of recurrent silent and coding mutations was found in NS. With respect to the surface antigens, the majority of HYRs had coding mutations in HA; only 2 HYRs had coding mutations in NA. Significance In the era of application of reverse genetics to alter influenza A virus genomes, the mutations identified in the HYR gene segments associated with high growth in ovo may be of great practical benefit to modify PR8 and/or wt virus gene sequences for improved growth of vaccine ‘seed’ viruses.
Collapse
Affiliation(s)
- Manojkumar Ramanunninair
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jianhua Le
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Shiroh Onodera
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrew A. Fulvini
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Barbara A. Pokorny
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jeanmarie Silverman
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Rene Devis
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Jennifer M. Arroyo
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Yu He
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Alex Boyne
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jayati Bera
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Rebecca Halpin
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Erin Hine
- Department of Infectious Disease, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David J. Spiro
- Influenza, SARS and Related Viral Respiratory Diseases Branch, Division of Microbiology and Infectious Diseases, NIAID/NIH/DHHS, Bethesda, Maryland, United States of America
| | - Doris Bucher
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
345
|
Song H, Wang Q, Guo Y, Liu S, Song R, Gao X, Dai L, Li B, Zhang D, Cheng J. Microarray analysis of microRNA expression in peripheral blood mononuclear cells of critically ill patients with influenza A (H1N1). BMC Infect Dis 2013; 13:257. [PMID: 23731466 PMCID: PMC3679792 DOI: 10.1186/1471-2334-13-257] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/30/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND With concerns about the disastrous health and economic consequences caused by the influenza pandemic, comprehensively understanding the global host response to influenza virus infection is urgent. The role of microRNA (miRNA) has recently been highlighted in pathogen-host interactions. However, the precise role of miRNAs in the pathogenesis of influenza virus infection in humans, especially in critically ill patients is still unclear. METHODS We identified cellular miRNAs involved in the host response to influenza virus infection by performing comprehensive miRNA profiling in peripheral blood mononuclear cells (PBMCs) from critically ill patients with swine-origin influenza pandemic H1N1 (2009) virus infection via miRNA microarray and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) assays. Receiver operator characteristic (ROC) curve analysis was conducted and area under the ROC curve (AUC) was calculated to evaluate the diagnostic accuracy of severe H1N1 influenza virus infection. Furthermore, an integrative network of miRNA-mediated host-influenza virus protein interactions was constructed by integrating the predicted and validated miRNA-gene interaction data with influenza virus and host-protein-protein interaction information using Cytoscape software. Moreover, several hub genes in the network were selected and validated by qRT-PCR. RESULTS Forty-one significantly differentially expressed miRNAs were found by miRNA microarray; nine were selected and validated by qRT-PCR. QRT-PCR assay and ROC curve analyses revealed that miR-31, miR-29a and miR-148a all had significant potential diagnostic value for critically ill patients infected with H1N1 influenza virus, which yielded AUC of 0.9510, 0.8951 and 0.8811, respectively. We subsequently constructed an integrative network of miRNA-mediated host-influenza virus protein interactions, wherein we found that miRNAs are involved in regulating important pathways, such as mitogen-activated protein kinase signaling pathway, epidermal growth factor receptor signaling pathway, and Toll-like receptor signaling pathway, during influenza virus infection. Some of differentially expressed miRNAs via in silico analysis targeted mRNAs of several key genes in these pathways. The mRNA expression level of tumor protein T53 and transforming growth factor beta receptor 1 were found significantly reduced in critically ill patients, whereas the expression of Janus kinase 2, caspase 3 apoptosis-related cysteine peptidase, interleukin 10, and myxovirus resistance 1 were extremely increased in critically ill patients. CONCLUSIONS Our data suggest that the dysregulation of miRNAs in the PBMCs of H1N1 critically ill patients can regulate a number of key genes in the major signaling pathways associated with influenza virus infection. These differentially expressed miRNAs could be potential therapeutic targets or biomarkers for severe influenza virus infection.
Collapse
Affiliation(s)
- Hao Song
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Qi Wang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Yang Guo
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Rui Song
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Xuesong Gao
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| | - Li Dai
- Investigation Group of Molecular Virology, Immunology, Oncology & Systems Biology, Center for Bioinformatics, College of Life Sciences, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
| | - Baoshun Li
- Department of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Deli Zhang
- MOA Key Laboratory of Animal Biotechnology of National Ministry of Agriculture, Institute of Veterinary Immunology, and Research Laboratory of Virology, Immunology & Bioinformatics, Division of Veterinary Microbiology & Virology, Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A & F University, Yangling, Xi’an City, Shaanxi Province, 712100, China
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
| | - Jun Cheng
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, 100015, China
| |
Collapse
|
346
|
Abstract
Systems biology approaches are required to advance our understanding of virus–host interactions, how these interactions cause disease and, ultimately, how to improve diagnostics, therapeutics and vaccines. Over the past decade, the field of systems virology has evolved from using first-generation microarrays to the integration of multidimensional data sets. This has resulted in significant findings, including the identification of gene expression signatures that are predictive of viral pathogenesis and vaccine efficacy, insights into how viruses disrupt cellular metabolism, and the mapping of virus–host interactomes. To fulfil its initial promise of revolutionizing our understanding of virus–host interactions, the field of systems virology must move beyond just the listing of molecules that are differentially expressed following viral infection; it must now look to define the relationships between key host molecules and their interactions with viral components. Several key computational challenges must be addressed in order to move into this new phase of systems virology, including consideration of nonlinear relationships such as the dynamics of the system, the integration of multidimensional data sets and the identification of causal relationships. Virologists, computer scientists and mathematicians must combine their skills and expertise in applying systems approaches to untangle the complex question of how viruses kill.
Katze and colleagues provide an overview of the evolution of systems virology and the insights obtained from using such methodologies to study virus–host interactions. Combining systems, mathematical and computational approaches with traditional virology research will offer a better understanding of how viruses cause disease and will help in the development of therapeutics. High-throughput molecular profiling and computational biology are changing the face of virology, providing a new appreciation of the importance of the host in viral pathogenesis and offering unprecedented opportunities for better diagnostics, therapeutics and vaccines. Here, we provide a snapshot of the evolution of systems virology, from global gene expression profiling and signatures of disease outcome, to geometry-based computational methods that promise to yield novel therapeutic targets, personalized medicine and a deeper understanding of how viruses cause disease. To realize these goals, pipettes and Petri dishes need to join forces with the powers of mathematics and computational biology.
Collapse
|
347
|
Gabriel G, Czudai-Matwich V, Klenk HD. Adaptive mutations in the H5N1 polymerase complex. Virus Res 2013; 178:53-62. [PMID: 23732876 DOI: 10.1016/j.virusres.2013.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 04/04/2013] [Accepted: 05/20/2013] [Indexed: 12/28/2022]
Abstract
Adaptation of the viral polymerase to host factors plays an important role in interspecies transmission of H5N1 viruses. Several adaptive mutations have been identified that, in general, determine not only host range, but also pathogenicity and transmissibility of the virus. The available evidence indicates that most of these mutations are found in the PB2 subunit of the polymerase. Particularly prominent mutations are located in the C-terminal domain of PB2 involving the amino acid exchanges E627K and D701N. Both mutations, that are also responsible for the adaptation of other avian viruses to mammalian hosts, have been described in human H5N1 isolates. In animal models, it could be demonstrated that they enhance pathogenicity in mice and induce contact transmission in guinea pigs. Mutation E627K has also been identified as a determinant of air-borne H5N1 transmission in ferrets. We are only beginning to understand the underlying mechanisms at the molecular level. Thus, mutation D701N promotes importin-α mediated nuclear transport in mammalian cells. Mutation E627K also enhances the replication rate in an importin-α dependent fashion in mammalian cells, yet without affecting nuclear entry of PB2. Numerous other adaptive mutations, some of which compensate for the lack of PB2 E627K, have been observed in PB2 as well as in the polymerase subunit PB1, the nucleoprotein NP, and the nuclear export protein NEP (NS2).
Collapse
Affiliation(s)
- Gülsah Gabriel
- Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | |
Collapse
|
348
|
Ampofo WK, Al Busaidy S, Cox NJ, Giovanni M, Hay A, Huang S, Inglis S, Katz J, Mokhtari-Azad T, Peiris M, Savy V, Sawanpanyalert P, Venter M, Waddell AL, Wickramasinghe G, Zhang W, Ziegler T. Strengthening the influenza vaccine virus selection and development process: outcome of the 2nd WHO Informal Consultation for Improving Influenza Vaccine Virus Selection held at the Centre International de Conférences (CICG) Geneva, Switzerland, 7 to 9 December 2011. Vaccine 2013; 31:3209-21. [PMID: 23685246 DOI: 10.1016/j.vaccine.2013.05.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
|
349
|
Mechelli R, Umeton R, Policano C, Annibali V, Coarelli G, Ricigliano VAG, Vittori D, Fornasiero A, Buscarinu MC, Romano S, Salvetti M, Ristori G. A "candidate-interactome" aggregate analysis of genome-wide association data in multiple sclerosis. PLoS One 2013; 8:e63300. [PMID: 23696811 PMCID: PMC3655974 DOI: 10.1371/journal.pone.0063300] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/29/2013] [Indexed: 11/19/2022] Open
Abstract
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms.
Collapse
Affiliation(s)
- Rosella Mechelli
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Renato Umeton
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Claudia Policano
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Viviana Annibali
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Giulia Coarelli
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Vito A. G. Ricigliano
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Danila Vittori
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Arianna Fornasiero
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Maria Chiara Buscarinu
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | | | | | - Silvia Romano
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| | - Marco Salvetti
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
- * E-mail:
| | - Giovanni Ristori
- Centre for Experimental Neurological Therapies, S. Andrea Hospital-site, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, Rome, Italy
| |
Collapse
|
350
|
The CD225 domain of IFITM3 is required for both IFITM protein association and inhibition of influenza A virus and dengue virus replication. J Virol 2013; 87:7837-52. [PMID: 23658454 DOI: 10.1128/jvi.00481-13] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The interferon-induced transmembrane protein 3 (IFITM3) gene is an interferon-stimulated gene that inhibits the replication of multiple pathogenic viruses in vitro and in vivo. IFITM3 is a member of a large protein superfamily, whose members share a functionally undefined area of high amino acid conservation, the CD225 domain. We performed mutational analyses of IFITM3 and identified multiple residues within the CD225 domain, consisting of the first intramembrane domain (intramembrane domain 1 [IM1]) and a conserved intracellular loop (CIL), that are required for restriction of both influenza A virus (IAV) and dengue virus (DENV) infection in vitro. Two phenylalanines within IM1 (F75 and F78) also mediate a physical association between IFITM proteins, and the loss of this interaction decreases IFITM3-mediated restriction. By extension, similar IM1-mediated associations may contribute to the functions of additional members of the CD225 domain family. IFITM3's distal N-terminal domain is also needed for full antiviral activity, including a tyrosine (Y20), whose alteration results in mislocalization of a portion of IFITM3 to the cell periphery and surface. Comparative analyses demonstrate that similar molecular determinants are needed for IFITM3's restriction of both IAV and DENV. However, a portion of the CIL including Y99 and R87 is preferentially needed for inhibition of the orthomyxovirus. Several IFITM3 proteins engineered with rare single-nucleotide polymorphisms demonstrated reduced expression or mislocalization, and these events were associated with enhanced viral replication in vitro, suggesting that possessing such alleles may impact an individual's risk for viral infection. On the basis of this and other data, we propose a model for IFITM3-mediated restriction.
Collapse
|