301
|
Herber J, Klotz F, Frommeyer B, Weis S, Straile D, Kolar A, Sikorski J, Egert M, Dannenmann M, Pester M. A single Thaumarchaeon drives nitrification in deep oligotrophic Lake Constance. Environ Microbiol 2019; 22:212-228. [PMID: 31657089 DOI: 10.1111/1462-2920.14840] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022]
Abstract
Ammonia released during organic matter mineralization is converted during nitrification to nitrate. We followed spatiotemporal dynamics of the nitrifying microbial community in deep oligotrophic Lake Constance. Depth-dependent decrease of total ammonium (0.01-0.84 μM) indicated the hypolimnion as the major place of nitrification with 15 N-isotope dilution measurements indicating a threefold daily turnover of hypolimnetic total ammonium. This was mirrored by a strong increase of ammonia-oxidizing Thaumarchaeota towards the hypolimnion (13%-21% of bacterioplankton) throughout spring to autumn as revealed by amplicon sequencing and quantitative polymerase chain reaction. Ammonia-oxidizing bacteria were typically two orders of magnitude less abundant and completely ammonia-oxidizing (comammox) bacteria were not detected. Both, 16S rRNA gene and amoA (encoding ammonia monooxygenase subunit B) analyses identified only one major species-level operational taxonomic unit (OTU) of Thaumarchaeota (99% of all ammonia oxidizers in the hypolimnion), which was affiliated to Nitrosopumilus spp. The relative abundance distribution of the single Thaumarchaeon strongly correlated to an equally abundant Chloroflexi clade CL500-11 OTU and a Nitrospira OTU that was one order of magnitude less abundant. The latter dominated among recognized nitrite oxidizers. This extremely low diversity of nitrifiers shows how vulnerable the ecosystem process of nitrification may be in Lake Constance as Central Europe's third largest lake.
Collapse
Affiliation(s)
- Janina Herber
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Franziska Klotz
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Benjamin Frommeyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany
| | - Severin Weis
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Dietmar Straile
- Limnological Institute, University of Konstanz, Mainaustraße 252, Constance, 78464, Germany
| | - Allison Kolar
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Johannes Sikorski
- Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany
| | - Markus Egert
- Faculty of Medical and Life Sciences, Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Str. 17, Villingen-Schwenningen, 78054, Germany
| | - Michael Dannenmann
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstr. 19, 82467, Garmisch-Partenkirchen, Germany
| | - Michael Pester
- Department of Biology, University of Konstanz, Universitätsstrasse 10, Constance, 78457, Germany.,Department of Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstr. 7B, 38124, Braunschweig, Germany.,Technical University of Braunschweig, Institute for Microbiology, Spielmannstrasse 7, Braunschweig, 38106, Germany
| |
Collapse
|
302
|
Lin J, He F, Su B, Sun M, Owens G, Chen Z. The stabilizing mechanism of cadmium in contaminated soil using green synthesized iron oxide nanoparticles under long-term incubation. JOURNAL OF HAZARDOUS MATERIALS 2019; 379:120832. [PMID: 31276925 DOI: 10.1016/j.jhazmat.2019.120832] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 04/08/2019] [Accepted: 06/26/2019] [Indexed: 05/02/2023]
Abstract
Despite numerous studies having been conducted on the stabilization of heavy metal contaminated soil, our understanding of the mechanisms involved remains limited. Here green synthesized iron oxide nanoparticles (GION) were applied to stabilize cadmium (Cd) in a contaminated soil. GION not only stabilized soil Cd, but also improved soil properties within one year of incubation. After GION application both the exchangeable and carbonate bound Cd fractions decreased by 14.2-83.5% and 18.3-85.8% respectively, and most of the Cd was translocated to the residual Cd fraction. The application of GION also strongly altered soil bacterial communities. In GION treatments, the abundance of Gemmatimonadetes, Proteobacteria, and Saccharibacteria increased which led to a shift in the dominant bacterial genera from Bacillus to Candidatus koribacter. The variation in bacteria confirmed the restoration of the contaminated soil. The most abundant bacterial genus and species found in GION treatments were related to (i) plant derived biomass decomposition; (ii) ammoxidation and denitrification; and (iii) Fe oxidation. GION application may enhance the formation of larger soil aggregates with anaerobic centers and coprecipitation coupled Fe (II) oxidization, ammoxidation and nitrite reduction followed by Fe mineral ripening may be involved in Cd stabilization. The predominant stabilization mechanism was thus coprecipitation-ripening-stabilization.
Collapse
Affiliation(s)
- Jiajiang Lin
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Fengxin He
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Binglin Su
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Mengqiang Sun
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China
| | - Gary Owens
- Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Zuliang Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, China; Environmental Contaminants Group, Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
303
|
Sedlacek CJ, McGowan B, Suwa Y, Sayavedra-Soto L, Laanbroek HJ, Stein LY, Norton JM, Klotz MG, Bollmann A. A Physiological and Genomic Comparison of Nitrosomonas Cluster 6a and 7 Ammonia-Oxidizing Bacteria. MICROBIAL ECOLOGY 2019; 78:985-994. [PMID: 30976841 DOI: 10.1007/s00248-019-01378-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Ammonia-oxidizing bacteria (AOB) within the genus Nitrosomonas perform the first step in nitrification, ammonia oxidation, and are found in diverse aquatic and terrestrial environments. Nitrosomonas AOB were grouped into six defined clusters, which correlate with physiological characteristics that contribute to adaptations to a variety of abiotic environmental factors. A fundamental physiological trait differentiating Nitrosomonas AOB is the adaptation to either low (cluster 6a) or high (cluster 7) ammonium concentrations. Here, we present physiological growth studies and genome analysis of Nitrosomonas cluster 6a and 7 AOB. Cluster 6a AOB displayed maximum growth rates at ≤ 1 mM ammonium, while cluster 7 AOB had maximum growth rates at ≥ 5 mM ammonium. In addition, cluster 7 AOB were more tolerant of high initial ammonium and nitrite concentrations than cluster 6a AOB. Cluster 6a AOB were completely inhibited by an initial nitrite concentration of 5 mM. Genomic comparisons were used to link genomic traits to observed physiological adaptations. Cluster 7 AOB encode a suite of genes related to nitrogen oxide detoxification and multiple terminal oxidases, which are absent in cluster 6a AOB. Cluster 6a AOB possess two distinct forms of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and select species encode genes for hydrogen or urea utilization. Several, but not all, cluster 6a AOB can utilize urea as a source of ammonium. Hence, although Nitrosomonas cluster 6a and 7 AOB have the capacity to fulfill the same functional role in microbial communities, i.e., ammonia oxidation, differentiating species-specific and cluster-conserved adaptations is crucial in understanding how AOB community succession can affect overall ecosystem function.
Collapse
Affiliation(s)
- Christopher J Sedlacek
- Department of Microbiology, Miami University, 501 East High St, Oxford, OH, 45056, USA
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Brian McGowan
- Department of Microbiology, Miami University, 501 East High St, Oxford, OH, 45056, USA
| | - Yuichi Suwa
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Luis Sayavedra-Soto
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, 116 St. and 85 Ave, Edmonton, AB, T6G 2R3, Canada
| | - Jeanette M Norton
- Department of Plants, Soil and Climate, Utah State University, Logan, UT, 84322-4820, USA
| | - Martin G Klotz
- School of Molecular Biosciences, Washington State University, Richland, WA, 99354, USA
| | - Annette Bollmann
- Department of Microbiology, Miami University, 501 East High St, Oxford, OH, 45056, USA.
| |
Collapse
|
304
|
Controlling and co-ordinating chitinase secretion in a Serratia marcescens population. Microbiology (Reading) 2019; 165:1233-1244. [DOI: 10.1099/mic.0.000856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
305
|
Poghosyan L, Koch H, Lavy A, Frank J, van Kessel MA, Jetten MS, Banfield JF, Lücker S. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ Microbiol 2019; 21:3627-3637. [PMID: 31107587 PMCID: PMC6852473 DOI: 10.1111/1462-2920.14691] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
The recently discovered comammox process encompasses both nitrification steps, the aerobic oxidation of ammonia and nitrite, in a single organism. All known comammox bacteria are affiliated with Nitrospira sublineage II and can be grouped into two distinct clades, referred to as A and B, based on ammonia monooxygenase phylogeny. In this study, we report high-quality draft genomes of two novel comammox Nitrospira from the terrestrial subsurface, representing one clade A and one clade B comammox organism. The two metagenome-assembled genomes were compared with other representatives of Nitrospira sublineage II, including both canonical and comammox Nitrospira. Phylogenomic analyses confirmed the affiliation of the two novel Nitrospira with comammox clades A and B respectively. Based on phylogenetic distance and pairwise average nucleotide identity values, both comammox Nitrospira were classified as novel species. Genomic comparison revealed high conservation of key metabolic features in sublineage II Nitrospira, including respiratory complexes I-V and the machineries for nitrite oxidation and carbon fixation via the reductive tricarboxylic acid cycle. In addition, the presence of the enzymatic repertoire for formate and hydrogen oxidation in the Rifle clades A and B comammox genomes, respectively, suggest a broader distribution of these metabolic features than previously anticipated.
Collapse
Affiliation(s)
- Lianna Poghosyan
- Department of MicrobiologyRadboud UniversityHeyendaalseweg 135, 6525 AJNijmegenthe Netherlands
| | - Hanna Koch
- Department of MicrobiologyRadboud UniversityHeyendaalseweg 135, 6525 AJNijmegenthe Netherlands
| | - Adi Lavy
- Earth and Planetary Sciences DepartmentUniversity of California, 2151 Berkeley WayBerkleyCA94720USA
| | - Jeroen Frank
- Department of MicrobiologyRadboud UniversityHeyendaalseweg 135, 6525 AJNijmegenthe Netherlands
| | | | - Mike S.M. Jetten
- Department of MicrobiologyRadboud UniversityHeyendaalseweg 135, 6525 AJNijmegenthe Netherlands
| | - Jillian F. Banfield
- Earth and Planetary Sciences DepartmentUniversity of California, 2151 Berkeley WayBerkleyCA94720USA
| | - Sebastian Lücker
- Department of MicrobiologyRadboud UniversityHeyendaalseweg 135, 6525 AJNijmegenthe Netherlands
| |
Collapse
|
306
|
Sun X, Kop LFM, Lau MCY, Frank J, Jayakumar A, Lücker S, Ward BB. Uncultured Nitrospina-like species are major nitrite oxidizing bacteria in oxygen minimum zones. THE ISME JOURNAL 2019; 13:2391-2402. [PMID: 31118472 PMCID: PMC6776041 DOI: 10.1038/s41396-019-0443-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 01/05/2023]
Abstract
Oxygen minimum zones (OMZs) are marine regions where O2 is undetectable at intermediate depths. Within OMZs, the oxygen-depleted zone (ODZ) induces anaerobic microbial processes that lead to fixed nitrogen loss via denitrification and anammox. Surprisingly, nitrite oxidation is also detected in ODZs, although all known marine nitrite oxidizers (mainly Nitrospina) are aerobes. We used metagenomic binning to construct metagenome-assembled genomes (MAGs) of nitrite oxidizers from OMZs. These MAGs represent two novel Nitrospina-like species, both of which differed from all known Nitrospina species, including cultured species and published MAGs. Relative abundances of different Nitrospina genotypes in OMZ and non-OMZ seawaters were estimated by mapping metagenomic reads to newly constructed MAGs and published high-quality genomes of members from the Nitrospinae phylum. The two novel species were present in all major OMZs and were more abundant inside ODZs, which is consistent with the detection of higher nitrite oxidation rates in ODZs than in oxic seawaters and suggests novel adaptations to anoxic environments. The detection of a large number of unclassified nitrite oxidoreductase genes in the dataset implies that the phylogenetic diversity of nitrite oxidizers is greater than previously thought.
Collapse
Affiliation(s)
- Xin Sun
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA.
| | - Linnea F M Kop
- Department of Microbiology, Radboud University, Nijmegen, AJ, 6525, the Netherlands
| | - Maggie C Y Lau
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
- Laboratory of Extraterrestrial Ocean Systems, Institute of Deep-Sea Science and Engineering, Chinese Academic of Sciences, Sanya, Hainan, 572000, China
| | - Jeroen Frank
- Department of Microbiology, Radboud University, Nijmegen, AJ, 6525, the Netherlands
| | - Amal Jayakumar
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, AJ, 6525, the Netherlands
| | - Bess B Ward
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, 08544, USA
| |
Collapse
|
307
|
Speirs LBM, Rice DTF, Petrovski S, Seviour RJ. The Phylogeny, Biodiversity, and Ecology of the Chloroflexi in Activated Sludge. Front Microbiol 2019; 10:2015. [PMID: 31572309 PMCID: PMC6753630 DOI: 10.3389/fmicb.2019.02015] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/16/2019] [Indexed: 02/01/2023] Open
Abstract
It is now clear that several of the filamentous bacteria in activated sludge wastewater treatment plants globally, are members of the phylum Chloroflexi. They appear to be more commonly found in treatment plants designed to remove nitrogen (N) and phosphorus (P), most of which operate at long sludge ages and expose the biomass to anaerobic conditions. The Chloroflexi seem to play an important beneficial role in providing the filamentous scaffolding around which flocs are formed, to feed on the debris from lysed bacterial cells, to ferment carbohydrates and to degrade other complex polymeric organic compounds to low molecular weight substrates to support their growth and that of other bacterial populations. A few commonly extend beyond the floc surface, while others can align in bundles, which may facilitate interfloc bridging and hence generate a bulking sludge. Although several recent papers have examined the phylogeny and in situ physiology of Chloroflexi in activated sludge plants in Denmark, this review takes a wider look at what we now know about these filaments, especially their global distribution in activated sludge plants, and what their functional roles there might be. It also attempts to outline why such information might provide us with clues as to how their population levels may be manipulated, and the main research questions that need addressing to achieve these outcomes.
Collapse
Affiliation(s)
- Lachlan B. M. Speirs
- La Trobe Institute for Molecular Sciences, La Trobe University, Bendigo, VIC, Australia
| | - Daniel T. F. Rice
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Steve Petrovski
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| | - Robert J. Seviour
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
308
|
Danczak RE, Johnston MD, Kenah C, Slattery M, Wilkins MJ. Capability for arsenic mobilization in groundwater is distributed across broad phylogenetic lineages. PLoS One 2019; 14:e0221694. [PMID: 31490939 PMCID: PMC6730927 DOI: 10.1371/journal.pone.0221694] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 08/13/2019] [Indexed: 01/24/2023] Open
Abstract
Despite the importance of microbial activity in mobilizing arsenic in groundwater aquifers, the phylogenetic distribution of contributing microbial metabolisms is understudied. Groundwater samples from Ohio aquifers were analyzed using metagenomic sequencing to identify functional potential that could drive arsenic cycling, and revealed mechanisms for direct (i.e., Ars system) and indirect (i.e., iron reduction) arsenic mobilization in all samples, despite differing geochemical conditions. Analyses of 194 metagenome-assembled genomes (MAGs) revealed widespread functionality related to arsenic mobilization throughout the bacterial tree of life. While arsB and arsC genes (components of an arsenic resistance system) were found in diverse lineages with no apparent phylogenetic bias, putative aioA genes (aerobic arsenite oxidase) were predominantly identified in Methylocystaceae MAGs. Both previously described and undescribed respiratory arsenate reduction potential via arrA was detected in Betaproteobacteria, Deltaproteobacteria, and Nitrospirae MAGs, whereas sulfate reduction potential was primarily limited to members of the Deltaproteobacteria and Nitrospirae. Lastly, iron reduction potential was detected in the Ignavibacteria, Deltaproteobacteria, and Nitrospirae. These results expand the phylogenetic distribution of taxa that may play roles in arsenic mobilization in subsurface systems. Specifically, the Nitrospirae are a much more functionally diverse group than previously assumed and may play key biogeochemical roles in arsenic-contaminated ecosystems.
Collapse
Affiliation(s)
- Robert E. Danczak
- Department of Microbiology, Ohio State University, Columbus, OH, United States of America
| | - Michael D. Johnston
- School of Earth Sciences, Ohio State University, Columbus, OH, United States of America
| | - Chris Kenah
- Ohio Environmental Protection Agency, Columbus, OH, United States of America
| | - Michael Slattery
- Ohio Environmental Protection Agency, Columbus, OH, United States of America
| | - Michael J. Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States of America
- * E-mail:
| |
Collapse
|
309
|
Lehtovirta-Morley LE. Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together. FEMS Microbiol Lett 2019; 365:4931719. [PMID: 29668934 DOI: 10.1093/femsle/fny058] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022] Open
Abstract
Ammonia oxidation is a fundamental core process in the global biogeochemical nitrogen cycle. Oxidation of ammonia (NH3) to nitrite (NO2 -) is the first and rate-limiting step in nitrification and is carried out by distinct groups of microorganisms. Ammonia oxidation is essential for nutrient turnover in most terrestrial, aquatic and engineered ecosystems and plays a major role, both directly and indirectly, in greenhouse gas production and environmental damage. Although ammonia oxidation has been studied for over a century, this research field has been galvanised in the past decade by the surprising discoveries of novel ammonia oxidising microorganisms. This review reflects on the ammonia oxidation research to date and discusses the major gaps remaining in our knowledge of the biology of ammonia oxidation.
Collapse
Affiliation(s)
- Laura E Lehtovirta-Morley
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
310
|
Liu H, Wahman DG, Pressman JG. Evaluation of Monochloramine and Free Chlorine Penetration in a Drinking Water Storage Tank Sediment Using Microelectrodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:9352-9360. [PMID: 31287953 PMCID: PMC6759989 DOI: 10.1021/acs.est.9b01189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Sediment accumulation in water storage tanks may protect microorganisms from disinfectant exposure, causing the degradation of water quality. However, microbial activity and disinfectant penetration within water storage sediment remain largely uncharacterized. This study evaluated the penetration of monochloramine and free chlorine into a 2 cm (20000 μm) deep drinking water storage tank sediment using microelectrodes. The sediment was successively exposed to monochloramine for 4 months, free chlorine for 2 months, and monochloramine for 2 months. Temporal monochloramine, free chlorine, dissolved oxygen (DO), pH, ammonium, nitrite, and nitrate profiles were acquired using microelectrodes. The results showed that complete monochloramine or free chlorine penetration was not observed. Likewise, DO never fully penetrated the sediment, progressing inward with time to a maximum depth of 10000 μm and indicating microbial activity persisted over the entire 8 months. Decreasing ammonium and increasing nitrate concentrations, with minimal nitrite accumulation, further demonstrated microbial activity and indicated complete sediment nitrification. There were measurable levels of ammonium, nitrite, and nitrate during free chlorine application, and nitrification activity gradually resumed upon a switch back to monochloramine. These findings suggest that the periodic removal of sediment from drinking water storage facilities is desirable to remove potentially protected environments for microorganisms.
Collapse
Affiliation(s)
- Hong Liu
- Oak Ridge Institute for Science and Education (ORISE) Post-Doctoral Fellow at U.S. Environmental Protection Agency, Cincinnati, OH 45268, United States
| | - David G. Wahman
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jonathan G. Pressman
- National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
311
|
Alfreider A, Grimus V, Luger M, Ekblad A, Salcher MM, Summerer M. Autotrophic carbon fixation strategies used by nitrifying prokaryotes in freshwater lakes. FEMS Microbiol Ecol 2019; 94:5076030. [PMID: 30137292 PMCID: PMC6118323 DOI: 10.1093/femsec/fiy163] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/02/2022] Open
Abstract
Niche specialization of nitrifying prokaryotes is usually studied with tools targeting molecules involved in the oxidation of ammonia and nitrite. The ecological significance of diverse CO2 fixation strategies used by nitrifiers is, however, mostly unexplored. By analyzing autotrophy-related genes in combination with amoA marker genes based on droplet digitial PCR and CARD-FISH counts targeting rRNA, we quantified the distribution of nitrifiers in eight stratified lakes. Ammonia oxidizing (AO) Thaumarchaeota using the 3-hydroxypropionate/4-hydroxybutyrate pathway dominated deep and oligotrophic lakes, whereas Nitrosomonas-related taxa employing the Calvin cycle were important AO bacteria in smaller lakes. The occurrence of nitrite oxidizing Nitrospira, assimilating CO2 with the reductive TCA cycle, was strongly correlated with the distribution of Thaumarchaeota. Recently discovered complete ammonia-oxidizing bacteria (comammox) belonging to Nitrospira accounted only for a very small fraction of ammonia oxidizers (AOs) present at the study sites. Altogether, this study gives a first insight on how physicochemical characteristics in lakes are associated to the distribution of nitrifying prokaryotes with different CO2 fixation strategies. Our investigations also evaluate the suitability of functional genes associated with individual CO2 assimilation pathways to study niche preferences of different guilds of nitrifying microorganisms based on an autotrophic perspective.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Victoria Grimus
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Martin Luger
- Institute for Water Ecology, Fisheries Biology and Lake Research, Federal Agency for Water Management, Scharfling 18, 5310 Mondsee, Austria
| | - Anja Ekblad
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách, 702/7370 05 Ceské Budejovice, Czech Republic
| | - Monika Summerer
- Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
312
|
Law Y, Matysik A, Chen X, Swa Thi S, Ngoc Nguyen TQ, Qiu G, Natarajan G, Williams RBH, Ni BJ, Seviour TW, Wuertz S. High Dissolved Oxygen Selection against Nitrospira Sublineage I in Full-Scale Activated Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8157-8166. [PMID: 31184114 DOI: 10.1021/acs.est.9b00955] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A single Nitrospira sublineage I OTU was found to perform nitrite oxidation in full-scale domestic wastewater treatment plants (WWTPs) in the tropics. This taxon had an apparent oxygen affinity constant lower than that of the full-scale domestic activated sludge cohabitating ammonium oxidizing bacteria (AOB) (0.09 ± 0.02 g O2 m-3 versus 0.3 ± 0.03 g O2 m-3). Thus, nitrite oxidizing bacteria (NOB) may in fact thrive under conditions of low oxygen supply. Low dissolved oxygen (DO) conditions selected for and high aeration inhibited the NOB in a long-term lab-scale reactor. The relative abundance of Nitrospira sublineage I gradually decreased with increasing DO until it was washed out. Nitritation was sustained even after the DO was lowered subsequently. The morphologies of AOB and NOB microcolonies responded to DO levels in accordance with their oxygen affinities. NOB formed densely packed spherical clusters with a low surface area-to-volume ratio compared to the Nitrosomonas-like AOB clusters, which maintained a porous and nonspherical morphology. In conclusion, the effect of oxygen on AOB/NOB population dynamics depends on which OTU predominates given that oxygen affinities are species-specific, and this should be elucidated when devising operating strategies to achieve mainstream partial nitritation.
Collapse
Affiliation(s)
- Yingyu Law
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Xueming Chen
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering , Technical University of Denmark , 2800 Kgs Lyngby , Denmark
| | - Sara Swa Thi
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Thi Quynh Ngoc Nguyen
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Guanglei Qiu
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Gayathri Natarajan
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Rohan B H Williams
- Singapore Centre for Environmental Life Sciences Engineering , National University of Singapore , Singapore 119077 , Singapore
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering , University of Technology Sydney , Sydney , New South Wales 2007 , Australia
| | - Thomas William Seviour
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , Singapore 637551 , Singapore
- School of Civil and Environmental Engineering , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
313
|
Component Microenvironments and System Biogeography Structure Microorganism Distributions in Recirculating Aquaculture and Aquaponic Systems. mSphere 2019; 4:4/4/e00143-19. [PMID: 31270175 PMCID: PMC6609224 DOI: 10.1128/msphere.00143-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recirculating aquaculture systems (RAS) are agroecosystems for intensive on-land cultivation of products of fisheries. Practitioners that incorporate edible plant production into RAS refer to these facilities as aquaponic systems (AP). RAS have the potential to offset declining production levels of wild global fisheries while reducing waste and product distance to market, but system optimization is needed to reduce costs. Both RAS and AP rely on microbial consortia for maintaining water quality and promoting fish/plant health, but little is known about the microorganisms actually present. This lack of knowledge prevents optimization of designs and operational controls to target the growth of beneficial microbial species or consortia. The significance of our research is in identifying the common microorganisms that inhabit production RAS and AP and the operational factors that influence which microorganisms colonize and become abundant. Identifying these organisms is a first step toward advanced control of microbial activities that improve reproducibility and reduce costs. Flowthrough and pond aquaculture system microbiome management practices aim to mitigate fish disease and stress. However, the operational success of recirculating aquaculture systems (RAS) depends directly on system microbial community activities. In RAS, each component environment is engineered for a specific microbial niche for waste management, as the water continuously flowing through the system must be processed before returning to the rearing tank. In this study, we compared waste management component microbiomes (rearing tank water, pH correction tank, solid-waste clarifier, biofilter, and degassing tower) within a commercial-scale freshwater RAS by high-throughput 16S rRNA gene sequencing. To assess consistency among freshwater RAS microbiomes, we also compared the microbial community compositions of six aquaculture and aquaponic farms. Community assemblages reflected site and source water relationships, and the presence of a hydroponic subsystem was a major community determinant. In contrast to the facility-specific community composition, some sequence variants, mainly classified into Flavobacterium, Cetobacterium, the family Sphingomonadaceae, and nitrifying guilds of ammonia-oxidizing archaea and Nitrospira, were common across all facilities. The findings of this study suggest that, independently of system design, core taxa exist across RAS rearing similar fish species but that system design informs the individual aquatic microbiome assemblages. Future RAS design would benefit from understanding the roles of these core taxa and then capitalizing on their activities to further reduce system waste/added operational controls. IMPORTANCE Recirculating aquaculture systems (RAS) are agroecosystems for intensive on-land cultivation of products of fisheries. Practitioners that incorporate edible plant production into RAS refer to these facilities as aquaponic systems (AP). RAS have the potential to offset declining production levels of wild global fisheries while reducing waste and product distance to market, but system optimization is needed to reduce costs. Both RAS and AP rely on microbial consortia for maintaining water quality and promoting fish/plant health, but little is known about the microorganisms actually present. This lack of knowledge prevents optimization of designs and operational controls to target the growth of beneficial microbial species or consortia. The significance of our research is in identifying the common microorganisms that inhabit production RAS and AP and the operational factors that influence which microorganisms colonize and become abundant. Identifying these organisms is a first step toward advanced control of microbial activities that improve reproducibility and reduce costs.
Collapse
|
314
|
Mundinger AB, Lawson CE, Jetten MSM, Koch H, Lücker S. Cultivation and Transcriptional Analysis of a Canonical Nitrospira Under Stable Growth Conditions. Front Microbiol 2019; 10:1325. [PMID: 31333593 PMCID: PMC6606698 DOI: 10.3389/fmicb.2019.01325] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/28/2019] [Indexed: 12/20/2022] Open
Abstract
Nitrite-oxidizing bacteria (NOB) are vital players in the global nitrogen cycle that convert nitrite to nitrate during the second step of nitrification. Within this functional guild, members of the genus Nitrospira are most widespread, phylogenetically diverse, and physiologically versatile, and they drive nitrite oxidation in many natural and engineered ecosystems. Despite their ecological and biotechnological importance, our understanding of their energy metabolism is still limited. A major bottleneck for a detailed biochemical characterization of Nitrospira is biomass production, since they are slow-growing and fastidious microorganisms. In this study, we cultivated Nitrospira moscoviensis under nitrite-oxidizing conditions in a continuous stirred tank reactor (CSTR) system. This cultivation setup enabled accurate control of physicochemical parameters and avoided fluctuating levels of their energy substrate nitrite, thus ensuring constant growth conditions and furthermore allowing continuous biomass harvesting. Transcriptomic analyses under these conditions supported the predicted core metabolism of N. moscoviensis, including expression of all proteins required for carbon fixation via the reductive tricarboxylic acid cycle, assimilatory nitrite reduction, and the complete respiratory chain. Here, simultaneous expression of multiple copies of respiratory complexes I and III suggested functional differentiation. The transcriptome also indicated that the previously assumed membrane-bound nitrite oxidoreductase (NXR), the enzyme catalyzing nitrite oxidation, is formed by three soluble subunits. Overall, the transcriptomic data greatly refined our understanding of the metabolism of Nitrospira. Moreover, the application of a CSTR to cultivate Nitrospira is an important foundation for future proteomic and biochemical characterizations, which are crucial for a better understanding of these fascinating microorganisms.
Collapse
Affiliation(s)
- Aniela B Mundinger
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Christopher E Lawson
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Hanna Koch
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
315
|
Roots P, Wang Y, Rosenthal AF, Griffin JS, Sabba F, Petrovich M, Yang F, Kozak JA, Zhang H, Wells GF. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. WATER RESEARCH 2019; 157:396-405. [PMID: 30974288 DOI: 10.1016/j.watres.2019.03.060] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 05/19/2023]
Abstract
Recent findings show that a subset of bacteria affiliated with Nitrospira, a genus known for its importance in nitrite oxidation for biological nutrient removal applications, are capable of complete ammonia oxidation (comammox) to nitrate. Early reports suggested that they were absent or present in low abundance in most activated sludge processes, and thus likely functionally irrelevant. Here we show the accumulation of comammox Nitrospira in a nitrifying sequencing batch reactor operated at low dissolved oxygen (DO) concentrations. Actual mainstream wastewater was used as influent after primary settling and an upstream pre-treatment process for carbon and phosphorus removal. The ammonia removal rate was stable and exceeded that of the treatment plant's parallel full-scale high DO nitrifying activated sludge reactor. 16S rRNA gene sequencing showed a steady accumulation of Nitrospira to 53% total abundance and a decline in conventional ammonia oxidizing bacteria to <1% total abundance over 400 + days of operation. After ruling out other known ammonia oxidizers, qPCR confirmed the accumulation of comammox Nitrospira beginning around day 200, to eventually comprise 94% of all detected amoA and 4% of total bacteria by day 407. Quantitative fluorescence in-situ hybridization confirmed the increasing trend and high relative abundance of Nitrospira. These results demonstrate that comammox can be metabolically relevant to nitrogen transformation in wastewater treatment, and can even dominate the ammonia oxidizing community. Our results suggest that comammox may be an important functional group in energy efficient nitrification systems designed to operate at low DO levels.
Collapse
Affiliation(s)
- Paul Roots
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Alex F Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - James S Griffin
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Morgan Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Fenghua Yang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - Joseph A Kozak
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - Heng Zhang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
316
|
Wang K, Hu H, Yan H, Hou D, Wang Y, Dong P, Zhang D. Archaeal biogeography and interactions with microbial community across complex subtropical coastal waters. Mol Ecol 2019; 28:3101-3118. [PMID: 30993759 DOI: 10.1111/mec.15105] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 01/21/2023]
Abstract
Marine Archaea are crucial in biogeochemical cycles, but their horizontal spatial variability, assembly processes, and microbial associations across complex coastal waters still lack characterizations at high coverage. Using a dense sampling strategy, we investigated horizontal variability in total archaeal, Thaumarchaeota Marine Group (MG) I, and Euryarchaeota MGII communities and associations of MGI/MGII with other microbes in surface waters with contrasting environmental characteristics across ~200 km by 16S rRNA gene amplicon sequencing. Total archaeal communities were extremely dominated by MGI and/or MGII (98.9% in average relative abundance). Niche partitioning between MGI and MGII or within each group was found across multiple environmental gradients. "Selection" was more important than "dispersal limitation" in governing biogeographic patterns of total archaeal, MGI, and MGII communities, and basic abiotic parameters (such as salinity) and inorganic/organic resources as a whole could be the main driver of "selection". While "homogenizing dispersal" also considerably governed their biogeography. MGI-Nitrospira assemblages were speculatively responsible for complete nitrification. MGI taxa commonly had negative correlations with members of Synechococcus but positive correlations with members of eukaryotic phytoplankton, suggesting that competition or synergy between MGI and phytoplankton depends on specific MGI-phytoplankton assemblages. MGII taxa showed common associations with presumed (photo)heterotrophs including members of SAR11, SAR86, SAR406, and Candidatus Actinomarina. This study sheds light on ecological processes and drivers shaping archaeal biogeography and many strong MGI/MGII-bacterial associations across complex subtropical coastal waters. Future efforts should be made on seasonality of archaeal biogeography and biological, environmental, or ecological mechanisms underlying these statistical microbial associations.
Collapse
Affiliation(s)
- Kai Wang
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Hanjing Hu
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| | - Huizhen Yan
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Yanting Wang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Pengsheng Dong
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Demin Zhang
- School of Marine Sciences, Ningbo University, Ningbo, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo, China
| |
Collapse
|
317
|
Waak MB, Hozalski RM, Hallé C, LaPara TM. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. MICROBIOME 2019; 7:87. [PMID: 31174608 PMCID: PMC6556008 DOI: 10.1186/s40168-019-0707-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 05/28/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND Residual disinfection is often used to suppress biological growth in drinking water distribution systems (DWDSs), but not without undesirable side effects. In this study, water-main biofilms, drinking water, and bacteria under corrosion tubercles were analyzed from a chloraminated DWDS (USA) and a no-residual DWDS (Norway). Using quantitative real-time PCR, we quantified bacterial 16S rRNA genes and ammonia monooxygenase genes (amoA) of Nitrosomonas oligotropha and ammonia-oxidizing archaea-organisms that may contribute to chloramine loss. PCR-amplified 16S rRNA genes were sequenced to assess community taxa and diversity. RESULTS The chloraminated DWDS had lower biofilm biomass (P=1×10-6) but higher N. oligotropha-like amoA genes (P=2×10-7) than the no-residual DWDS (medians =4.7×104 and 1.1×103amoA copies cm-2, chloraminated and no residual, respectively); archaeal amoA genes were only detected in the no-residual DWDS (median =2.8×104 copies cm-2). Unlike the no-residual DWDS, biofilms in the chloraminated DWDS had lower within-sample diversity than the corresponding drinking water (P<1×10-4). Chloramine was also associated with biofilms dominated by the genera, Mycobacterium and Nitrosomonas (≤91.7% and ≤39.6% of sequences, respectively). Under-tubercle communities from both systems contained corrosion-associated taxa, especially Desulfovibrio spp. (≤98.4% of sequences). CONCLUSIONS Although residual chloramine appeared to decrease biofilm biomass and alpha diversity as intended, it selected for environmental mycobacteria and Nitrosomonas oligotropha-taxa that may pose water quality challenges. Drinking water contained common freshwater plankton and did not resemble corresponding biofilm communities in either DWDS; monitoring of tap water alone may therefore miss significant constituents of the DWDS microbiome. Corrosion-associated Desulfovibrio spp. were observed under tubercles in both systems but were particularly dominant in the chloraminated DWDS, possibly due to the addition of sulfate from the coagulant alum.
Collapse
Affiliation(s)
- Michael B. Waak
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Raymond M. Hozalski
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| | - Cynthia Hallé
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology, S. P. Andersens veg 5, Trondheim, 7491 Norway
| | - Timothy M. LaPara
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, 500 Pillsbury Dr SE, Minneapolis, 55455 MN USA
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, Saint Paul, 55108 MN USA
| |
Collapse
|
318
|
Thakur IS, Medhi K. Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: Challenges and opportunities. BIORESOURCE TECHNOLOGY 2019; 282:502-513. [PMID: 30898409 DOI: 10.1016/j.biortech.2019.03.069] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas. Even though its emissions is much lesser than CO2 but its global warming potential (GWP) is 298 times more than CO2. N2O emissions from wastewater treatment plants was caused due to incomplete nitrification or incomplete denitrification catalyzed by ammonia-oxidizing bacteria and heterotrophic denitrifiers. Low dissolved oxygen, high nitrite accumulation, change in optimal pH or temperature, fluctuation in C/N ratio, short solid retention time and non-availability of Cu ions were responsible for higher N2O leakage. Regulation of enzyme metabolic pathways involved in N2O production and reduction has also been reviewed. Sequential bioreactors, bioscrubbers, membrane biofilters usage have helped microbial nitrification-denitrification processes in succumbing N2O production in wastewater treatment plants. Reduction of N2O negativity has been studied through its valorization for the formation of value added products such as biopolymers has led to biorefinery approaches as an upcoming mitigation strategy.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Kristina Medhi
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
319
|
Greening C, Grinter R, Chiri E. Uncovering the Metabolic Strategies of the Dormant Microbial Majority: towards Integrative Approaches. mSystems 2019; 4:e00107-19. [PMID: 31120024 PMCID: PMC6529542 DOI: 10.1128/msystems.00107-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 11/20/2022] Open
Abstract
A grand challenge in microbiology is to understand how the dormant majority lives. In natural environments, most microorganisms are not growing and instead exist in a spectrum of dormant states. Despite this, most research on microbial metabolism continues to be growth-centric, and many overlook the fact that dormant cells require energy for maintenance. In this perspective, we discuss our research program to uncover the metabolic strategies that support microbial survival. We present two major principles underlying these studies. The first is the recent realization that microbial survival depends on previously unrecognized metabolic flexibility. The second is that new discoveries in this area depend on more sophisticated integration of approaches at the molecular, cellular, and ecosystem levels. These principles are illustrated with examples from the literature, including our own work demonstrating that bacteria can live on air, and areas for future methodological and theoretical development are highlighted.
Collapse
Affiliation(s)
- Chris Greening
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Rhys Grinter
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Eleonora Chiri
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
320
|
Chai H, Xiang Y, Chen R, Shao Z, Gu L, Li L, He Q. Enhanced simultaneous nitrification and denitrification in treating low carbon-to-nitrogen ratio wastewater: Treatment performance and nitrogen removal pathway. BIORESOURCE TECHNOLOGY 2019; 280:51-58. [PMID: 30754005 DOI: 10.1016/j.biortech.2019.02.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/01/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is an energy-saving wastewater treatment process, however, the nitrogen removal pathways are not clear. An enhanced SND sequencing batch biofilm reactor with a SND ratio above 97.3% was built to treat low carbon to nitrogen ratio wastewater. When traditional nitrification was inhibited, ammonia removal efficiency still reached 45% in 8 h while the NO3- and NO2- concentration was less than 3 mg/L and 0.01 mg/L during the complete process, respectively. The pathways that could not be suppressed by the inhibitors (ATU and ClO3-) were stimulated by heterotrophic nitrifiers and aerobic denitrifiers with periplasmic nitrate reductase and contributed 55% of the total removed NH4+ and produced 51% of the emitted N2O. The contributions of different nitrogen removal pathways indicate that the unconventional pathways are important in wastewater treatment system and inhibitors should be carefully used in nitrogen removal pathway assays.
Collapse
Affiliation(s)
- Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China.
| | - Yu Xiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Rong Chen
- Xian University Architecture & Technology, Int Sci & Technol Cooperat Ctr Urban Alternat Wat, Key Lab Northwest Water Resource Environm & Ecol, MOE, Engn Technol Res Ctr Wastewater Treatment & R, 13 Yanta Rd, Xian 710055, Shanxi, PR China
| | - Zhiyu Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Li Gu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Li Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, PR China; National Centre for International Research of Low-carbon and Green Buildings, Chongqing University, Chongqing, PR China
| |
Collapse
|
321
|
Metzner R, Nomura T, Kitaoka N, Ando A, Ogawa J, Kato Y. Cobalt-dependent inhibition of nitrite oxidation in Nitrobacter winogradskyi. J Biosci Bioeng 2019; 128:463-467. [PMID: 31029538 DOI: 10.1016/j.jbiosc.2019.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 04/01/2019] [Indexed: 10/26/2022]
Abstract
Nitrobacter winogradskyi is an abundant, intensively studied autotrophic nitrite-oxidizing bacterium, which is frequently used as a model strain in the two-step nitrification of ammonia (NH3) to nitrate (NO3-) via nitrite (NO2-), either in activated sludge, agricultural field studies or more recently in artificial microbial consortia for organic hydroponics. We observed a hitherto unknown cobalt ion-dependent inhibition of cell growth and NO2- oxidation activity of N. winogradskyi in a mineral medium, which strongly depended on accompanying Ca2+ and Mg2+ concentrations. This inhibition was bacteriostatic, but susceptible to natural chelators. l-Histidine effectively restored cell growth and NO2- oxidation activity of N. winogradskyi in mineral media containing Co2+ with >90% recovery. Our results suggest that Co2+ competed with alkaline earth metals during uptake and that its toxicity was significantly reduced by complexation.
Collapse
Affiliation(s)
- Richard Metzner
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoki Kitaoka
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Akinori Ando
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan; Research Unit for Physiological Chemistry, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan.
| |
Collapse
|
322
|
Microbial immigration in wastewater treatment systems: analytical considerations and process implications. Curr Opin Biotechnol 2019; 57:151-159. [PMID: 31030172 DOI: 10.1016/j.copbio.2019.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 11/21/2022]
Abstract
Microbial immigration from sewers to wastewater treatment systems is attracting increasing attention for understanding community assembly mechanisms, and improving process modeling and operation. While there is no consensus on approaches to analyze immigration, we suggest to classify them as relevant to either rare (non-observable) diffusive immigration or to time-continuous high-rate mass flow immigration (i.e. mass effects). When analyzed by a mass flow approach, heterotrophs appear to be strongly influenced by deterministic selection, suggesting that the heterotrophs should be subdivided into several functional guilds when assessing their assembly mechanisms. Conversely, nitrifiers appear to transfer neutrally from sewer to activated sludge, and this immigration can restore full nitrification in otherwise non-nitrifying reactors. With further refinement, these findings could be included in predictive process models with various objectives.
Collapse
|
323
|
Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H. Low yield and abiotic origin of N 2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 2019; 10:1836. [PMID: 31015413 PMCID: PMC6478695 DOI: 10.1038/s41467-019-09790-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N2O and NO globally. However, nothing is known about N2O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N2O, and emits N2O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N2O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N2O during nitrification than AOB.
Collapse
Affiliation(s)
- K Dimitri Kits
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Julia Vierheilig
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, 3500, Austria
- Interuniversity Cooperation Centre for Water and Health, Krems, 3500, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Shurong Liu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Andreas Richter
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Holger Wissel
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
324
|
Zheng M, Wang M, Zhao Z, Zhou N, He S, Liu S, Wang J, Wang X. Transcriptional activity and diversity of comammox bacteria as a previously overlooked ammonia oxidizing prokaryote in full-scale wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:717-722. [PMID: 30530141 DOI: 10.1016/j.scitotenv.2018.11.435] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/04/2023]
Abstract
The discovery of complete ammonia oxidizing bacteria (CAOB) has fundamentally overturned the traditional recognition of nitrification. However, little was known about the transcriptional activity and diversity of the newly recognized ammonia oxidizing prokaryote in engineered ecosystems. To fill this gap, transcriptional investigations of CAOB amoA genes were carried out comparatively with the canonical ammonia oxidizing bacteria (AOB) and archaea (AOA) in eight full-scale wastewater treatment plants (WWTPs). Remarkably, qPCR results revealed the transcriptional levels of CAOB amoA gene were unexpectedly high in most of samples with the highest 24-fold that of AOB amoA, suggesting CAOB were actively participating in ammonia oxidation while they were previously overlooked. This result also well explained the confusing high abundances of genus Nitrospira which were frequently detected in WWTPs. Furthermore, phylogenetic analysis based on high throughput sequencing indicated the CAOB amoA gene sequences formed three well-supported clusters and Nitrospira nitrosa cluster accounted for 97% of all the retrieved sequences, which was supposed to be the dominant taxon of CAOB in the ammonia-intensive environment due to niche partitioning. This study highlighted the significance of including the newly discovered ammonia oxidizing bacterial member when assessing the nitrification process and ecological function in the future.
Collapse
Affiliation(s)
- Maosheng Zheng
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China.
| | - Mingyuan Wang
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Zhirong Zhao
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Nan Zhou
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Shishi He
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China
| | - Shufeng Liu
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Jiawen Wang
- College of Environmental Sciences and Engineering, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, China
| | - Xiangke Wang
- College of Environmental Science and Engineering, The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, North China Electric Power University, Beijing 102206, China
| |
Collapse
|
325
|
Liu W, Chen W, Yang D, Shen Y. Functional and compositional characteristics of nitrifiers reveal the failure of achieving mainstream nitritation under limited oxygen or ammonia conditions. BIORESOURCE TECHNOLOGY 2019; 275:272-279. [PMID: 30594837 DOI: 10.1016/j.biortech.2018.12.065] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/16/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
For understanding the potential of achieving nitritation under different oxygen and ammonia levels, two activated sludge reactors with high (RH) and low (RL) dissolved oxygen (DO) were parallelly operated. During over two months continuous operation, rare nitrite accumulation was observed in both reactors. K-strategists Nitrosomonas oligotropha and r-strategists Nitrosomonas europaea were enriched in the RH and RL, respectively, yet their response to DO variations was almost identical. Although K-strategists Nitrospira defluvii dominated both reactors, species cultured with low-DO exhibited higher oxygen affinity. Instead of DO, ammonia and nitrite availability should be the key factor for the selective enrichment of these nitrifiers. Taken together, the limiting ammonia for ammonia oxidizing bacteria and the better oxygen-uptake capacity of nitrite oxidizing bacteria wasrespectively responsible for the failure of nitrite accumulation in the RH and RL. This study supported that high DO coupled with excess ammonia would favor the achievement of mainstream nitritation.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Wenjing Chen
- School of Environmental Engineering and Science, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Dianhai Yang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| |
Collapse
|
326
|
Yang X, Liu L, Wang S. A strategy of high-efficient nitrogen removal by an ammonia-oxidizing bacterium consortium. BIORESOURCE TECHNOLOGY 2019; 275:216-224. [PMID: 30590208 DOI: 10.1016/j.biortech.2018.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/09/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
An ammonia-oxidizing bacterium consortium showed approximately 100% removal of NH4+-N with an initial concentration of 262.28 ± 8.21 mg·L-1 within 10 days, and only 16.54 ± 0.52% of NH4+-N was converted to NO2--N in this study. The consortium removed ammonium by heterotrophic nitrification and aerobic denitrification (HNAD) without N2O emission. The activity of AOB was not affected by low concentrations of FA or FNA, but completely inhibited by 0.04 mg HNO2·L-1. In a bioaugmentation treatment of eutrophic wastewater using the consortium, the removal efficiency of NH4+-N reached 90.85 ± 0.8% and 77.88 ± 1.86% at initial concentrations of 1.80 ± 0.04 mg·L-1 and 40.31 ± 0.57 mg·L-1, respectively, and the dissolved oxygen level had a significant impact on the consortium activity. No significant changes in the bacterial community structure were observed after the consortium addition, and local functional bacteria were enriched by aeration and contributed to ammonium nitrogen removal with AOB.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China
| | - Lihua Liu
- Maths & Physics College, Jinggangshan University, 28 Xueyuan Road, Ji'an 343009, PR China
| | - Shoubing Wang
- Department of Environmental Science and Engineering, Fudan University, 2005 Songhu Road, Shanghai 200433, PR China.
| |
Collapse
|
327
|
Mansfeldt C, Achermann S, Men Y, Walser JC, Villez K, Joss A, Johnson DR, Fenner K. Microbial residence time is a controlling parameter of the taxonomic composition and functional profile of microbial communities. ISME JOURNAL 2019; 13:1589-1601. [PMID: 30787397 DOI: 10.1038/s41396-019-0371-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/22/2022]
Abstract
A remaining challenge within microbial ecology is to understand the determinants of richness and diversity observed in environmental microbial communities. In a range of systems, including activated sludge bioreactors, the microbial residence time (MRT) has been previously shown to shape the microbial community composition. However, the physiological and ecological mechanisms driving this influence have remained unclear. Here, this relationship is explored by analyzing an activated sludge system fed with municipal wastewater. Using a model designed in this study based on Monod-growth kinetics, longer MRTs were shown to increase the range of growth parameters that enable persistence, resulting in increased richness and diversity in the modeled community. In laboratory experiments, six sequencing batch reactors treating domestic wastewater were operated in parallel at MRTs between 1 and 15 days. The communities were characterized using both 16S ribosomal RNA and non-target messenger RNA sequencing (metatranscriptomic analysis), and model-predicted monotonic increases in richness were confirmed in both profiles. Accordingly, taxonomic Shannon diversity also increased with MRT. In contrast, the diversity in enzyme class annotations resulting from the metatranscriptomic analysis displayed a non-monotonic trend over the MRT gradient. Disproportionately high abundances of transcripts encoding for rarer enzymes occur at longer MRTs and lead to the disconnect between taxonomic and functional diversity profiles.
Collapse
Affiliation(s)
- Cresten Mansfeldt
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| | - Stefan Achermann
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - Yujie Men
- Department of Civil and Environmental Engineering, University of Illinois, 205N. Mathews Ave., Urbana, IL, 61801, USA
| | - Jean-Claude Walser
- Department of Environmental Systems Science, Genetic Diversity Centre, ETH Zürich, Universitätstrasse 16, 8006, Zürich, Switzerland
| | - Kris Villez
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Adriano Joss
- Department of Process Engineering, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - David R Johnson
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Kathrin Fenner
- Department of Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland.,Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| |
Collapse
|
328
|
Lagkouvardos I, Lesker TR, Hitch TCA, Gálvez EJC, Smit N, Neuhaus K, Wang J, Baines JF, Abt B, Stecher B, Overmann J, Strowig T, Clavel T. Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. MICROBIOME 2019; 7:28. [PMID: 30782206 PMCID: PMC6381624 DOI: 10.1186/s40168-019-0637-2] [Citation(s) in RCA: 436] [Impact Index Per Article: 87.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/29/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Bacteria within family S24-7 (phylum Bacteroidetes) are dominant in the mouse gut microbiota and detected in the intestine of other animals. Because they had not been cultured until recently and the family classification is still ambiguous, interaction with their host was difficult to study and confusion still exists regarding sequence data annotation. METHODS We investigated family S24-7 by combining data from large-scale 16S rRNA gene analysis and from functional and taxonomic studies of metagenomic and cultured species. RESULTS A total of 685 species was inferred by full-length 16S rRNA gene sequence clustering. While many species could not be assigned ecological habitats (93,045 samples analyzed), the mouse was the most commonly identified host (average of 20% relative abundance and nine co-occurring species). Shotgun metagenomics allowed reconstruction of 59 molecular species, of which 34 were representative of the 16S rRNA gene-derived species clusters. In addition, cultivation efforts allowed isolating five strains representing three species, including two novel taxa. Genome analysis revealed that S24-7 spp. are functionally distinct from neighboring families and versatile with respect to complex carbohydrate degradation. CONCLUSIONS We provide novel data on the diversity, ecology, and description of bacterial family S24-7, for which the name Muribaculaceae is proposed.
Collapse
Affiliation(s)
- Ilias Lagkouvardos
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Till R. Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| | - Eric J. C. Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Nathiana Smit
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Klaus Neuhaus
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Jun Wang
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - John F. Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Institute for Experimental Medicine, Kiel University, Kiel, Germany
| | - Birte Abt
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Jörg Overmann
- Leibniz-Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research (DZIF), partner sites Hannover-Braunschweig and Munich, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Clavel
- ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Pauwelsstrasse 30, 52074 Aachen, Germany
| |
Collapse
|
329
|
Armengol L, Calbet A, Franchy G, Rodríguez-Santos A, Hernández-León S. Planktonic food web structure and trophic transfer efficiency along a productivity gradient in the tropical and subtropical Atlantic Ocean. Sci Rep 2019; 9:2044. [PMID: 30765793 PMCID: PMC6376012 DOI: 10.1038/s41598-019-38507-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/28/2018] [Indexed: 11/09/2022] Open
Abstract
Oligotrophic and productive areas of the ocean differ in plankton community composition and biomass transfer efficiency. Here, we describe the plankton community along a latitudinal transect in the tropical and subtropical Atlantic Ocean. Prochlorococcus dominated the autotrophic community at the surface and mixed layer of oligotrophic stations, replaced by phototrophic picoeukaryotes and Synechococcus in productive waters. Depth-integrated biomass of microzooplankton was higher than mesozooplankton at oligotrophic stations, showing similar biomasses in productive waters. Dinoflagellates dominated in oligotrophic waters but ciliates dominated upwelling regions. In oligotrophic areas, microzooplankton consumed ca. 80% of the production, but ca. 66% in upwelling zones. Differences in microzooplankton and phytoplankton communities explain microzooplankton diel feeding rhythms: higher grazing rates during daylight in oligotrophic areas and diffuse grazing patterns in productive waters. Oligotrophic areas were more efficient at recycling and using nutrients through phytoplankton, while the energy transfer efficiency from nutrients to mesozooplankton appeared more efficient in productive waters. Our results support the classic paradigm of a shorter food web, and more efficient energy transfer towards upper food web levels in productive regions, but a microbially dominated, and very efficient, food web in oligotrophic regions. Remarkably, both models of food web exist under very high microzooplankton herbivory.
Collapse
Affiliation(s)
- Laia Armengol
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain.
| | - Albert Calbet
- Institut de Ciències del Mar, CSIC, Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Gara Franchy
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| | - Adriana Rodríguez-Santos
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| | - Santiago Hernández-León
- Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria (ULPGC), Unidad Asociada ULPGC-CSIC, Parque Científico Marino de Taliarte, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
330
|
Duan P, Fan C, Zhang Q, Xiong Z. Overdose fertilization induced ammonia-oxidizing archaea producing nitrous oxide in intensive vegetable fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1787-1794. [PMID: 30278423 DOI: 10.1016/j.scitotenv.2018.09.341] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
Little is known about the effects of nitrogen (N) fertilization rates on ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and their differential contribution to nitrous oxide (N2O) production, particularly in greenhouse based high N input vegetable soils. Six N treatments (N1, N2, N3, N4, N5 and N6 representing 0, 293, 587, 880, 1173 and 1760 kg N ha-1 yr-1, respectively) were continuously managed for three years in a typically intensified vegetable field in China. The aerobic incubation experiment involving these field-treated soils was designed to evaluate the relative contributions of AOA and AOB to N2O production by using acetylene or 1-octyne as inhibitors. The results showed that the soil pH and net nitrification rate gradually declined with increasing the fertilizer N application rates. The AOA were responsible for 44-71% of the N2O production with negligible N2O from AOB in urea unamended control soils. With urea amendment, the AOA were responsible for 48-53% of the N2O production in the excessively fertilized soils, namely the N5-N6 soils, while the AOB were responsible for 42-55% in the conventionally fertilized soils, namely the N1-N4 soils. Results indicated that overdose fertilization induced higher AOA-dependent N2O production than AOB, whereas urea supply led to higher AOB-dependent N2O production than AOA in conventionally fertilized soils. Additionally, a positive relationship existed between N2O production and NO2- accumulation during the incubation. Further mechanisms for NO2--dependent N2O production in intensive vegetable soils therefore deserve urgent attention.
Collapse
Affiliation(s)
- Pengpeng Duan
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Changhua Fan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Hainan 571737, China
| | - Qianqian Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
331
|
Corregido MC, Asención Diez MD, Iglesias AÁ, Piattoni CV. New pieces to the carbon metabolism puzzle of Nitrosomonas europaea: Kinetic characterization of glyceraldehyde-3 phosphate and succinate semialdehyde dehydrogenases. Biochimie 2019; 158:238-245. [PMID: 30690134 DOI: 10.1016/j.biochi.2019.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/19/2019] [Indexed: 02/02/2023]
Abstract
Nitrosomonas europaea is a chemolithotroph that obtains energy through the oxidation of ammonia to hydroxylamine while assimilates atmospheric CO2 to cover the cell carbon demands for growth. This microorganism plays a relevant role in the nitrogen biogeochemical cycle on Earth but its carbon metabolism remains poorly characterized. Based on sequence homology, we identified two genes (cbbG and gabD) coding for redox enzymes in N. europaea. Cloning and expression of the genes in Escherichia coli, allowed the production of recombinant enzymes purified to determine their biochemical properties. The protein CbbG is a glyceraldehyde-3-phosphate (Ga3P) dehydrogenase (Ga3PDHase) catalyzing the reversible oxidation of Ga3P to 1,3-bis-phospho-glycerate (1,3bisPGA), using specifically NAD+/NADH as cofactor. CbbG showed ∼6-fold higher Km value for 1,3bisPGA but ∼5-fold higher kcat for the oxidation of Ga3P. The protein GabD irreversibly oxidizes Ga3P to 3Pglycerate using NAD+ or NADP+, thus resembling a non-phosphorylating Ga3PDHase. However, the enzyme showed ∼6-fold higher Km value and three orders of magnitude higher catalytic efficiency with succinate semialdehyde (SSA) and NADP+. Indeed, the GabD protein identity corresponds to an SSA dehydrogenase (SSADHase). CbbG seems to be the only Ga3PDHase present in N. europaea; which would be involved in reducing triose-P during autotrophic carbon fixation. Otherwise, in cells grown under conditions deprived of ammonia and oxygen, the enzyme could catalyze the glycolytic step of Ga3P oxidation producing NADH. As an SSADHase, GabD would physiologically act producing succinate and preferentially NADPH over NADH; thus being part of an alternative pathway of the tricarboxylic acid cycle converting α-ketoglutarate to succinate. The properties determined for these enzymes contribute to better identify metabolic steps in CO2 assimilation, glycolysis and the tricarboxylic acid cycle in N. europaea. Results are discussed in the framework of metabolic pathways that launch biosynthetic intermediates relevant in the microorganism to develop and fulfill its role in nature.
Collapse
Affiliation(s)
- María Cecilia Corregido
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Matías Damián Asención Diez
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina
| | - Alberto Álvaro Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina.
| | - Claudia Vanesa Piattoni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (IAL, CONICET-UNL) & FBCB, Centro Científico Tecnológico CONICET Santa Fe, Santa Fe, Argentina; Instituto Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
332
|
Yin Y, Yan J, Chen G, Murdoch FK, Pfisterer N, Löffler FE. Nitrous Oxide Is a Potent Inhibitor of Bacterial Reductive Dechlorination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:692-701. [PMID: 30558413 PMCID: PMC6944068 DOI: 10.1021/acs.est.8b05871] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Organohalide-respiring bacteria are key players for the turnover of organohalogens. At sites impacted with chlorinated ethenes, bioremediation promotes reductive dechlorination; however, stoichiometric conversion to environmentally benign ethene is not always achieved. We demonstrate that nitrous oxide (N2O), a compound commonly present in groundwater, inhibits organohalide respiration. N2O concentrations in the low micromolar range decreased dechlorination rates and resulted in incomplete dechlorination of tetrachloroethene (PCE) in Geobacter lovleyi strain SZ and of cis-1,2-dichloroethene ( cDCE) and vinyl chloride (VC) in Dehalococcoides mccartyi strain BAV1 axenic cultures. Presumably, N2O interferes with reductive dechlorination by reacting with super-reduced Co(I)-corrinoids of reductive dehalogenases, which is supported by the finding that N2O did not inhibit corrinoid-independent fumarate-to-succinate reduction in strain SZ. Kinetic analyses revealed a best fit to the noncompetitive Michaelis-Menten inhibition model and determined N2O inhibitory constants, KI, for PCE and cDCE dechlorination of 40.8 ± 3.8 and 21.2 ± 3.5 μM in strain SZ and strain BAV1, respectively. The lowest KI value of 9.6 ± 0.4 μM was determined for VC to ethene reductive dechlorination in strain BAV1, suggesting that this crucial dechlorination step for achieving detoxification is most susceptible to N2O inhibition. Groundwater N2O concentrations exceeding 100 μM are not uncommon, especially in watersheds impacted by nitrate runoff from agricultural sources. Thus, dissolved N2O measurements can inform about cDCE and VC stalls at sites impacted with chlorinated ethenes.
Collapse
Affiliation(s)
- Yongchao Yin
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jun Yan
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Liaoning 110016, People’s Republic of China
| | - Gao Chen
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Fadime Kara Murdoch
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nina Pfisterer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Frank E. Löffler
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- Corresponding Author: Phone: (865) 974-4933.
| |
Collapse
|
333
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
334
|
Koch H, van Kessel MAHJ, Lücker S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 2019; 103:177-189. [PMID: 30415428 PMCID: PMC6311188 DOI: 10.1007/s00253-018-9486-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has been considered to be a stepwise process mediated by two distinct functional groups of microorganisms. The identification of complete nitrifying Nitrospira challenged not only the paradigm of labor division in nitrification, it also raises fundamental questions regarding the environmental distribution, diversity, and ecological significance of complete nitrifiers compared to canonical nitrifying microorganisms. Recent genomic and physiological surveys identified factors controlling their ecology and niche specialization, which thus potentially regulate abundances and population dynamics of the different nitrifying guilds. This review summarizes the recently obtained insights into metabolic differences of the known nitrifiers and discusses these in light of potential functional adaptation and niche differentiation between canonical and complete nitrifiers.
Collapse
Affiliation(s)
- Hanna Koch
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Sebastian Lücker
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
335
|
Zhou X, Li B, Guo Z, Wang Z, Luo J, Lu C. Niche Separation of Ammonia Oxidizers in Mudflat and Agricultural Soils Along the Yangtze River, China. Front Microbiol 2018; 9:3122. [PMID: 30619196 PMCID: PMC6305492 DOI: 10.3389/fmicb.2018.03122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/03/2018] [Indexed: 12/30/2022] Open
Abstract
Nitrification driven by ammonia oxidizers is a key step of nitrogen removal in estuarine environments. Spatial distribution characteristics of ammonia-oxidizers have been well understood in mudflats, but less studied in the agricultural soils next to mudflats, which also play an important role in nitrogen cycling of the estuarine ecosystem. In the present research, we investigated ammonia oxidizers' distributions along the Yangtze River estuary in Jiangsu Province, China, sampling soils right next to the estuary (mudflats) and the agricultural soils 100 m away. We determined the relationship between the abundance of amoA genes of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and the potential nitrification rates of the mudflats and agricultural soils. We also identified the environmental variables that correlated with the composition of the ammonia oxidizers' communities by 16S rRNA gene pyrosequencing. Results indicated that agricultural soils have significantly higher potential nitrification rates as well as the AOA abundance, and resulted in strong phylogenetic clustering only in AOA communities. The ammonia oxidizers' community compositions differed dramatically among the mudflat and agricultural sites, and stochasticity played a dominant role. The AOA communities were dominated by the Group 1.1a cluster at the mudflat, whereas the 54D9 and 29i4 clusters were dominant in agriculture soils. The dominant AOB communities in the mudflat were closely related to the Nitrosospira lineage, whereas the agricultural soils were dominated by the Nitrosomonas lineage. Soil organic matter and salinity were correlated with the ammonia oxidizers' community compositions.
Collapse
Affiliation(s)
- Xue Zhou
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| | - Bolun Li
- School of Geographic Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Zhiying Guo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, Nanjing, China
| | - Jian Luo
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Chunhui Lu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, China
| |
Collapse
|
336
|
Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX. Ubiquity and Diversity of Complete Ammonia Oxidizers (Comammox). Appl Environ Microbiol 2018; 84:e01390-18. [PMID: 30315079 PMCID: PMC6275355 DOI: 10.1128/aem.01390-18] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of complete ammonia oxidizers (comammox) refutes the century-old paradigm that nitrification requires the activity of two types of microbes. Determining the distribution and abundance of comammox in various environments is important for revealing the ecology of microbial nitrification within the global nitrogen cycle. In this study, the ubiquity and diversity of comammox were analyzed for samples from different types of environments, including soil, sediment, sludge, and water. The results of a two-step PCR using highly degenerate primers (THDP-PCR) and quantitative real-time PCR (qPCR) supported the relatively high abundance of comammox in nearly half of all samples tested, sometimes even outnumbering canonical ammonia-oxidizing bacteria (AOB). In addition, a relatively high proportion of comammox in tap and coastal water samples was confirmed via analysis of metagenomic data sets in public databases. The diversity of comammox was estimated by comammox-specific partial nested PCR amplification of the ammonia monooxygenase subunit A (amoA) gene, and phylogenetic analysis of comammox AmoA clearly showed a split of clade A into clades A.1 and A.2, with the proportions of clades A.1, A.2, and B differing among the various environmental samples. Moreover, compared to the amoA genes of AOB and ammonia-oxidizing archaea (AOA), the comammox amoA gene exhibited higher diversity indices. The ubiquitous distribution and high diversity of comammox indicate that they are likely overlooked contributors to nitrification in various ecosystems.IMPORTANCE The discovery of complete ammonia oxidizers (comammox), which oxidize ammonia to nitrate via nitrite, refutes the century-old paradigm that nitrification requires the activity of two types of microbes and redefines a key process in the biogeochemical nitrogen cycle. Understanding the functional relationships between comammox and other nitrifiers is important for ecological studies on the nitrogen cycle. Therefore, the diversity and contribution of comammox should be considered during ecological analyses of nitrifying microorganisms. In this study, a ubiquitous and highly diverse distribution of comammox was observed in various environmental samples, similar to the distribution of canonical ammonia-oxidizing bacteria. The proportion of comammox was relatively high in coastal water and sediment samples, whereas it was nearly undetectable in open-ocean samples. The ubiquitous distribution and high diversity of comammox indicate that these microorganisms might be important contributors to nitrification.
Collapse
Affiliation(s)
- Fei Xia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian-Gong Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
337
|
Boddicker AM, Mosier AC. Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. THE ISME JOURNAL 2018; 12:2864-2882. [PMID: 30050164 PMCID: PMC6246548 DOI: 10.1038/s41396-018-0240-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Nitrite-oxidizing bacteria (NOB) play a critical role in the mitigation of nitrogen pollution by metabolizing nitrite to nitrate, which is removed via assimilation, denitrification, or anammox. Recent studies showed that NOB are phylogenetically and metabolically diverse, yet most of our knowledge of NOB comes from only a few cultured representatives. Using cultivation and genomic sequencing, we identified four putative Candidatus Nitrotoga NOB species from freshwater sediments and water column samples in Colorado, USA. Genome analyses indicated highly conserved 16S rRNA gene sequences, but broad metabolic potential including genes for nitrogen, sulfur, hydrogen, and organic carbon metabolism. Genomic predictions suggested that Ca. Nitrotoga can metabolize in low oxygen or anoxic conditions, which may support an expanded environmental niche for Ca. Nitrotoga similar to other NOB. An array of antibiotic and metal resistance genes likely allows Ca. Nitrotoga to withstand environmental pressures in impacted systems. Phylogenetic analyses highlighted a deeply divergent nitrite oxidoreductase alpha subunit (NxrA), suggesting a novel evolutionary trajectory for Ca. Nitrotoga separate from any other NOB and further revealing the complex evolutionary history of nitrite oxidation in the bacterial domain. Ca. Nitrotoga-like 16S rRNA gene sequences were prevalent in globally distributed environments over a range of reported temperatures. This work considerably expands our knowledge of the Ca. Nitrotoga genus and suggests that their contribution to nitrogen cycling should be considered alongside other NOB in wide variety of habitats.
Collapse
Affiliation(s)
- Andrew M Boddicker
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA.
| |
Collapse
|
338
|
Gu M, Yin Q, Wang Z, He K, Wu G. Color and nitrogen removal from synthetic dye wastewater in an integrated mesophilic hydrolysis/acidification and multiple anoxic/aerobic process. CHEMOSPHERE 2018; 212:881-889. [PMID: 30195168 DOI: 10.1016/j.chemosphere.2018.08.162] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/30/2018] [Accepted: 08/31/2018] [Indexed: 06/08/2023]
Abstract
Dye wastewater is one kind of refractory pollutant and it is commonly treated by the integrated anaerobic and aerobic process. A new integrated hydrolysis/acidification and multiple anoxic/aerobic (AO) process was proposed for the removal of color and nitrogen from azo dye wastewater. System performance, the degradation pathway of azo dye and nitrogen metabolic pathway were investigated with quadrupole-time-of-flight and metagenomic analyses. The proposed process removed color and nitrogen efficiently, with the removal percentages of 89.4% and 54.0%, respectively. A colorful intermediate C16H11N3O7S2 during the degradation of azo dye was detected. Controlling a low dissolved oxygen concentration in the multiple AO process could enhance nitrogen removal. The detected bacteria possessing azoreductase for the azo dye degradation included Desulfovibrio aminophilus, Thermoanaerobacter, Lactococcus raffinolactis, Ruminiclostridium and Rhodopirellula. The nitrifying genes of amo and hao were mainly detected in Nitrosomonas, while the denitrifying genes were detected in Thauera, Candidatus Accumulibacter and Rhodothermus marinus.
Collapse
Affiliation(s)
- Mengqi Gu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Qidong Yin
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Zhongzhong Wang
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
| | - Kai He
- Research Centre for Environmental Quality Management, Kyoto University, 1-2 Yumihama, Otsu, Shiga, 520-0811, Japan
| | - Guangxue Wu
- Guangdong Province Engineering Research Center for Urban Water Recycling and Environmental Safety, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
339
|
Friedman L, Mamane H, Avisar D, Chandran K. The role of influent organic carbon-to-nitrogen (COD/N) ratio in removal rates and shaping microbial ecology in soil aquifer treatment (SAT). WATER RESEARCH 2018; 146:197-205. [PMID: 30261358 DOI: 10.1016/j.watres.2018.09.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Soil columns simulating soil aquifer treatment (SAT), fed with synthetic secondary effluent by intermittent infiltration of flooding/drying cycles, were characterized for nitrogen and organic carbon removal, and microbial ecology and biokinetics. The columns differed in the concentration ratio of chemical oxygen demand (COD) to the summed NH4+, NO2- and organic nitrogen-2 (C/N2) or 5 (C/N5). Chemical profiles along the column demonstrated a preference for COD oxidation over nitrification and coupled denitrification, with higher nitrogen loss (57% vs. 16%) in the C/N5 column. Unexpectedly, significant dominance of the genus Nitrospira over the genus Nitrobacter and ammonia-oxidizing bacteria (AOB) was strongly correlated at column depths where NH4+ removal occurred. Moreover, the Nitrospira profile had the strongest correlation to the profile of NH4+ (positive) and NO3- (negative), strongly indicating complete ammonia oxidation. 16S sequencing analysis of the topsoil in C/N2 vs. C/N5 columns revealed double the abundance of microbial aerobic potential (64% vs. 32%) vs. one-third the denitrification potential (13% vs. 31%). The concentrations and degradability levels of organic carbon were the most influential parameters shaping community structure. Niche differentiation within the biofilm attached to the soil is suggested to have an important role in the process's anoxic activity and nitrogen removal.
Collapse
Affiliation(s)
- Liron Friedman
- School of Mechanical Engineering, Environmental Engineering Program, Tel Aviv University, Tel Aviv, 69978, Israel; School of Earth Sciences, The Water Research Center, Hydrochemistry, Tel Aviv University, Tel Aviv, 69978, Israel; Department of Earth and Environmental Engineering, Columbia University in the City of New York, New York, NY, 10027, USA
| | - Hadas Mamane
- School of Mechanical Engineering, Environmental Engineering Program, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Dror Avisar
- School of Earth Sciences, The Water Research Center, Hydrochemistry, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University in the City of New York, New York, NY, 10027, USA
| |
Collapse
|
340
|
Sakoula D, Nowka B, Spieck E, Daims H, Lücker S. The draft genome sequence of " Nitrospira lenta" strain BS10, a nitrite oxidizing bacterium isolated from activated sludge. Stand Genomic Sci 2018; 13:32. [PMID: 30498561 PMCID: PMC6251164 DOI: 10.1186/s40793-018-0338-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 11/10/2018] [Indexed: 11/10/2022] Open
Abstract
The genus Nitrospira is considered to be the most widespread and abundant group of nitrite-oxidizing bacteria in many natural and man-made ecosystems. However, the ecophysiological versatility within this phylogenetic group remains highly understudied, mainly due to the lack of pure cultures and genomic data. To further expand our understanding of this biotechnologically important genus, we analyzed the high quality draft genome of "Nitrospira lenta" strain BS10, a sublineage II Nitrospira that was isolated from a municipal wastewater treatment plant in Hamburg, Germany. The genome of "N. lenta" has a size of 3,756,190 bp and contains 3968 genomic objects, of which 3907 are predicted protein-coding sequences. Thorough genome annotation allowed the reconstruction of the "N. lenta" core metabolism for energy conservation and carbon fixation. Comparative analyses indicated that most metabolic features are shared with N. moscoviensis and "N. defluvii", despite their ecological niche differentiation and phylogenetic distance. In conclusion, the genome of "N. lenta" provides important insights into the genomic diversity of the genus Nitrospira and provides a foundation for future comparative genomic studies that will generate a better understanding of the nitrification process.
Collapse
Affiliation(s)
- Dimitra Sakoula
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| | - Boris Nowka
- Department of Microbiology & Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Eva Spieck
- Department of Microbiology & Biotechnology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Althanstr. 14, 1090 Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, Netherlands
| |
Collapse
|
341
|
Arce MI, von Schiller D, Bengtsson MM, Hinze C, Jung H, Alves RJE, Urich T, Singer G. Drying and Rainfall Shape the Structure and Functioning of Nitrifying Microbial Communities in Riverbed Sediments. Front Microbiol 2018; 9:2794. [PMID: 30519221 PMCID: PMC6250940 DOI: 10.3389/fmicb.2018.02794] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/30/2018] [Indexed: 11/13/2022] Open
Abstract
Non-flow periods in fluvial ecosystems are a global phenomenon. Streambed drying and rewetting by sporadic rainfalls could drive considerable changes in the microbial communities that govern stream nitrogen (N) availability at different temporal and spatial scales. We performed a microcosm-based experiment to investigate how dry period duration (DPD) (0, 3, 6, and 9 weeks) and magnitude of sporadic rewetting by rainfall (0, 4, and 21 mm applied at end of dry period) affected stocks of N in riverbed sediments, ammonia-oxidizing bacteria (AOB) and archaea (AOA) and rates of ammonia oxidation (AO), and emissions of nitrous oxide (N2O) to the atmosphere. While ammonium (NH4 +) pool size decreased, nitrate (NO3 -) pool size increased in sediments with progressive drying. Concomitantly, the relative and absolute abundance of AOB and, especially, AOA (assessed by 16S rRNA gene sequencing and quantitative PCR of ammonia monooxygenase genes) increased, despite an apparent decrease of AO rates with drying. An increase of N2O emissions occurred at early drying before substantially dropping until the end of the experiment. Strong rainfall of 21 mm increased AO rates and NH4 + in sediments, whereas modest rainfall of 4 mm triggered a notable increase of N2O fluxes. Interestingly, such responses were detected only after 6 and 9 weeks of drying. Our results demonstrate that progressive drying drives considerable changes in in-stream N cycling and the associated nitrifying microbial communities, and that sporadic rainfall can modulate these effects. Our findings are particularly relevant for N processing and transport in rivers with alternating dry and wet phases - a hydrological scenario expected to become more important in the future.
Collapse
Affiliation(s)
- Maria Isabel Arce
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Daniel von Schiller
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Mia M. Bengtsson
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christian Hinze
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Hoseung Jung
- Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt University of Berlin, Berlin, Germany
| | - Ricardo J. Eloy Alves
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Gabriel Singer
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| |
Collapse
|
342
|
Jones CM, Hallin S. Geospatial variation in co-occurrence networks of nitrifying microbial guilds. Mol Ecol 2018; 28:293-306. [PMID: 30307658 PMCID: PMC6905385 DOI: 10.1111/mec.14893] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/20/2018] [Accepted: 10/01/2018] [Indexed: 01/07/2023]
Abstract
Microbial communities transform nitrogen (N) compounds, thereby regulating the availability of N in soil. The N cycle is defined by interacting microbial functional groups, as inorganic N‐products formed in one process are the substrate in one or several other processes. The nitrification pathway is often a two‐step process in which bacterial or archaeal communities oxidize ammonia to nitrite, and bacterial communities further oxidize nitrite to nitrate. Little is known about the significance of interactions between ammonia‐oxidizing bacteria (AOB) and archaea (AOA) and nitrite‐oxidizing bacterial communities (NOB) in determining the spatial variation of overall nitrifier community structure. We hypothesize that nonrandom associations exist between different AO and NOB lineages that, along with edaphic factors, shape field‐scale spatial patterns of nitrifying communities. To address this, we sequenced and quantified the abundance of AOA, AOB, and Nitrospira and Nitrobacter NOB communities across a 44‐hectare site with agricultural fields. The abundance of Nitrobacter communities was significantly associated only with AOB abundance, while that of Nitrospira was correlated to AOA. Network analysis and geostatistical modelling revealed distinct modules of co‐occurring AO and NOB groups occupying disparate areas, with each module dominated by different lineages and associated with different edaphic factors. Local communities were characterized by a high proportion of module‐connecting versus module‐hub nodes, indicating that nitrifier assemblages in these soils are shaped by fluctuating conditions. Overall, our results demonstrate the utility of network analysis in accounting for potential biotic interactions that define the niche space of nitrifying communities at scales compatible to soil management.
Collapse
Affiliation(s)
- Christopher M Jones
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden
| | - Sara Hallin
- Swedish University of Agricultural Sciences, Department of Forest Mycology and Plant Pathology, Uppsala, Sweden
| |
Collapse
|
343
|
Kimble JC, Winter AS, Spilde MN, Sinsabaugh RL, Northup DE. A potential central role of Thaumarchaeota in N-Cycling in a semi-arid environment, Fort Stanton Cave, Snowy River passage, New Mexico, USA. FEMS Microbiol Ecol 2018; 94:5079639. [PMID: 30165514 PMCID: PMC6669814 DOI: 10.1093/femsec/fiy173] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/23/2018] [Indexed: 01/03/2023] Open
Abstract
Low biomass and productivity of arid-land caves with limited availability of nitrogen (N) raises the question of how microbes acquire and cycle this essential element. Caves are ideal environments for investigating microbial functional capabilities, as they lack phototrophic activity and have near constant temperatures and high relative humidity. From the walls of Fort Stanton Cave (FSC), multicolored secondary mineral deposits of soil-like material low in fixed N, known as ferromanganese deposits (FMD), were collected. We hypothesized that within FMD samples we would find the presence of microbial N cycling genes and taxonomy related to N cycling microorganisms. Community DNA were sequenced using Illumina shotgun metagenomics and 16S rRNA gene sequencing. Results suggest a diverse N cycle encompassing several energetic pathways including nitrification, dissimilatory nitrate reduction and denitrification. N cycling genes associated with assimilatory nitrate reduction were also identified. Functional gene sequences and taxonomic findings suggest several bacterial and archaeal phyla potentially play a role in nitrification pathways in FSC and FMD. Thaumarchaeota, a deep-branching archaeal division, likely play an essential and possibly dominant role in the oxidation of ammonia. Our results provide genomic evidence for understanding how microbes are potentially able to acquire and cycle N in a low-nutrient subterranean environment.
Collapse
Affiliation(s)
- Jason C Kimble
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ara S Winter
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael N Spilde
- Institute of Meteoritics, MSC03-2050, University of New Mexico, Albuquerque, NM 87131, USA
| | - Robert L Sinsabaugh
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| | - Diana E Northup
- Department of Biology, MSC03-2020, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
344
|
|
345
|
Pelissari C, Guivernau M, Viñas M, García J, Velasco-Galilea M, Souza SS, Sezerino PH, Ávila C. Effects of partially saturated conditions on the metabolically active microbiome and on nitrogen removal in vertical subsurface flow constructed wetlands. WATER RESEARCH 2018; 141:185-195. [PMID: 29787952 DOI: 10.1016/j.watres.2018.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/03/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen dynamics and its association to metabolically active microbial populations were assessed in two vertical subsurface vertical flow (VF) wetlands treating urban wastewater. These VF wetlands were operated in parallel with unsaturated (UVF) and partially saturated (SVF) configurations. The SVF wetland exhibited almost 2-fold higher total nitrogen removal rate (5 g TN m-2 d-1) in relation to the UVF wetland (3 g TN m-2 d-1), as well as a low NOx-N accumulation (1 mg L-1 vs. 26 mg L-1 in SVF and UVF wetland effluents, respectively). After 6 months of operation, ammonia oxidizing prokaryotes (AOP) and nitrite oxidizing bacteria (NOB) displayed an important role in both wetlands. Oxygen availability and ammonia limiting conditions promoted shifts on the metabolically active nitrifying community within 'nitrification aggregates' of wetland biofilms. Ammonia oxidizing archaea (AOA) and Nitrospira spp. overcame ammonia oxidizing bacteria (AOB) in the oxic layers of both wetlands. Microbial quantitative and diversity assessments revealed a positive correlation between Nitrobacter and AOA, whereas Nitrospira resulted negatively correlated with Nitrobacter and AOB populations. The denitrifying gene expression was enhanced mainly in the bottom layer of the SVF wetland, in concomitance with the depletion of NOx-N from wastewater. Functional gene expression of nitrifying and denitrifying populations combined with the active microbiome diversity brought new insights on the microbial nitrogen-cycling occurring within VF wetland biofilms under different operational conditions.
Collapse
Affiliation(s)
- Catiane Pelissari
- GESAD - Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil.
| | - Miriam Guivernau
- GIRO - Program of Integrated Management of Organic Waste, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Marc Viñas
- GIRO - Program of Integrated Management of Organic Waste, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Joan García
- GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya-BarcelonaTech, c/ Jordi Girona, 1-3, Building D1, E-08034, Barcelona, Spain
| | - María Velasco-Galilea
- GMA - Program of Genetics and Animal Breeding, Institute of Agrifood Research and Technology (IRTA), Torre Marimon, E-08140, Caldes de Montbui, Barcelona, Spain
| | - Samara Silva Souza
- INTELAB - Integrated Technologies Laboratory, Chemical and Food Engineering Department, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Pablo Heleno Sezerino
- GESAD - Decentralized Sanitation Research Group, Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Trindade, Florianópolis, Santa Catarina, 88040-900, Brazil
| | - Cristina Ávila
- ICRA - Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Emili Grahit, 101, E-17003, Girona, Spain; AIMEN Technology Center, c/ Relva, 27 A, Torneiros, E-36410, Porriño, Pontevedra, Spain
| |
Collapse
|
346
|
Sabba F, Terada A, Wells G, Smets BF, Nerenberg R. Nitrous oxide emissions from biofilm processes for wastewater treatment. Appl Microbiol Biotechnol 2018; 102:9815-9829. [DOI: 10.1007/s00253-018-9332-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/13/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023]
|
347
|
Yu C, Hou L, Zheng Y, Liu M, Yin G, Gao J, Liu C, Chang Y, Han P. Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Appl Microbiol Biotechnol 2018; 102:9363-9377. [PMID: 30094589 DOI: 10.1007/s00253-018-9274-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 11/27/2022]
Abstract
Complete ammonia oxidizers (comammox), as novel microbial communities, are predicted to play an important role in the nitrogen cycle. Here we reported the presence of complete nitrification in tidal sediments and examined the diversity and abundance of comammox in natural ecosystems. Metagenome and metatranscriptome of the enrichment culture from tidal sediments harbored the genes of comammox. Near-complete comammox AmoA/B/C- and Hao-like sequences showed close relationships to the known comammox (with sequence identity from 79 to 99%) rather than classical betaproteobacterial ammonia-oxidizing bacteria (β-AOB) (57 to 66%) and ammonia-oxidizing archaea (AOA) (24 to 38%). To analyze the diversity of comammox in natural environments, a new primer set targeting clade A comammox Nitrospira (COM-A) amoA genes was designed based on sequences obtained in this study and sequences from published database. In silico evaluation of the primers showed the high coverage of 89 and 100% in the COM-A amoA database. Application of the primers in six different ecosystems proved their strong availability. Community composition of COM-A suggested a relatively higher diversity than β-AOB in similar environments. Quantification results showed that COM-A amoA genes accounted for about 0.4-5.6% in total amoA genes. These results provide novel insight into our perception of the enigmatic comammox and have significant implications for profound understanding of complex nitrification process.
Collapse
Affiliation(s)
- Chendi Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China.
| | - Yanling Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China.
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Juan Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Cheng Liu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Yongkai Chang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China
| | - Ping Han
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
348
|
Kitzinger K, Koch H, Lücker S, Sedlacek CJ, Herbold C, Schwarz J, Daebeler A, Mueller AJ, Lukumbuzya M, Romano S, Leisch N, Karst SM, Kirkegaard R, Albertsen M, Nielsen PH, Wagner M, Daims H. Characterization of the First " Candidatus Nitrotoga" Isolate Reveals Metabolic Versatility and Separate Evolution of Widespread Nitrite-Oxidizing Bacteria. mBio 2018; 9:e01186-18. [PMID: 29991589 PMCID: PMC6050957 DOI: 10.1128/mbio.01186-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 06/14/2018] [Indexed: 11/30/2022] Open
Abstract
Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus "Candidatus Nitrotoga" are widespread in natural and engineered ecosystems. Knowledge about their biology is sparse, because no genomic information and no pure "Ca Nitrotoga" culture was available. Here we obtained the first "Ca Nitrotoga" isolate from activated sludge. This organism, "Candidatus Nitrotoga fabula," prefers higher temperatures (>20°C; optimum, 24 to 28°C) than previous "Ca Nitrotoga" enrichments, which were described as cold-adapted NOB. "Ca Nitrotoga fabula" also showed an unusually high tolerance to nitrite (activity at 30 mM NO2-) and nitrate (up to 25 mM NO3-). Nitrite oxidation followed Michaelis-Menten kinetics, with an apparent Km (Km(app)) of ~89 µM nitrite and a Vmax of ~28 µmol of nitrite per mg of protein per h. Key metabolic pathways of "Ca Nitrotoga fabula" were reconstructed from the closed genome. "Ca Nitrotoga fabula" possesses a new type of periplasmic nitrite oxidoreductase belonging to a lineage of mostly uncharacterized proteins. This novel enzyme indicates (i) separate evolution of nitrite oxidation in "Ca Nitrotoga" and other NOB, (ii) the possible existence of phylogenetically diverse, unrecognized NOB, and (iii) together with new metagenomic data, the potential existence of nitrite-oxidizing archaea. For carbon fixation, "Ca Nitrotoga fabula" uses the Calvin-Benson-Bassham cycle. It also carries genes encoding complete pathways for hydrogen and sulfite oxidation, suggesting that alternative energy metabolisms enable "Ca Nitrotoga fabula" to survive nitrite depletion and colonize new niches.IMPORTANCE Nitrite-oxidizing bacteria (NOB) are major players in the biogeochemical nitrogen cycle and critical for wastewater treatment. However, most NOB remain uncultured, and their biology is poorly understood. Here, we obtained the first isolate from the environmentally widespread NOB genus "Candidatus Nitrotoga" and performed a detailed physiological and genomic characterization of this organism ("Candidatus Nitrotoga fabula"). Differences between key phenotypic properties of "Ca Nitrotoga fabula" and those of previously enriched "Ca Nitrotoga" members reveal an unexpectedly broad range of physiological adaptations in this genus. Moreover, genes encoding components of energy metabolisms outside nitrification suggest that "Ca Nitrotoga" are ecologically more flexible than previously anticipated. The identification of a novel nitrite-oxidizing enzyme in "Ca Nitrotoga fabula" expands our picture of the evolutionary history of nitrification and might lead to discoveries of novel nitrite oxidizers. Altogether, this study provides urgently needed insights into the biology of understudied but environmentally and biotechnologically important microorganisms.
Collapse
Affiliation(s)
- Katharina Kitzinger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Hanna Koch
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Sebastian Lücker
- Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Christopher J Sedlacek
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Craig Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Jasmin Schwarz
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Anna J Mueller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Michael Lukumbuzya
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Stefano Romano
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Nikolaus Leisch
- Max-Planck-Institute for Marine Microbiology, Bremen, Germany
| | - Søren Michael Karst
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Rasmus Kirkegaard
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Mads Albertsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network "Chemistry meets Microbiology," University of Vienna, Vienna, Austria
| |
Collapse
|
349
|
Kaiser P, Reich S, Greiner A, Freitag R. Preparation of Biocomposite Microfibers Ready for Processing into Biologically Active Textile Fabrics for Bioremediation. Macromol Biosci 2018; 18:e1800046. [PMID: 29896921 DOI: 10.1002/mabi.201800046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Indexed: 11/10/2022]
Abstract
Biocomposites, i.e., materials consisting of metabolically active microorganisms embedded in a synthetic extracellular matrix, may find applications as highly specific catalysts in bioproduction and bioremediation. 3D constructs based on fibrous biocomposites, so-called "artificial biofilms," are of particular interest in this context. The inability to produce biocomposite fibers of sufficient mechanical strength for processing into bioactive fabrics has so far hindered progress in the area. Herein a method is proposed for the direct wet spinning of microfibers suitable for weaving and knitting. Metabolically active bacteria (either Shewanella oneidensis or Nitrobacter winogradskyi (N. winogradskyi)) are embedded in these fibers, using poly(vinyl alcohol) as matrix. The produced microfibers have a partially crystalline structure and are stable in water without further treatment, such as coating. In a first application, their potential for nitrite removal (N. winogradskyi) is demonstrated, a typical challenge in potable water treatment.
Collapse
Affiliation(s)
- Patrick Kaiser
- Process Biotechnology, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Steffen Reich
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry and Bavarian Polymer Institute, University of Bayreuth, D-95447, Bayreuth, Germany
| | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, D-95447, Bayreuth, Germany
| |
Collapse
|
350
|
Yepsen DV, Levipan HA, Molina V. Nitrospina bacteria in a rocky intertidal habitat (Quintay Bay, central Chile). Microbiologyopen 2018; 8:e00646. [PMID: 29799171 PMCID: PMC6436435 DOI: 10.1002/mbo3.646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
Nitrospina bacteria are among the most important nitrite oxidizers in coastal and open-ocean environments, but the relevance of the genus contrasts with the scarceness of information on their ecophysiology and habitat range. Thus far, Nitrospina bacteria have been the only nitrite oxidizers detected at high abundance in Chilean coastal waters. These levels are often higher than at other latitudes. In this study, the abundance of 16S-rRNA gene transcripts of Nitrospina (hereafter just transcripts) was measured by reverse transcription quantitative PCR in a rocky intertidal gradient and compared with the nearshore counterpart off central Chile (~33°S). Rocky pond transcripts were also compared with the taxonomic composition of the macrobiota and bacterioplankton (by 16S-rRNA gene-based T-RFLP) in the intertidal gradient. Transcripts increased from warmer, saltier, and low-nitrite ponds in the upper intertidal zone (19.5 ± 1.6°C, 39.0 ± 1.0 psu, 0.98 ± 0.17 μmol/L) toward cooler, less salty, and high-nitrite ponds (17.8 ± 2.6°C, 37.7 ± 0.82 psu, 1.23 ± 0.21 μmol/L) from middle and low zones. These varied from ~1,000 up to 62,800 transcripts. This increasing trend in the number of transcripts toward the lower zone was positively associated with the Shannon's diversity index for the macrobiota (r = .81, p < .01). Moreover, an important increase in the average number of transcripts was observed in ponds with a greater number of fish in the upper (7,846 transcripts during 2013) and lower zones (62,800 transcripts during 2015). Altogether, intertidal and nearshore transcripts were significantly correlated with nitrite concentrations (r = .804, p ˂ .01); rocky pond transcripts outnumbered nearshore ones by almost two orders of magnitude. In summary, rocky ponds favored both the presence and activity of Nitrospina bacteria that are tolerant to environmental stress. This in turn was positively influenced by the presence of ammonia- or urea-producing macrobiota.
Collapse
Affiliation(s)
- Daniela V Yepsen
- Programa de Doctorado en Ciencias con mención en Manejo de Recursos Acuáticos Renovables, Universidad de Concepción, Concepción, Chile
| | - Héctor A Levipan
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Valparaíso, Chile
| | - Verónica Molina
- Programa de Biodiversidad, Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|