301
|
Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. Cell Tissue Res 2016; 367:369-385. [DOI: 10.1007/s00441-016-2527-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 10/11/2016] [Indexed: 12/20/2022]
|
302
|
Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 2016; 1863:298-309. [PMID: 27825850 DOI: 10.1016/j.bbadis.2016.11.006] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/09/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Cardiac myofibroblasts play an important role in myocardial remodeling. Although α-smooth muscle actin (α-SMA) expression is the hallmark of mature myofibroblasts, its role in regulating fibroblast function remains poorly understood. We explore the effects of the matrix environment in modulating cardiac fibroblast phenotype, and we investigate the role of α-SMA in fibroblast function using loss- and gain-of-function approaches. In murine myocardial infarction, infiltration of the infarct border zone with abundant α-SMA-positive myofibroblasts was associated with scar contraction. Isolated cardiac fibroblasts cultured in plates showed high α-SMA expression localized in stress fibers, exhibited activation of focal adhesion kinase (FAK), and synthesized large amounts of extracellular matrix proteins. In contrast, when these cells were cultured in collagen lattices, they exhibited marked reduction of α-SMA expression, negligible FAK activation, attenuated collagen synthesis, and increased transcription of genes associated with matrix metabolism. Transforming Growth Factor-β1-mediated contraction of fibroblast-populated collagen pads was associated with accentuated α-SMA synthesis. In contrast, serum- and basic Fibroblast Growth Factor-induced collagen pad contraction was associated with reduced α-SMA expression. α-SMA siRNA knockdown attenuated contraction of collagen pads populated with serum-stimulated cells. Surprisingly, α-SMA overexpression also reduced collagen pad contraction, suggesting that α-SMA is not sufficient to promote contraction of the matrix. Reduced contraction by α-SMA-overexpressing cells was associated with attenuated proliferative activity, in the absence of any effects on apoptosis. α-SMA may be implicated in contraction and remodeling of the extracellular matrix, but is not sufficient to induce contraction. α-SMA expression may modulate cellular functions, beyond its effects on contractility.
Collapse
Affiliation(s)
- Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
303
|
Zhai X, Qin Y, Chen Y, Lin L, Wang T, Zhong X, Wu X, Chen S, Li J, Wang Y, Zhang F, Zhao W, Zhong Z. Coxsackievirus B3 induces the formation of autophagosomes in cardiac fibroblasts both in vitro and in vivo. Exp Cell Res 2016; 349:255-263. [PMID: 27793649 DOI: 10.1016/j.yexcr.2016.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/21/2016] [Accepted: 10/22/2016] [Indexed: 11/25/2022]
Abstract
Coxsackievirus group B (CVB) is one of the common pathogens that cause myocarditis and cardiomyopathy. Evidence has shown that CVB replication in cardiomyocytes is responsible for the damage and loss of cardiac muscle and the dysfunction of the heart. However, it remains largely undefined how CVB would directly impact cardiac fibroblasts, the most abundant cells in human heart. In this study, cardiac fibroblasts were isolated from Balb/c mice and infected with CVB type 3 (CVB3). Increased double-membraned, autophagosome-like vesicles in the CVB3-infected cardiac fibroblasts were observed with electron microscope. Punctate distribution of LC3 and increased level of LC3-II were also detected in the infected cardiac fibroblasts. Furthermore, we observed that the expression of pro-inflammatory cytokines, IL-6 and TNF-α, was increased in the CVB3-infected cardiac fibroblasts, while suppressed autophagy by 3-MA and Atg7-siRNA inhibited cytokine expression. Consistent with the in vitro findings, increased formation of autophagosomes was observed in the cardiac fibroblasts of Balb/c mice infected with CVB3. In conclusion, our data demonstrated that cardiac fibroblasts respond to CVB3 infection with the formation of autophagosomes and the release of the pro-inflammatory cytokines. These results suggest that the autophagic response of cardiac fibroblasts may play a role in the pathogenesis of myocarditis caused by CVB3 infection.
Collapse
Affiliation(s)
- Xia Zhai
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Ying Qin
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yang Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Lexun Lin
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Tianying Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyan Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Xiaoyu Wu
- Department of Cardiology, The First Hospital of Harbin Medical University, 23 Youzheng Street, Harbin 150001, China.
| | - Sijia Chen
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Jing Li
- Center of Electron Microscopy, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Yan Wang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Fengmin Zhang
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Wenran Zhao
- Department of Cell Biology, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| | - Zhaohua Zhong
- Department of Microbiology and Wu Lien-Teh Institute, Harbin Medical University, 157 Baojian Road, Harbin 150081, China.
| |
Collapse
|
304
|
The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 2016; 101:231-240. [DOI: 10.1016/j.yexmp.2016.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
|
305
|
Schiechl G, Hermann FJ, Rodriguez Gomez M, Kutzi S, Schmidbauer K, Talke Y, Neumayer S, Goebel N, Renner K, Brühl H, Karasuyama H, Obata-Ninomiya K, Utpatel K, Evert M, Hirt SW, Geissler EK, Fichtner-Feigl S, Mack M. Basophils Trigger Fibroblast Activation in Cardiac Allograft Fibrosis Development. Am J Transplant 2016; 16:2574-88. [PMID: 26932231 DOI: 10.1111/ajt.13764] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/29/2016] [Accepted: 02/22/2016] [Indexed: 01/25/2023]
Abstract
Fibrosis is a major component of chronic cardiac allograft rejection. Although several cell types are able to produce collagen, resident (donor-derived) fibroblasts are mainly responsible for excessive production of extracellular matrix proteins. It is currently unclear which cells regulate production of connective tissue elements in allograft fibrosis and how basophils, as potential producers of profibrotic cytokines, are involved this process. We studied this question in a fully MHC-mismatched model of heart transplantation with transient depletion of CD4(+) T cells to largely prevent acute rejection. The model is characterized by myocardial infiltration of leukocytes and development of interstitial fibrosis and allograft vasculopathy. Using depletion of basophils, IL-4-deficient recipients and IL-4 receptor-deficient grafts, we showed that basophils and IL-4 play crucial roles in activation of fibroblasts and development of fibrotic organ remodeling. In the absence of CD4(+) T cells, basophils are the predominant source of IL-4 in the graft and contribute to expansion of myofibroblasts, interstitial deposition of collagen and development of allograft vasculopathy. Our results indicated that basophils trigger the production of various connective tissue elements by myofibroblasts. Basophil-derived IL-4 may be an attractive target for treatment of chronic allograft rejection.
Collapse
Affiliation(s)
- G Schiechl
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - F J Hermann
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - M Rodriguez Gomez
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - S Kutzi
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - K Schmidbauer
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Y Talke
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - S Neumayer
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - N Goebel
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - K Renner
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - H Brühl
- Department of Internal Medicine I, University Hospital Regensburg, Regensburg, Germany
| | - H Karasuyama
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - K Obata-Ninomiya
- Department of Immune Regulation, Tokyo Medical and Dental University Graduate School, Tokyo, Japan
| | - K Utpatel
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - M Evert
- Department of Pathology, University Hospital Regensburg, Regensburg, Germany
| | - S W Hirt
- Department of Cardiothoracic Surgery, University Hospital Regensburg, Regensburg, Germany
| | - E K Geissler
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany
| | - S Fichtner-Feigl
- Department of Surgery, University Hospital Regensburg, Regensburg, Germany.,RCI Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - M Mack
- Department of Internal Medicine II, Nephrology, University Hospital Regensburg, Regensburg, Germany.,RCI Regensburg Center for Interventional Immunology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
306
|
Spatial expression of components of a calcitonin receptor-like receptor (CRL) signalling system (CRL, calcitonin gene-related peptide, adrenomedullin, adrenomedullin-2/intermedin) in mouse and human heart valves. Cell Tissue Res 2016; 366:587-599. [DOI: 10.1007/s00441-016-2473-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022]
|
307
|
Regn M, Laggerbauer B, Jentzsch C, Ramanujam D, Ahles A, Sichler S, Calzada-Wack J, Koenen RR, Braun A, Nieswandt B, Engelhardt S. Peptidase inhibitor 16 is a membrane-tethered regulator of chemerin processing in the myocardium. J Mol Cell Cardiol 2016; 99:57-64. [PMID: 27539859 DOI: 10.1016/j.yjmcc.2016.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
A key response of the myocardium to stress is the secretion of factors with paracrine or endocrine function. Intriguing in this respect is peptidase inhibitor 16 (PI16), a member of the CAP family of proteins which we found to be highly upregulated in cardiac disease. Up to this point, the mechanism of action and physiological function of PI16 remained elusive. Here, we show that PI16 is predominantly expressed by cardiac fibroblasts, which expose PI16 to the interstitium via a glycophosphatidylinositol (-GPI) membrane anchor. Based on a reported genetic association of PI16 and plasma levels of the chemokine chemerin, we investigated whether PI16 regulates post-translational processing of its precursor pro-chemerin. PI16-deficient mice were engineered and found to generate higher levels of processed chemerin than wildtype mice. Purified recombinant PI16 efficiently inhibited cathepsin K, a chemerin-activating protease, in vitro. Moreover, we show that conditioned medium from PI16-overexpressing cells impaired the activation of pro-chemerin. Together, our data indicate that PI16 suppresses chemerin activation in the myocardium and suggest that this circuit may be part of the cardiac stress response.
Collapse
Affiliation(s)
- Michael Regn
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Bernhard Laggerbauer
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Claudia Jentzsch
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Deepak Ramanujam
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Andrea Ahles
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Sonja Sichler
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Julia Calzada-Wack
- Institute of Pathology, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Rory R Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Attila Braun
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider Straße 2, 97080 Würzburg, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider Straße 2, 97080 Würzburg, Germany
| | - Stefan Engelhardt
- Institute of Pharmacology and Toxicology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; DZHK (German Center for Cardiovascular Research) partner site Munich Heart Alliance, 80802 Munich, Germany.
| |
Collapse
|
308
|
Li S, Zhang L, Ni R, Cao T, Zheng D, Xiong S, Greer PA, Fan GC, Peng T. Disruption of calpain reduces lipotoxicity-induced cardiac injury by preventing endoplasmic reticulum stress. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2023-2033. [PMID: 27523632 DOI: 10.1016/j.bbadis.2016.08.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/15/2016] [Accepted: 08/09/2016] [Indexed: 12/16/2022]
Abstract
Diabetes and obesity are prevalent in westernized countries. In both conditions, excessive fatty acid uptake by cardiomyocytes induces cardiac lipotoxicity, an important mechanism contributing to diabetic cardiomyopathy. This study investigated the effect of calpain disruption on cardiac lipotoxicity. Cardiac-specific capns1 knockout mice and their wild-type littermates (male, age of 4weeks) were fed a high fat diet (HFD) or normal diet for 20weeks. HFD increased body weight, altered blood lipid profiles and impaired glucose tolerance comparably in both capns1 knockout mice and their wild-type littermates. Calpain activity, cardiomyocyte cross-sectional areas, collagen deposition and triglyceride were significantly increased in HFD-fed mouse hearts, and these were accompanied by myocardial dysfunction and up-regulation of hypertrophic and fibrotic collagen genes as well as pro-inflammatory cytokines. These effects of HFD were attenuated by disruption of calpain in capns1 knockout mice. Mechanistically, deletion of capns1 in HFD-fed mouse hearts and disruption of calpain with calpain inhibitor-III, silencing of capn1, or deletion of capns1 in palmitate-stimulated cardiomyocytes prevented endoplasmic reticulum stress, apoptosis, cleavage of caspase-12 and junctophilin-2, and pro-inflammatory cytokine expression. Pharmacological inhibition of endoplasmic reticulum stress diminished palmitate-induced apoptosis and pro-inflammatory cytokine expression in cardiomyocytes. In summary, disruption of calpain prevents lipotoxicity-induced apoptosis in cardiomyocytes and cardiac injury in mice fed a HFD. The role of calpain is mediated, at least partially, through endoplasmic reticulum stress. Thus, calpain/endoplasmic reticulum stress may represent a new mechanism and potential therapeutic targets for cardiac lipotoxicity.
Collapse
Affiliation(s)
- Shengcun Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Lulu Zhang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Rui Ni
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Ting Cao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Dong Zheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada
| | - Sidong Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China
| | - Peter A Greer
- Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada; Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Guo-Chang Fan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tianqing Peng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu Province 215123, China; Critical Illness Research, Lawson Health Research Institute, Western University, London, Ontario N6A 4G5, Canada; Department of Medicine, Western University, London, Ontario N6A 4G5, Canada; Department of Pathology and Laboratory Medicine, Western University, London, Ontario N6A 4G5, Canada.
| |
Collapse
|
309
|
Stoppel WL, Gao AE, Greaney AM, Partlow BP, Bretherton RC, Kaplan DL, Black LD. Elastic, silk-cardiac extracellular matrix hydrogels exhibit time-dependent stiffening that modulates cardiac fibroblast response. J Biomed Mater Res A 2016; 104:3058-3072. [PMID: 27480328 DOI: 10.1002/jbm.a.35850] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 12/15/2022]
Abstract
Heart failure is the leading cause of death in the United States and rapidly becoming the leading cause of death worldwide. While pharmacological treatments can reduce progression to heart failure following myocardial infarction, there still exists a need for new therapies that promote better healing postinjury for a more functional cardiac repair and methods to understand how the changes to tissue mechanical properties influence cell phenotype and function following injury. To address this need, we have optimized a silk-based hydrogel platform containing cardiac tissue-derived extracellular matrix (cECM). These silk-cECM hydrogels have tunable mechanical properties, as well as rate-controllable hydrogel stiffening over time. In vitro, silk-cECM scaffolds led to enhanced cardiac fibroblast (CF) cell growth and viability with culture time. cECM incorporation improved expression of integrin an focal adhesion proteins, suggesting that CFs were able to interact with the cECM in the hydrogel. Subcutaneous injection of silk hydrogels in rats demonstrated that addition of the cECM led to endogenous cell infiltration and promoted endothelial cell ingrowth after 4 weeks in vivo. This naturally derived silk fibroin platform is applicable to the development of more physiologically relevant constructs that replicate healthy and diseased tissue in vitro and has the potential to be used as an injectable therapeutic for cardiac repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3058-3072, 2016.
Collapse
Affiliation(s)
- Whitney L Stoppel
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Albert E Gao
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Allison M Greaney
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Benjamin P Partlow
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Ross C Bretherton
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155
| | - Lauren D Black
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, 02155. .,Cellular, Molecular and Developmental Biology Program, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, 02111.
| |
Collapse
|
310
|
Maruyama S, Nakamura K, Papanicolaou KN, Sano S, Shimizu I, Asaumi Y, van den Hoff MJ, Ouchi N, Recchia FA, Walsh K. Follistatin-like 1 promotes cardiac fibroblast activation and protects the heart from rupture. EMBO Mol Med 2016; 8:949-66. [PMID: 27234440 PMCID: PMC4967946 DOI: 10.15252/emmm.201506151] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Follistatin‐like 1 (Fstl1) is a secreted protein that is acutely induced in heart following myocardial infarction (MI). In this study, we investigated cell type‐specific regulation of Fstl1 and its function in a murine model of MI. Fstl1 was robustly expressed in fibroblasts and myofibroblasts in the infarcted area compared to cardiac myocytes. The conditional ablation of Fstl1 in S100a4‐expressing fibroblast lineage cells (Fstl1‐cfKO mice) led to a reduction in injury‐induced Fstl1 expression and increased mortality due to cardiac rupture during the acute phase. Cardiac rupture was associated with a diminished number of myofibroblasts and decreased expression of extracellular matrix proteins. The infarcts of Fstl1‐cfKO mice displayed weaker birefringence, indicative of thin and loosely packed collagen. Mechanistically, the migratory and proliferative capabilities of cardiac fibroblasts were attenuated by endogenous Fstl1 ablation. The activation of cardiac fibroblasts by Fstl1 was mediated by ERK1/2 but not Smad2/3 signaling. This study reveals that Fstl1 is essential for the acute repair of the infarcted myocardium and that stimulation of early fibroblast activation is a novel function of Fstl1.
Collapse
Affiliation(s)
- Sonomi Maruyama
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kazuto Nakamura
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Kyriakos N Papanicolaou
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Soichi Sano
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Ippei Shimizu
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Yasuhide Asaumi
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - Maurice J van den Hoff
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, Amsterdam, The Netherlands
| | - Noriyuki Ouchi
- Molecular Cardiovascular Medicine, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Japan
| | - Fabio A Recchia
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Kenneth Walsh
- Department of Molecular Cardiology, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
311
|
Kubota A, Hasegawa H, Tadokoro H, Hirose M, Kobara Y, Yamada-Inagawa T, Takemura G, Kobayashi Y, Takano H. Deletion of CD28 Co-stimulatory Signals Exacerbates Left Ventricular Remodeling and Increases Cardiac Rupture After Myocardial Infarction. Circ J 2016; 80:1971-9. [PMID: 27396441 DOI: 10.1253/circj.cj-16-0327] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Inflammatory responses, especially by CD4(+)T cells activated by dendritic cells, are known to be important in the pathophysiology of cardiac repair after myocardial infarction (MI). Although co-stimulatory signals through B7 (CD80/86) and CD28 are necessary for CD4(+)T cell activation and survival, the roles of these signals in cardiac repair after MI are still unclear. METHODS AND RESULTS C57BL/6 (Control) mice and CD28 knockout (CD28KO) mice were subjected to left coronary artery permanent ligation. The ratio of death by cardiac rupture within 5 days after MI was significantly higher in CD28KO mice compared with Control mice. Although there were no significant differences in the infarct size between the 2 groups, left ventricular end-diastolic and end-systolic diameters were significantly increased, and fractional shortening was significantly decreased in CD28KO mice compared with Control mice. Electron microscopic observation revealed that the extent of extracellular collagen fiber was significantly decreased in CD28KO mice compared with Control mice. The number of α-smooth muscle actin-positive myofibroblasts was significantly decreased, and matrix metalloproteinase-9 activity and the mRNA expression of interleukin-1β were significantly increased in CD28KO mice compared with Control mice. CONCLUSIONS Deletion of CD28 co-stimulatory signals exacerbates left ventricular remodeling and increases cardiac rupture after MI through prolongation of the inflammatory period and reduction of collagen fiber in the infarct scars. (Circ J 2016; 80: 1971-1979).
Collapse
Affiliation(s)
- Akihiko Kubota
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Talman V, Ruskoaho H. Cardiac fibrosis in myocardial infarction-from repair and remodeling to regeneration. Cell Tissue Res 2016; 365:563-81. [PMID: 27324127 PMCID: PMC5010608 DOI: 10.1007/s00441-016-2431-9] [Citation(s) in RCA: 597] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/07/2016] [Indexed: 12/11/2022]
Abstract
Ischemic cell death during a myocardial infarction leads to a multiphase reparative response in which the damaged tissue is replaced with a fibrotic scar produced by fibroblasts and myofibroblasts. This also induces geometrical, biomechanical, and biochemical changes in the uninjured ventricular wall eliciting a reactive remodeling process that includes interstitial and perivascular fibrosis. Although the initial reparative fibrosis is crucial for preventing rupture of the ventricular wall, an exaggerated fibrotic response and reactive fibrosis outside the injured area are detrimental as they lead to progressive impairment of cardiac function and eventually to heart failure. In this review, we summarize current knowledge of the mechanisms of both reparative and reactive cardiac fibrosis in response to myocardial infarction, discuss the potential of inducing cardiac regeneration through direct reprogramming of fibroblasts and myofibroblasts into cardiomyocytes, and review the currently available and potential future therapeutic strategies to inhibit cardiac fibrosis. Graphical abstract Reparative response following a myocardial infarction. Hypoxia-induced cardiomyocyte death leads to the activation of myofibroblasts and a reparative fibrotic response in the injured area. Right top In adult mammals, the fibrotic scar formed at the infarcted area is permanent and promotes reactive fibrosis in the uninjured myocardium. Right bottom In teleost fish and newts and in embryonic and neonatal mammals, the initial formation of a fibrotic scar is followed by regeneration of the cardiac muscle tissue. Induction of post-infarction cardiac regeneration in adult mammals is currently the target of intensive research and drug discovery attempts.
Collapse
Affiliation(s)
- Virpi Talman
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland.
| | - Heikki Ruskoaho
- Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014, Helsinki, Finland
| |
Collapse
|
313
|
Fan Z, Guan J. Antifibrotic therapies to control cardiac fibrosis. Biomater Res 2016; 20:13. [PMID: 27226899 PMCID: PMC4879750 DOI: 10.1186/s40824-016-0060-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022] Open
Abstract
Cardiac fibrosis occurs naturally after myocardial infarction. While the initially formed fibrotic tissue prevents the infarcted heart tissue from rupture, the progression of cardiac fibrosis continuously expands the size of fibrotic tissue and causes cardiac function decrease. Cardiac fibrosis eventually evolves the infarcted hearts into heart failure. Inhibiting cardiac fibrosis from progressing is critical to prevent heart failure. However, there is no efficient therapeutic approach currently available. Myofibroblasts are primarily responsible for cardiac fibrosis. They are formed by cardiac fibroblast differentiation, fibrocyte differentiation, epithelial to mesenchymal transdifferentiation, and endothelial to mesenchymal transition, driven by cytokines such as transforming growth factor beta (TGF-β), angiotensin II and platelet-derived growth factor (PDGF). The approaches that inhibit myofibroblast formation have been demonstrated to prevent cardiac fibrosis, including systemic delivery of antifibrotic drugs, localized delivery of biomaterials, localized delivery of biomaterials and antifibrotic drugs, and localized delivery of cells using biomaterials. This review addresses current progresses in cardiac fibrosis therapies.
Collapse
Affiliation(s)
- Zhaobo Fan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| | - Jianjun Guan
- Department of Materials Science and Engineering, The Ohio State University, 2041 College Road, Columbus, OH 43210 USA
| |
Collapse
|
314
|
Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, Adachi H, Yashiro K, Suzuki K. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest 2016; 126:2151-66. [PMID: 27140396 DOI: 10.1172/jci85782] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/10/2016] [Indexed: 12/15/2022] Open
Abstract
Alternatively activated (also known as M2) macrophages are involved in the repair of various types of organs. However, the contribution of M2 macrophages to cardiac repair after myocardial infarction (MI) remains to be fully characterized. Here, we identified CD206+F4/80+CD11b+ M2-like macrophages in the murine heart and demonstrated that this cell population predominantly increases in the infarct area and exhibits strengthened reparative abilities after MI. We evaluated mice lacking the kinase TRIB1 (Trib1-/-), which exhibit a selective depletion of M2 macrophages after MI. Compared with control animals, Trib1-/- mice had a catastrophic prognosis, with frequent cardiac rupture, as the result of markedly reduced collagen fibril formation in the infarct area due to impaired fibroblast activation. The decreased tissue repair observed in Trib1-/- mice was entirely rescued by an external supply of M2-like macrophages. Furthermore, IL-1α and osteopontin were suggested to be mediators of M2-like macrophage-induced fibroblast activation. In addition, IL-4 administration achieved a targeted increase in the number of M2-like macrophages and enhanced the post-MI prognosis of WT mice, corresponding with amplified fibroblast activation and formation of more supportive fibrous tissues in the infarcts. Together, these data demonstrate that M2-like macrophages critically determine the repair of infarcted adult murine heart by regulating fibroblast activation and suggest that IL-4 is a potential biological drug for treating MI.
Collapse
|
315
|
Zeigler AC, Richardson WJ, Holmes JW, Saucerman JJ. Computational modeling of cardiac fibroblasts and fibrosis. J Mol Cell Cardiol 2016; 93:73-83. [PMID: 26608708 PMCID: PMC4846515 DOI: 10.1016/j.yjmcc.2015.11.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/31/2022]
Abstract
Altered fibroblast behavior can lead to pathologic changes in the heart such as arrhythmia, diastolic dysfunction, and systolic dysfunction. Computational models are increasingly used as a tool to identify potential mechanisms driving a phenotype or potential therapeutic targets against an unwanted phenotype. Here we review how computational models incorporating cardiac fibroblasts have clarified the role for these cells in electrical conduction and tissue remodeling in the heart. Models of fibroblast signaling networks have primarily focused on fibroblast cell lines or fibroblasts from other tissues rather than cardiac fibroblasts, specifically, but they are useful for understanding how fundamental signaling pathways control fibroblast phenotype. In the future, modeling cardiac fibroblast signaling, incorporating -omics and drug-interaction data into signaling network models, and utilizing multi-scale models will improve the ability of in silico studies to predict potential therapeutic targets against adverse cardiac fibroblast activity.
Collapse
Affiliation(s)
- Angela C Zeigler
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - William J Richardson
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey W Holmes
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| | - Jeffrey J Saucerman
- University of Virginia, Biomedical Engineering Department, 415 Lane Road, Charlottesville, VA 22903, USA.
| |
Collapse
|
316
|
Nuquantus: Machine learning software for the characterization and quantification of cell nuclei in complex immunofluorescent tissue images. Sci Rep 2016; 6:23431. [PMID: 27005843 PMCID: PMC4804284 DOI: 10.1038/srep23431] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 03/04/2016] [Indexed: 01/27/2023] Open
Abstract
Determination of fundamental mechanisms of disease often hinges on histopathology visualization and quantitative image analysis. Currently, the analysis of multi-channel fluorescence tissue images is primarily achieved by manual measurements of tissue cellular content and sub-cellular compartments. Since the current manual methodology for image analysis is a tedious and subjective approach, there is clearly a need for an automated analytical technique to process large-scale image datasets. Here, we introduce Nuquantus (Nuclei quantification utility software) - a novel machine learning-based analytical method, which identifies, quantifies and classifies nuclei based on cells of interest in composite fluorescent tissue images, in which cell borders are not visible. Nuquantus is an adaptive framework that learns the morphological attributes of intact tissue in the presence of anatomical variability and pathological processes. Nuquantus allowed us to robustly perform quantitative image analysis on remodeling cardiac tissue after myocardial infarction. Nuquantus reliably classifies cardiomyocyte versus non-cardiomyocyte nuclei and detects cell proliferation, as well as cell death in different cell classes. Broadly, Nuquantus provides innovative computerized methodology to analyze complex tissue images that significantly facilitates image analysis and minimizes human bias.
Collapse
|
317
|
Jahng JWS, Song E, Sweeney G. Crosstalk between the heart and peripheral organs in heart failure. Exp Mol Med 2016; 48:e217. [PMID: 26964833 PMCID: PMC4892881 DOI: 10.1038/emm.2016.20] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/10/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022] Open
Abstract
Mediators from peripheral tissues can influence the development and progression of heart failure (HF). For example, in obesity, an altered profile of adipokines secreted from adipose tissue increases the incidence of myocardial infarction (MI). Less appreciated is that heart remodeling releases cardiokines, which can strongly impact various peripheral tissues. Inflammation, and, in particular, activation of the nucleotide-binding oligomerization domain-like receptors with pyrin domain (NLRP3) inflammasome are likely to have a central role in cardiac remodeling and mediating crosstalk with other organs. Activation of the NLRP3 inflammasome in response to cardiac injury induces the production and secretion of the inflammatory cytokines interleukin (IL)-1β and IL-18. In addition to having local effects in the myocardium, these pro-inflammatory cytokines are released into circulation and cause remodeling in the spleen, kidney, skeletal muscle and adipose tissue. The collective effects of various cardiokines on peripheral organs depend on the degree and duration of myocardial injury, with systematic inflammation and peripheral tissue damage observed as HF progresses. In this article, we review mechanisms regulating myocardial inflammation in HF and the role of factors secreted by the heart in communication with peripheral tissues.
Collapse
Affiliation(s)
| | - Erfei Song
- Department of Biology, York University, Toronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
318
|
Nakamura T, Hosoyama T, Kawamura D, Takeuchi Y, Tanaka Y, Samura M, Ueno K, Nishimoto A, Kurazumi H, Suzuki R, Ito H, Sakata K, Mikamo A, Li TS, Hamano K. Influence of aging on the quantity and quality of human cardiac stem cells. Sci Rep 2016; 6:22781. [PMID: 26947751 PMCID: PMC4780032 DOI: 10.1038/srep22781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/19/2016] [Indexed: 01/01/2023] Open
Abstract
Advanced age affects various tissue-specific stem cells and decreases their regenerative ability. We therefore examined whether aging affected the quantity and quality of cardiac stem cells using cells obtained from 26 patients of various ages (from 2 to 83 years old). We collected fresh right atria and cultured cardiosphere-derived cells (CDCs), which are a type of cardiac stem cell. Then we investigated growth rate, senescence, DNA damage, and the growth factor production of CDCs. All samples yielded a sufficient number of CDCs for experiments and the cellular growth rate was not obviously associated with age. The expression of senescence-associated b-galactosidase and the DNA damage marker, gH2AX, showed a slightly higher trend in CDCs from older patients (≥65 years). The expression of VEGF, HGF, IGF-1, SDF-1, and TGF-b varied among samples, and the expression of these beneficial factors did not decrease with age. An in vitro angiogenesis assay also showed that the angiogenic potency of CDCs was not impaired, even in those from older patients. Our data suggest that the impact of age on the quantity and quality of CDCs is quite limited. These findings have important clinical implications for autologous stem cell transplantation in elderly patients.
Collapse
Affiliation(s)
- Tamami Nakamura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Tohru Hosoyama
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Daichi Kawamura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Yuriko Takeuchi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Yuya Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Makoto Samura
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Koji Ueno
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan.,Center for Regenerative Medicine, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Ryo Suzuki
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Surgery, Saiseikai Shimonoseki General Hospital, 8-5-1 Yasuoka, Shimonoseki, Yamaguchi 759-6603, Japan
| | - Kensuke Sakata
- Department of Cardiovascular Surgery, Saiseikai Shimonoseki General Hospital, 8-5-1 Yasuoka, Shimonoseki, Yamaguchi 759-6603, Japan
| | - Akihito Mikamo
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, 1-1-1 Minami-kogushi, Yamaguchi, Ube 755-8505, Japan
| |
Collapse
|
319
|
Bomb R, Heckle MR, Sun Y, Mancarella S, Guntaka RV, Gerling IC, Weber KT. Myofibroblast secretome and its auto-/paracrine signaling. Expert Rev Cardiovasc Ther 2016; 14:591-8. [PMID: 26818589 DOI: 10.1586/14779072.2016.1147348] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myofibroblasts (myoFb) are phenotypically transformed, contractile fibroblast-like cells expressing α-smooth muscle actin microfilaments. They are integral to collagen fibrillogenesis with scar tissue formation at sites of repair irrespective of the etiologic origins of injury or tissue involved. MyoFb can persist long after healing is complete, where their ongoing turnover of collagen accounts for a progressive structural remodeling of an organ (a.k.a. fibrosis, sclerosis or cirrhosis). Such persistent metabolic activity is derived from a secretome consisting of requisite components in the de novo generation of angiotensin (Ang) II. Autocrine and paracrine signaling induced by tissue AngII is expressed via AT1 receptor ligand binding to respectively promote: i) regulation of myoFb collagen synthesis via the fibrogenic cytokine TGF-β1-Smad pathway; and ii) dedifferentiation and protein degradation of atrophic myocytes immobilized and ensnared by fibrillar collagen at sites of scarring. Several cardioprotective strategies in the prevention of fibrosis and involving myofibroblasts are considered. They include: inducing myoFb apoptosis through inactivation of antiapoptotic proteins; AT1 receptor antagonist to interfere with auto-/paracrine myoFb signaling or to induce counterregulatory expression of ACE2; and attacking the AngII-AT1R-TGF-β1-Smad pathway by antibody or the use of triplex-forming oligonucleotides.
Collapse
Affiliation(s)
- Ritin Bomb
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Mark R Heckle
- b Department of Medicine , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Yao Sun
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Salvatore Mancarella
- c Department of Physiology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ramareddy V Guntaka
- d Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Ivan C Gerling
- e Division of Endocrinology , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Karl T Weber
- a Division of Cardiovascular Diseases , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
320
|
Frangogiannis NG. Fibroblast-Extracellular Matrix Interactions in Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2016; 4:11-18. [PMID: 27171595 DOI: 10.1007/s40139-016-0099-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Activated myofibroblasts are key effector cells in tissue fibrosis. Emerging evidence suggests that myofibroblasts infiltrating fibrotic tissues originate predominantly from local mesenchyme-derived populations. Alterations in the extracellular matrix network play an important role in modulating fibroblast phenotype and function. In a pro-inflammatory environment, generation of matrix fragments may induce a matrix-degrading fibroblast phenotype. Deposition of ED-A fibronectin plays an important role in myofibroblast transdifferentiation. In fibrotic tissues, the matrix is enriched with matricellular macromolecules that regulate growth factor-mediated responses and modulate protease activation. This manuscript discusses emerging concepts on the role of the extracellular matrix in regulation of fibroblast behavior.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
321
|
UM206, a selective Frizzled antagonist, attenuates adverse remodeling after myocardial infarction in swine. J Transl Med 2016; 96:168-76. [PMID: 26658451 DOI: 10.1038/labinvest.2015.139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/27/2015] [Accepted: 08/26/2015] [Indexed: 11/09/2022] Open
Abstract
Modulation of Wnt/Frizzled signaling with UM206 reduced infarct expansion and prevented heart failure development in mice, an effect that was accompanied by increased myofibroblast presence in the infarct, suggesting that Wnt/Frizzled signaling has a key role in cardiac remodeling following myocardial infarction (MI). This study investigated the effects of modulation of Wnt/Frizzled signaling with UM206 in a swine model of reperfused MI. For this purpose, seven swine with MI were treated with continuous infusion of UM206 for 5 weeks. Six control swine were treated with vehicle. Another eight swine were sham-operated. Cardiac function was determined by echo in awake swine. Infarct mass was estimated at baseline by heart-specific fatty acid-binding protein ELISA and at follow-up using planimetry. Components of Wnt/Frizzled signaling, myofibroblast presence, and extracellular matrix were measured at follow-up with qPCR and/or histology. Results show that UM206 treatment resulted in a significant decrease in infarct mass compared with baseline (-41±10%), whereas infarct mass remained stable in the Control-MI group (+3±17%). Progressive dilation of the left ventricle occurred in the Control-MI group between 3 and 5 weeks after MI, while adverse remodeling was halted in the UM206-treated group. mRNA expression for Frizzled-4 and the Frizzled co-receptor LRP5 was increased in UM206-treated swine as compared with Control-MI swine. Myofibroblast presence was significantly lower in infarcted tissue of the UM206-treated animals (1.53±0.43% vs 3.38±0.61%) at 5 weeks follow-up. This study demonstrates that UM206 treatment attenuates adverse remodeling in a swine model of reperfused MI, indicating that Wnt/Frizzled signaling is a promising target to improve infarct healing and limit post-MI remodeling.
Collapse
|
322
|
Wang H, Liu S, Wang Y, Chang B, Wang B. Nod-like receptor protein 3 inflammasome activation by Escherichia coli RNA induces transforming growth factor beta 1 secretion in hepatic stellate cells. Bosn J Basic Med Sci 2016; 16:126-31. [PMID: 26773180 PMCID: PMC4852994 DOI: 10.17305/bjbms.2016.699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022] Open
Abstract
Nod-like receptor protein 3 (NLRP3) inflammasome has been implicated in alcoholic liver disease. Chronic alcohol consumption enhances gut permeability and causes microbial translocation. The present study explored the activation of the NLRP3 inflammasome by Escherichia coli RNA in hepatic stellate cells (HSCs), and the potential role of NLRP3 inflammasome in hepatic fibrosis. E. coli RNA transfection induced HSC-T6 cells to secrete and express mature interleukin-1 beta (IL-1β), which was abolished by NLRP3 siRNA pretreatment. In addition, E. coli RNA transfection enhanced caspase-1 expression, whereas reduced caspase-1 precursor (pro-caspase-1) expression. E. coli RNA-stimulated transforming growth factor beta 1 (TGF-β1) overproduction in HSC-T6 cells, which was blocked by recombinant IL-1 receptor antagonist (rIL-1Ra) or nuclear factor κB inhibitor BAY 11-7082. Furthermore, E. coli RNA-induced overexpression of pro-fibrogenic factors was suppressed by rIL-1Ra or TGF-β receptor inhibitor A83-01. These results demonstrate that E. coli RNA can stimulate NLRP3 inflammasome activation, which leads to excessive production of pro-fibrogenic factors, suggesting that NLRP3 inflammasome activation in HSCs may play a role in hepatic fibrosis.
Collapse
Affiliation(s)
- Hui Wang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, China.
| | | | | | | | | |
Collapse
|
323
|
Wang X, Chang J, Tian T, Ma B. Preparation of calcium silicate/decellularized porcine myocardial matrix crosslinked by procyanidins for cardiac tissue engineering. RSC Adv 2016. [DOI: 10.1039/c6ra02947g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
CS-incorporated myocardial ECM scaffolds release functional ions gradually, which stimulate expression of the proangiogenic factors in endothelia cells.
Collapse
Affiliation(s)
- Xiaotong Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Tian Tian
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| | - Bing Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure
- Shanghai Institute of Ceramics
- Chinese Academy of Sciences
- Shanghai 200050
- China
| |
Collapse
|
324
|
Saxena A, Russo I, Frangogiannis NG. Inflammation as a therapeutic target in myocardial infarction: learning from past failures to meet future challenges. Transl Res 2016; 167:152-66. [PMID: 26241027 PMCID: PMC4684426 DOI: 10.1016/j.trsl.2015.07.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/14/2022]
Abstract
In the infarcted myocardium, necrotic cardiomyocytes release danger signals, activating an intense inflammatory response. Inflammatory pathways play a crucial role in regulation of a wide range of cellular processes involved in injury, repair, and remodeling of the infarcted heart. Proinflammatory cytokines, such as tumor necrosis factor α and interleukin 1, are markedly upregulated in the infarcted myocardium and promote adhesive interactions between endothelial cells and leukocytes by stimulating chemokine and adhesion molecule expression. Distinct pairs of chemokines and chemokine receptors are implicated in recruitment of various leukocyte subpopulations in the infarcted myocardium. For more than the past 30 years, extensive experimental work has explored the role of inflammatory signals and the contributions of leukocyte subpopulations in myocardial infarction. Robust evidence derived from experimental models of myocardial infarction has identified inflammatory targets that may attenuate cardiomyocyte injury or protect from adverse remodeling. Unfortunately, attempts to translate the promising experimental findings to clinical therapy have failed. This review article discusses the biology of the inflammatory response after myocardial infarction, attempts to identify the causes for the translational failures of the past, and proposes promising new therapeutic directions. Because of their potential involvement in injurious, reparative, and regenerative responses, inflammatory cells may hold the key for design of new therapies in myocardial infarction.
Collapse
Affiliation(s)
- Amit Saxena
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Ilaria Russo
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
325
|
Russo I, Frangogiannis NG. Diabetes-associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 2015; 90:84-93. [PMID: 26705059 DOI: 10.1016/j.yjmcc.2015.12.011] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/13/2015] [Accepted: 12/14/2015] [Indexed: 02/07/2023]
Abstract
Both type 1 and type 2 diabetes are associated with cardiac fibrosis that may reduce myocardial compliance, contribute to the pathogenesis of heart failure, and trigger arrhythmic events. Diabetes-associated fibrosis is mediated by activated cardiac fibroblasts, but may also involve fibrogenic actions of macrophages, cardiomyocytes and vascular cells. The molecular basis responsible for cardiac fibrosis in diabetes remains poorly understood. Hyperglycemia directly activates a fibrogenic program, leading to accumulation of advanced glycation end-products (AGEs) that crosslink extracellular matrix proteins, and transduce fibrogenic signals through reactive oxygen species generation, or through activation of Receptor for AGEs (RAGE)-mediated pathways. Pro-inflammatory cytokines and chemokines may recruit fibrogenic leukocyte subsets in the cardiac interstitium. Activation of transforming growth factor-β/Smad signaling may activate fibroblasts inducing deposition of structural extracellular matrix proteins and matricellular macromolecules. Adipokines, endothelin-1 and the renin-angiotensin-aldosterone system have also been implicated in the diabetic myocardium. This manuscript reviews our current understanding of the cellular effectors and molecular pathways that mediate fibrosis in diabetes. Based on the pathophysiologic mechanism, we propose therapeutic interventions that may attenuate the diabetes-associated fibrotic response and discuss the challenges that may hamper clinical translation.
Collapse
Affiliation(s)
- Ilaria Russo
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
326
|
Scofield SLC, Amin P, Singh M, Singh K. Extracellular Ubiquitin: Role in Myocyte Apoptosis and Myocardial Remodeling. Compr Physiol 2015; 6:527-60. [PMID: 26756642 DOI: 10.1002/cphy.c150025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ubiquitin (UB) is a highly conserved low molecular weight (8.5 kDa) protein. It consists of 76 amino acid residues and is found in all eukaryotic cells. The covalent linkage of UB to a variety of cellular proteins (ubiquitination) is one of the most common posttranslational modifications in eukaryotic cells. This modification generally regulates protein turnover and protects the cells from damaged or misfolded proteins. The polyubiquitination of proteins serves as a signal for degradation via the 26S proteasome pathway. UB is present in trace amounts in body fluids. Elevated levels of UB are described in the serum or plasma of patients under a variety of conditions. Extracellular UB is proposed to have pleiotropic roles including regulation of immune response, anti-inflammatory, and neuroprotective activities. CXCR4 is identified as receptor for extracellular UB in hematopoietic cells. Heart failure represents a major cause of morbidity and mortality in western society. Cardiac remodeling is a determinant of the clinical course of heart failure. The components involved in myocardial remodeling include-myocytes, fibroblasts, interstitium, and coronary vasculature. Increased sympathetic nerve activity in the form of norepinephrine is a common feature during heart failure. Acting via β-adrenergic receptor (β-AR), norepinephrine is shown to induce myocyte apoptosis and myocardial fibrosis. β-AR stimulation increases extracellular levels of UB in myocytes, and UB inhibits β-AR-stimulated increases in myocyte apoptosis and myocardial fibrosis. This review summarizes intracellular and extracellular functions of UB with particular emphasis on the role of extracellular UB in cardiac myocyte apoptosis and myocardial remodeling.
Collapse
Affiliation(s)
- Stephanie L C Scofield
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Parthiv Amin
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Mahipal Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA
| | - Krishna Singh
- Department of Biomedical Sciences, East Tennessee State University, Johnson City, Tennessee, USA; Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA; James H. Quillen VA Medical Center, East Tennessee State University, Johnson City, Tennessee, USA.,Department of Medicine, Albany Medical College, Albany, New York, USA.,Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York, USA
| |
Collapse
|
327
|
Okada M, Yamawaki H. Levosimendan inhibits interleukin-1β-induced apoptosis through activation of Akt and inhibition of inducible nitric oxide synthase in rat cardiac fibroblasts. Eur J Pharmacol 2015; 769:86-92. [DOI: 10.1016/j.ejphar.2015.10.056] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 10/23/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
|
328
|
Tang XL, Liu JX, Dong W, Li P, Li L, Hou JC, Zheng YQ, Lin CR, Ren JG. Protective effect of kaempferol on LPS plus ATP-induced inflammatory response in cardiac fibroblasts. Inflammation 2015; 38:94-101. [PMID: 25189464 DOI: 10.1007/s10753-014-0011-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Inflammatory response is an important mechanism in the pathogenesis of cardiovascular diseases. Cardiac fibroblasts play a crucial role in cardiac inflammation and might become a potential therapeutic target in cardiovascular diseases. Kaempferol, a flavonoid commonly existing in many edible fruits, vegetables, and Chinese herbs, is well known to possess anti-inflammatory property and thus has a therapeutic potential for the treatment of inflammatory diseases. To date, the effect of kaempferol on cardiac fibroblasts inflammation is unknown. In this study, we investigated the anti-inflammatory effect of kaempferol on lipopolysaccharide (LPS) plus ATP-induced cardiac fibroblasts and explored the underlying mechanisms. Our results showed that kaempferol at concentrations of 12.5 and 25 μg/mL significantly suppressed the release of TNF-α, IL-1β, IL-6, and IL-18 and inhibited activation of NF-κB and Akt in LPS plus ATP-induced cardiac fibroblasts. These findings suggest that kaempferol attenuates cardiac fibroblast inflammation through suppression of activation of NF-κB and Akt.
Collapse
Affiliation(s)
- Xi-Lan Tang
- Experimental Research Center, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Role of inflammatory cells in fibroblast activation. J Mol Cell Cardiol 2015; 93:143-8. [PMID: 26593723 DOI: 10.1016/j.yjmcc.2015.11.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/12/2015] [Accepted: 11/14/2015] [Indexed: 11/21/2022]
Abstract
Although fibrosis is an essential response to acute cardiac tissue injury, prolonged myofibroblast activation and progressive fibrosis lead to further distortion of tissue architecture and worsened cardiac function. Thus, optimal tissue repair following injury requires tight control over myofibroblast activation. It is now recognized that inflammation plays a critical role in regulating fibrosis. In this review we will highlight how advances in the field of innate immunity have led to a better understanding of the role of inflammation in cardiovascular disease and, in particular, in the regulation of fibrosis. Specifically, we will discuss how the innate immune system recognizes tissue damage in settings of acute injury and chronic cardiovascular disease. We will also review the role of different cell populations in this response, particularly the unique role of different macrophage subsets and mast cells.
Collapse
|
330
|
Chen C, Li R, Ross RS, Manso AM. Integrins and integrin-related proteins in cardiac fibrosis. J Mol Cell Cardiol 2015; 93:162-74. [PMID: 26562414 DOI: 10.1016/j.yjmcc.2015.11.010] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/07/2015] [Accepted: 11/07/2015] [Indexed: 12/21/2022]
Abstract
Cardiac fibrosis is one of the major components of the healing mechanism following any injury of the heart and as such may contribute to both systolic and diastolic dysfunction in a range of pathophysiologic conditions. Canonically, it can occur as part of the remodeling process that occurs following myocardial infarction or that follows as a response to pressure overload. Integrins are cell surface receptors which act in both cellular adhesion and signaling. Most importantly, in the context of the continuously contracting myocardium, they are recognized as mechanotransducers. They have been implicated in the development of fibrosis in several organs, including the heart. This review will focus on the involvement of integrins and integrin-related proteins, in cardiac fibrosis, outlining the roles of these proteins in the fibrotic responses in specific cardiac pathologies, discuss some of the common end effectors (angiotensin II, transforming growth factor beta 1 and mechanical stress) through which integrins function and finally discuss how manipulation of this set of proteins may lead to new treatments which could prove useful to alter the deleterious effects of cardiac fibrosis.
Collapse
Affiliation(s)
- Chao Chen
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ruixia Li
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Robert S Ross
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| | - Ana Maria Manso
- Department of Medicine, Cardiology, UCSD School of Medicine, La Jolla, CA 92093-0613, USA; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA.
| |
Collapse
|
331
|
Saxena A, Shinde AV, Haque Z, Wu YJ, Chen W, Su Y, Frangogiannis NG. The role of Interleukin Receptor Associated Kinase (IRAK)-M in regulation of myofibroblast phenotype in vitro, and in an experimental model of non-reperfused myocardial infarction. J Mol Cell Cardiol 2015; 89:223-31. [PMID: 26542797 DOI: 10.1016/j.yjmcc.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/28/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
In the infarcted myocardium, necrotic cardiomyocytes activate innate immune pathways, stimulating pro-inflammatory signaling cascades. Although inflammation plays an important role in clearance of the infarct from dead cells and matrix debris, repair of the infarcted heart requires timely activation of signals that negatively regulate the innate immune response, limiting inflammatory injury. We have previously demonstrated that Interleukin receptor-associated kinase (IRAK)-M, a member of the IRAK family that suppresses toll-like receptor/interleukin-1 signaling, is upregulated in the infarcted heart in both macrophages and fibroblasts, and restrains pro-inflammatory activation attenuating adverse remodeling. Although IRAK-M is known to suppress inflammatory activation of macrophages, its role in fibroblasts remains unknown. Our current investigation examines the effects of IRAK-M on fibroblast phenotype and function. In vitro, IRAK-M null cardiac fibroblasts have impaired capacity to contract free-floating collagen pads. IRAK-M loss reduces transforming growth factor (TGF)-β-mediated α-smooth muscle actin (α-SMA) expression. IRAK-M deficient cardiac fibroblasts exhibit a modest reduction in TGF-β-stimulated Smad activation and increased expression of the α-SMA repressor, Y-box binding protein (YB)-1. In a model of non-reperfused myocardial infarction, IRAK-M absence does not affect collagen content and myofibroblast density in the infarcted and remodeling myocardium, but increases YB-1 levels and is associated with attenuated α-SMA expression in isolated infarct myofibroblasts. Our findings suggest that, in addition to its role in restraining inflammation following reperfused infarction, IRAK-M may also contribute to myofibroblast conversion.
Collapse
Affiliation(s)
- Amit Saxena
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zaffar Haque
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yi-Jin Wu
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Chen
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States; Division of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya Su
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
332
|
Impaired border zone formation and adverse remodeling after reperfused myocardial infarction in cannabinoid CB2 receptor deficient mice. Life Sci 2015; 138:8-17. [DOI: 10.1016/j.lfs.2014.11.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 11/24/2022]
|
333
|
Seidel T, Edelmann JC, Sachse FB. Analyzing Remodeling of Cardiac Tissue: A Comprehensive Approach Based on Confocal Microscopy and 3D Reconstructions. Ann Biomed Eng 2015; 44:1436-1448. [PMID: 26399990 DOI: 10.1007/s10439-015-1465-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 09/18/2015] [Indexed: 01/20/2023]
Abstract
Microstructural characterization of cardiac tissue and its remodeling in disease is a crucial step in many basic research projects. We present a comprehensive approach for three-dimensional characterization of cardiac tissue at the submicrometer scale. We developed a compression-free mounting method as well as labeling and imaging protocols that facilitate acquisition of three-dimensional image stacks with scanning confocal microscopy. We evaluated the approach with normal and infarcted ventricular tissue. We used the acquired image stacks for segmentation, quantitative analysis and visualization of important tissue components. In contrast to conventional mounting, compression-free mounting preserved cell shapes, capillary lumens and extracellular laminas. Furthermore, the new approach and imaging protocols resulted in high signal-to-noise ratios at depths up to 60 µm. This allowed extensive analyzes revealing major differences in volume fractions and distribution of cardiomyocytes, blood vessels, fibroblasts, myofibroblasts and extracellular space in control vs. infarct border zone. Our results show that the developed approach yields comprehensive data on microstructure of cardiac tissue and its remodeling in disease. In contrast to other approaches, it allows quantitative assessment of all major tissue components. Furthermore, we suggest that the approach will provide important data for physiological models of cardiac tissue at the submicrometer scale.
Collapse
Affiliation(s)
- T Seidel
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
| | - J-C Edelmann
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
- Institute of Biomedical Engineering, Karlsruhe Institute of Technology, Fritz-Haber-Weg 1, 76131 Karlsruhe, Germany
| | - F B Sachse
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, 95 South 2000 East, Salt Lake City, UT 84112-5000, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
334
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
335
|
Affiliation(s)
- Dennis Schade
- Department
of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse
6, 44227 Dortmund, Germany
| | - Alleyn T. Plowright
- Department
of Medicinal Chemistry, Cardiovascular and Metabolic Diseases Innovative
Medicines, AstraZeneca, Pepparedsleden 1, Mölndal, 43183, Sweden
| |
Collapse
|
336
|
Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts. Cell Calcium 2015; 58:518-33. [PMID: 26324417 DOI: 10.1016/j.ceca.2015.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/06/2015] [Accepted: 08/14/2015] [Indexed: 12/16/2022]
Abstract
During myocardial ischemia and reperfusion both purines and pyrimidines are released into the extracellular milieu, thus creating a signaling wave that propagates to neighboring cells via membrane-bound P2 purinoceptors activation. Cardiac fibroblasts (CF) are important players in heart remodeling, electrophysiological changes and hemodynamic alterations following myocardial infarction. Here, we investigated the role UTP on calcium signaling and proliferation of CF cultured from ventricles of adult rats. Co-expression of discoidin domain receptor 2 and α-smooth muscle actin indicate that cultured CF are activated myofibroblasts. Intracellular calcium ([Ca(2+)]i) signals were monitored in cells loaded with Fluo-4 NW. CF proliferation was evaluated by the MTT assay. UTP and the selective P2Y4 agonist, MRS4062, caused a fast desensitizing [Ca(2+)]i rise originated from thapsigargin-sensitive internal stores, which partially declined to a plateau providing the existence of Ca(2+) in the extracellular fluid. The biphasic [Ca(2+)]i response to UTP was attenuated respectively by P2Y4 blockers, like reactive blue-2 and suramin, and by the P2Y11 antagonist, NF340. UTP and the P2Y2 receptor agonist MRS2768 increased, whereas the selective P2Y11 agonist NF546 decreased, CF growth; MRS4062 was ineffective. Blockage of the P2Y11 receptor or its coupling to adenylate cyclase boosted UTP-induced CF proliferation. Confocal microscopy and Western blot analysis confirmed the presence of P2Y2, P2Y4 and P2Y11 receptors. Data indicate that besides P2Y4 and P2Y2 receptors which are responsible for UTP-induced [Ca(2+)]i transients and growth of CF, respectively, synchronous activation of the previously unrecognized P2Y11 receptor may represent an important target for anti-fibrotic intervention in cardiac remodeling.
Collapse
|
337
|
Deleon-Pennell KY, Altara R, Yabluchanskiy A, Modesti A, Lindsey ML. The circular relationship between matrix metalloproteinase-9 and inflammation following myocardial infarction. IUBMB Life 2015; 67:611-8. [PMID: 26269290 DOI: 10.1002/iub.1408] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/16/2015] [Indexed: 12/26/2022]
Abstract
Matrix metalloproteinase-9 (MMP-9) regulates remodeling of the left ventricle after myocardial infarction (MI) and is tightly linked to the inflammatory response. The inflammatory response serves to recruit leukocytes as part of the wound healing reaction to the MI injury, and infiltrated leukocytes produce cytokines and chemokines that stimulate MMP-9 production and release. In turn, MMP-9 proteolyzes cytokines and chemokines. Although in most cases, MMP-9 cleavage of the cytokine or chemokine substrate serves to increase activity, there are cases where cleavage results in reduced activity. Global MMP-9 deletion in mouse MI models has proven beneficial, suggesting inhibition of some aspects of MMP-9 activity may be valuable for clinical use. At the same time, overexpression of MMP-9 in macrophages has also proven beneficial, indicating that we still do not fully understand the complexity of MMP-9 mechanisms of action. In this review, we summarize the cycle of MMP-9 effects on cytokine production and cleavage to regulate leukocyte functions. Although we use MI as the example process, similar events occur in other inflammatory and wound healing conditions.
Collapse
Affiliation(s)
- Kristine Y Deleon-Pennell
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Raffaele Altara
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Andriy Yabluchanskiy
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Alessandra Modesti
- Dipartimento di Scienze Biomediche, Sperimentali e Cliniche, Università degli Studi di Firenze, Firenze, Italy
| | - Merry L Lindsey
- Department of Physiology and Biophysics, San Antonio Cardiovascular Proteomics Center and Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, USA
| |
Collapse
|
338
|
TGF-β Negatively Regulates CXCL1 Chemokine Expression in Mammary Fibroblasts through Enhancement of Smad2/3 and Suppression of HGF/c-Met Signaling Mechanisms. PLoS One 2015; 10:e0135063. [PMID: 26252654 PMCID: PMC4529193 DOI: 10.1371/journal.pone.0135063] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 07/17/2015] [Indexed: 01/23/2023] Open
Abstract
Fibroblasts are major cellular components of the breast cancer stroma, and influence the growth, survival and invasion of epithelial cells. Compared to normal tissue fibroblasts, carcinoma associated fibroblasts (CAFs) show increased expression of numerous soluble factors including growth factors and cytokines. However, the mechanisms regulating expression of these factors remain poorly understood. Recent studies have shown that breast CAFs overexpress the chemokine CXCL1, a key regulator of tumor invasion and chemo-resistance. Increased expression of CXCL1 in CAFs correlated with poor patient prognosis, and was associated with decreased expression of TGF-β signaling components. The goal of these studies was to understand the role of TGF-β in regulating CXCL1 expression in CAFs, using cell culture and biochemical approaches. We found that TGF-β treatment decreased CXCL1 expression in CAFs, through Smad2/3 dependent mechanisms. Chromatin immunoprecipitation and site-directed mutagenesis assays revealed two new binding sites in the CXCL1 promoter important for Smad2/3 modulation of CXCL1 expression. Smad2/3 proteins also negatively regulated expression of Hepatocyte Growth Factor (HGF), which was found to positively regulate CXCL1 expression in CAFs through c-Met receptor dependent mechanisms. HGF/c-Met signaling in CAFs was required for activity of NF-κB, a transcriptional activator of CXCL1 expression. These studies indicate that TGF-β negatively regulates CXCL1 expression in CAFs through Smad2/3 binding to the promoter, and through suppression of HGF/c-Met autocrine signaling. These studies reveal novel insight into how TGF-β and HGF, key tumor promoting factors modulate CXCL1 chemokine expression in CAFs.
Collapse
|
339
|
Díaz-Araya G, Vivar R, Humeres C, Boza P, Bolivar S, Muñoz C. Cardiac fibroblasts as sentinel cells in cardiac tissue: Receptors, signaling pathways and cellular functions. Pharmacol Res 2015; 101:30-40. [PMID: 26151416 DOI: 10.1016/j.phrs.2015.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts (CF) not only modulate extracellular matrix (ECM) proteins homeostasis, but also respond to chemical and mechanical signals. CF express a variety of receptors through which they modulate the proliferation/cell death, autophagy, adhesion, migration, turnover of ECM, expression of cytokines, chemokines, growth factors and differentiation into cardiac myofibroblasts (CMF). Differentiation of CF to CMF involves changes in the expression levels of various receptors, as well as, changes in cell phenotype and their associated functions. CF and CMF express the β2-adrenergic receptor, and its stimulation activates PKA and EPAC proteins, which differentially modulate the CF and CMF functions mentioned above. CF and CMF also express different levels of Angiotensin II receptors, in particular, AT1R activation increases collagen synthesis and cell proliferation, but its overexpression activates apoptosis. CF and CMF express different levels of B1 and B2 kinin receptors, whose stimulation by their respective agonists activates common signaling transduction pathways that decrease the synthesis and secretion of collagen through nitric oxide and prostacyclin I2 secretion. Besides these classical functions, CF can also participate in the inflammatory response of cardiac repair, through the expression of receptors commonly associated to immune cells such as Toll like receptor 4, NLRP3 and interferon receptor. The activation by their respective agonists modulates the cellular functions already described and the release of cytokines and chemokines. Thus, CF and CMF act as sentinel cells responding to a plethora of stimulus, modifying their own behavior, and that of neighboring cells.
Collapse
Affiliation(s)
- G Díaz-Araya
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile.
| | - R Vivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Humeres
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - P Boza
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - S Bolivar
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| | - C Muñoz
- Laboratory of Molecular Pharmacology, Chemical Pharmacological and Toxicological Department, Faculty of Chemical and Pharmaceutical Sciences, FONDAP Advanced Center for Chronic diseases ACCDiS, University of Chile, Santiago, Chile
| |
Collapse
|
340
|
Burton RAB, Lee P, Casero R, Garny A, Siedlecka U, Schneider JE, Kohl P, Grau V. Three-dimensional histology: tools and application to quantitative assessment of cell-type distribution in rabbit heart. Europace 2015; 16 Suppl 4:iv86-iv95. [PMID: 25362175 PMCID: PMC4217519 DOI: 10.1093/europace/euu234] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Aims Cardiac histo-anatomical organization is a major determinant of function. Changes in tissue structure are a relevant factor in normal and disease development, and form targets of therapeutic interventions. The purpose of this study was to test tools aimed to allow quantitative assessment of cell-type distribution from large histology and magnetic resonance imaging- (MRI) based datasets. Methods and results Rabbit heart fixation during cardioplegic arrest and MRI were followed by serial sectioning of the whole heart and light-microscopic imaging of trichrome-stained tissue. Segmentation techniques developed specifically for this project were applied to segment myocardial tissue in the MRI and histology datasets. In addition, histology slices were segmented into myocytes, connective tissue, and undefined. A bounding surface, containing the whole heart, was established for both MRI and histology. Volumes contained in the bounding surface (called ‘anatomical volume’), as well as that identified as containing any of the above tissue categories (called ‘morphological volume’), were calculated. The anatomical volume was 7.8 cm3 in MRI, and this reduced to 4.9 cm3 after histological processing, representing an ‘anatomical’ shrinkage by 37.2%. The morphological volume decreased by 48% between MRI and histology, highlighting the presence of additional tissue-level shrinkage (e.g. an increase in interstitial cleft space). The ratio of pixels classified as containing myocytes to pixels identified as non-myocytes was roughly 6:1 (61.6 vs. 9.8%; the remaining fraction of 28.6% was ‘undefined’). Conclusion Qualitative and quantitative differentiation between myocytes and connective tissue, using state-of-the-art high-resolution serial histology techniques, allows identification of cell-type distribution in whole-heart datasets. Comparison with MRI illustrates a pronounced reduction in anatomical and morphological volumes during histology processing.
Collapse
Affiliation(s)
- Rebecca A B Burton
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Peter Lee
- Department of Physics, University of Oxford, Oxford OX1 3RH, UK
| | - Ramón Casero
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| | - Alan Garny
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
| | - Urszula Siedlecka
- The Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield UB9 6JH, UK
| | - Jürgen E Schneider
- British Heart Foundation Experimental MR Unit, Radcliffe Department of Medicine, Division of Cardiovascular Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Peter Kohl
- The Heart Science Centre, National Heart and Lung Institute, Imperial College London, Harefield UB9 6JH, UK
| | - Vicente Grau
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
341
|
Frentzou GA, Drinkhill MJ, Turner NA, Ball SG, Ainscough JFX. A state of reversible compensated ventricular dysfunction precedes pathological remodelling in response to cardiomyocyte-specific activity of angiotensin II type-1 receptor in mice. Dis Model Mech 2015; 8:783-94. [PMID: 26092119 PMCID: PMC4527284 DOI: 10.1242/dmm.019174] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/26/2015] [Indexed: 12/12/2022] Open
Abstract
Cardiac dysfunction is commonly associated with high-blood-pressure-induced cardiomyocyte hypertrophy, in response to aberrant renin-angiotensin system (RAS) activity. Ensuing pathological remodelling promotes cardiomyocyte death and cardiac fibroblast activation, leading to cardiac fibrosis. The initiating cellular mechanisms that underlie this progressive disease are poorly understood. We previously reported a conditional mouse model in which a human angiotensin II type-I receptor transgene (HART) was expressed in differentiated cardiomyocytes after they had fully matured, but not during development. Twelve-month-old HART mice exhibited ventricular dysfunction and cardiomyocyte hypertrophy with interstitial fibrosis following full receptor stimulation, without affecting blood pressure. Here, we show that chronic HART activity in young adult mice causes ventricular dysfunction without hypertrophy, fibrosis or cardiomyocyte death. Dysfunction correlated with reduced expression of pro-hypertrophy markers and increased expression of pro-angiogenic markers in the cardiomyocytes experiencing increased receptor load. This stimulates responsive changes in closely associated non-myocyte cells, including the downregulation of pro-angiogenic genes, a dampened inflammatory response and upregulation of Tgfβ. Importantly, this state of compensated dysfunction was reversible. Furthermore, increased stimulation of the receptors on the cardiomyocytes caused a switch in the secondary response from the non-myocyte cells. Progressive cardiac remodelling was stimulated through hypertrophy and death of individual cardiomyocytes, with infiltration, proliferation and activation of fibroblast and inflammatory cells, leading to increased angiogenic and inflammatory signalling. Together, these data demonstrate that a state of pre-hypertrophic compensated dysfunction can exist in affected individuals before common markers of heart disease are detectable. The data also suggest that there is an initial response from the housekeeping cells of the heart to signals emanating from distressed neighbouring cardiomyocytes to suppress those changes most commonly associated with progressive heart disease. We suggest that the reversible nature of this state of compensated dysfunction presents an ideal window of opportunity for personalised therapeutic intervention. Highlighted Article: A novel conditional mouse model was used to investigate early initiating stages of heart disease that are commonly overlooked, and identifies a ‘window of opportunity’ for personalised therapeutic intervention.
Collapse
Affiliation(s)
- Georgia A Frentzou
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Mark J Drinkhill
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Neil A Turner
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Stephen G Ball
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| | - Justin F X Ainscough
- Leeds Institute of Cardiovascular & Metabolic Medicine, and Multidisciplinary Cardiovascular Research Centre, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
342
|
Marinković G, Heemskerk N, van Buul JD, de Waard V. The Ins and Outs of Small GTPase Rac1 in the Vasculature. J Pharmacol Exp Ther 2015; 354:91-102. [PMID: 26036474 DOI: 10.1124/jpet.115.223610] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2015] [Indexed: 12/16/2022] Open
Abstract
The Rho family of small GTPases forms a 20-member family within the Ras superfamily of GTP-dependent enzymes that are activated by a variety of extracellular signals. The most well known Rho family members are RhoA (Ras homolog gene family, member A), Cdc42 (cell division control protein 42), and Rac1 (Ras-related C3 botulinum toxin substrate 1), which affect intracellular signaling pathways that regulate a plethora of critical cellular functions, such as oxidative stress, cellular contacts, migration, and proliferation. In this review, we describe the current knowledge on the role of GTPase Rac1 in the vasculature. Whereas most recent reviews focus on the role of vascular Rac1 in endothelial cells, in the present review we also highlight the functional involvement of Rac1 in other vascular cells types, namely, smooth muscle cells present in the media and fibroblasts located in the adventitia of the vessel wall. Collectively, this overview shows that Rac1 activity is involved in various functions within one cell type at distinct locations within the cell, and that there are overlapping but also cell type-specific functions in the vasculature. Chronically enhanced Rac1 activity seems to contribute to vascular pathology; however, Rac1 is essential to vascular homeostasis, which makes Rac1 inhibition as a therapeutic option a delicate balancing act.
Collapse
Affiliation(s)
- Goran Marinković
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Niels Heemskerk
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap D van Buul
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vivian de Waard
- Department Medical Biochemistry (G.M., V.d.W.) and Department of Molecular Cell Biology (N.H., J.D.v.B.), Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
343
|
Gu X, Xu J, Yang XP, Peterson E, Harding P. Fractalkine neutralization improves cardiac function after myocardial infarction. Exp Physiol 2015; 100:805-17. [PMID: 25943588 DOI: 10.1113/ep085104] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/30/2015] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? What is the cardioprotective role of fractalkine neutralization in heart failure and what are the mechanisms responsible? What is the main finding and its importance? The concentration of fractalkine is increased in the left ventricle of mice with myocardial infarction, similar to the increases in plasma from heart failure patients. The present study shows a clear beneficial effect of neutralizing fractalkine in a model of myocardial infarction, which results in increased survival. Such an approach may be worthwhile in human patients. Concentrations of the chemokine fractalkine (FKN) are increased in patients with chronic heart failure, and our previous studies show that aged mice lacking the prostaglandin E2 EP4 receptor subtype (EP4-KO) have increased cardiac FKN, with a phenotype of dilated cardiomyopathy. However, how FKN participates in the pathogenesis of heart failure has rarely been studied. We hypothesized that FKN contributes to the pathogenesis of heart failure and that anti-FKN treatment prevents heart failure induced by myocardial infarction (MI) more effectively in EP4-KO mice. Male EP4-KO mice and wild-type littermates underwent sham or MI surgery and were treated with an anti-FKN antibody or control IgG. At 2 weeks post-MI, echocardiography was performed and hearts were excised for determination of infarct size, immunohistochemistry and Western blot of signalling molecules. Given that FKN protein levels in the left ventricle were increased to a similar extent in both strains after MI and that anti-FKN treatment improved survival and cardiac function in both strains, we subsequently used only wild-type mice to examine the mechanisms whereby anti-FKN is cardioprotective. Myocyte cross-sectional area and interstitial collagen fraction were reduced after anti-FKN treatment, as were macrophage migration and gelatinase activity. Activation of ERK1/2 and p38 MAPK were reduced after neutralization of FKN. In vitro, FKN increased fibroblast proliferation. In conclusion, increased FKN contributes to heart failure after MI. This effect is not exacerbated in EP4-KO mice, suggesting that there is no link between FKN and lack of EP4. Overall, inhibition of FKN may be important to preserve cardiac function post-MI.
Collapse
Affiliation(s)
- Xiaosong Gu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA.,Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - Jiang Xu
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Xiao-Ping Yang
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Edward Peterson
- Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI, 48202, USA
| | - Pamela Harding
- Hypertension and Vascular Research Division, Department of Internal Medicine, Henry Ford Hospital, Detroit, MI, 48202, USA
| |
Collapse
|
344
|
Gunaydin G, Kesikli SA, Guc D. Cancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subset. Oncoimmunology 2015; 4:e1034918. [PMID: 26405600 DOI: 10.1080/2162402x.2015.1034918] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 03/19/2015] [Accepted: 03/21/2015] [Indexed: 12/17/2022] Open
Abstract
Circulating fibrocytes were reported to represent a novel myeloid-derived suppressor cell (MDSC) subset and they were also proposed to be involved in the tumor immune escape. This novel fibrocyte subset had a surface phenotype resembling non-monocytic MDSCs (CD14-CD11chiCD123-) and exhibited immunomodulatory roles. Most effector functions of fibrocytes (circulating fibroblast-progenitors) are accomplished as tissue fibroblasts, likewise in the tumor microenvironment. Therefore, fibroblasts at tumor tissues should be evaluated whether they display similar molecular/gene expression patterns and functional roles to the blood-borne fibrocytes. A chemically induced rat breast carcinogenesis model was utilized to obtain cancer associated fibroblasts (CAFs). CAFs and normal tissue fibroblasts (NFs) were isolated from cancerous and healthy breast tissues, respectively, using a previously described enzymatic protocol. Both CAFs and NFs were analyzed for cell surface phenotypes by flow cytometry and for gene expression profiles by gene set enrichment analysis (GSEA). PBMCs were cocultured with either NFs or CAFs and proliferations of PBMCs were assessed by CFSE assays. Morphological analyses were performed by immunocytochemistry stainings with vimentin. CAFs were spindle shaped cells unlike their blood-borne counterparts. They did not express CD80 and their MHC-II expression was lower than NFs. Although CAFs expressed the myeloid marker CD11b/c, its expression was lower than that on the circulating fibrocytes. CAFs did not express granulocytic/neutrophilic markers and they seemed to have developed in an environment containing THELPER2-like cytokines. They also showed immunosuppressive effects similar to their blood-borne counterparts. In summary, CAFs showed similar phenotypic and functional characteristics to the circulating fibrocytes that were reported to represent a unique MDSC subset.
Collapse
Affiliation(s)
- Gurcan Gunaydin
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| | - S Altug Kesikli
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| | - Dicle Guc
- Department of Basic Oncology; Hacettepe University Cancer Institute ; Sihhiye, Ankara, Turkey
| |
Collapse
|
345
|
Matthijs Blankesteijn W, Hermans KCM. Wnt signaling in atherosclerosis. Eur J Pharmacol 2015; 763:122-30. [PMID: 25987418 DOI: 10.1016/j.ejphar.2015.05.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/01/2015] [Indexed: 02/03/2023]
Abstract
Atherosclerosis is a disease of the vascular wall that forms the basis for a large spectrum of pathologies of various organs and tissues. Although massive research efforts in the last decades have yielded valuable information about its underlying molecular mechanisms, this has not led to a translation into effective therapeutic interventions that can stop the progression or even can induce regression of atherosclerosis. This underscores the importance of investigations on the involvement of novel signaling pathways in the development and progression of this condition. In this review we focus on the role of Wnt signaling in atherosclerosis. Experimental evidence is presented that Wnt signaling is involved in many aspects of the development and progression of vascular lesions including endothelial dysfunction, macrophage activation and the proliferation and migration of vascular smooth muscle cells. Subsequently, we will discuss the role of Wnt signaling in myocardial infarction and stroke, two common pathologies resulting from the progression of atherosclerotic lesions towards an unstable phenotype. Despite the fact that the published data sometimes are ambiguous or even conflicting, a picture is emerging that an attenuation of Wnt signaling is beneficial for the cardiovascular system that is compromised by atherosclerosis.
Collapse
Affiliation(s)
- W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands.
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, P.O. Box 616, 6200MD Maastricht, The Netherlands
| |
Collapse
|
346
|
Cortistatin Inhibits NLRP3 Inflammasome Activation of Cardiac Fibroblasts During Sepsis. J Card Fail 2015; 21:426-433. [DOI: 10.1016/j.cardfail.2015.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 01/16/2015] [Accepted: 01/23/2015] [Indexed: 01/17/2023]
|
347
|
Patel BB, Kasneci A, Bolt AM, Di Lalla V, Di Iorio MR, Raad M, Mann KK, Chalifour LE. Chronic Exposure to Bisphenol A Reduces Successful Cardiac Remodeling After an Experimental Myocardial Infarction in Male C57bl/6n Mice. Toxicol Sci 2015; 146:101-15. [PMID: 25862758 DOI: 10.1093/toxsci/kfv073] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Estrogenic compounds such as bisphenol A (BPA) leach from plastics into food and beverage containers. Increased BPA exposure has been correlated with increased cardiovascular disease. To test the hypothesis that increased BPA exposure reduces cardiovascular remodeling, we chronically exposed C57bl/6n male mice to BPA and performed a myocardial infarction (MI). We measured cardiac function, as well as myeloid and cardiac fibroblast accumulation and activity. We found increased early death as well as increased cardiac dilation and reduced cardiac function in surviving BPA-exposed mice. Matrix metalloproteinase-2 (MMP2) protein and activity were increased 1.5-fold in BPA-exposed heart. BPA-exposed mice had similar neutrophil infiltration; however, monocyte and macrophage (MΦ) infiltration into the ischemic area was 5-fold greater than VEH mice potentially due to a 2-fold increase in monocyte chemoattractant protein-1. Monocyte and MΦ exposure to BPA in vitro in primary bone marrow cultures or in isolated peritoneal MΦ increased polarization to an activated MΦ, increased MMP2 and MMP9 expression 2-fold and activity 3-fold, and increased uptake of microspheres 3-fold. Cardiac fibroblasts (CF) differentiate to α-smooth muscle actin (αSMA) expressing myofibroblasts, migrate to the ischemic area and secrete collagen to strengthen the scar. Collagen and αSMA expression were reduced 50% in BPA-exposed hearts. Chronic in vivo or continuous in vitro BPA exposure ablated transforming growth factor beta-mediated differentiation of CF, reduced αSMA expression 50% and reduced migration 40% yet increased secreted MMP2 activity 2-fold. We conclude that chronic BPA exposure reduces the ability to successfully remodel after an MI by increasing MΦ-based inflammation and reducing myofibroblast repair function.
Collapse
Affiliation(s)
- Bhavini B Patel
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Amanda Kasneci
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Alicia M Bolt
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Vanessa Di Lalla
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Massimo R Di Iorio
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Mohamad Raad
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Koren K Mann
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| | - Lorraine E Chalifour
- *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada *Lady Davis Institute for Medical Research, Montréal, Québec H3T 1E2, Canada, Department of Oncology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada, Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec H3A 1A2, Canada, Division of Cardiology and Division of Endocrinology, Jewish General Hospital, 3755 Chemin Cote Ste Catherine, Montréal, Québec H3T 1E2, Canada
| |
Collapse
|
348
|
Frangogiannis NG. Interleukin-1 in cardiac injury, repair, and remodeling: pathophysiologic and translational concepts. Discoveries (Craiova) 2015; 3. [PMID: 26273700 PMCID: PMC4532433 DOI: 10.15190/d.2015.33] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the infarcted myocardium, necrotic cardiomyocytes release danger signals activating an intense inflammatory reaction that serves to clear the wound from dead cells and matrix debris, but may also extend injury. A growing body of evidence suggests an important role for members of the Interleukin (IL)-1 family in injury, repair and remodeling of the infarcted heart. This review manuscript discusses the pathophysiologic functions of IL-1 in the infarcted and remodeling myocardium and its potential role as a therapeutic target in patients with myocardial infarction. Dead cardiomyocytes release IL-1a that may function as a crucial alarmin triggering the post-infarction inflammatory reaction. IL-1b is markedly upregulated in the infarcted myocardium; activation of the inflammasome in both cardiomyocytes and interstitial cells results in release of bioactive IL-1b in the infarcted area. Binding of IL-1 to the type 1 receptor triggers an inflammatory cascade, inducing recruitment of pro-inflammatory leukocytes and stimulating a matrix-degrading program in fibroblasts, while delaying myofibroblast conversion. IL-1 mediates dilative remodeling following infarction and may play a role in the pathogenesis of post-infarction heart failure. As the wound is cleared from dead cells and matrix debris, endogenous inhibitory signals suppress the IL-1 response resulting in repression of inflammation and resolution of the inflammatory infiltrate. Other members of the IL-1 family (such as IL-18 and IL-33) are also implicated in regulation of the inflammatory and reparative response following myocardial infarction. IL-18 may participate in pro-inflammatory signaling, whereas IL-33 may exert cytoprotective effects. Early clinical trials suggest that IL-1 blockade may be a promising therapeutic strategy for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx NY, USA
| |
Collapse
|
349
|
Abstract
Chemotherapy and targeted therapy have opened new avenues in clinical oncology. However, there is a lack of response in a substantial percentage of cancer patients and diseases frequently relapse in those who even initially respond. Resistance is, at present, the major barrier to conquering cancer, the most lethal age-related pathology. Identification of mechanisms underlying resistance and development of effective strategies to circumvent treatment pitfalls thereby improving clinical outcomes remain overarching tasks for scientists and clinicians. Growing bodies of data indicate that stromal cells within the genetically stable but metabolically dynamic tumor microenvironment confer acquired resistance against anticancer therapies. Further, treatment itself activates the microenvironment by damaging a large population of benign cells, which can drastically exacerbate disease conditions in a cell nonautonomous manner, and such off-target effects should be well taken into account when establishing future therapeutic rationale. In this review, we highlight relevant biological mechanisms through which the tumor microenvironment drives development of resistance. We discuss some unsolved issues related to the preclinical and clinical trial paradigms that need to be carefully devised, and provide implications for personalized medicine. In the long run, an insightful and accurate understanding of the intricate signaling networks of the tumor microenvironment in pathological settings will guide the design of new clinical interventions particularly combinatorial therapies, and it might help overcome, or at least prevent, the onset of acquired resistance.
Collapse
Affiliation(s)
- Yu Sun
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of SciencesShanghai, 200031, China
- School of Medicine, Shanghai Jiaotong UniversityShanghai, 200025, China
- VA Seattle Medical CenterSeattle, WA, 98108
- Department of Medicine, University of WashingtonSeattle, WA, 98195
| |
Collapse
|
350
|
Fu JD, Srivastava D. Direct reprogramming of fibroblasts into cardiomyocytes for cardiac regenerative medicine. Circ J 2015; 79:245-54. [PMID: 25744738 DOI: 10.1253/circj.cj-14-1372] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cardiac fibroblasts play critical roles in maintaining normal cardiac function and in cardiac remodeling during pathological conditions such as myocardial infarction (MI). Adult cardiomyocytes (CMs) have little to no regenerative capacity; damaged CMs in the heart after MI are replaced by cardiac fibroblasts that become activated and transform into myofibroblasts, which preserves the structural integrity. Unfortunately, this process typically causes fibrosis and reduces cardiac function. Directly reprogramming adult cardiac fibroblasts into induced CM-like cells (iCMs) holds great promise for restoring heart function. Direct cardiac reprogramming also provides a new research model to investigate which transcription factors and microRNAs control the molecular network that guides cardiac cell fate. We review the approaches and characterization of in vitro and in vivo reprogrammed iCMs from different laboratories, and outline the future directions needed to translate this new approach into a practical therapy for damaged hearts.
Collapse
Affiliation(s)
- Ji-Dong Fu
- Heart and Vascular Research Center, MetroHealth Campus of Case Western Reserve University, Cleveland, OH, USA; Gladstone Institute of Cardiovascular Disease, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
| | | |
Collapse
|