301
|
Aird WC. Molecular heterogeneity of tumor endothelium. Cell Tissue Res 2008; 335:271-81. [PMID: 18726119 DOI: 10.1007/s00441-008-0672-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 07/16/2008] [Indexed: 12/30/2022]
Abstract
Tumors depend on a vascular supply for their growth. Tumor blood vessels, which are derived from normal tissue vasculature, display a markedly abnormal phenotype. Tumor endothelial properties are highly varied in space and time. An important goal is to delineate the range of phenotypes in tumor endothelium and to identify tumor endothelial-specific molecular signatures. This information should lead to a more complete understanding of the mechanisms of tumor growth, the discovery of new therapeutic targets, and the development of biomarkers for diagnosis and surveillance. The goals of this review are to outline recent advances in dissecting tumor endothelial-cell-specific gene expression, to address mechanisms of phenotypic heterogeneity in tumor vascular beds, and to discuss the therapeutic implications of these findings.
Collapse
Affiliation(s)
- William C Aird
- The Center for Vascular Biology Research and Division of Molecular and Vascular Medicine, Beth Israel Deaconess Medical Center/Harvard Medical School, RW-663, 330 Brookline Avenue, Boston, MA 02215, USA.
| |
Collapse
|
302
|
Xu N, Wang YS, Pan WB, Xiao B, Wen YJ, Chen XC, Chen LJ, Deng HX, You J, Kan B, Fu AF, Li D, Zhao X, Wei YQ. Human alpha-defensin-1 inhibits growth of human lung adenocarcinoma xenograft in nude mice. Mol Cancer Ther 2008; 7:1588-97. [PMID: 18566229 DOI: 10.1158/1535-7163.mct-08-0010] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Human alpha-defensin-1 (HNP1), a small antimicrobial peptide, shows cytotoxicity to tumor cells in vitro and inhibitory activity for pathologic neovascularization in vivo. Here, we did a gene therapy with a plasmid that expresses a secretable form of HNP1 for assaying its antitumor activity. The expression and secretion of HNP1 were determined by reverse transcription-PCR and ELISA in vitro. We found that expression of HNP1 in A549 tumor cells caused significant growth inhibition. This effect is most likely cell autonomous, as a significant amount of recombinant HNP1 protein was found to be accumulated in the cytoplasm by immunohistochemical staining using an anti-HNP1 antibody and the supernatant containing secreted HNP1 failed to produce any noticeable antitumor activity. Flow cytometry and Hoechst 33258 staining showed that the number of apoptotic cells among the A549 cells expressing recombinant HNP1 proteins was significantly greater than that of the nontransfected control cultures, suggesting that this growth-inhibitory activity was due to an apoptotic mechanism triggered by the intracellular HNP1. The antitumor activity of intracellularly expressed HNP1 was also shown in vivo. Decreased microvessel density and increased lymphocyte infiltration were observed in tumor tissue from HNP1-treated mice through histologic analysis. These results indicate that intracellularly expressed HNP1 induces tumor cell apoptosis, which inhibits tumor growth. The antiangiogenesis effect of HNP1 may contribute to its inhibitory activity in vivo, and HNP1 might involve the host immune response to tumor. These findings provide a rationale for developing HNP1-based gene therapy for cancer.
Collapse
Affiliation(s)
- Ning Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Heckmann D, Meyer A, Laufer B, Zahn G, Stragies R, Kessler H. Rational design of highly active and selective ligands for the alpha5beta1 integrin receptor. Chembiochem 2008; 9:1397-407. [PMID: 18481343 DOI: 10.1002/cbic.200800045] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The inhibition of integrin function is a major challenge in medicinal chemistry. Potent ligands are currently in different stages of clinical trials for the antiangiogenic therapy of cancer and age-related macula degeneration (AMD). The subtype alpha5beta1 has recently been drawn into the focus of research because of its genuine role in angiogenesis. In our previous work we could demonstrate that the lack of structural information about the receptor could be overcome by a homology model based on the X-ray structure of the alphavbeta3 integrin subtype and the sequence similarities between both receptors. In this work, we describe the rational design and synthesis of high affinity alpha5beta1 binders, and the optimisation of selectivity against alphavbeta3 by means of extensive SAR studies and docking experiments. A first series of compounds based on the tyrosine scaffold resulted in affinities in the low and even subnanomolar range and selectivities of 400-fold against alphavbeta3. The insights about the structure-activity relationship gained from tyrosine-based ligands could be successfully transferred to ligands that bear an aza-glycine scaffold to yield alpha5beta1 ligands with affinities of approximately 1 nm and selectivities that exceed 10(4)-fold. The ligands have already been successfully employed as selective alpha5beta1 ligands in biological research and might serve as lead structures for antiangiogenic cancer therapy.
Collapse
Affiliation(s)
- Dominik Heckmann
- Centre of Integrated Protein Science at the Technical University München, Department of Chemistry, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
304
|
The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol 2008; 41:521-30. [PMID: 18762270 DOI: 10.1016/j.biocel.2008.05.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/16/2008] [Accepted: 05/21/2008] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing vasculature, is prevalent both during normal mammalian development and in certain pathological conditions such as tumor growth. It is stimulated and controlled by a complex network of intracellular signaling mechanisms, many of which are initiated by trans-membrane receptors transducing signals received from other cells and from the extracellular environment. Of these, cytokine signaling is recognized as one of the primary drivers of angiogenesis, but it has become increasingly evident that signaling mechanisms generated as a result of cell adhesion interactions are also crucially important. In addition, cell adhesion pathways are also intimately tied to cytokine signaling often making it difficult to dissect out the relative contribution of each to a particular angiogenic step. Many of these same signaling mechanisms are often manipulated by tumors to stimulate aberrant angiogenesis and enhance their blood supply. As a consequence, there is a great deal of interest in trying to understand the full complement of intracellular signaling pathways in angiogenesis as well as their interplay and timing during the process. Ultimately, understanding the complex network of signaling pathways that function during angiogenesis will provide important avenues for future therapeutic development.
Collapse
|
305
|
Weinländer K, Naschberger E, Lehmann MH, Tripal P, Paster W, Stockinger H, Hohenadl C, Stürzl M. Guanylate binding protein-1 inhibits spreading and migration of endothelial cells through induction of integrin alpha4 expression. FASEB J 2008; 22:4168-78. [PMID: 18697840 DOI: 10.1096/fj.08-107524] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human guanylate binding protein-1 (GBP-1) is a large GTPase that is induced by inflammatory cytokines and acts antiangiogenically through the inhibition of endothelial cell proliferation and migration. In this study, we detected that GBP-1-expressing cells show a significantly reduced spreading and migration on fibronectin matrices. Investigating possible mechanisms of these effects, we found that integrin alpha(4) (ITGA4) was consistently up-regulated at both the RNA and protein level in GBP-1-expressing cell cultures. Inhibition of cell spreading and migration by GBP-1 was dependent on the binding of ITGA4 to fibronectin. The inflammatory cytokines IL-1beta and TNF-alpha induced ITGA4 expression in HUVECs and inhibited spreading and migration. Knockdown of GBP-1 by shRNA abrogated inflammatory cytokine induced ITGA4 expression and restored spreading and migration capabilities of the cells. These results show that inhibition of endothelial cell spreading and migration by inflammatory cytokines is mediated by GBP-1 through induction of ITGA4 expression. Endothelial cell migration is a key process during angiogenesis. Therefore, ITGA4 may be a novel molecular target to modulate angiogenesis in human disease.
Collapse
Affiliation(s)
- Kristina Weinländer
- Division of Molecular and Experimental Surgery, Department of Surgery, University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
306
|
Schmieder AH, Caruthers SD, Zhang H, Williams TA, Robertson JD, Wickline SA, Lanza GM. Three-dimensional MR mapping of angiogenesis with alpha5beta1(alpha nu beta3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. FASEB J 2008; 22:4179-89. [PMID: 18697838 DOI: 10.1096/fj.08-112060] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Our objectives were 1) to characterize angiogenesis in the MDA-MB-435 xenograft mouse model with three-dimensional (3D) MR molecular imaging using alpha(5)beta(1)(RGD)- or irrelevant RGS-targeted paramagnetic nanoparticles and 2) to use MR molecular imaging to assess the antiangiogenic effectiveness of alpha(5)beta(1)(alpha(nu)beta(3))- vs. alpha(nu)beta(3)-targeted fumagillin (50 mug/kg) nanoparticles. Tumor-bearing mice were imaged with MR before and after administration of either alpha(5)beta(1)(RGD) or irrelevant RGS-paramagnetic nanoparticles. In experiment 2, mice received saline or alpha(5)beta(1)(alpha(nu)beta(3))- or alpha(nu)beta(3)-targeted fumagillin nanoparticles on days 7, 11, 15, and 19 posttumor implant. On day 22, MRI was performed using alpha(5)beta(1)(alpha(nu)beta(3))-targeted paramagnetic nanoparticles to monitor the antiangiogenic response. 3D reconstructions of alpha(5)beta(1)(RGD)-signal enhancement revealed a sparse, asymmetrical pattern of angiogenesis along the tumor periphery, which occupied <2.0% tumor surface area. alpha(5)beta(1)-targeted rhodamine nanoparticles colocalized with FITC-lectin corroborated the peripheral neovascular signal. alpha(5)beta(1)(alpha(nu)beta(3))-fumagillin nanoparticles decreased neovasculature to negligible levels relative to control; alpha(nu)beta(3)-targeted fumagillin nanoparticles were less effective (P>0.05). Reduction of angiogenesis in MDA-MB-435 tumors from low to negligible levels did not decrease tumor volume. MR molecular imaging may be useful for characterizing tumors with sparse neovasculature that are unlikely to have a reduced growth response to targeted antiangiogenic therapy.
Collapse
Affiliation(s)
- Anne H Schmieder
- Washington University Medical School, Campus Box 8215, 4320 Forest Park Ave., St. Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
307
|
Abstract
Antiangiogenesis approaches have the potential to be particularly effective in the treatment of glioblastoma tumours. These tumours exhibit extremely high levels of neovascularisation, which may contribute to their extremely aggressive behaviour, not only by providing oxygenation and nutrition, but also by establishing a leaky vasculature that lacks a blood-brain barrier. This leaky vasculature enables migration of tumour cells, as well as the build up of fluid, which exacerbates tissue damage due to increased intracranial pressure. Here, we discuss the considerable progress that has been made in the identification of the pro- and antiangiogenic factors produced by glioblastoma tumours and the effects of these molecules in animal models of the disease. The safety and efficacy of some of these approaches have now been demonstrated in clinical trials. However, the ability of tumours to overcome these therapies and to re-establish angiogenesis requires further clinical research regarding potential multimodality therapies, as well as basic research into the regulation of angiogenesis by as yet unidentified factors. Optimisation of noninvasive procedures for monitoring of angiogenesis would greatly facilitate such research.
Collapse
Affiliation(s)
- Joshua C Anderson
- Department of Pathology, Division of Neuropathology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
308
|
Nam JO, Jung MY, Thapa N, Lee BH, Park RW, Kim IS. T-CAM, a fastatin-FIII 9-10 fusion protein, potently enhances anti-angiogenic and anti-tumor activity via alphavbeta3 and alpha5beta1 integrins. Exp Mol Med 2008; 40:196-207. [PMID: 18446058 DOI: 10.3858/emm.2008.40.2.196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
We made fusion protein of fastatin and FIII 9-10, termed tetra-cell adhesion molecule (T-CAM) that can interact simultaneously with alphavbeta3 and alpha5beta1 integrins, both playing important roles in tumor angiogenesis. T-CAM can serve as a cell adhesion substrate mediating adhesion and migration of endothelial cells in alphavbeta3 and alpha5beta1 integrin-dependent manner. T-CAM showed pronounced anti-angiogenic activities such as inhibition of endothelial cell tube formation, endothelial cell proliferation, and induction of endothelial cell apoptosis. T-CAM also inhibited angiogenesis and tumor growth in mouse xenograft model. The anti-angiogenic and anti-tumoral activity of molecule like fastatin could be improved by fusing it with integrin-recognizing cell adhesion domain from other distinct proteins. The strategy of combining two distinct anti-angiogenic molecules or cell adhesion domains could facilitate designing improved anticancer agent of therapeutic value.
Collapse
Affiliation(s)
- Ju-Ock Nam
- Cell and Matrix Research Institute, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Daegu 700-422, Korea
| | | | | | | | | | | |
Collapse
|
309
|
Abstract
Blood vessels promote tumour growth, and both blood and lymphatic vessels facilitate tumour metastasis by serving as conduits for the transport of tumour cells to new sites. Angiogenesis and lymphangiogenesis are regulated by integrins, which are members of a family of cell surface receptors whose ligands are extracellular matrix proteins and immunoglobulin superfamily molecules. Select integrins promote endothelial cell migration and survival during angiogenesis and lymphangiogenesis, whereas other integrins promote pro-angiogenic macrophage trafficking to tumours. Several integrin-targeted therapeutic agents are currently in clinical trials for cancer therapy. Here, we review the evidence implicating integrins as a family of fundamental regulators of angiogenesis and lymphangiogenesis.
Collapse
Affiliation(s)
- Christie J Avraamides
- Moores UCSD Cancer Center, 3,855 Health Sciences Drive, La Jolla, California 92092-0819, USA
| | | | | |
Collapse
|
310
|
Chung J, Kim TH. Integrin-dependent translational control: Implication in cancer progression. Microsc Res Tech 2008; 71:380-6. [PMID: 18300291 DOI: 10.1002/jemt.20566] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The importance of translational control in cancer progression has been underscored by a number of recent studies. However, little is known how cancer cells maintain their high efficiency of translation. Here, we summarize studies that support the role of integrins in translational control, especially at the initiation step, and discuss the various mechanisms by which integrins regulate the recruitment of translational machinery. This review also examines the hypothesis that integrins contribute to various aspects of cancer progression such as proliferation, survival, angiogenesis, and invasion through translational control.
Collapse
Affiliation(s)
- Jun Chung
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA.
| | | |
Collapse
|
311
|
The CXC-chemokine CXCL4 interacts with integrins implicated in angiogenesis. PLoS One 2008; 3:e2657. [PMID: 18648521 PMCID: PMC2481302 DOI: 10.1371/journal.pone.0002657] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Accepted: 06/10/2008] [Indexed: 11/19/2022] Open
Abstract
The human CXC-chemokine CXCL4 is a potent inhibitor of tumor-induced angiogenesis. Considering that CXCL4 is sequestered in platelet alpha-granules and released following platelet activation in the vicinity of vessel wall injury, we tested the hypothesis that CXCL4 might function as a ligand for integrins. Integrins are a family of adhesion receptors that play a crucial role in angiogenesis by regulating early angiogenic processes, such as endothelial cell adhesion and migration. Here, we show that CXCL4 interacts with alphavbeta3 on the surface of alphavbeta3-CHO. More importantly, human umbilical vein endothelial cells adhere to immobilized CXCL4 through alphavbeta3 integrin, and also through other integrins, such as alphavbeta5 and alpha5beta1. We further demonstrate that CXCL4-integrin interaction is of functional significance in vitro, since immobilized CXCL4 supported endothelial cell spreading and migration in an integrin-dependent manner. Soluble CXCL4, in turn, inhibits integrin-dependent endothelial cell adhesion and migration. As a whole, our study identifies integrins as novel receptors for CXCL4 that may contribute to its antiangiogenic effect.
Collapse
|
312
|
Huveneers S, Truong H, Fässler R, Sonnenberg A, Danen EHJ. Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. J Cell Sci 2008; 121:2452-62. [PMID: 18611961 DOI: 10.1242/jcs.033001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Focal adhesions are randomly distributed across the ventral surface or along the edge of epithelial cells. In fibroblasts they orient centripetally and concentrate at a few peripheral sites connecting long F-actin stress fibers, causing a typical elongated, contractile morphology. Extensive remodeling of adhesions in fibroblasts also takes part in fibronectin fibrillogenesis, a process that depends on Rho-mediated contractility and results in the formation of a fibronectin matrix. Our current study shows that all these fibroblast characteristics are controlled by the ability of integrin alpha5 beta1 to bind soluble fibronectin molecules in their compact inactive conformation. The hypervariable region of the ligand-binding I-like domain of integrin alpha5 beta1 supports binding of soluble fibronectin. This supports the distribution of centripetally orientated focal adhesions in distinct peripheral sites, Rho activation and fibronectin fibrillogenesis through a mechanism that does not depend on Syndecan-4. Integrin alpha v beta3, even when locked in high affinity conformations for the RGD recognition motif shows no appreciable binding of soluble fibronectin and, consequently, fails to support the typical fibroblast focal adhesion distribution, Rho activity and fibronectin fibrillogenesis in the absence of integrin alpha5 beta1. The ability of alpha5 beta1 integrin to interact with soluble fibronectin may thus drive the cell-matrix adhesion and cytoskeletal organization required for a contractile, fibroblast-like morphology, perhaps explaining why alpha5 beta1 integrin, similarly to fibronectin, is essential for development.
Collapse
Affiliation(s)
- Stephan Huveneers
- Division of Toxicology, Leiden Amsterdam Center for Drug Research, Einsteinweg 55, Leiden University, Leiden CC, The Netherlands
| | | | | | | | | |
Collapse
|
313
|
Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Chernousov MA, Weiss SJ. Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 2008; 22:1231-43. [PMID: 18451110 DOI: 10.1101/gad.1643308] [Citation(s) in RCA: 160] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
During vasculogenesis and angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. While 3D-embedded endothelial cells establish adhesive interactions with surrounding ligands to optimally respond to soluble or matrix-bound agonists, the manner in which a randomly ordered ECM with diverse physico-mechanical properties is remodeled to support blood vessel formation has remained undefined. Herein, we demonstrate that endothelial cells initiate neovascularization by unfolding soluble fibronectin (Fn) and depositing a pericellular network of fibrils that serve to support cytoskeletal organization, actomyosin-dependent tension, and the viscoelastic properties of the embedded cells in a 3D-specific fashion. These results advance a new model wherein Fn polymerization serves as a structural scaffolding that displays adhesive ligands on a mechanically ideal substratum for promoting neovessel development.
Collapse
Affiliation(s)
- Xiaoming Zhou
- The Division of Molecular Medicine and Genetics, Department of Internal Medicine, The Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Carlson TR, Hu H, Braren R, Kim YH, Wang RA. Cell-autonomous requirement for beta1 integrin in endothelial cell adhesion, migration and survival during angiogenesis in mice. Development 2008; 135:2193-202. [PMID: 18480158 PMCID: PMC2582018 DOI: 10.1242/dev.016378] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
beta1 integrin (encoded by Itgb1) is established as a regulator of angiogenesis based upon the phenotypes of complete knockouts of beta1 heterodimer partners or ligands and upon antibody inhibition studies in mice. Its direct function in endothelial cells (ECs) in vivo has not been determined because Itgb1(-/-) embryos die before vascular development. Excision of Itgb1 from ECs and a subset of hematopoietic cells, using Tie2-Cre, resulted in abnormal vascular development by embryonic day (e) 8.5 and lethality by e10.5. Tie1-Cre mediated a more restricted excision of Itgb1 from ECs and hematopoietic cells and resulted in embryonic lethal vascular defects by e11.5. Capillaries of the yolk sacs were disorganized, and the endothelium of major blood vessels and of the heart was frequently discontinuous in mutant embryos. We also found similar vascular morphogenesis defects characterized by EC disorganization in embryonic explants and isolated ECs. Itgb1-null ECs were deficient in adhesion and migration in a ligand-specific fashion, with impaired responses to laminin and collagens, but not to fibronectin. Deletion of Itgb1 reduced EC survival, but did not affect proliferation. Our findings demonstrate that beta1 integrin is essential for EC adhesion, migration and survival during angiogenesis, and further validate that therapies targeting beta1 integrins may effectively impair neovascularization.
Collapse
Affiliation(s)
- Timothy R. Carlson
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, and Department of Anatomy, University of California, San Francisco, CA 94143
| | - Huiqing Hu
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, and Department of Anatomy, University of California, San Francisco, CA 94143
| | - Rickmer Braren
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, and Department of Anatomy, University of California, San Francisco, CA 94143
| | - Yung Hae Kim
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, and Department of Anatomy, University of California, San Francisco, CA 94143
| | - Rong A. Wang
- Pacific Vascular Research Laboratory, Division of Vascular Surgery, Department of Surgery, and Department of Anatomy, University of California, San Francisco, CA 94143
| |
Collapse
|
315
|
Milner R, Hung S, Erokwu B, Dore-Duffy P, LaManna JC, del Zoppo GJ. Increased expression of fibronectin and the alpha 5 beta 1 integrin in angiogenic cerebral blood vessels of mice subject to hypobaric hypoxia. Mol Cell Neurosci 2008; 38:43-52. [PMID: 18343155 PMCID: PMC2588547 DOI: 10.1016/j.mcn.2008.01.013] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 01/17/2008] [Accepted: 01/28/2008] [Indexed: 11/23/2022] Open
Abstract
The extracellular matrix (ECM) is an important regulator of angiogenesis and vascular remodeling. We showed previously that angiogenic capillaries in the developing CNS express high levels of fibronectin and its receptor alpha5beta1 integrin, and that this expression is developmentally downregulated. As cerebral hypoxia leads to an angiogenic response, we sought to determine whether angiogenic vessels in the adult CNS re-express fibronectin and the alpha5beta1 integrin. Ten-week old mice were subject to hypobaric hypoxia for 0, 4, 7 and 14 days, and fibronectin/integrin expression examined. Fibronectin and the alpha5 integrin subunit were strongly upregulated on capillaries in the hypoxic CNS, with the effect maximal at the earliest time point examined (4 days). Immunofluorescent studies demonstrated that the alpha5 integrin was expressed by angiogenic endothelial cells. In light of the defined angiogenic role for fibronectin in other systems, this work suggests that induction of fibronectin-alpha5beta1 integrin expression may be an important molecular switch driving angiogenesis in the hypoxic CNS.
Collapse
Affiliation(s)
- Richard Milner
- Department of Molecular and Experimental Medicine, MEM-132, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | | | | | |
Collapse
|
316
|
Kondo S, Tang Y, Scheef EA, Sheibani N, Sorenson CM. Attenuation of retinal endothelial cell migration and capillary morphogenesis in the absence of bcl-2. Am J Physiol Cell Physiol 2008; 294:C1521-30. [PMID: 18417716 DOI: 10.1152/ajpcell.90633.2007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptosis plays a critical role during development and in the maintenance of the vascular system. B-cell leukemia lymphoma 2 (bcl-2) protects endothelial cells (EC) from apoptosis in response to a variety of stimuli. Previous work from this laboratory demonstrated attenuation of postnatal retinal vascular development and retinal neovascularization during oxygen-induced ischemic retinopathy in bcl-2-deficient (bcl-2-/-) mice. To gain further insight into the function of bcl-2 in the endothelium, we isolated retinal EC from bcl-2+/+ and bcl-2-/- mice. Retinal EC lacking bcl-2 demonstrated reduced cell migration, tenascin-C expression, and adhesion to vitronectin and fibronectin. The bcl-2-/- retinal EC also failed to undergo capillary morphogenesis in Matrigel. In addition, using an ex vivo angiogenesis assay, we observed reduced sprouting from aortic rings grown in culture from bcl-2-/- mice compared with bcl-2+/+ mice. Furthermore, reexpression of bcl-2 was sufficient to restore migration and capillary morphogenesis defects observed in bcl-2-/- retinal EC. Mechanistically, bcl-2-/- cells expressed significantly less endothelial nitric oxide synthase, an important downstream effecter of proangiogenic signaling. This may be attributed to increased oxidative stress in the absence of bcl-2. In fact, incubation of retinal EC or aortic rings from bcl-2-/- mice with the antioxidant N-acetylcysteine rescued their capillary morphogenesis and sprouting defects. Thus, bcl-2-mediated cellular functions play important roles not only in survival but also in proangiogenic phenotype of EC with a significant impact on vascular development and angiogenesis.
Collapse
Affiliation(s)
- Shuji Kondo
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-4108, USA
| | | | | | | | | |
Collapse
|
317
|
Lu X, Lu D, Scully M, Kakkar V. The role of integrins in cancer and the development of anti-integrin therapeutic agents for cancer therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008; 2:57-73. [PMID: 19787098 PMCID: PMC2746574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Integrins have been reported to mediate cell survival, proliferation, differentiation, and migration programs. For this reason, the past few years have seen an increased interest in the implications of integrin receptors in cancer biology and tumor cell aggression. This review considers the potential role of integrins in cancer and also addresses why integrins are present attractive targets for drug design. It discusses of the several properties of the integrin-based chemotherapeutic agents currently under consideration clinically and provides an insight into cancer drug development using integrin as a target.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K,Correspondence: Xinjie Lu, Tel: (44) 0207-351-8312; Fax: (44)-0207-351-8324;
| | - Dong Lu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, U.K
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| |
Collapse
|
318
|
Lu X, Lu D, Scully M, Kakkar V. The Role of Integrins in Cancer and the Development of Anti-Integrin Therapeutic Agents for Cancer Therapy. PERSPECTIVES IN MEDICINAL CHEMISTRY 2008. [DOI: 10.1177/1177391x0800200003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Integrins have been reported to mediate cell survival, proliferation, differentiation, and migration programs. For this reason, the past few years have seen an increased interest in the implications of integrin receptors in cancer biology and tumor cell aggression. This review considers the potential role of integrins in cancer and also addresses why integrins are present attractive targets for drug design. It discusses of the several properties of the integrin-based chemotherapeutic agents currently under consideration clinically and provides an insight into cancer drug development using integrin as a target.
Collapse
Affiliation(s)
- Xinjie Lu
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Dong Lu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, U.K
| | - Mike Scully
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| | - Vijay Kakkar
- Thrombosis Research Institute, Manresa Road, London, SW3 6LR U.K
| |
Collapse
|
319
|
Sawada K, Mitra AK, Radjabi AR, Bhaskar V, Kistner EO, Tretiakova M, Jagadeeswaran S, Montag A, Becker A, Kenny HA, Peter ME, Ramakrishnan V, Yamada SD, Lengyel E. Loss of E-cadherin promotes ovarian cancer metastasis via alpha 5-integrin, which is a therapeutic target. Cancer Res 2008; 68:2329-39. [PMID: 18381440 PMCID: PMC2665934 DOI: 10.1158/0008-5472.can-07-5167] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
E-cadherin loss is frequently associated with ovarian cancer metastasis. Given that adhesion to the abdominal peritoneum is the first step in ovarian cancer dissemination, we reasoned that down-regulation of E-cadherin would affect expression of cell matrix adhesion receptors. We show here that inhibition of E-cadherin in ovarian cancer cells causes up-regulation of alpha(5)-integrin protein expression and transcription. When E-cadherin was blocked, RMUG-S ovarian cancer cells were able to attach and invade more efficiently. This greater efficiency could, in turn, be inhibited both in vitro and in vivo with an alpha(5)beta(1)-integrin-blocking antibody. When E-cadherin is silenced, alpha(5)-integrin is up-regulated through activation of an epidermal growth factor receptor/FAK/Erk1-mitogen-activated protein kinase-dependent signaling pathway and not through the canonical E-cadherin/beta-catenin signaling pathway. In SKOV-3ip1 ovarian cancer xenografts, which express high levels of alpha(5)-integrin, i.p. treatment with an alpha(5)beta(1)-integrin antibody significantly reduced tumor burden, ascites, and number of metastasis and increased survival by an average of 12 days when compared with IgG treatment (P < 0.0005). alpha(5)-Integrin expression was detected by immunohistochemistry in 107 advanced stage ovarian cancers using a tissue microarray annotated with disease-specific patient follow-up. Ten of 107 tissues (9%) had alpha(5)-integrin overexpression, and 39% had some level of alpha(5)-integrin expression. The median survival for patients with high alpha(5)-integrin levels was 26 months versus 35 months for those with low integrin expression (P < 0.05). Taken together, we have identified alpha(5)-integrin up-regulation as a molecular mechanism by which E-cadherin loss promotes tumor progression, providing an explanation for how E-cadherin loss increases metastasis. Targeting this integrin could be a promising therapy for a subset of ovarian cancer patients.
Collapse
Affiliation(s)
- Kenjiro Sawada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Anirban K. Mitra
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - A. Reza Radjabi
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | | | - Emily O. Kistner
- Department of Health Studies, University of Chicago, Chicago, Illinois
| | - Maria Tretiakova
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Sujatha Jagadeeswaran
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Anthony Montag
- Department of Pathology, University of Chicago, Chicago, Illinois
| | - Amy Becker
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Hilary A. Kenny
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Marcus E. Peter
- Department of Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois
- Department of Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| | | | - S. Diane Yamada
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
| | - Ernst Lengyel
- Department of Obstetrics and Gynecology/Section of Gynecologic Oncology, University of Chicago, Chicago, Illinois
- Department of Committee on Cancer Biology, University of Chicago, Chicago, Illinois
| |
Collapse
|
320
|
A proangiogenic peptide derived from vascular endothelial growth factor receptor-1 acts through α5β1 integrin. Blood 2008; 111:3479-88. [DOI: 10.1182/blood-2007-03-077537] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractVascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor for growth factors of the VEGF family. Endothelial cells express a membrane-bound and a soluble variant of this protein, the latter being mainly considered as a negative regulator of VEGF-A signaling. We previously reported that the soluble form is deposited in the extracellular matrix produced by endothelial cells in culture and is able to promote cell adhesion and migration through binding to α5β1 integrin. In this study, we demonstrate that the Ig-like domain II of VEGFR-1, which contains the binding determinants for the growth factors, is involved in the interaction with α5β1 integrin. To identify domain regions involved in integrin binding, we designed 12 peptides putatively mimicking the domain II surface and tested their ability to inhibit α5β1-mediated endothelial cell adhesion to soluble VEGFR-1 and directly support cell adhesion. One peptide endowed with both these properties was identified and shown to inhibit endothelial cell migration toward soluble VEGFR-1 as well. This peptide directly binds α5β1 integrin, but not VEGF-A, inducing endothelial cell tubule formation in vitro and neoangiogenesis in vivo. Alanine scanning mutagenesis of the peptide defined which residues were responsible for its biologic activity and integrin binding.
Collapse
|
321
|
Hinton CV, Avraham S, Avraham HK. Contributions of integrin-linked kinase to breast cancer metastasis and tumourigenesis. J Cell Mol Med 2008; 12:1517-26. [PMID: 18363848 PMCID: PMC3918067 DOI: 10.1111/j.1582-4934.2008.00300.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Metastasis contributes to more than 90% of mortality in breast cancer. Critical stages in the development of aggressive breast cancer include growth of the primary tumours, and their abilities to spread to distant organs, colonize and establish an independent blood supply. The integrin family of cell adhesion receptors is essential to breast cancer progression. Furthermore, integrin-linked kinase can ‘convert’ localized breast cancer cells into invasive and metastatic cells. Upon stimulation by growth factors and chemokine ligands, integrin-linked kinase mediates the phosphorylation of Akt Ser473, and glycogen synthase kinase-3. The current notion is that overexpression of integrin-linked kinase resulted in an invasive, metastatic phenotype in several cancer model systems in vivo and in vitro, thus, implicating a role for integrin-linked kinase in oncogenic transformation, angiogenesis and metastasis. Here, we will review the role of integrin-linked kinase in breast cancer metastasis. Elucidation of signalling events important for breast tumour metastasis should provide insights into successful breast cancer therapies.
Collapse
Affiliation(s)
- Cimona V Hinton
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
322
|
Abstract
The lifelong dedication of Dr. Judah Folkman to understand how tumors co-opt vasculature to promote tumor growth and spread resulted in the development of an astounding body of knowledge and development of new clinical therapeutics for cancer. Angiogenesis is a critical point in the development and dissemination of most human tumors. Tumor-associated lymphangiogenesis also plays an important role in mediating tumor spread to lymph nodes. The molecular regulations of these processes are complex, and many key molecular families have been implicated in the regulation of angiogenesis and lymphangiogenesis. By regulating cell-cell and cell-matrix contacts, integrins participate in blood and lymphatic vessel growth by promoting endothelial cell migration and survival. Understanding the underlying mechanisms by which integrins promote tumor-associated blood and lymphatic vessel development might provide important modalities for the therapeutic intervention of metastatic spread. This review focuses on the role of integrins in angiogenesis and lymphangiogenesis. Integrins represent potential targets for pharmacological agents and open new avenues for the control of metastatic spread in the treatment of malignancies. This article is dedicated to the memory of Dr. Judah Folkman, an amazing and caring teacher, scientist, physician, and friend.
Collapse
|
323
|
Haubner R. Noninvasive Determination of Angiogenesis. Cancer Imaging 2008. [DOI: 10.1016/b978-012374212-4.50092-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
324
|
Integrins in Angiogenesis. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
325
|
A function blocking anti-mouse integrin alpha5beta1 antibody inhibits angiogenesis and impedes tumor growth in vivo. J Transl Med 2007; 5:61. [PMID: 18042290 PMCID: PMC2235829 DOI: 10.1186/1479-5876-5-61] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2007] [Accepted: 11/27/2007] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin alpha5beta1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200), inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine alpha5beta1, precluding its use in standard mouse xenograft models. METHODS We generated a panel of rat-anti-mouse alpha5beta1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for alpha5beta1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. RESULTS A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin alpha5beta1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM). In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40-60% (p < 0.05) and this inhibition correlates with a concomitant decrease in vessel density. CONCLUSION The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-alpha5beta1 activity and confirms that inhibition of integrin alpha5beta1 impedes angiogenesis and slows tumor growth in vivo.
Collapse
|
326
|
Endothelial expression of beta1 integrin is required for embryonic vascular patterning and postnatal vascular remodeling. Mol Cell Biol 2007; 28:794-802. [PMID: 17984225 DOI: 10.1128/mcb.00443-07] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The largest subgroup of integrins is that containing the beta1 subunit. beta1 integrins have been implicated in a wide array of biological processes ranging from adhesion to cell growth, organogenesis, and mechanotransduction. Global deletion of beta1 integrin expression results in embryonic death at ca. embryonic day 5 (E5), a developmental time point too early to determine the effects of this integrin on vascular development. To elucidate the specific role of beta1 integrin in the vasculature, we conditionally deleted the beta1 gene in the endothelium. Homozygous deletion of beta1 integrins in the endothelium resulted in failure of normal vascular patterning, severe fetal growth retardation, and embryonic death at E9.5 to 10, although there were no overt effects on vasculogenesis. Heterozygous endothelial beta1 gene deletion did not diminish fetal or postnatal survival, but it reduced beta1 subunit expression in endothelial cells from adult mice by approximately 40%. These mice demonstrated abnormal vascular remodeling in response to experimentally altered in vivo blood flow and diminished vascularization in healing wounds. These data demonstrate that endothelial expression of beta1 integrin is required for developmental vascular patterning and that endothelial beta1 gene dosing has significant functional effects on vascular remodeling in the adult. Understanding how beta1 integrin expression is modulated may have significant clinical importance.
Collapse
|
327
|
Abstract
Cell-cell and cell-matrix interactions are of utmost importance in the pathogenesis of inflammatory diseases. For example, cell-cell and cell-matrix interactions are crucial for leukocyte homing and recruitment to inflammatory sites. The discovery of the disintegrin and metalloprotease (ADAM) proteins, which have both adhesive and proteolytic activities, raised the question of their involvement in inflammatory processes. More interestingly, the presence of the RGD integrin-binding sequence in the disintegrin domain of ADAM-15 (MDC-15; metargidin) highlighted ADAM-15 as a protein particularly involved in cell-cell interactions. These findings therefore prompted authors to investigate the roles of ADAM-15 in inflammatory diseases. Because of the early description of ADAM-15 expression in endothelial cells, work first focused on the roles of ADAM-15 in vascular diseases, and ADAM-15 was found to be associated with atherosclerosis. Other studies also pointed at ADAM-15 as a mediator of rheumatoid arthritis and intestinal inflammation as well as inherent angiogenesis. The roles of ADAM-15 in these diseases appear to involve mechanisms as different as cell-cell interactions, cell-extracellular matrix (ECM) interactions, and shedding activity. Here we review and discuss these recent discoveries pointing to ADAM-15 as a mediator of mechanisms underlying inflammation and as a possible therapeutic target for prevention of inflammatory diseases.
Collapse
Affiliation(s)
- Laetitia Charrier-Hisamuddin
- Deptartment of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
328
|
Tian F, Zhu CH, Zhang XW, Xie X, Xin XL, Yi YH, Lin LP, Geng MY, Ding J. Philinopside E, a new sulfated saponin from sea cucumber, blocks the interaction between kinase insert domain-containing receptor (KDR) and alphavbeta3 integrin via binding to the extracellular domain of KDR. Mol Pharmacol 2007; 72:545-52. [PMID: 17565003 DOI: 10.1124/mol.107.036350] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) signaling pathway is essential for tumor angiogenesis and has long been recognized as a promising target for cancer therapy. Current view holds that physical interaction between alpha(v)beta(3) integrin and kinase insert domain-containing receptor (KDR) is important in regulating angiogenesis and tumor development. We have reported previously that a new marine-derived compound, philinopside E (PE), exhibited the antiangiogenic activity via inhibition on KDR phosphorylation and downstream signaling. Herein, we have further demonstrated that PE specifically interacts with KDR extracellular domain, which is distinct from conventional small-molecule inhibitors targeting cytoplasmic kinase domain, to block its interaction with VEGF and the downstream signaling. We also noted that PE markedly suppresses alpha(v)beta(3) integrin-driven downstream signaling as a result of disturbance of the physical interaction between KDR and alpha(v)beta(3) integrin in HMECs, followed by disruption of the actin cytoskeleton organization and decreased cell adhesion to vitronectin. All of these findings substantiate PE to be an unrecognized therapeutic class in tumor angiogenesis and, more importantly, help appeal the interest of the therapeutic potential in angiogenesis and cancer development via targeting integrin-KDR interaction in the future.
Collapse
Affiliation(s)
- Fang Tian
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Pereira P, Kelly SM, Cooper A, Mardon HJ, Gellert PR, van der Walle CF. Solution formulation and lyophilisation of a recombinant fibronectin fragment. Eur J Pharm Biopharm 2007; 67:309-19. [PMID: 17452097 DOI: 10.1016/j.ejpb.2007.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 02/27/2007] [Accepted: 03/09/2007] [Indexed: 10/23/2022]
Abstract
The 9th-10th type III fibronectin domain pair shows promise in tissue engineering and tumour vasculature targeting. Calorimetry and structure-function analysis were used to investigate the effects of solution formulation and lyophilisation of a mutant ((9-10)FNIII-P). A single endothermic transition for (9-10)FNIII-P in solution was observed at pH<8, irrespective of addition of sucrose or PEG. The temperature at the maximum heat capacity (T(m)) and enthalpy (deltaH) of the transition increased for increasing sucrose concentrations but decreased for increasing PEG concentrations. The transition was fitted to a single two-state unfolding mechanism (in contrast to unfolding in guanidine. x HCl) and was partially reversible only at pH 4, with increasing concentrations of sucrose causing a marked fall in deltaH between scans. Circular dichroism spectra for the thermal unfolding of (9-10)FNIII-P at pH 4 showed loss of native beta-sheet structure and loss of aromatic contributions to the peak centred around 226 nm yielding an intermediate conformation, which in the presence of sucrose was more disordered. Despite a glass transition (T(g)') for (9-10)FNIII-P(aq) of -70 degrees C, primary drying at -30 degrees C did not perturb its conformation upon reconstitution or its biological activity following lyophilisation; the addition of sucrose or PEG had no influence on structure or activity. The main consideration in the formulation of (9-10)FNIII-P was therefore pH.
Collapse
Affiliation(s)
- P Pereira
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | | | | | | | | | | |
Collapse
|
330
|
Kondo S, Scheef EA, Sheibani N, Sorenson CM. PECAM-1 isoform-specific regulation of kidney endothelial cell migration and capillary morphogenesis. Am J Physiol Cell Physiol 2007; 292:C2070-83. [PMID: 17563397 DOI: 10.1152/ajpcell.00489.2006] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Platelet endothelial cell adhesion molecule-1 (PECAM-1) has been implicated in angiogenesis through its involvement in endothelial cell-cell and cell-matrix interactions and signal transduction. Recent studies indicate that the cytoplasmic domain of PECAM-1 plays an important role in its cell adhesive and signaling properties. However, the role PECAM-1 isoforms play during angiogenic events such as cell adhesion and migration requires further delineation. To gain insight into the role PECAM-1 plays during vascular development and angiogenesis, we examined the expression pattern of PECAM-1 isoforms during kidney vascularization. We show that multiple isoforms of PECAM-1 are expressed during renal vascular development with different frequencies. The PECAM-1 that lacks exons 14 and 15 (Delta14&15) was the predominant isoform detected in the renal vasculature. To further study PECAM-1 isoform-specific functions we isolated kidney endothelial cells (EC) from wild-type and PECAM-1-deficient (PECAM-1-/-) mice with B(4)-lectin-coated magnetic beads. PECAM-1-/- kidney EC showed reduced migration, inability to undergo capillary morphogenesis in Matrigel, dense peripheral focal adhesions, and peripheral cortical actin distribution compared with wild-type cells. PECAM-1-/- kidney EC secreted increased amounts of fibronectin and decreased amounts of tenascin-C and thrombospondin-1. Reexpression of Delta14&15, but not full-length, PECAM-1 in PECAM-1-/- kidney EC restored cell migration and capillary morphogenesis defects. Thus PECAM-1 may regulate the adhesive and migratory properties of kidney EC in an isoform-specific fashion through modulation of integrin activity and extracellular matrix protein expression. Our results indicate that regulated expression of specific PECAM-1 isoforms may enable EC to accommodate the different stages of angiogenesis.
Collapse
Affiliation(s)
- Shuji Kondo
- Dept. of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792-4108, USA
| | | | | | | |
Collapse
|
331
|
Dietrich T, Onderka J, Bock F, Kruse FE, Vossmeyer D, Stragies R, Zahn G, Cursiefen C. Inhibition of inflammatory lymphangiogenesis by integrin alpha5 blockade. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:361-72. [PMID: 17591980 PMCID: PMC1941598 DOI: 10.2353/ajpath.2007.060896] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The interaction between endothelial cells and extracellular matrix proteins plays an important role in (hem)angiogenesis. Integrins are able to mediate the outgrowth of newly formed blood vessels. In contrast, the role of integrins in lymphangiogenesis, ie, the outgrowth of new from pre-existing lymphatic vessels, has so far been unclear. Here, expression and functional relevance of integrins on lymphatic endothelium in vivo was investigated using the mouse model of combined inflammatory corneal hemangiogenesis and lymphangiogenesis. Immunohistochemistry revealed novel expression of both integrin alpha5 and alphav on both resting and activated lymphatic vessels in vivo. Integrin alpha5-inhibiting small molecules significantly blocked the outgrowth of new lymphatic vessels into the cornea in a dose-dependent manner. The outgrowth of blood vessels was less significantly affected by this treatment, thus allowing for selective inhibition of lymphangiogenesis at lower dosages. Combined inhibition of integrin alpha5 and alphav using inhibiting molecules did not significantly increase the anti-lymphangiogenic effect in vivo, thus suggesting an important functional role of integrin alpha5 in lymphangiogenesis. In summary, our findings demonstrate novel expression of specific integrins on growing lymphatic endothelial cells in vivo and reveal their functional role during lymphangiogenesis. This opens new treatment options for selective inhibition of lymphangiogenesis, eg, in oncology and transplant immunology.
Collapse
Affiliation(s)
- Tina Dietrich
- Department of Ophthalmology, University of Erlangen-Nürnberg, Schwabachanlage 6, Erlangen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
332
|
Abstract
Nanotechnology, or systems/device manufacture at sizes generally ranging between 1 and 100 nm, is a multidisciplinary scientific field undergoing explosive development. The genesis of nanotechnology can be traced to advances in medicine, communications, genomics and robotics. One of the greatest values of nanotechnology will be in the development of new and effective medical treatments (i.e. nanomedicine). This review focuses on the potential of nanomedicine as it relates to the development of nanoparticles for enabling and improving the targeted delivery of therapeutic and diagnostic agents. We highlight the use of nanoparticles for specific intra-compartmental analysis using the examples of delivery to malignant cancers, to the central nervous system, and across the gastrointestinal barriers.
Collapse
|
333
|
Viji RI, Kumar VBS, Kiran MS, Sudhakaran PR. Angiogenic response of endothelial cells to heparin-binding domain of fibronectin. Int J Biochem Cell Biol 2007; 40:215-26. [PMID: 17766169 DOI: 10.1016/j.biocel.2007.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 06/29/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Interaction of endothelial cells with cell-binding domain of fibronectin through integrin receptors is important in the process of angiogenesis. The present study was designed to examine the role of heparin-binding domain of fibronectin in angiogenesis using human umbilical vein endothelial cells. Attachment of endothelial cells in vitro to heparin-binding domain of fibronectin was inhibited by heparin. Chick chorioallantoic membrane assay revealed the proangiogenic nature of heparin-binding domain. Analysis by reverse transcription-polymerase chain reaction showed an increase in the expression of vascular endothelial growth factor and its receptor mRNA. Enzyme-linked immunosorbent assay showed a significant increase in the level of vascular endothelial growth factor secreted by cells maintained on heparin-binding domain. Treatment with calphostin C, an inhibitor of protein kinase C, decreased the expression of vascular endothelial growth factor receptor 2. Chick chorioallantoic membrane assay showed that the vascular endothelial growth factor secreted by cells maintained on heparin-binding domain was biologically more active, which appeared to be due to a decrease in its poly-adenosine diphosphate ribosylation. Binding assays showed that heparin-binding domain preferably binds unmodified vascular endothelial growth factor as compared to intact fibronectin. It is concluded that the heparin-binding domain of fibronectin by itself can promote angiogenesis in endothelial cells possibly by interaction with cell surface heparan sulphate proteoglycans involving protein kinase C dependent signaling and making available more active form of vascular endothelial growth factor to the cells.
Collapse
Affiliation(s)
- R I Viji
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala 695 581, India.
| | | | | | | |
Collapse
|
334
|
Heckmann D, Meyer A, Marinelli L, Zahn G, Stragies R, Kessler H. Probing integrin selectivity: rational design of highly active and selective ligands for the alpha5beta1 and alphavbeta3 integrin receptor. Angew Chem Int Ed Engl 2007; 46:3571-4. [PMID: 17394271 DOI: 10.1002/anie.200700008] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dominik Heckmann
- Department Chemie, TU München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | | | | | | | | | | |
Collapse
|
335
|
Abstract
Vascular development requires correct interactions among endothelial cells, pericytes and surrounding cells. These interactions involve many cell adhesion interactions, including cell-matrix interactions both with basement membranes and with surrounding extracellular matrices. Investigations of the contributions of these various interactions in vascular development and angiogenesis have been rather uneven and incomplete over the past 10-15 years. There has been considerable concentration on a few receptors, matrix proteins and proteolytic fragments with the goal of finding means to control angiogenesis. Many other potential contributors have received much less attention. Even for those molecules that have been subject to intensive investigation, our knowledge is incomplete. This review will survey the spectrum of extracellular matrix (ECM) proteins and cell-matrix adhesion receptors (particularly integrins) that are likely to contribute to angiogenesis and discuss what is known and not known about the roles of each of them.
Collapse
Affiliation(s)
- R O Hynes
- Howard Hughes Medical Institute, Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
336
|
Catena R, Muniz-Medina V, Moralejo B, Javierre B, Best CJM, Emmert-Buck MR, Green JE, Baker CC, Calvo A. Increased expression of VEGF121/VEGF165-189 ratio results in a significant enhancement of human prostate tumor angiogenesis. Int J Cancer 2007; 120:2096-109. [PMID: 17278099 DOI: 10.1002/ijc.22461] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a proangiogenic factor upregulated in many tumors. The alternative splicing of VEGF mRNA renders 3 major isoforms of 121, 165 and 189 amino-acids in humans (1 less amino-acid for each mouse VEGF isoform). We have designed isoform specific real time QRT-PCR assays to quantitate VEGF transcripts in mouse and human normal and malignant prostates. In the human normal prostate, VEGF(165) was the predominant isoform (62.8% +/- 5.2%), followed by VEGF(121) (22.5% +/- 6.3%) and VEGF(189) (p < 0.001) (14.6% +/- 2.1%). Prostate tumors showed a significant increase in the percentage of VEGF(121) and decreases in VEGF(165) (p < 0.01) and VEGF(189) (p < 0.05). However, the amount of total VEGF mRNA was similar between normal and malignant prostates. VEGF(164) was the transcript with the highest expression in the mouse normal prostate. Unlike human prostate cancer, tumors from TRAMP mice demonstrated a significant increase in total VEGF mRNA levels and in each of the VEGF isoforms, without changes in the relative isoform ratios. Morpholino phosphorodiamide antisense oligonucleotide technology was used to increase the relative amount of VEGF(121) while proportionally decreasing VEGF(165) and VEGF(189) levels in human prostate cell lines, through the modification of alternative splicing, without changing transcription levels and total amount of VEGF. The increase in the VEGF(121)/VEGF(165-189) ratio in PC3 cells resulted in a dramatic increase in prostate tumor angiogenesis in vivo. Our results underscore the importance of VEGF(121) in human prostate carcinoma and demonstrate that the relative expression of the different VEGF isoforms has an impact on prostate carcinogenesis.
Collapse
Affiliation(s)
- Raul Catena
- Division of Oncology, Center for Applied Medical Research (CIMA), University of Navarra, Pio XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Muether PS, Dell S, Kociok N, Zahn G, Stragies R, Vossmeyer D, Joussen AM. The role of integrin alpha5beta1 in the regulation of corneal neovascularization. Exp Eye Res 2007; 85:356-65. [PMID: 17659277 DOI: 10.1016/j.exer.2007.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 05/17/2007] [Accepted: 06/01/2007] [Indexed: 01/06/2023]
Abstract
Integrins are transmembrane receptor proteins critical for growth and stabilization of vessels, but the mechanisms by which integrin activities are involved in neoangiogenesis of the eye remain unclear. Specific inhibitors to fibronectin receptor integrin alpha(5)beta(1) impeded pathological neovascularization in vivo. Our objective was to determine whether alpha(5)beta(1) plays a role in ocular angiogenesis, and whether a novel alpha(5)beta(1)-inhibiting small molecule is able to reduce angiogenesis in a model of inflammatory corneal neovascularization. Corneal neovascularization was induced in C57Bl/6 mice by NaOH-application and debridement of the limbal epithelium. Mice were randomized into six groups receiving either no treatment, or intraperitoneal osmotic pumps delivering three different doses of integrin antagonist or control substance on day 10 after scraping. In order to quantify the neovascular response, flatmounts were stained with FITC-CD31. Integrin alpha(5) expression was determined by immunohistochemistry and quantified by semiquantitative western blot analysis. Influence of integrin antagonist treatment on the mRNA expression of VEGF, bFGF and integrin alpha(5) was quantified by real-time RT-PCR. Vascularized corneas demonstrated a strong up-regulation of integrin alpha(5) within affected areas. Animals treated systemically with alpha(5)beta(1)-inhibiting small molecule showed a significant inhibition and regression of corneal neovascularization. PCR analysis evinced a significant up-regulation of VEGF and integrin alpha(5) mRNA levels in injured animals compared to controls, and a significant reduction of integrin alpha(5) mRNA in substance-treated animals compared to control substance, but no significant differences of bFGF levels in all groups. Western blot analysis of integrin alpha(5)beta(1) protein expression showed a trend towards up-regulation in injured animals, both control substance-treated and those treated with the alpha(5)beta(1)-inhibiting small molecule. Systemic delivery of an alpha(5)beta(1)-inhibiting small molecule inhibits and regresses corneal neovascularization induced by mechanical-alkali burn corneal injury. These results suggest an essential role for the integrin alpha(5)beta(1) in pathological neovascular processes of the cornea. Integrin alpha(5)beta(1) inhibitors could become a new approach for treatment of neovascularization in the eye.
Collapse
Affiliation(s)
- Philipp S Muether
- Department of Vitreoretinal Surgery, Center of Ophthalmology, University of Cologne, Kerpener Strasse 62, 50924 Cologne, Germany
| | | | | | | | | | | | | |
Collapse
|
338
|
Abstract
During cancer progression, the extracellular matrix (ECM) of the tissue in which the tumor grows is extensively remodeled, both by degradation of preexisting ECM molecules and by the neosynthesis of ECM components, which in many cases are not present in the ECM of normal tissues. Fibronectin (FN), a class of high-molecular-weight adhesive glycoproteins, plays a prominent role in mediating ECM function, because of its high abundance and its interaction with cellular components. Furthermore, the generation of tumor-associated FN isoforms allows the development of specific ligands (e.g., antibodies), which can be used for the selective delivery of therapeutic agents to the tumor environment. In view of these considerations, it is not surprising that FN is being used as a target for biomolecular intervention, both for the development of inhibitory molecules that block the interaction of FN with integrins and other receptors on the cell surface, and for the development of ligand-based targeted imaging and therapeutic strategies. In this review, we briefly present the essential properties of FN, and we then focus on the therapeutic strategies that are currently in preclinical or clinical development and feature FN as a target, or that are based on FN fragments so as to promote tumor-growth inhibition.
Collapse
Affiliation(s)
- Manuela Kaspar
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology, Zurich, Switzerland
| | | | | |
Collapse
|
339
|
Heckmann D, Meyer A, Marinelli L, Zahn G, Stragies R, Kessler H. Rationales Design von hoch aktiven und selektiven Liganden für α5β1- und αvβ3-Integrine. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
340
|
Abstract
Endothelial cell migration is essential to angiogenesis. This motile process is directionally regulated by chemotactic, haptotactic, and mechanotactic stimuli and further involves degradation of the extracellular matrix to enable progression of the migrating cells. It requires the activation of several signaling pathways that converge on cytoskeletal remodeling. Then, it follows a series of events in which the endothelial cells extend, contract, and throw their rear toward the front and progress forward. The aim of this review is to give an integrative view of the signaling mechanisms that govern endothelial cell migration in the context of angiogenesis.
Collapse
Affiliation(s)
- Laurent Lamalice
- Le Centre de recherche en cancérologie, l'Université Laval, L'Hôtel-Dieu de Québec, Québec, Canada
| | | | | |
Collapse
|
341
|
Kumar S, Wang Q, Sasaki NA. Synthesis of conformationally constrained analogues of RGD tripeptide. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.12.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
342
|
Abstract
All vascular biological processes are influenced to some degree by integrins expressed on endothelial cells, vascular smooth muscle cells, fibroblasts, platelets, or other circulating cells. In particular, angiogenesis requires cells to process signals from their microenvironment and respond by altering their cell-cell and cell-matrix adhesion, events which allow migration and vascular remodeling over the period of days to weeks. On the other hand, endothelial cells can respond to a permeability stimulus and alter their junctional adhesion molecules or vesicular transport machinery within seconds or minutes. This chapter will discuss the current understanding of how integrins participate in these processes, and explore the in vitro and in vivo models available to study the role of integrin function during angiogenesis and vascular leak.
Collapse
Affiliation(s)
- Sara M Weis
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
343
|
Abstract
The design and synthesis of peptidic and nonpeptidic integrin ligands derived from the most abundant natural tripeptide sequence, RGD, are described in this article. Special emphasis is placed on the activity and selectivity of the ligands to integrin subtypes. Two approaches are described-ligand- and structure-oriented design. When no structure of the complex or the target is known, one may derive suitable starting points from natural peptide sequences, which often require conformational restriction for a further optimization. A "spatial screening" procedure was used to identify highly active and selective ligands for the integrin subtypes alphavbeta3 and alphaIIbbeta3. Structure-based methods require knowledge of the binding domain of the target. Hence, the first structure of the alphavbeta3 integrin with bound cilengitide was a landmark for the structure-based approach. Meanwhile, a design using homology models of other integrin subtypes has also been successfully applied. To improve the ADME profile, nonpeptidic ligands have been developed using the information of the spatial distances and orientations of the most important pharmacophoric groups (especially the carboxyl group and the basic moiety at the other end of the molecule). Applications of the alphavbeta3 ligands as drugs in antiangiogenic tumor therapy for molecular imaging of metastases and for improvement of biocompatibility of grafts are briefly described.
Collapse
Affiliation(s)
- Dominik Heckmann
- Department of Chemistry, Technical University München, Garching, Germany
| | | |
Collapse
|
344
|
Abstract
The lymphatic system plays a key role in the drainage of fluids and proteins from tissues and in the trafficking of immune cells throughout the body. Comprised of a network of capillaries, collecting vessels, and lymph nodes, the lymphatic system plays a role in the metastasis of tumor cells to distant parts of the body. Tumors induce lymphangiogenesis, the growth of new lymphatic vessels, in the peritumoral space and also within tumors and lymph nodes. Tumor lymphangiogenesis has been shown to play a role in promoting tumor metastasis. As mediators of lymphatic endothelial cell adhesion, migration, and survival, integrins play key roles in the regulation of lymphangiogenesis. Recent studies indicate that select integrins promote lymphangiogenesis during development and disease and that inhibitors or loss of expression of these integrins can block lymphangiogenesis. In this report, we describe methods to isolate and culture murine and human lymphatic endothelial cells as well as methods to analyze the expression of integrins on these cells. We also show how to assess integrin-mediated adhesion, migration, and tube formation in vitro. We demonstrate how to evaluate integrin function during lymphangiogenesis in a variety of animal models in vivo. Additionally, we show how to study lymphangiogenesis using intravital microscopy.
Collapse
Affiliation(s)
- Barbara Garmy-Susini
- Moores UCSD Cancer Center, University of California, San Diego, La Jolla, California, USA
| | | | | | | |
Collapse
|
345
|
Pilorget A, Conesa M, Sarray S, Michaud-Levesque J, Daoud S, Kim KS, Demeule M, Marvaldi J, El Ayeb M, Marrakchi N, Béliveau R, Luis J. Lebectin, aMacrovipera lebetina venom-derived C-type lectin, inhibits angiogenesis both in vitro and in vivo. J Cell Physiol 2007; 211:307-15. [PMID: 17323383 DOI: 10.1002/jcp.20935] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Integrins play an essential role in endothelial cell motility processes during angiogenesis and thus present interesting targets for the development of new anti-angiogenic agents. Snake venoms naturally contain a variety of proteins that can affect integrin-ligand interactions. Recently, the C-type lectin proteins (CLPs) have been characterized as efficient modulators of integrin functions. In this study, we investigated the anti-angiogenic activity of lebectin, a newly discovered CLP from Macrovipera lebetina venom. Human brain microvascular endothelial cells (HBMEC), used as an in vitro model, express alphavbeta3, alphavbeta5, and alpha5beta1 integrins, as well as the alpha2, alpha3, alpha6, and beta4 subunits. Our data show that lebectin acts as a very potent inhibitor (IC(50) approximately 0.5 nM) of HBMEC adhesion and migration on fibronectin by blocking the adhesive functions of both the alpha5beta1 and alphaV integrins. In addition, lebectin strongly inhibits both HBMEC in vitro tubulogenesis on Matrigel trade mark (IC(50) = 0.4 nM) and proliferation. Finally, using both a chicken CAM assay and a Matrigel trade mark Plug assay in nude mice, our results show that lebectin displays potent anti-angiogenic activity in vivo. Lebectin thus represents a new C-type lectin with anti-angiogenic properties with great potential for the treatment of angiogenesis-related diseases.
Collapse
MESH Headings
- Angiogenesis Inhibitors/isolation & purification
- Angiogenesis Inhibitors/pharmacology
- Angiogenesis Inhibitors/therapeutic use
- Animals
- Brain/blood supply
- Capillaries/cytology
- Capillaries/drug effects
- Cell Adhesion/drug effects
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Chick Embryo
- Chorioallantoic Membrane/blood supply
- Chorioallantoic Membrane/drug effects
- Collagen
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Combinations
- Embryo Culture Techniques
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Fibronectins/pharmacology
- Humans
- Integrins/antagonists & inhibitors
- Integrins/metabolism
- Laminin
- Lectins, C-Type/isolation & purification
- Lectins, C-Type/physiology
- Lectins, C-Type/therapeutic use
- Mice
- Mice, Nude
- Neovascularization, Pathologic/chemically induced
- Neovascularization, Pathologic/prevention & control
- Neovascularization, Physiologic/drug effects
- Proteoglycans
- Subcutaneous Tissue/blood supply
- Time Factors
- Viper Venoms/isolation & purification
- Viper Venoms/pharmacology
- Viper Venoms/therapeutic use
- Viperidae
Collapse
Affiliation(s)
- Anthony Pilorget
- CNRS FRE 2737, Faculté de Pharmacie, bd Jean Moulin, Marseille, Cedex 5, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
346
|
Khalili P, Arakelian A, Chen G, Plunkett ML, Beck I, Parry GC, Doñate F, Shaw DE, Mazar AP, Rabbani SA. A non-RGD-based integrin binding peptide (ATN-161) blocks breast cancer growth and metastasis in vivo. Mol Cancer Ther 2006; 5:2271-80. [PMID: 16985061 DOI: 10.1158/1535-7163.mct-06-0100] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Integrins are expressed by numerous tumor types including breast cancer, in which they play a crucial role in tumor growth and metastasis. In this study, we evaluated the ability of ATN-161 (Ac-PHSCN-NH2), a 5-mer capped peptide derived from the synergy region of fibronectin that binds to alpha5beta1 and alphavbeta3 in vitro, to block breast cancer growth and metastasis. EXPERIMENTAL DESIGN MDA-MB-231 human breast cancer cells were inoculated s.c. in the right flank, or cells transfected with green fluorescent protein (MDA-MB-231-GFP) were inoculated into the left ventricle of female BALB/c nu/nu mice, resulting in the development of skeletal metastasis. Animals were treated with vehicle alone or by i.v. infusion with ATN-161 (0.05-1 mg/kg thrice a week) for 10 weeks. Tumor volume was determined at weekly intervals and tumor metastasis was evaluated by X-ray, microcomputed tomography, and histology. Tumors were harvested for histologic evaluation. RESULT Treatment with ATN-161 caused a significant dose-dependent decrease in tumor volume and either completely blocked or caused a marked decrease in the incidence and number of skeletal as well as soft tissue metastases. This was confirmed histologically as well as radiographically using X-ray and microcomputed tomography. Treatment with ATN-161 resulted in a significant decrease in the expression of phosphorylated mitogen-activated protein kinase, microvessel density, and cell proliferation in tumors grown in vivo. CONCLUSION These studies show that ATN-161 can block breast cancer growth and metastasis, and provides a rationale for the clinical development of ATN-161 for the treatment of breast cancer.
Collapse
Affiliation(s)
- Parisa Khalili
- Department of Medicine and Oncology, McGill University Health Center, Room H4.61, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | | | | | | | | | | | | | | | | | |
Collapse
|
347
|
Milner R, Campbell IL. Increased expression of the beta4 and alpha5 integrin subunits in cerebral blood vessels of transgenic mice chronically producing the pro-inflammatory cytokines IL-6 or IFN-alpha in the central nervous system. Mol Cell Neurosci 2006; 33:429-40. [PMID: 17049262 PMCID: PMC1847624 DOI: 10.1016/j.mcn.2006.09.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 08/24/2006] [Accepted: 09/06/2006] [Indexed: 11/18/2022] Open
Abstract
Evidence suggests that vascular function is strongly regulated by extracellular matrix (ECM) proteins via integrin-mediated signaling. To determine whether integrin expression on cerebral blood vessels is altered during chronic neuroinflammation, we examined beta1 and beta4 integrin expression in transgenic mice with astrocyte production of the pro-inflammatory cytokines interleukin-6 (IL-6) or interferon-alpha (IFN-alpha). Chronic production of IL-6 or IFN-alpha in the CNS promoted vascular expression of the beta4 and alpha5 integrin subunits, and this was contributed mostly by astrocytes. Vascular expression of the ECM ligands laminin and fibronectin was also increased. Cell culture studies showed that astrocyte expression of the beta4 and alpha5 integrins was significantly upregulated by IL-6 and IFN-alpha, respectively, while endothelial expression of these integrins was unchanged. These results show that astrocytes respond to IL-6 and IFN-alpha by upregulating integrin expression. We propose that during neuroinflammation, astrocytes attempt to increase adhesive interactions at the blood-brain barrier (BBB), in order to increase barrier integrity.
Collapse
Affiliation(s)
- Richard Milner
- Department of Molecular and Experimental Medicine, MEM-132, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | |
Collapse
|
348
|
Kuefer R, Day KC, Kleer CG, Sabel MS, Hofer MD, Varambally S, Zorn CS, Chinnaiyan AM, Rubin MA, Day ML. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia 2006; 8:319-29. [PMID: 16756724 PMCID: PMC1600681 DOI: 10.1593/neo.05682] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The aim of the current study was to evaluate the expression of ADAM15 disintegrin (ADAM15) in a broad spectrum of human tumors. The transcript for ADAM15 was found to be highly upregulated in a variety of tumor cDNA expression arrays. ADAM15 protein expression was examined in tissue microarrays (TMAs) consisting of 638 tissue cores. TMA analysis revealed that ADAM15 protein was significantly increased in multiple types of adenocarcinoma, specifically in prostate and breast cancer specimens. Statistical association was observed with disease progression within clinical parameters of predictive outcome for both prostate and breast cancers, pertaining to Gleason sum and angioinvasion, respectively. In this report, we also present data from a cDNA microarray of prostate cancer (PCa), where we compared transfected LNCaP cells that overexpress ADAM15 to vector control cells. In these experiments, we found that ADAM15 expression was associated with the induction of specific proteases and protease inhibitors, particularly tissue inhibitor of metalloproteinase 2, as validated in a separate PCa TMA. These results suggest that ADAM15 is generally overexpressed in adenocarcinoma and is highly associated with metastatic progression of prostate and breast cancers.
Collapse
Affiliation(s)
- Rainer Kuefer
- Department of Urology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109-0944, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Reddy GK, Gupta M, Tyagi P. Highlights from: The Third International Congress on Kidney and Bladder Cancer; Orlando, FL; August 3-6, 2006. Clin Genitourin Cancer 2006; 5:104-9. [PMID: 17026797 DOI: 10.1016/s1558-7673(11)70170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
350
|
Abstract
The diseases of cancer remain as some of the leading causes of death in the industrialised world, although there are a multitude of technologies being used in the field of medical oncology to combat these diseases and scientific research continues to make discoveries to improve patient outcomes. Some of this research has focused on the maspin gene and protein. Maspin is predicted to be a unique serpin with tumour suppressor activity. Recent studies have explored the use of maspin as a therapeutic agent against cancer. In one study, maspin was found to inhibit cancer growth and metastasis in a breast cancer mouse model through a maspin DNA-liposome therapy. A separate study showed the ability of maspin to induce apoptosis in tumour-specific endothelial cells. Taken together, these studies demonstrate the potential use of maspin as a viable anticancer therapeutic agent.
Collapse
Affiliation(s)
- Jeremy S Schaefer
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|