301
|
Joeng KS, Schumacher CA, Zylstra-Diegel CR, Long F, Williams BO. Lrp5 and Lrp6 redundantly control skeletal development in the mouse embryo. Dev Biol 2011; 359:222-9. [PMID: 21924256 DOI: 10.1016/j.ydbio.2011.08.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/23/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The role of Wnt signaling in osteoblastogenesis in the embryo remains to be fully established. Although β-catenin, a multifunctional protein also mediating canonical Wnt signaling, is indispensable for embryonic osteoblast differentiation, the roles of the key Wnt co-receptors Lrp5 and Lrp6 are unclear. Indeed, global deletion of either Lrp5 or Lrp6 did not overtly affect osteoblast differentiation in the mouse embryo. Here, we generated mice lacking both receptors specifically in the embryonic mesenchyme and observed an absence of osteoblasts in the embryo. In addition, the double-deficient embryos developed supernumerary cartilage elements in the zeugopod, revealing an important role for mesenchymal Lrp5/6 signaling in limb patterning. Importantly, the phenotypes of the Lrp5/6 mutant closely resembled those of the β-catenin-deficient embryos. These phenotypes are likely independent of any effect on the adherens junction, as deletion of α-catenin, another component of the complex, did not cause similar defects. Thus, Lrp5 and 6 redundantly control embryonic skeletal development, likely through β-catenin signaling.
Collapse
Affiliation(s)
- Kyu Sang Joeng
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
302
|
Huang T, Xie Z, Wang J, Li M, Jing N, Li L. Nuclear factor of activated T cells (NFAT) proteins repress canonical Wnt signaling via its interaction with Dishevelled (Dvl) protein and participate in regulating neural progenitor cell proliferation and differentiation. J Biol Chem 2011; 286:37399-405. [PMID: 21880741 DOI: 10.1074/jbc.m111.251165] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ca(2+) signaling pathway appears to regulate the processes of the early development through its antagonism of canonical Wnt/β-catenin signaling pathway. However, the underlying mechanism is still poorly understood. Here, we show that nuclear factor of activated T cells (NFAT), a component of Ca(2+) signaling, interacts directly with Dishevelled (Dvl) in a Ca(2+)-dependent manner. A dominant negative form of NFAT rescued the inhibition of the Wnt/β-catenin pathway triggered by the Ca(2+) signal. NFAT functioned downstream of β-catenin without interfering with its stability, but influencing the interaction of β-catenin with Dvl by its competitively binding to Dvl. Furthermore, we demonstrate that NFAT is a regulator in the proliferation and differentiation of neural progenitor cells by modulating canonical Wnt/β-catenin signaling pathway in the neural tube of chick embryo. Our findings suggest that NFAT negatively regulates canonical Wnt/β-catenin signaling by binding to Dvl, thereby participating in vertebrate neurogenesis.
Collapse
Affiliation(s)
- Tao Huang
- State Key Laboratory of Molecular Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | |
Collapse
|
303
|
Dissecting molecular differences between Wnt coreceptors LRP5 and LRP6. PLoS One 2011; 6:e23537. [PMID: 21887268 PMCID: PMC3160902 DOI: 10.1371/journal.pone.0023537] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 07/19/2011] [Indexed: 01/14/2023] Open
Abstract
Low-density lipoprotein receptor-related proteins 5 and 6 (LRP5 and LRP6) serve as Wnt co-receptors for the canonical β-catenin pathway. While LRP6 is essential for embryogenesis, both LRP5 and LRP6 play critical roles for skeletal remodeling, osteoporosis pathogenesis and cancer formation, making LRP5 and LRP6 key therapeutic targets for cancer and disease treatment. LRP5 and LRP6 each contain in the cytoplasmic domain five conserved PPPSPxS motifs that are pivotal for signaling and serve collectively as phosphorylation-dependent docking sites for the scaffolding protein Axin. However existing data suggest that LRP6 is more effective than LRP5 in transducing the Wnt signal. To understand the molecular basis that accounts for the different signaling activity of LRP5 and LRP6, we generated a series of chimeric receptors via swapping LRP5 and LRP6 cytoplasmic domains, LRP5C and LRP6C, and studied their Wnt signaling activity using biochemical and functional assays. We demonstrate that LRP6C exhibits strong signaling activity while LRP5C is much less active in cells. Recombinant LRP5C and LRP6C upon in vitro phosphorylation exhibit similar Axin-binding capability, suggesting that LRP5 and LRP6 differ in vivo at a step prior to Axin-binding, likely at receiving phosphorylation. We identified between the two most carboxyl PPPSPxS motifs an intervening "gap4" region that appears to account for much of the difference between LRP5C and LRP6C, and showed that alterations in this region are sufficient to enhance LRP5 PPPSPxS phosphorylation and signaling to levels comparable to LRP6 in cells. In addition we provide evidence that binding of phosphorylated LRP5 or LRP6 to Axin is likely direct and does not require the GSK3 kinase as a bridging intermediate as has been proposed. Our studies therefore uncover a new and important molecular tuning mechanism for differential regulation of LRP5 and LRP6 phosphorylation and signaling activity.
Collapse
|
304
|
Heidel FH, Mar BG, Armstrong SA. Self-renewal related signaling in myeloid leukemia stem cells. Int J Hematol 2011; 94:109-117. [PMID: 21800073 DOI: 10.1007/s12185-011-0901-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022]
Abstract
A key characteristic of hematopoietic stem cells (HSC) is the ability to self-renew. Several genes and signaling pathways control the fine balance between self-renewal and differentiation in HSC and potentially also in leukemic stem cells. Besides pathways such as Wnt signaling, Hedgehog signaling and Notch signaling, transcription factors (FoxOs) and cell fate determinants may also play a role in stem cells. While some of these pathways seem to be dispensable for maintenance of adult HSC, there may be a distinct requirement in leukemia stem cells for leukemic self-renewal. Here we will focus on self-renewal related signaling in myeloid leukemia stem cells and its therapeutic relevance.
Collapse
Affiliation(s)
- Florian H Heidel
- Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA. .,Department of Pediatric Oncology, Dana-Farber-Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Department of Hematology/Oncology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - Brenton G Mar
- Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber-Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Children's Hospital, Boston, MA, USA.,Department of Pediatric Oncology, Dana-Farber-Cancer Institute, Harvard Medical School, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA
| |
Collapse
|
305
|
Mukhopadhyay P, Brock G, Appana S, Webb C, Greene RM, Pisano MM. MicroRNA gene expression signatures in the developing neural tube. ACTA ACUST UNITED AC 2011; 91:744-62. [PMID: 21770019 DOI: 10.1002/bdra.20819] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 12/21/2022]
Abstract
BACKGROUND Neurulation requires precise, spatio-temporal expression of numerous genes and coordinated interaction of signal transduction and gene regulatory networks, disruption of which may contribute to the etiology of neural tube defects (NTDs). MicroRNAs (miRNAs) are key modulators of cell and tissue differentiation. To define potential roles of miRNAs in development of the murine neural tube (NT), miRNA microarray analysis was conducted to establish expression profiles, and identify miRNA target genes and functional gene networks. METHODS The miRNA expression profiles in murine embryonic NTs derived from gestational days 8.5, 9.0, and 9.5 were defined and compared utilizing miRXplore microarrays from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany. Gene expression changes were verified by TaqMan quantitative Real-Time PCR. The clValid R package and the UPGMA (hierarchical) clustering method were utilized for cluster analysis of the microarray data. Functional associations among selected miRNAs were examined via Ingenuity Pathway Analysis. RESULTS The miRXplore chips enabled examination of 609 murine miRNAs. Expression of approximately 12% of these was detected in murine embryonic NTs. Clustering analysis revealed several developmentally regulated expression clusters among these expressed genes. Target analysis of differentially expressed miRNAs enabled identification of numerous target genes associated with cellular processes essential for normal NT development. Utilization of Ingenuity Pathway Analysis revealed interactive biologic networks which connected differentially expressed miRNAs with their target genes, and highlighted functional relationships. CONCLUSIONS The present study defined unique gene expression signatures of a range of miRNAs in the developing NT during the critical period of NT morphogenesis. Analysis of miRNA target genes and gene interaction pathways revealed that specific miRNAs might direct expression of numerous genes encoding proteins, which have been shown to be indispensable for normal neurulation. This study is the first to identify miRNA expression profiles and their potential regulatory networks in the developing mammalian NT.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, 501 South Preston Street, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
306
|
del Valle-Pérez B, Arqués O, Vinyoles M, de Herreros AG, Duñach M. Coordinated action of CK1 isoforms in canonical Wnt signaling. Mol Cell Biol 2011; 31:2877-88. [PMID: 21606194 PMCID: PMC3133391 DOI: 10.1128/mcb.01466-10] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 01/29/2011] [Accepted: 05/11/2011] [Indexed: 11/20/2022] Open
Abstract
Activation of the Wnt pathway promotes the progressive phosphorylation of coreceptor LRP5/6 (low-density lipoprotein receptor-related proteins 5 and 6), creating a phosphorylated motif that inhibits glycogen synthase kinase 3β (GSK-3β), which in turn stabilizes β-catenin, increasing the transcription of β-catenin target genes. Casein kinase 1 (CK1) kinase family members play a complex role in this pathway, either as inhibitors or as activators. In this report, we have dissected the roles of CK1 isoforms in the early steps of Wnt signaling. CK1ε is constitutively bound to LRP5/6 through its interaction with p120-catenin and E-cadherin or N-cadherin and is activated upon Wnt3a stimulation. CK1α also associates with the LRP5/6/p120-catenin complex but, differently from CK1ε, only after Wnt3a addition. Binding of CK1α is dependent on CK1ε and occurs in a complex with axin. The two protein kinases function sequentially: whereas CK1ε is required for early responses to Wnt3a stimulation, such as recruitment of Dishevelled 2 (Dvl-2), CK1α participates in the release of p120-catenin from the complex, which activates p120-catenin for further actions on this pathway. Another CK1, CK1γ, acts at an intermediate level, since it is not necessary for Dvl-2 recruitment but for LRP5/6 phosphorylation at Thr1479 and axin binding. Therefore, our results indicate that CK1 isoforms work coordinately to promote the full response to Wnt stimulus.
Collapse
Affiliation(s)
- Beatriz del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Barcelona, Spain
| | - Oriol Arqués
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, IMIM-Hospital del Mar, Barcelona, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| |
Collapse
|
307
|
Fu Y, Zheng S, An N, Athanasopoulos T, Popplewell L, Liang A, Li K, Hu C, Zhu Y. β-catenin as a potential key target for tumor suppression. Int J Cancer 2011; 129:1541-51. [PMID: 21455986 DOI: 10.1002/ijc.26102] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/14/2011] [Accepted: 03/17/2011] [Indexed: 01/02/2023]
Abstract
β-catenin is a multifunctional protein identified to be pivotal in embryonic patterning, organogenesis and adult homeostasis. It plays a critical structural role in mediating cadherin junctions and is also an essential transcriptional co-activator in the canonical Wnt pathway. Evidence has been documented that both the canonical Wnt pathway and cadherin junctions are deregulated or impaired in a plethora of human malignancies. In the light of this, there has been a recent surge in elucidating the mechanisms underlying the etiology of cancer development from the perspective of β-catenin. Here, we focus on the emerging roles of β-catenin in the process of tumorigenesis by discussing novel functions of old players and new proteins, mechanisms identified to mediate or interact with β-catenin and the most recently unraveled clinical implications of β-catenin regulatory pathways toward tumor suppression.
Collapse
Affiliation(s)
- Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, People's Republic of China.
| | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Lyashenko N, Winter M, Migliorini D, Biechele T, Moon RT, Hartmann C. Differential requirement for the dual functions of β-catenin in embryonic stem cell self-renewal and germ layer formation. Nat Cell Biol 2011; 13:753-61. [PMID: 21685890 PMCID: PMC3130149 DOI: 10.1038/ncb2260] [Citation(s) in RCA: 202] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 04/13/2011] [Indexed: 02/08/2023]
Abstract
Canonical Wnt signalling has been implicated in mouse and human embryonic stem cell (ESC) maintenance; however, its requirement is controversial. β-catenin is the key component in this highly conserved Wnt pathway, acting as a transcriptional transactivator. However, β-catenin has additional roles at the plasma membrane regulating cell-cell adhesion, complicating the analyses of cells/tissues lacking β-catenin. We report here the generation of a Ctnnb1 (β-catenin)-deficient mouse ESC (mESC) line and show that self-renewal is maintained in the absence of β-catenin. Cell adhesion is partially rescued by plakoglobin upregulation, but fails to be maintained during differentiation. When differentiated as aggregates, wild-type mESCs form descendants of all three germ layers, whereas mesendodermal germ layer formation and neuronal differentiation are defective in Ctnnb1-deficient mESCs. A Tcf/Lef-signalling-defective β-catenin variant, which re-establishes cadherin-mediated cell adhesion, rescues definitive endoderm and neuroepithelial formation, indicating that the β-catenin cell-adhesion function is more important than its signalling function for these processes.
Collapse
Affiliation(s)
- Natalia Lyashenko
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | - Markus Winter
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | - Domenico Migliorini
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| | - Travis Biechele
- Institute for Stem Cell and Regenerative Medicine, Department of Pharmacology, Howard Hughes Medical Institute, University of Washington School of Medicine, Campus Box 358056, Seattle, WA 98109, USA
| | - Randall T. Moon
- Institute for Stem Cell and Regenerative Medicine, Department of Pharmacology, Howard Hughes Medical Institute, University of Washington School of Medicine, Campus Box 358056, Seattle, WA 98109, USA
| | - Christine Hartmann
- Research Institute of Molecular Pathology, Dr. Bohrgasse 7, 1030 Vienna, Austria
| |
Collapse
|
309
|
Yellow submarine of the Wnt/Frizzled signaling: submerging from the G protein harbor to the targets. Biochem Pharmacol 2011; 82:1311-9. [PMID: 21689640 DOI: 10.1016/j.bcp.2011.06.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2011] [Revised: 05/30/2011] [Accepted: 06/02/2011] [Indexed: 10/18/2022]
Abstract
The Wnt/Frizzled signaling pathway plays multiple functions in animal development and, when deregulated, in human disease. The G-protein coupled receptor (GPCR) Frizzled and its cognate heterotrimeric Gi/o proteins initiate the intracellular signaling cascades resulting in cell fate determination and polarization. In this review, we summarize the knowledge on the ligand recognition, biochemistry, modifications and interacting partners of the Frizzled proteins viewed as GPCRs. We also discuss the effectors of the heterotrimeric Go protein in Frizzled signaling. One group of these effectors is represented by small GTPases of the Rab family, which amplify the initial Wnt/Frizzled signal. Another effector is the negative regulator of Wnt signaling Axin, which becomes deactivated in response to Go action. The discovery of the GPCR properties of Frizzled receptors not only provides mechanistic understanding to their signaling pathways, but also paves new avenues for the drug discovery efforts.
Collapse
|
310
|
Nucleo-cytoplasmic shuttling of APC can maximize β‐catenin/TCF concentration. J Theor Biol 2011; 279:132-42. [DOI: 10.1016/j.jtbi.2011.03.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 03/16/2011] [Accepted: 03/16/2011] [Indexed: 12/30/2022]
|
311
|
Tissue-specific roles of Axin2 in the inhibition and activation of Wnt signaling in the mouse embryo. Proc Natl Acad Sci U S A 2011; 108:8692-7. [PMID: 21555575 DOI: 10.1073/pnas.1100328108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Axin proteins are key negative regulators of the canonical Wnt signal transduction pathway. Although Axin2 null mice are viable, we identified an unusual ENU-induced recessive allele of Axin2, canp, that causes midgestation lethality in homozygotes. We show that the Axin2(canp) mutation is a V26D substitution in an invariant N-terminal sequence motif and that the Axin2(canp) protein is more stable than wild type. As predicted for an increased level of a negative regulator, the Axin2(canp) mutation leads to decreased Wnt signaling in most tissues, and this can account for most of the morphological phenotypes of Axin2(canp) mutants. In contrast, there is a paradoxical increase in canonical Wnt activity in the late primitive streak of all Axin2(canp) mutant embryos that is associated with the formation of an ectopic tail in some mutants. Treatment of wild-type embryos with an inhibitor of Tankyrase that stabilizes Axin proteins also causes inhibition of Wnt signaling in anterior regions of the embryo and a gain of Wnt signaling in the primitive streak. The results indicate that although increased stability of Axin2 leads to a loss of canonical Wnt signaling in most tissues, stabilized Axin2 enhances Wnt pathway activity in a specific progenitor population in the late primitive streak.
Collapse
|
312
|
Elizalde C, Campa VM, Caro M, Schlangen K, Aransay AM, Vivanco MDM, Kypta RM. Distinct roles for Wnt-4 and Wnt-11 during retinoic acid-induced neuronal differentiation. Stem Cells 2011; 29:141-53. [PMID: 21280163 DOI: 10.1002/stem.562] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Retinoic acid and Wnt/β-catenin signals play important roles during neuronal differentiation but less is known about noncanonical Wnt signals in this context. We examined retinoic acid and Wnt signaling in two human embryonal carcinoma cell lines, NTERA-2 (clone D1), which undergoes neuronal differentiation in response to retinoic acid, and 2102Ep, which does not. Retinoic acid treatment inhibited β-catenin/Tcf activity in NTERA-2 cells but not in 2102Ep cells. Inhibition occurred downstream of β-catenin but did not involve competition between retinoic acid receptors and β-catenin for binding to p300 or Tcf-4. Ectopic expression of FZD1 partially restored inhibition in 2102Ep cells, suggesting the involvement of Wnt ligands. Retinoic acid treatment of NTERA-2 cells induced the expression of Wnt-4 and Wnt-11, both of which were able to inhibit β-catenin/Tcf activity. Wnt-4 and Wnt-11 were found at cell borders in islands of cells that expressed OCT4 and GFAP and were predominantly negative for Nestin, PAX6, and GATA6. Gene silencing of Wnt-4, but not Wnt-11, reduced retinoic acid downregulation of OCT4 and Nanog and upregulation of PAX6, ASCL1, HOXC5, and NEUROD1, suggesting that Wnt-4 promotes early neuronal differentiation. Gene expression analysis of NTERA-2 cells stably overexpressing Wnt-11 suggested that Wnt-11 potentiates retinoic acid induction of early neurogenesis. Consistent with this, overexpression of Wnt-11 maintained a population of proliferating progenitor cells in cultures treated with retinoic acid for several weeks. These observations highlight the distinct roles of two noncanonical Wnts during the early stages of retinoic acid-induced neuronal differentiation.
Collapse
Affiliation(s)
- Carina Elizalde
- Cell biology and Stem Cells Unit, Center for Cooperative Research in Biosciences, CIC bioGUNE, 48160 Derio, Spain
| | | | | | | | | | | | | |
Collapse
|
313
|
Thudi NK, Martin CK, Murahari S, Shu SS, Lanigan LG, Werbeck JL, Keller ET, McCauley LK, Pinzone JJ, Rosol TJ. Dickkopf-1 (DKK-1) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate 2011; 71:615-25. [PMID: 20957670 PMCID: PMC3025080 DOI: 10.1002/pros.21277] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 08/24/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Osteoblastic bone metastasis is the predominant phenotype observed in prostate cancer patients and is associated with high patient mortality and morbidity. However, the mechanisms determining the development of this phenotype are not well understood. Prostate cancer cells secrete several osteogenic factors including Wnt proteins, which are not only osteoinductive but also oncogenic. Therefore, the purpose of the study was to investigate the contribution of the Wnt signaling pathway in prostate cancer growth, incidence of bone metastases, and osteoblastic phenotype of bone metastases. The strategy involved overexpressing the Wnt antagonist, DKK-1, in the mixed osteoblastic and osteolytic Ace-1 prostate cancer cells. METHODS Ace-1 prostate cancer cells stably expressing human DKK-1 or empty vector were established and transduced with lentiviral yellow fluorescent protein (YFP)-luciferase (Luc). The Ace-1/vector(YFP-LUC) and Ace-1/DKK-1(YFP-LUC) cells were injected subcutaneously, intratibially, or in the left cardiac ventricle in athymic mice. RESULTS Unexpectedly, DKK-1 significantly increased Ace-1 subcutaneous tumor mass and the incidence of bone metastases after intracardiac injection of Ace-1 cells. DKK-1 increased Ace-1 tumor growth associated with increased phospho46 c-Jun amino-terminal kinase by the Wnt noncanonical pathway. As expected, DKK-1 decreased the Ace-1 osteoblastic phenotype of bone metastases, as confirmed by radiographic, histopathologic, and microcomputed tomographic analysis. DKK-1 decreased osteoblastic activity via the Wnt canonical pathway evidenced by an inhibition of T-cell factor activity in murine osteoblast precursor ST2 cells. CONCLUSION The present study showed that DKK-1 is a potent inhibitor of bone growth in prostate cancer-induced osteoblastic metastases.
Collapse
Affiliation(s)
- Nanda K. Thudi
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Chelsea K. Martin
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Sridhar Murahari
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, 43210
| | - Sherry S. Shu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Lisa G. Lanigan
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Jillian L. Werbeck
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| | - Evan T. Keller
- Departments of Urology and Pathology, School of Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Laurie K. McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Joseph J. Pinzone
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, 43210 (current address: Amgen, Thousand Oaks, Ca 91320)
| | - Thomas J. Rosol
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, 43210
| |
Collapse
|
314
|
Tanneberger K, Pfister AS, Kriz V, Bryja V, Schambony A, Behrens J. Structural and functional characterization of the Wnt inhibitor APC membrane recruitment 1 (Amer1). J Biol Chem 2011; 286:19204-14. [PMID: 21498506 DOI: 10.1074/jbc.m111.224881] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amer1/WTX binds to the tumor suppressor adenomatous polyposis coli and acts as an inhibitor of Wnt signaling by inducing β-catenin degradation. We show here that Amer1 directly interacts with the armadillo repeats of β-catenin via a domain consisting of repeated arginine-glutamic acid-alanine (REA) motifs, and that Amer1 assembles the β-catenin destruction complex at the plasma membrane by recruiting β-catenin, adenomatous polyposis coli, and Axin/Conductin. Deletion or specific mutations of the membrane binding domain of Amer1 abolish its membrane localization and abrogate negative control of Wnt signaling, which can be restored by artificial targeting of Amer1 to the plasma membrane. In line, a natural splice variant of Amer1 lacking the plasma membrane localization domain is deficient for Wnt inhibition. Knockdown of Amer1 leads to the activation of Wnt target genes, preferentially in dense compared with sparse cell cultures, suggesting that Amer1 function is regulated by cell contacts. Amer1 stabilizes Axin and counteracts Wnt-induced degradation of Axin, which requires membrane localization of Amer1. The data suggest that Amer1 exerts its negative regulatory role in Wnt signaling by acting as a scaffold protein for the β-catenin destruction complex and promoting stabilization of Axin at the plasma membrane.
Collapse
Affiliation(s)
- Kristina Tanneberger
- Nikolaus-Fiebiger-Center, Biology Department, University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
315
|
Ohazama A, Porntaveetus T, Ota MS, Herz J, Sharpe PT. Lrp4: A novel modulator of extracellular signaling in craniofacial organogenesis. Am J Med Genet A 2011; 152A:2974-83. [PMID: 21108386 DOI: 10.1002/ajmg.a.33372] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The low-density lipoprotein (LDL) receptor family is a large evolutionarily conserved group of transmembrane proteins. It has been shown that LDL receptor family members can also function as direct signal transducers or modulators for a broad range of cellular signaling pathways. We have identified a novel mode of signaling pathway integration/coordination that occurs outside cells during development that involves an LDL receptor family member. Physical interaction between an extracellular protein (Wise) that binds BMP ligands and an Lrp receptor (Lrp4) that modulates Wnt signaling, acts to link these two pathways. Mutations in either Wise or Lrp4 in mice produce multiple, but identical abnormalities in tooth development that are linked to alterations in BMP and Wnt signaling. Teeth, in common with many other organs, develop by a series of epithelial-mesenchymal interactions, orchestrated by multiple cell signaling pathways. In tooth development, Lrp4 is expressed exclusively in epithelial cells and Wise mainly in mesenchymal cells. Our hypothesis, based on the mutant phenotypes, cell signaling activity changes and biochemical interactions between Wise and Lrp4 proteins, is that Wise and Lrp4 together act as an extracellular mechanism of coordinating BMP and Wnt signaling activities in epithelial-mesenchymal cell communication during development.
Collapse
Affiliation(s)
- Atsushi Ohazama
- Department of Craniofacial Development, Dental Institute, King's College London, Guy's Hospital, London Bridge, London, UK
| | | | | | | | | |
Collapse
|
316
|
Albers J, Schulze J, Beil FT, Gebauer M, Baranowsky A, Keller J, Marshall RP, Wintges K, Friedrich FW, Priemel M, Schilling AF, Rueger JM, Cornils K, Fehse B, Streichert T, Sauter G, Jakob F, Insogna KL, Pober B, Knobeloch KP, Francke U, Amling M, Schinke T. Control of bone formation by the serpentine receptor Frizzled-9. ACTA ACUST UNITED AC 2011; 192:1057-72. [PMID: 21402791 PMCID: PMC3063134 DOI: 10.1083/jcb.201008012] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Although Wnt signaling in osteoblasts is of critical importance for the regulation of bone remodeling, it is not yet known which specific Wnt receptors of the Frizzled family are functionally relevant in this process. In this paper, we show that Fzd9 is induced upon osteoblast differentiation and that Fzd9(-/-) mice display low bone mass caused by impaired bone formation. Our analysis of Fzd9(-/-) primary osteoblasts demonstrated defects in matrix mineralization in spite of normal expression of established differentiation markers. In contrast, we observed a reduced expression of chemokines and interferon-regulated genes in Fzd9(-/-) osteoblasts. We also identified the ubiquitin-like modifier Isg15 as one potential downstream mediator of Fzd9 in these cells. Importantly, our molecular analysis further revealed that canonical Wnt signaling is not impaired in the absence of Fzd9, thus explaining the absence of a bone resorption phenotype. Collectively, our results reveal a previously unknown function of Fzd9 in osteoblasts, a finding that may have therapeutic implications for bone loss disorders.
Collapse
Affiliation(s)
- Joachim Albers
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Borrell-Pagès M, Romero JC, Juan-Babot O, Badimon L. Wnt pathway activation, cell migration, and lipid uptake is regulated by low-density lipoprotein receptor-related protein 5 in human macrophages. Eur Heart J 2011; 32:2841-50. [PMID: 21398644 DOI: 10.1093/eurheartj/ehr062] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIMS Atherosclerosis plaque development includes infiltration of inflammatory cells, accumulation of lipids and fibrous cap formation. Low-density lipoprotein receptor-related protein 1 (LRP1) is expressed on atherosclerotic lesions associated with macrophages and vascular smooth muscle cells. The aim of this work is to analyse the role in atherosclerosis lesion progression of another member of the LDL receptor protein family, low-density lipoprotein receptor-related protein 5 (LRP5), a co-receptor with Frizzled known to activate the Wnt signalling pathway in several cell types. METHODS AND RESULTS LRP5 is expressed in human vascular and innate inflammatory cells. LRP5 is transcriptionally regulated by aggregated LDL (agLDL), participating in the lipid uptake and transformation of macrophages into foam cells, a critical step in atherosclerosis progression. AgLDL-treated macrophages show up-regulated expression of β-catenin, LEF1, c-jun, cyclinD1, bone morphogenetic protein 2 (BMP2), and osteopontin (OPN), proteins and targets of the Wnt signalling pathway, whereas LRP5-silenced macrophages show a significant down-regulation of OPN and BMP2 expression. Furthermore, LRP5-deficient macrophages exhibit an impaired migration both in wound-repair and modified Boyden chambers models. CONCLUSION These results demonstrate the involvement of LRP5 in the innate inflammatory reaction to lipid infiltration in atherosclerosis.
Collapse
Affiliation(s)
- Maria Borrell-Pagès
- Cardiovascular Research Center, CSIC-ICCC, Hospital de la Santa Creu i Sant Pau, UAB, Barcelona, Spain
| | | | | | | |
Collapse
|
318
|
The ubiquitin-specific protease USP34 regulates axin stability and Wnt/β-catenin signaling. Mol Cell Biol 2011; 31:2053-65. [PMID: 21383061 DOI: 10.1128/mcb.01094-10] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Wnt proteins control multiple cell behaviors during development and tissue homeostasis. However, pathological activation of Wnt signaling is the underlying cause of various human diseases. The ubiquitin-proteasome system plays important regulatory functions within the Wnt pathway by regulating the activity of several of its core components. Hence, multiple E3 ubiquitin ligases have been implicated in its regulation. Less is known, however, about the role of ubiquitin-specific proteases in Wnt signaling. Analysis of purified axin-containing protein complexes by liquid chromatography-tandem mass spectrometry revealed the presence of the ubiquitin protease USP34. Our results indicate that USP34 functions downstream of the β-catenin destruction complex to control the stability of axin and opposes its tankyrase-dependent ubiquitination. Reflecting on the requirement for tight control of axin homeostasis during Wnt signaling, interfering with USP34 function by RNA interference leads to the degradation of axin and to the inhibition of β-catenin-mediated transcription. Given the numerous human diseases exhibiting spurious Wnt pathway activation, the development of USP34 inhibitors may offer a novel therapeutic opportunity.
Collapse
|
319
|
Pancratov R, DasGupta R. Postgenomic technologies targeting the Wnt signaling network. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:649-65. [PMID: 21381216 DOI: 10.1002/wsbm.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The recent development of high-throughput sequencing technologies and the availability of whole genome sequences of a variety of living organisms, including that of humans, have led to an enormous push in the quest for a comprehensive inquiry for the function of each and every gene discovered in different model organisms. A major conclusion from the sequencing projects was that while forward genetics had been extremely successful in identifying key genes/components of many biological processes, such as signal transduction cascades, the function(s) of the majority of genes in the genome remains a mystery. In this article, we discuss the use of a variety of high-throughput postgenomic tools, including functional genomics, proteomics, and chemical genetics that are being implemented in an exhaustive molecular dissection of a key evolutionarily conserved signal transduction pathway, namely the Wnt/wingless (wg) pathway and its associated signaling network.
Collapse
Affiliation(s)
- Raluca Pancratov
- Department of Pharmacology, New York University School of Medicine and NYU Cancer Institute, New York, NY, USA
| | | |
Collapse
|
320
|
A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis. Cell Res 2011; 21:730-40. [PMID: 21321609 DOI: 10.1038/cr.2011.30] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Wnt/β-catenin signaling pathway is a highly conserved pathway in organism evolution and regulates many biological processes. Aberrant activation of the Wnt/β-catenin signaling pathway is closely related to tumorigenesis. In order to identify potent small molecules to treat the over-activated Wnt signaling-mediated cancer, such as colon cancer, we established a mammalian cell line-based reporter gene screening system. The screen revealed a diterpenoid derivative, 15-oxospiramilactone (NC043) that inhibits Wnt3a or LiCl-stimulated Top-flash reporter activity in HEK293T cells and growth of colon cancer cells, SW480 and Caco-2. Treatment of SW480 cells with NC043 led to decreases in the mRNA and/or protein expression of Wnt target genes Axin2, Cyclin D1 and Survivin , as well as decreases in the protein levels of Cdc25c and Cdc2. NC043 did not affect the cytosol-nuclear distribution and protein level of soluble β-catenin, but decreased β-catenin/TCF4 association in SW480 cells. Moreover, NC043 inhibited anchorage-independent growth and xenograft tumorigenesis of SW480 cells. Collectively these results demonstrate that NC043 is a novel small molecule that inhibits canonical Wnt signaling downstream of β-catenin stability and may be a potential compound for treating colorectal cancer.
Collapse
|
321
|
Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J 2011; 30:1433-43. [PMID: 21304492 DOI: 10.1038/emboj.2011.28] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Accepted: 01/18/2011] [Indexed: 11/09/2022] Open
Abstract
Phosphorylation of the Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) and casein kinase 1γ (CK1γ) is a key step in Wnt/β-catenin signalling, which requires Wnt-induced formation of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Here, we show that adenomatous polyposis coli membrane recruitment 1 (Amer1) (also called WTX), a membrane associated PtdIns(4,5)P(2)-binding protein, is essential for the activation of Wnt signalling at the LRP6 receptor level. Knockdown of Amer1 reduces Wnt-induced LRP6 phosphorylation, Axin translocation to the plasma membrane and formation of LRP6 signalosomes. Overexpression of Amer1 promotes LRP6 phosphorylation, which requires interaction of Amer1 with PtdIns(4,5)P(2). Amer1 translocates to the plasma membrane in a PtdIns(4,5)P(2)-dependent manner after Wnt treatment and is required for LRP6 phosphorylation stimulated by application of PtdIns(4,5)P(2). Amer1 binds CK1γ, recruits Axin and GSK3β to the plasma membrane and promotes complex formation between Axin and LRP6. Fusion of Amer1 to the cytoplasmic domain of LRP6 induces LRP6 phosphorylation and stimulates robust Wnt/β-catenin signalling. We propose a mechanism for Wnt receptor activation by which generation of PtdIns(4,5)P(2) leads to recruitment of Amer1 to the plasma membrane, which acts as a scaffold protein to stimulate phosphorylation of LRP6.
Collapse
|
322
|
Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev 2011; 12:494-518. [PMID: 20883218 DOI: 10.1111/j.1525-142x.2010.00435.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Wnt-signalling plays a critical role in animal development, and its misregulation results in serious human diseases, including cancer. While the Wnt pathway is well studied in eumetazoan models, little is known about the evolutionary origin of its components and their functions. Here, we have identified key machinery of the Wnt-β-catenin (canonical)-signalling pathway that is encoded in the Amphimedon queenslandica (Demospongiae; Porifera) genome, namely Wnt, Fzd, SFRP, Lrp5/6, Dvl, Axin, APC, GSK3, β-catenin, Tcf, and Groucho. Most of these genes are not detected in the choanoflagellate and other nonmetazoan eukaryotic genomes. In contrast, orthologues of some of key components of bilaterian Wnt-planar cell polarity and Wnt/Ca(2+) are absent from the Amphimedon genome, suggesting these pathways evolved after demosponge and eumetazoan lineages diverged. Sequence analysis of the identified proteins of the Wnt-β-catenin pathway has revealed the presence of most of the conserved motifs and domains responsible for protein-protein and protein-DNA interactions in vertebrates and insects. However, several protein-protein interaction domains appear to be absent from the Amphimedon Axin and APC proteins. These are also missing from their orthologues in the cnidarian Nematostella vectensis, suggesting that they are bilaterian novelties. All of the analyzed Wnt pathway genes are expressed in specific patterns during Amphimedon embryogenesis. Most are expressed in especially striking and highly dynamic patterns during formation of a simple organ-like larval structure, the pigment ring. Overall, our results indicate that the Wnt-β-catenin pathway was used in embryonic patterning in the last common ancestor of living metazoans. Subsequently, gene duplications and a possible increase in complexity of protein interactions have resulted in the precisely regulated Wnt pathway observed in extant bilaterian animals.
Collapse
Affiliation(s)
- Maja Adamska
- School of Integrative Biology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Natsume H, Tokuda H, Adachi S, Matsushima-Nishiwaki R, Kato K, Minamitani C, Otsuka T, Kozawa O. Wnt3a regulates tumor necrosis factor-α-stimulated interleukin-6 release in osteoblasts. Mol Cell Endocrinol 2011; 331:66-72. [PMID: 20732383 DOI: 10.1016/j.mce.2010.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 08/05/2010] [Accepted: 08/17/2010] [Indexed: 11/20/2022]
Abstract
It is recognized that Wnt pathways regulate bone metabolism. We have previously shown that tumor necrosis factor-α (TNF-α) stimulates synthesis of interleukin-6 (IL-6), a potent bone resorptive agent, via p44/p42 mitogen-activated protein (MAP) kinase and phosphatidylinositol 3-kinase (PI3-kinase)/Akt in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of Wnt3a on TNF-α-stimulated IL-6 synthesis in these cells. Wnt3a, which alone did not affect the IL-6 levels, significantly suppressed the TNF-α-stimulated IL-6 release. Lithium Chloride (LiCl), which is an inhibitor of GSK3β, markedly reduced the TNF-α-stimulated IL-6 release, similar to the results with Wnt3a. The suppression by Wnt3a or LiCl was also observed in the intracellular protein levels of IL-6 elicited by TNF-α. Wnt3a failed to affect the TNF-α-induced phosphorylation of p44/p42 MAP kinase, Akt, IκB or NFκB. Either Wnt3a or LiCl failed to reduce, rather increased the IL-6 mRNA expression stimulated by TNF-α. Lactacystin, a proteasome inhibitor, and bafilomycin A1, a lysosomal protease inhibitor, significantly restored the suppressive effect of Wnt3a on TNF-α-stimulated IL-6 release. Taken together, our results strongly suggest that Wnt3a regulates IL-6 release stimulated by TNF-α at post-transcriptional level in osteoblasts.
Collapse
Affiliation(s)
- Hideo Natsume
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | | | | | | | | | | | | | | |
Collapse
|
324
|
|
325
|
Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One 2010; 5:e15521. [PMID: 21170416 PMCID: PMC2993965 DOI: 10.1371/journal.pone.0015521] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 10/12/2010] [Indexed: 11/23/2022] Open
Abstract
Wnt signaling plays an important role in developmental and stem cell biology. To test the hypothesis that temporary inhibition of Wnt signaling will enhance granulation tissue and promote angiogenesis in tissue repair, we employed a recently characterized small molecule Wnt inhibitor. Pyrvinium is an FDA-approved drug that we identified as a Wnt inhibitor in a chemical screen for small molecules that stabilize β-catenin and inhibit Axin degradation. Our subsequent characterization of pyrvinium has revealed that its critical cellular target in the Wnt pathway is Casein Kinase 1α. Daily administration of pyrvinium directly into polyvinyl alcohol (PVA) sponges implanted subcutaneously in mice generated better organized and vascularized granulation tissue; this compound also increased the proliferative index of the tissue within the sponges. To evaluate its effect in myocardial repair, we induced a myocardial infarction (MI) by coronary artery ligation and administered a single intramyocardial dose of pyrvinium. Mice were evaluated by echocardiography at 7 and 30 days post-MI and treatment; post mortem hearts were evaluated by histology at 30 days. Pyrvinium reduced adverse cardiac remodeling demonstrated by decreased left ventricular internal diameter in diastole (LVIDD) as compared to a control compound. Increased Ki-67+ cells were observed in peri-infarct and distal myocardium of pyrvinium-treated animals. These results need to be further followed-up to determine if therapeutic inhibition of canonical Wnt may avert adverse remodeling after ischemic injury and its impact on myocardial repair and regeneration.
Collapse
Affiliation(s)
- Sarika Saraswati
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria P. Alfaro
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Curtis A. Thorne
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James Atkinson
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
| | - Ethan Lee
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Pampee P. Young
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- The Department of Veterans Affairs Medical Center, Nashville, Tennessee, United States of America
- Department of Internal Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
326
|
Diversity of axin in signaling pathways and its relation to colorectal cancer. Med Oncol 2010; 28 Suppl 1:S259-67. [DOI: 10.1007/s12032-010-9722-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022]
|
327
|
Sonderegger S, Pollheimer J, Knöfler M. Wnt signalling in implantation, decidualisation and placental differentiation--review. Placenta 2010; 31:839-47. [PMID: 20716463 PMCID: PMC2963059 DOI: 10.1016/j.placenta.2010.07.011] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 12/19/2022]
Abstract
The family of secreted Wingless ligands plays major roles in embryonic development, stem cell maintenance, differentiation and tissue homeostasis. Accumulating evidence suggests that the canonical Wnt pathway involving nuclear recruitment of β-catenin and activation of Wnt-dependent transcription factors is also critically involved in development and differentiation of the diverse reproductive tissues. Here, we summarise our present knowledge about expression, regulation and function of Wnt ligands and their frizzled receptors in murine and human endometrial and placental cell types. In mice, Wnt signalling promotes early trophoblast lineage development, blastocyst activation, implantation and chorion-allantois fusion. Moreover, different Wnt ligands play essential roles in the development of the murine uterine tract, in cycling endometrial cells and during decidualisation. In humans, estrogen-dependent endometrial cell proliferation, decidualisation, trophoblast attachment and invasion were shown to be controlled by the particular signalling pathway. Failures in Wnt signalling are associated with infertility, endometriosis, endometrial cancer and gestational diseases such as complete mole placentae and choriocarcinomas. However, our present knowledge is still scarce due to the complexity of the Wnt network involving numerous ligands, receptors and non-canonical pathways. Hence, much remains to be learned about the role of different Wnt signalling cascades in reproductive cell types and their changes under pathological conditions.
Collapse
Affiliation(s)
- S. Sonderegger
- Prince Henry’s Institute of Medical Research, Clayton, Victoria, Australia
| | - J. Pollheimer
- Department of Obstetrics and Fetal–Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - M. Knöfler
- Department of Obstetrics and Fetal–Maternal Medicine, Reproductive Biology Unit, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
328
|
Cadigan KM, Peifer M. Wnt signaling from development to disease: insights from model systems. Cold Spring Harb Perspect Biol 2010; 1:a002881. [PMID: 20066091 DOI: 10.1101/cshperspect.a002881] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.
Collapse
Affiliation(s)
- Ken M Cadigan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | |
Collapse
|
329
|
Hojo H, Ohba S, Yano F, Chung UI. Coordination of chondrogenesis and osteogenesis by hypertrophic chondrocytes in endochondral bone development. J Bone Miner Metab 2010; 28:489-502. [PMID: 20607327 DOI: 10.1007/s00774-010-0199-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 05/09/2010] [Indexed: 01/01/2023]
Abstract
Mammalian bones have three distinct origins (paraxial mesoderm, lateral plate mesoderm, and neural crest) and undergo two different modes of formation (intramembranous and endochondral). Bones derived from the paraxial mesoderm and lateral plate mesoderm mainly form through the endochondral process. During this process, hypertrophic chondrocytes play a vital role in inducing osteogenesis. So far, a number of published papers have provided evidence that chondrocyte hypertrophy and osteoblast differentiation are controlled by a variety of signaling pathways and factors; however, little is known about their hierarchy (which are upstream? which are most potent?). In this review, we discuss the signaling pathways and transcriptional factors regulating chondrocyte hypertrophy and osteoblast differentiation based on the evidence that has been reported and confirmed by multiple independent groups. We then discuss which factor would provide the most coherent evidence for its role in endochondral ossification.
Collapse
Affiliation(s)
- Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
330
|
A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene and bone mineral density in Japanese male workers. Environ Health Prev Med 2010; 16:106-12. [PMID: 21432225 DOI: 10.1007/s12199-010-0172-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/20/2010] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Both genetic and lifestyle factors have been shown to influence bone mineral density (BMD). We investigated the correlations between BMD and low-density lipoprotein receptor-related protein 5 (LRP5) A1330V (rs3736228) polymorphism, exercise, smoking, and alcohol intake in Japanese male workers. METHODS The subjects were 829 male employees (aged 20-59 years) of a large-scale integrated manufacturing facility in Japan. BMD was measured at the nondominant radius by dual-energy X-ray absorptiometry. Lifestyle information was obtained by a questionnaire at the same time, and genomic DNA was isolated from peripheral leukocytes. RESULTS Mean ± standard deviation (SD) BMD was 0.557 ± 0.059 g/cm(2). The genotype frequencies of LRP5 gene polymorphism were 51, 42, and 7% for AA, AV, and VV, respectively. Analysis of variance and post hoc Tukey test indicated that mean BMD was significantly lower in subjects with VV genotype than in those with AA genotype (0.540 ± 0.048 versus 0.562 ± 0.062 g/cm(2)). According to multiple linear regression analysis, LRP5 A1330V polymorphism was an independent determinant of BMD, after adjusting for age, body mass index (BMI), and lifestyle variables. Exercise (past or current) also influenced BMD. CONCLUSIONS These findings suggest that LRP5 A1330V polymorphism and exercise may influence BMD in Japanese male workers.
Collapse
|
331
|
Niehrs C, Shen J. Regulation of Lrp6 phosphorylation. Cell Mol Life Sci 2010; 67:2551-62. [PMID: 20229235 PMCID: PMC11115861 DOI: 10.1007/s00018-010-0329-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 02/08/2010] [Accepted: 02/19/2010] [Indexed: 12/14/2022]
Abstract
The Wnt/beta-catenin signaling pathway plays important roles in embryonic development and tissue homeostasis, and is implicated in human disease. Wnts transduce signals via transmembrane receptors of the Frizzled (Fzd/Fz) family and the low density lipoprotein receptor-related protein 5/6 (Lrp5/6). A key mechanism in their signal transduction is that Wnts induce Lrp6 signalosomes, which become phosphorylated at multiple conserved sites, notably at PPSPXS motifs. Lrp6 phosphorylation is crucial to beta-catenin stabilization and pathway activation by promoting Axin and Gsk3 recruitment to phosphorylated sites. Here, we summarize how proline-directed kinases (Gsk3, PKA, Pftk1, Grk5/6) and non-proline-directed kinases (CK1 family) act upon Lrp6, how the phosphorylation is regulated by ligand binding and mitosis, and how Lrp6 phosphorylation leads to beta-catenin stabilization.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 581, Heidelberg, Germany.
| | | |
Collapse
|
332
|
Casagolda D, Del Valle-Pérez B, Valls G, Lugilde E, Vinyoles M, Casado-Vela J, Solanas G, Batlle E, Reynolds AB, Casal JI, de Herreros AG, Duñach M. A p120-catenin-CK1epsilon complex regulates Wnt signaling. J Cell Sci 2010; 123:2621-31. [PMID: 20940130 DOI: 10.1242/jcs.067512] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
p120-catenin is an E-cadherin-associated protein that modulates E-cadherin function and stability. We describe here that p120-catenin is required for Wnt pathway signaling. p120-catenin binds and is phosphorylated by CK1ε in response to Wnt3a. p120-catenin also associates to the Wnt co-receptor LRP5/6, an interaction mediated by E-cadherin, showing an unexpected physical link between adherens junctions and a Wnt receptor. Depletion of p120-catenin abolishes CK1ε binding to LRP5/6 and prevents CK1ε activation upon Wnt3a stimulation. Elimination of p120-catenin also inhibits early responses to Wnt, such as LRP5/6 and Dvl-2 phosphorylation and axin recruitment to the signalosome, as well as later effects, such as β-catenin stabilization. Moreover, since CK1ε is also required for E-cadherin phosphorylation, a modification that decreases the affinity for β-catenin, p120-catenin depletion prevents the increase in β-catenin transcriptional activity even in the absence of β-catenin degradation. Therefore, these results demonstrate a novel and crucial function of p120-catenin in Wnt signaling and unveil additional points of regulation by this factor of β-catenin transcriptional activity different of β-catenin stability.
Collapse
Affiliation(s)
- David Casagolda
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Dishevelled interacts with p65 and acts as a repressor of NF-κB-mediated transcription. Cell Res 2010; 20:1117-27. [DOI: 10.1038/cr.2010.108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
334
|
Jung H, Kim HJ, Lee SK, Kim R, Kopachik W, Han JK, Jho EH. Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 2010; 41:695-706. [PMID: 19561403 DOI: 10.3858/emm.2009.41.10.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Wnt signaling is known to be important for diverse embryonic and post-natal cellular events and be regulated by the proteins Dishevelled and Axin. Although Dishevelled is activated by Wnt and involved in signal transduction, it is not clear how Dishevelled-mediated signaling is turned off. We report that guanine nucleotide binding protein beta 2 (Gnb2; Gbeta2) bound to Axin and Gbeta2 inhibited Wnt mediated reporter activity. The inhibition involved reduction of the level of Dishevelled, and the Gbeta2gamma2 mediated reduction of Dishevelled was countered by increased expression of Axin. Consistent with these effects in HEK293T cells, injection of Gbeta2gamma2 into Xenopus embryos inhibited the formation of secondary axes induced either by XWnt8 or Dishevelled, but not by beta-catenin. The DEP domain of Dishevelled is necessary for both interaction with Gbeta2gamma2 and subsequent degradation of Dishevelled via the lysosomal pathway. Signaling induced by Gbeta2gamma2 is required because a mutant of Gbeta2, Gbeta2 (W332A) with lower signaling activity, had reduced ability to downregulate the level of Dishevelled. Activation of Wnt signaling by either of two methods, increased Frizzled signaling or transient transfection of Wnt, also led to increased degradation of Dishevelled and the induced Dishevelled loss is dependent on Gbeta1 and Gbeta2. Other studies with agents that interfere with PLC action and calcium signaling suggested that loss of Dishevelled is mediated through the following pathway: Wnt/Frizzled-->Gbetagamma-->PLC-->Ca(+2)/PKC signaling. Together the evidence suggests a novel negative feedback mechanism in which Gbeta2gamma2 inhibits Wnt signaling by degradation of Dishevelled.
Collapse
Affiliation(s)
- Hwajin Jung
- Department of Life Science, The University of Seoul, Seoul 130-743, Korea
| | | | | | | | | | | | | |
Collapse
|
335
|
Davidson G, Niehrs C. Emerging links between CDK cell cycle regulators and Wnt signaling. Trends Cell Biol 2010; 20:453-60. [PMID: 20627573 DOI: 10.1016/j.tcb.2010.05.002] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/03/2010] [Accepted: 05/04/2010] [Indexed: 01/09/2023]
Abstract
Wnt/beta-catenin signaling controls many aspects of cell behavior throughout development and in adults. One of its best-known and cancer-relevant functions is to stimulate cell proliferation. Recent work has implicated Wnt components in regulating mitotic events, suggesting that the cell cycle and Wnt signaling are directly linked. This concept has now been substantially strengthened with the finding that the mitotic CDK14/cyclin Y complex promotes Wnt signaling through phosphorylation of the LRP6 co-receptor, a key regulatory nexus in the Wnt/beta-catenin pathway. Thus, an unexpectedly tight collaboration between the mitotic cell cycle machinery and Wnt signaling is emerging, suggesting that this pathway might orchestrate mitotic processes.
Collapse
Affiliation(s)
- Gary Davidson
- Karlsruhe Institute of Technology (KIT), Institute of Toxicology and Genetics, H. v. Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany.
| | | |
Collapse
|
336
|
Parody JP, Alvarez ML, Quiroga AD, Ceballos MP, Frances DE, Pisani GB, Pellegrino JM, Carnovale CE, Carrillo MC. Attenuation of the Wnt/beta-catenin/TCF pathway by in vivo interferon-alpha2b (IFN-alpha2b) treatment in preneoplastic rat livers. Growth Factors 2010; 28:166-77. [PMID: 20109105 DOI: 10.3109/08977190903547863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wnt/beta-catenin/T cell factor (TCF) pathway is activated in several types of human cancers, promoting cell growth and proliferation. Forkhead box containing protein class O (FOXO) transcription factors compete with TCF for beta-catenin binding, particularly under cellular oxidative stress conditions. Contrary to beta-catenin/TCF, beta-catenin/FOXO promotes the transcription of genes involved in cell cycle arrest and apoptosis. We have previously demonstrated that in vivo interferon-alpha2b (IFN-alpha2b) administration induces apoptosis in preneoplastic livers, a mechanism mediated by reactive oxygen species (ROS) and transforming growth factor-beta(1) (TGF-beta(1)). This study was aimed to assess the status of the Wnt/beta-catenin/TCF pathway in a very early stage of rat hepatocarcinogenesis and to further evaluate the effects of in vivo IFN-alpha2b treatment on it. We demonstrated that the Wnt/beta-catenin/TCF pathway is activated in preneoplastic rat livers. More important, in vivo IFN-alpha2b treatment inhibits Wnt/beta-catenin/TCF pathway and promotes programed cell death possibly providing a link with FOXO pathway.
Collapse
Affiliation(s)
- Juan P Parody
- Instituto de Fisiología Experimental, Consejo Nacional de Investigaciones Científicas y T écnicas (CONICET), 2000 Rosario, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
337
|
Abstract
Lrp5, the mutated gene in osteoporosis pseudoglioma (OPPG) and the high bone-mass syndrome (HBM), regulates bone formation, while beta-catenin, the molecular node of Wnt signaling, regulates bone resorption, suggesting that Lrp5 could act in a Wnt-independent manner. Using microarray and conditional gene deletion in mice, we showed that Lrp5 actually enhances bone formation by inhibiting the expression, in duodenum, of tryptophan hydroxylase 1, the rate-limiting enzyme in the serotonin biosynthetic pathway. Accordingly, serotonin circulating levels are high in Lrp5(-/-) mice and OPPG patients but low in HBM patients, and normalizing serum serotonin levels rescues the bone phenotype of the Lrp5(-/-) mice. We also showed that serotonin acts on osteoblasts through the Htr1b receptor and the transcription factor cAMP responsive element binding to inhibit their proliferation. This study shows that Lrp5 acts in gut cells, not in osteoblasts, to control bone formation via a Wnt-independent pathway and identifies a new hormone, serotonin, and a novel endocrine axis regulating bone mass. These findings may have important therapeutic implications for the treatment of low bone-mass disorders.
Collapse
Affiliation(s)
- Vijay K Yadav
- Department of Pathology, Columbia University, College of Physicians and Surgeons, New York, New York, USA
| | | |
Collapse
|
338
|
Metcalfe C, Mendoza-Topaz C, Mieszczanek J, Bienz M. Stability elements in the LRP6 cytoplasmic tail confer efficient signalling upon DIX-dependent polymerization. J Cell Sci 2010; 123:1588-99. [PMID: 20388731 PMCID: PMC2858023 DOI: 10.1242/jcs.067546] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2010] [Indexed: 12/13/2022] Open
Abstract
Wnt/beta-catenin signalling controls cell fates in development, tissue homeostasis and cancer. Wnt binding to Frizzled receptors triggers recruitment of Dishevelled to the plasma membrane and formation of a signalosome containing the LRP5/6 co-receptor, whose cytoplasmic tail (ctail) thus becomes phosphorylated at multiple PPP(S/T)Px(S/T) motifs. These then directly inhibit GSK3beta, which results in beta-catenin accumulation and signalling. Here, we revisit previous epistasis experiments, and show that Dishevelled signals through LRP5/6 in human cells and Drosophila embryos. To recapitulate this signalling event, and to define its functional elements, we fused the Dishevelled DIX domain to the LRP6 ctail, which forms cytoplasmic signalosomes with potent signalling activity mediated by its PPP(S/T)Px(S/T) motifs. Their phosphorylation and activity depends critically on DIX-mediated polymerization, and on multiple stability elements in the LRP6 ctail, including the T1479 epitope upstream of the membrane-proximal PPP(S/T)Px(S/T) motif. Thus, stable polymerization emerges as a key principle underlying the function of Dishevelled-dependent signalosomes.
Collapse
Affiliation(s)
- Ciara Metcalfe
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| | | | | | - Mariann Bienz
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 0QH, UK
| |
Collapse
|
339
|
Castelo-Branco G, Andersson ER, Minina E, Sousa KM, Ribeiro D, Kokubu C, Imai K, Prakash N, Wurst W, Arenas E. Delayed dopaminergic neuron differentiation in Lrp6 mutant mice. Dev Dyn 2010; 239:211-21. [PMID: 19795519 DOI: 10.1002/dvdy.22094] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Wnts are known to bind and activate multiple membrane receptors/coreceptors and to regulate dopaminergic (DA) neuron development and ventral midbrain (VM) morphogenesis. The low density lipoprotein receptor-related protein (Lrp6) is a Wnt co-receptor, yet it remains unclear whether Lrp6 is required for DA neuron development or VM morphogenesis. Lrp6 is expressed ubiquitously in the developing VM. In this study, we show that Lrp6(-/-) mice exhibit normal patterning, proliferation and cell death in the VM, but display a delay in the onset of DA precursor differentiation. A transient 50% reduction in tyrosine hydroxylase-positive DA neurons and in the expression of DA markers such as Nurr1 and Pitx3, as well as a defect in midbrain morphogenesis was detected in the mutant embryos at embryonic day 11.5. Our results, therefore, suggest a role for Lrp6 in the onset of DA neuron development in the VM as well as a role in midbrain morphogenesis.
Collapse
Affiliation(s)
- Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
340
|
Egger-Adam D, Katanaev VL. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 2010; 239:168-83. [PMID: 19705439 DOI: 10.1002/dvdy.22060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
Collapse
Affiliation(s)
- Diane Egger-Adam
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
341
|
Jensen PB, Pedersen L, Krishna S, Jensen MH. A Wnt oscillator model for somitogenesis. Biophys J 2010; 98:943-50. [PMID: 20303851 PMCID: PMC2849083 DOI: 10.1016/j.bpj.2009.11.039] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/06/2009] [Accepted: 11/18/2009] [Indexed: 12/30/2022] Open
Abstract
We propose a model for the segmentation clock in vertebrate somitogenesis, based on the Wnt signaling pathway. The core of the model is a negative feedback loop centered around the Axin2 protein. Axin2 is activated by beta-catenin, which in turn is degraded by a complex of GSK3beta and Axin2. The model produces oscillatory states of the involved constituents with typical time periods of a few hours (ultradian oscillations). The oscillations are robust to changes in parameter values and are often spiky, where low concentration values of beta-catenin are interrupted by sharp peaks. Necessary for the oscillations is the saturated degradation of Axin2. Somite formation in chick and mouse embryos is controlled by a spatial Wnt gradient which we introduce in the model through a time-dependent decrease in Wnt3a ligand level. We find that the oscillations disappear as the ligand concentration decreases, in agreement with observations on embryos.
Collapse
|
342
|
Zhang M, Yan Y, Lim YB, Tang D, Xie R, Chen A, Tai P, Harris SE, Xing L, Qin YX, Chen D. BMP-2 modulates beta-catenin signaling through stimulation of Lrp5 expression and inhibition of beta-TrCP expression in osteoblasts. J Cell Biochem 2010; 108:896-905. [PMID: 19795382 DOI: 10.1002/jcb.22319] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP-2 acts synergistically with beta-catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross-talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3-E1 cells to investigate the effect of BMP-2 on beta-catenin signaling. We found that BMP-2 stimulates Lrp5 expression and inhibits the expression of beta-TrCP, the F-box E3 ligase responsible for beta-catenin degradation and subsequently increases beta-catenin protein levels in osteoblasts. In vitro deletion of the beta-catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP-2 treatment. These findings suggest that BMP-2 may regulate osteoblast function in part through modulation of the beta-catenin signaling.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Orthopaedics, Center for Musculoskeletal Research, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Beagle B, Mi K, Johnson GVW. Phosphorylation of PPP(S/T)P motif of the free LRP6 intracellular domain is not required to activate the Wnt/beta-catenin pathway and attenuate GSK3beta activity. J Cell Biochem 2010; 108:886-95. [PMID: 19711366 DOI: 10.1002/jcb.22318] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The canonical Wnt/beta-catenin signaling pathway plays a critical role in numerous physiological and pathological processes. LRP6 is an essential co-receptor for Wnt/beta-catenin signaling; as transduction of the Wnt signal is strongly dependent upon GSK3beta-mediated phosphorylation of multiple PPP(S/T)P motifs within the membrane-anchored LRP6 intracellular domain. Previously, we showed that the free LRP6 intracellular domain (LRP6-ICD) can activate the Wnt/beta-catenin pathway in a beta-catenin and TCF/LEF-1 dependent manner, as well as interact with and attenuate GSK3beta activity. However, it is unknown if the ability of LRP6-ICD to attenuate GSK3beta activity and modulate activation of the Wnt/beta-catenin pathway requires phosphorylation of the LRP6-ICD PPP(S/T)P motifs, in a manner similar to the membrane-anchored LRP6 intracellular domain. Here we provide evidence that the LRP6-ICD does not have to be phosphorylated at its PPP(S/T)P motif by GSK3beta to stabilize endogenous cytosolic beta-catenin resulting in activation of TCF/LEF-1 and the Wnt/beta-catenin pathway. LRP6-ICD and a mutant in which all 5 PPP(S/T)P motifs were changed to PPP(A)P motifs equivalently interacted with and attenuated GSK3beta activity in vitro, and both constructs inhibited the in situ GSK3beta-mediated phosphorylation of beta-catenin and tau to the same extent. These data indicate that the LRP6-ICD attenuates GSK3beta activity similar to other GSK3beta binding proteins, and is not a result of it being a GSK3beta substrate. Our findings suggest the functional and regulatory mechanisms governing the free LRP6-ICD may be distinct from membrane-anchored LRP6, and that release of the LRP6-ICD may provide a complimentary signaling cascade capable of modulating Wnt-dependent gene expression.
Collapse
Affiliation(s)
- Brandon Beagle
- Department of Anesthesiology, University of Rochester, Rochester, New York 14642, USA
| | | | | |
Collapse
|
344
|
Cruciat CM, Ohkawara B, Acebron SP, Karaulanov E, Reinhard C, Ingelfinger D, Boutros M, Niehrs C. Requirement of prorenin receptor and vacuolar H+-ATPase-mediated acidification for Wnt signaling. Science 2010; 327:459-63. [PMID: 20093472 DOI: 10.1126/science.1179802] [Citation(s) in RCA: 465] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Wnt/beta-catenin signaling is important in stem cell biology, embryonic development, and disease, including cancer. However, the mechanism of Wnt signal transmission, notably how the receptors are activated, remains incompletely understood. We found that the prorenin receptor (PRR) is a component of the Wnt receptor complex. PRR functions in a renin-independent manner as an adaptor between Wnt receptors and the vacuolar H+-adenosine triphosphatase (V-ATPase) complex. Moreover, PRR and V-ATPase were required to mediate Wnt signaling during antero-posterior patterning of Xenopus early central nervous system development. The results reveal an unsuspected role for the prorenin receptor, V-ATPase activity, and acidification during Wnt/beta-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
345
|
Abstract
The Wnt/beta-catenin signaling pathway plays essential roles during development and adult tissue homeostasis. Inappropriate activation of the pathway can result in a variety of malignancies. Protein kinases have emerged as key regulators at multiple steps of the Wnt pathway. In this review, we present a synthesis covering the latest information on how Wnt signaling is regulated by diverse protein kinases.
Collapse
Affiliation(s)
- Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
| | | |
Collapse
|
346
|
Dao DY, Yang X, Flick LM, Chen D, Hilton MJ, O’Keefe RJ. Axin2 regulates chondrocyte maturation and axial skeletal development. J Orthop Res 2010; 28:89-95. [PMID: 19623616 PMCID: PMC2853598 DOI: 10.1002/jor.20954] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Accepted: 06/11/2009] [Indexed: 02/04/2023]
Abstract
Axis inhibition proteins 1 and 2 (Axin1 and Axin2) are scaffolding proteins that modulate at least two signaling pathways that are crucial in skeletogenesis: the Wnt/beta-catenin and TGF-beta signaling pathways. To determine whether Axin2 is important in skeletogenesis, we examined the skeletal phenotype of Axin2-null mice in a wild-type or Axin1(+/-) background. Animals with disrupted Axin2 expression displayed a runt phenotype when compared to heterozygous littermates. Whole-mount and tissue beta-galactosidase staining of Axin2(LacZ/LacZ) mice revealed that Axin2 is expressed in cartilage tissue, and histological sections from knockout animals showed shorter hypertrophic zones in the growth plate. Primary chondrocytes were isolated from Axin2-null and wild-type mice, cultured, and assayed for type X collagen gene expression. While type II collagen levels were depressed in cells from Axin2-deficient animals, type X collagen gene expression was enhanced. There was no difference in BrdU incorporation between null and heterozygous mice, suggesting that loss of Axin2 does not alter chondrocyte proliferation. Taken together, these findings reveal that disruption of Axin2 expression results in accelerated chondrocyte maturation. In the presence of a heterozygous deficiency of Axin1, Axin2 was also shown to play a critical role in craniofacial and axial skeleton development.
Collapse
Affiliation(s)
- Debbie Y. Dao
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
- Department of Pathology, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Xue Yang
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Lisa M. Flick
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Di Chen
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Matthew J. Hilton
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
| | - Regis J. O’Keefe
- Department of Orthopaedics, Center for Musculoskeletal Research, University of Rochester School of Medicine, Rochester, New York 14642
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, New York 14642
| |
Collapse
|
347
|
Abstract
Intracellular signalling mediated by secreted Wnt proteins is essential for the establishment of cell fates and proper tissue patterning during embryo development and for the regulation of tissue homeostasis and stem cell function in adult tissues. Aberrant activation of Wnt signalling pathways has been directly linked to the genesis of different tumours. Here, the components and molecular mechanisms implicated in the transduction of Wnt signal, along with important results supporting a central role for this signalling pathway in stem cell function regulation and carcinogenesis will be briefl y reviewed.
Collapse
|
348
|
Murrills RJ, Matteo JJ, Bhat BM, Coleburn VE, Allen KM, Chen W, Damagnez V, Bhat RA, Bex FJ, Bodine PV. A cell-based Dkk1 binding assay reveals roles for extracellular domains of LRP5 in Dkk1 interaction and highlights differences between wild-type and the high bone mass mutant LRP5(G171V). J Cell Biochem 2009; 108:1066-75. [DOI: 10.1002/jcb.22335] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
349
|
Santos A, Bakker AD, Zandieh-Doulabi B, de Blieck-Hogervorst JMA, Klein-Nulend J. Early activation of the beta-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem Biophys Res Commun 2009; 391:364-9. [PMID: 19913504 DOI: 10.1016/j.bbrc.2009.11.064] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 11/09/2009] [Indexed: 12/21/2022]
Abstract
Bone mechanotransduction is vital for skeletal integrity. Osteocytes are thought to be the cellular structures that sense physical forces and transform these signals into a biological response. The Wnt/beta-catenin signaling pathway has been identified as one of the signaling pathways that is activated in response to mechanical loading, but the molecular events that lead to an activation of this pathway in osteocytes are not well understood. We assessed whether nitric oxide, focal adhesion kinase, and/or the phosphatidyl inositol-3 kinase/Akt signaling pathway mediate loading-induced beta-catenin pathway activation in MLO-Y4 osteocytes. We found that mechanical stimulation by pulsating fluid flow (PFF, 0.7+/-0.3 Pa, 5 Hz) for 30 min induced beta-catenin stabilization and activation of the Wnt/beta-catenin signaling pathway. The PFF-induced stabilization of beta-catenin and activation of the beta-catenin signaling pathway was abolished by adding focal kinase inhibitor FAK inhibitor-14 (50 microM), or phosphatidyl inositol-3 kinase inhibitor LY-294002 (50 microM). Addition of nitric oxide synthase inhibitor L-NAME (1.0mM) also abolished PFF-induced stabilization of beta-catenin. This suggests that mechanical loading activates the beta-catenin signaling pathway by a mechanism involving nitric oxide, focal adhesion kinase, and the Akt signaling pathway. These data provide a framework for understanding the role of beta-catenin in mechanical adaptation of bone.
Collapse
Affiliation(s)
- Ana Santos
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Research Institute MOVE, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
350
|
Chen Y, Hu Y, Zhou T, Zhou KK, Mott R, Wu M, Boulton M, Lyons TJ, Gao G, Ma JX. Activation of the Wnt pathway plays a pathogenic role in diabetic retinopathy in humans and animal models. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2676-85. [PMID: 19893025 DOI: 10.2353/ajpath.2009.080945] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Although Wnt signaling is known to mediate multiple biological and pathological processes, its association with diabetic retinopathy (DR) has not been established. Here we show that retinal levels and nuclear translocation of beta-catenin, a key effector in the canonical Wnt pathway, were increased in humans with DR and in three DR models. Retinal levels of low-density lipoprotein receptor-related proteins 5 and 6, coreceptors of Wnts, were also elevated in the DR models. The high glucose-induced activation of beta-catenin was attenuated by aminoguanidine, suggesting that oxidative stress is a direct cause for the Wnt pathway activation in diabetes. Indeed, Dickkopf homolog 1, a specific inhibitor of the Wnt pathway, ameliorated retinal inflammation, vascular leakage, and retinal neovascularization in the DR models. Dickkopf homolog 1 also blocked the generation of reactive oxygen species induced by high glucose, suggesting that Wnt signaling contributes to the oxidative stress in diabetes. These observations indicate that the Wnt pathway plays a pathogenic role in DR and represents a novel therapeutic target.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|