301
|
Schneider I, Reverse D, Dewachter I, Ris L, Caluwaerts N, Kuiperi C, Gilis M, Geerts H, Kretzschmar H, Godaux E, Moechars D, Van Leuven F, Herms J. Mutant presenilins disturb neuronal calcium homeostasis in the brain of transgenic mice, decreasing the threshold for excitotoxicity and facilitating long-term potentiation. J Biol Chem 2001; 276:11539-44. [PMID: 11278803 DOI: 10.1074/jbc.m010977200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mutant human presenilin-1 (PS1) causes an Alzheimer's-related phenotype in the brain of transgenic mice in combination with mutant human amyloid precursor protein by means of increased production of amyloid peptides (Dewachter, I., Van Dorpe, J., Smeijers, L., Gilis, M., Kuiperi, C., Laenen, I., Caluwaerts, N., Moechars, D., Checler, F., Vanderstichele, H. & Van Leuven, F. (2000) J. Neurosci. 20, 6452-6458) that aggravate plaques and cerebrovascular amyloid (Van Dorpe, J., Smeijers, L., Dewachter, I., Nuyens, D., Spittaels, K., van den Haute, C., Mercken, M., Moechars, D., Laenen, I., Kuipéri, C., Bruynseels, K., Tesseur, I., Loos, R., Vanderstichele, H., Checler, F., Sciot, R. & Van Leuven, F. (2000) J. Am. Pathol. 157, 1283-1298). This gain of function of mutant PS1 is approached here in three paradigms that relate to glutamate neurotransmission. Mutant but not wild-type human PS1 (i) lowered the excitotoxic threshold for kainic acid in vivo, (ii) facilitated hippocampal long-term potentiation in brain slices, and (iii) increased glutamate-induced intracellular calcium levels in isolated neurons. Prominent higher calcium responses were triggered by thapsigargin and bradykinin, indicating that mutant PS modulates the dynamic release and storage of calcium ions in the endoplasmatic reticulum. In reaction to glutamate, overfilled Ca(2+) stores resulted in higher than normal cytosolic Ca(2+) levels, explaining the facilitated long-term potentiation and enhanced excitotoxicity. The lowered excitotoxic threshold for kainic acid was also observed in mice transgenic for mutant human PS2[N141I] and was prevented by dantrolene, an inhibitor of Ca(2+) release from the endoplasmic reticulum.
Collapse
Affiliation(s)
- I Schneider
- Department of Neuropathology, Ludwig-Maximilians-Universität, 81377 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Lu C, Fu W, Mattson MP. Caspase-mediated suppression of glutamate (AMPA) receptor channel activity in hippocampal neurons in response to DNA damage promotes apoptosis and prevents necrosis: implications for neurological side effects of cancer therapy and neurodegenerative disorders. Neurobiol Dis 2001; 8:194-206. [PMID: 11300717 DOI: 10.1006/nbdi.2000.0377] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
DNA damage in neurons is implicated in the pathogenesis of several neurodegenerative disorders and may also contribute to the often severe neurological complications in cancer patients treated with chemotherapeutic agents. DNA damage can trigger apoptosis, a form of controlled cell death that involves activation of cysteine proteases called caspases. The excitatory neurotransmitter glutamate plays central roles in the activation of neurons and in processes such as learning and memory, but overactivation of ionotropic glutamate receptors can induce either apoptosis or necrosis. Glutamate receptors of the AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate) type mediate such physiological and pathological processes in most neurons. We now report that DNA damage can alter glutamate receptor channel activity by a mechanism involving activation of caspases. Whole-cell patch clamp analyses revealed a marked decrease in AMPA-induced currents after exposure of neurons to camptothecin, a topoisomerase inhibitor that induces DNA damage; N-methyl-d-aspartate (NMDA)-induced currents were unaffected by camptothecin. The decrease in AMPA-induced current was accompanied by a decreased calcium response to AMPA. Pharmacological inhibition of caspases abolished the effects of camptothecin on AMPA-induced current and calcium responses, and promoted excitotoxic necrosis. Combined treatment with glutamate receptor antagonists and a caspase inhibitor prevented camptothecin-induced neuronal death. Caspase-mediated suppression of AMPA currents may allow neurons with damaged DNA to withdraw their participation in excitatory circuits and undergo apoptosis, thereby avoiding widespread necrosis. These findings have important implications for treatment of patients with cancer and neurodegenerative disorders.
Collapse
Affiliation(s)
- C Lu
- Laboratory of Neurosciences, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
303
|
Eckert A, Schindowski K, Leutner S, Luckhaus C, Touchet N, Czech C, Müller WE. Alzheimer's disease-like alterations in peripheral cells from presenilin-1 transgenic mice. Neurobiol Dis 2001; 8:331-42. [PMID: 11300728 DOI: 10.1006/nbdi.2000.0378] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Expression of PS1 mutations in cell culture systems and in primary neurons from transgenic mice increases their vulnerability to cell death. Interestingly, enhanced vulnerability to cell death has also been demonstrated for peripheral lymphocytes from AD patients. We now report that lymphocytes from PS1 mutant transgenic mice show a similar hypersensitivity to cell death as do peripheral cells from AD patients and several cell culture systems expressing PS1 mutations. The cell death-enhancing action of mutant PS1 was associated with increased production of reactive oxygen species and altered calcium regulation, but not with changes of mitochondrial cytochrome c. Our study further emphasizes the pathogenic role of mutant PS1 and may provide the fundamental basis for new efforts to close the gap between studies using neuronal cell lines transfected with mutant PS1, neurons from transgenic animals, and peripheral cells from AD patients.
Collapse
Affiliation(s)
- A Eckert
- Department of Pharmacology, Biocenter, University of Frankfurt, Marie-Curie-Strasse 9, Frankfurt, D-60439, Germany.
| | | | | | | | | | | | | |
Collapse
|
304
|
Jo DG, Kim MJ, Choi YH, Kim IK, Song YH, Woo HN, Chung CW, Jung YK. Pro-apoptotic function of calsenilin/DREAM/KChIP3. FASEB J 2001; 15:589-91. [PMID: 11259376 DOI: 10.1096/fj.00-0541fje] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Apoptotic cell death and increased production of amyloid b peptide (Ab) are pathological features of Alzheimer's disease (AD), although the exact contribution of apoptosis to the pathogenesis of the disease remains unclear. Here we describe a novel pro-apoptotic function of calsenilin/DREAM/KChIP3. By antisense oligonucleotide-induced inhibition of calsenilin/DREAM/KChIP3 synthesis, apoptosis induced by Fas, Ca2+-ionophore, or thapsigargin is attenuated. Conversely, calsenilin/DREAM/KChIP3 expression induced the morphological and biochemical features of apoptosis, including cell shrinkage, DNA laddering, and caspase activation. Calsenilin/DREAM/KChIP3-induced apoptosis was suppressed by caspase inhibitor Z-VAD and by Bcl-XL, and was potentiated by increasing cytosolic Ca2+, expression of Swedish amyloid precursor protein mutant (APPSW) or presenilin 2 (PS2), but not by a PS2 deletion lacking its C-terminus (PS2/411stop). In addition, calsenilin/DREAM/KChIP3 expression increased Ab42 production in cells expressing APPsw, which was potentiated by PS2, but not by PS2/411stop, which suggests a role for apoptosis-associated Ab42 production of calsenilin/DREAM/KChIP3.
Collapse
Affiliation(s)
- D G Jo
- Department of Life Science, Kwangju Institute of Science and Technology, Puk-gu, Kwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
305
|
Abstract
The ultimate goal of Alzheimer's disease (AD) research is to prevent the onset of the neurodegenerative process and thereby allow successful aging without cognitive decline. Herein I argue that a simple and effective preventative approach for AD may be in hand. AD is a disorder associated with the aging process and is, accordingly, characterized by cellular and molecular changes that occur in age-related diseases in other organ systems. Such changes include increased levels of oxidative stress, perturbed energy metabolism, and accumulation of insoluble (oxidatively modified) proteins (prominent among which are amyloid beta-peptide and tau). The risk of several other prominent age-related disorders, including cardiovascular disease, cancer, and diabetes, is known to be influenced by the level of food intake--high food intake increases risk, and low food intake reduces risk. An overwhelming body of data from studies of rodents and monkeys has documented the profound beneficial effects of dietary restriction (DR) in extending life span and reducing the incidence of age-related diseases. Reduced levels of cellular oxidative stress and enhancement of energy homeostasis contribute to the beneficial effects of DR. Recent findings suggest that DR may enhance resistance of neurons in the brain to metabolic, excitotoxic, and oxidative insults relevant to the pathogenesis of AD and other neurodegenerative disorders. While further studies will be required to establish the extent to which DR will reduce the incidence of AD, it would seem prudent (based on existing data) to recommend DR as widely applicable preventative approach for age-related disorders including neurodegenerative disorders.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA.
| |
Collapse
|
306
|
Jellinger KA, Stadelmann C. Mechanisms of cell death in neurodegenerative disorders. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2001; 59:95-114. [PMID: 10961423 DOI: 10.1007/978-3-7091-6781-6_13] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Progressive cell loss in specific neuronal populations is the prominent pathological hallmark of neurodegenerative diseases, but its molecular basis remains unresolved. Apoptotic cell death has been implicated as a general mechanism in Alzheimer disease (AD) and other neurodegenerative disorders. However, DNA fragmention in neurons is too frequent to account for the continuous loss in these slowly progressive diseases. MATERIAL AND METHODS In 9 cases of morphologically confirmed AD (CERAD criteria, Braak stages 5 or 6), 5 cases of Parkinson disease (PD) and 3 cases each of Dementia with Lewy bodies (DLB), Progressive Supranuclear Palsy (PSP), and Multiple System Atrophy (MSA), and 7 age-matched controls, the TUNEL method was used to detect DNA fragmentation, and immunohistochemistry for an array of apoptosis-related proteins (ARP), protooncogenes, and activated caspase-3 were performed. RESULTS In AD, a considerable number of hippocampal neurons showed DNA fragmentation with a 3 to 5.7 fold increase related to neurofibrillary tangles and amyloid deposits, but only exceptional neurons displayed apoptotic morphology (1 in 1100-5000) and cytoplasmic immunoreactivity for ARPs and activated caspase-3 (1 in 2600 to 5650 hippocampal neurons), whereas no neurons were labeled in age-matched controls. Caspase-3 immunoreactivity was seen in granules of granulovacuolar degeneration, only rarely colocalized with tau-immunoreactivity. In PD, DLB, and MSA, TUNEL positivity and expression of ARPs or activated caspase-3 was only seen in microglia, rare astrocytes and in oligodendroglia with cytoplasmic inclusions in MSA, but not in nigral or other neurons with or without Lewy bodies. In PSP, only single neurons but oligodendrocytes, some with tau deposits, in brainstem tegmentum and pontine nuclei were TUNEL-positive and expressed both ARPs and activated caspase-3. CONCLUSIONS These data provide evidence for extremely rare apoptotic neuronal death in AD compatible with the progression of neuronal degeneration in this chronic disease. In other neurodegenerative disorders, apoptosis mainly involves microglia and oligodendroglia, while alternative mechanisms of neuronal death may occur. Susceptible cell populations in a proapoptotic environment show increased vulnerability towards metabolic and other pathogenic factors, with autophagy as a possible protective mechanism in early stages of programmed cell death. The intracellular cascade leading to cell death still awaits elucidation.
Collapse
Affiliation(s)
- K A Jellinger
- Ludwig Boltzmann Institute of Clinical Neurobiology, Psychiatric Hospital, Vienna, Austria.
| | | |
Collapse
|
307
|
Presenilin-1 P264L knock-in mutation: differential effects on abeta production, amyloid deposition, and neuronal vulnerability. J Neurosci 2001. [PMID: 11102478 DOI: 10.1523/jneurosci.20-23-08717.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pathogenic mechanism linking presenilin-1 (PS-1) gene mutations to familial Alzheimer's disease (FAD) is uncertain, but has been proposed to include increased neuronal sensitivity to degeneration and enhanced amyloidogenic processing of the beta-amyloid precursor protein (APP). We investigated this issue by using gene targeting with the Cre-lox system to introduce an FAD-linked P264L mutation into the endogenous mouse PS-1 gene, an approach that maintains normal regulatory controls over expression. Primary cortical neurons derived from PS-1 homozygous mutant knock-in mice exhibit basal neurodegeneration similar to their PS-1 wild-type counterparts. Staurosporine and Abeta1-42 induce apoptosis, and neither the dose dependence nor maximal extent of cell death is altered by the PS-1 knock-in mutation. Similarly, glutamate-induced neuronal necrosis is unaffected by the PS-1P264L mutation. The lack of effect of the PS-1P264L mutation is confirmed by measures of basal- and toxin-induced caspase and calpain activation, biochemical indices of apoptotic and necrotic signaling, respectively. To analyze the influence of the PS-1P264L knock-in mutation on APP processing and the development of AD-type neuropathology, we created mouse lines carrying mutations in both PS-1 and APP. In contrast to the lack of effect on neuronal vulnerability, cortical neurons cultured from PS-1P264L homozygous mutant mice secrete Abeta42 at an increased rate, whereas secretion of Abeta40 is reduced. Moreover, the PS-1 knock-in mutation selectively increases Abeta42 levels in the mouse brain and accelerates the onset of amyloid deposition and its attendant reactive gliosis, even as a single mutant allele. We conclude that expression of an FAD-linked mutant PS-1 at normal levels does not generally increase cortical neuronal sensitivity to degeneration. Instead, enhanced amyloidogenic processing of APP likely is critical to the pathogenesis of PS-1-linked FAD.
Collapse
|
308
|
Shoji M, Iwakami N, Takeuchi S, Waragai M, Suzuki M, Kanazawa I, Lippa CF, Ono S, Okazawa H. JNK activation is associated with intracellular beta-amyloid accumulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 85:221-33. [PMID: 11146125 DOI: 10.1016/s0169-328x(00)00245-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
c-Jun has been implicated in the pathogenesis of Alzheimer's disease (AD), but the upstream cascade leading to c-Jun activation in AD is not known. Activation of c-Jun N-terminal kinase (JNK) is obviously a candidate for the upstream event. We tested this possibility focusing on PS1-linked AD. First, we observed that JNK is actually activated in cerebral neurons of PS1-linked AD patients, using immunohistochemistry and Western blot analyses with anti-activated JNK antibodies. We analyzed the relationship between beta-amyloid (beta A) and JNK activation by using aged transgenic mice overexpressing mutant (M146L) PS1 and human AD brains. The mice showed no neuronal loss but a very few diffuse beta A deposits, corresponding to the early stage of PS1-linked AD brain. Some neurons were reactive for anti-beta A antibodies in the cerebral cortex. Interestingly, JNK activation was observed in neurons showing intracellular beta A immunoreactivity in transgenic mice. Association between intracellular beta A and JNK activation was confirmed in cortical neurons of sporadic and PS1-linked AD patients. Furthermore, introduction of beta A peptides into the primary culture cortical neurons induced JNK activation and cell death. Collectively, these results suggested that intracellular beta A accumulation might trigger JNK activation leading to neuronal death.
Collapse
Affiliation(s)
- M Shoji
- Toyama Pharmaceutical Co. 2-4-1, Shimo-okui, Toyama 930-8508, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Abstract
It is remarkable that neurons are able to survive and function for a century or more in many persons that age successfully. A better understanding of the molecular signaling mechanisms that permit such cell survival and synaptic plasticity may therefore lead to the development of new preventative and therapeutic strategies for age-related neurodegenerative disorders. We all know that overeating and lack of exercise are risk factors for many different age-related diseases including cardiovascular disease, diabetes and cancers. Our recent studies have shown that dietary restriction (reduced calorie intake) can increase the resistance of neurons in the brain to dysfunction and death in experimental models of Alzheimer's disease, Parkinson's disease, Huntington's disease and stroke. The mechanism underlying the beneficial effects of dietary restriction involves stimulation of the expression of 'stress proteins' and neurotrophic factors. The neurotrophic factors induced by dietary restriction may protect neurons by inducing the production of proteins that suppress oxyradical production, stabilize cellular calcium homeostasis and inhibit apoptotic biochemical cascades. Interestingly, dietary restriction also increases numbers of newly-generated neural cells in the adult brain suggesting that this dietary manipulation can increase the brain's capacity for plasticity and self-repair. Work in other laboratories suggests that physical and intellectual activity can similarly increase neurotrophic factor production and neurogenesis. Collectively, the available data suggest the that dietary restriction, and physical and mental activity, may reduce both the incidence and severity of neurodegenerative disorders in humans. A better understanding of the cellular and molecular mechanisms underlying these effects of diet and behavior on the brain is also leading to novel therapeutic agents that mimick the beneficial effects of dietary restriction and exercise.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging Gerontology Research Center, 5600 Nathan Shock Drive, 21224-6825, Baltimore, MD, USA.
| |
Collapse
|
310
|
Shinosaki K, Nishikawa T, Takeda M. Neurobiological basis of behavioral and psychological symptoms in dementia of the Alzheimer type. Psychiatry Clin Neurosci 2000; 54:611-20. [PMID: 11145458 DOI: 10.1046/j.1440-1819.2000.00773.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Recent dementia studies indicate that behavioral and psychological symptoms of dementia (BPSD) are not merely an epiphenomenon of cognitive impairment, but could be attributed to specific biological brain dysfunction. We describe findings from different research modalities related with BPSD (psychopathological, neuropsychological, neurochemical, and psychophysiological strategies), and attempt to reconcile them into the more integrated form. Characteristics of delusions in dementia patients should be studied in more detail from a psychopathological aspect, aiming for the integration of psychopathology and neurobiology. Imperfect integration of memory function and cognitive function, assigned to the limbic systems and association areas, respectively, may result in BPSD. More intimate collaboration of psychopathological and neurobiological study would be fruitful to promote the research in psychological basis of BPSD. Neurochemical studies indicated that density of extracellular tangles and/or PHF-tau protein have relationships with delusion or misidentification. These changes in neurochemical parameters should be the key to understanding the pathogenesis of BPSD. More importantly, neurochemical and psychological study could be linked by the research in psychophysiology. Computer-assisted electroencephalogram analysis suggests that the right posterior hemisphere shows significant age-associated change earlier than the left in the elderly. Cerebral metabolic rate by positron emission tomography study indicates that paralimbic, left medial temporal, and left medial occipital area are involved in pathogenesis of BPSD in some dementia patients.
Collapse
Affiliation(s)
- K Shinosaki
- Department of Clinical Neuroscience, Osaka University, Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
311
|
Grilli M, Diodato E, Lozza G, Brusa R, Casarini M, Uberti D, Rozmahel R, Westaway D, St George-Hyslop P, Memo M, Ongini E. Presenilin-1 regulates the neuronal threshold to excitotoxicity both physiologically and pathologically. Proc Natl Acad Sci U S A 2000; 97:12822-7. [PMID: 11070093 PMCID: PMC18848 DOI: 10.1073/pnas.97.23.12822] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A direct pathophysiological role of Familial Alzheimer's Disease (FAD)-associated Presenilin 1 (PS1) mutations in neuronal vulnerability remains a controversial matter. We evaluated the relationship between PS1 and excitotoxicity in four different experimental models of neurotoxicity by using primary neurons from (i) transgenic (tg) mice overexpressing a human FAD-linked PS1 variant (L286V mutation), (ii) tg mice overexpressing human wild-type (wt) PS1, (iii) PS1 knockout mice, and (iv) wt mice in which PS1 gene expression was knocked down by antisense treatment. We found that primary neurons overexpressing mutated PS1 showed an increased vulnerability to both excitotoxic and hypoxic-hypoglycemic damage when compared with neurons obtained from either mice overexpressing human wt PS1 or in wt mice. In addition, reduced excitotoxic damage was obtained in neurons in which PS1 expression was absent or diminished. Data obtained in in vivo experimental models of excitotoxicity partially supported the in vitro observations. Accelerated neuronal death was demonstrated in the hippocampus of mice overexpressing mutated PS1 after peripheral administration of kainic acid in comparison with wt animals. However, measurement of the infarct volume after middle cerebral artery occlusion did not show significant difference between the two animal groups. The results altogether suggest that expression of FAD-linked PS1 variants increases the vulnerability of neurons to a specific type of damage in which excitotoxicity plays a relevant role. In addition, they support the view that reduction of endogenous PS1 expression results in neuroprotection.
Collapse
Affiliation(s)
- M Grilli
- Schering-Plough Research Institute, Department of Central Nervous System/Cardiovascular Research, San Raffaele Science Park, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
312
|
Tarkowski E, Ringqvist A, Blennow K, Wallin A, Wennmalm A. Intrathecal release of nitric oxide in Alzheimer's disease and vascular dementia. Dement Geriatr Cogn Disord 2000; 11:322-6. [PMID: 11044777 DOI: 10.1159/000017261] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A growing body of evidence points out the potential role of inflammatory mechanisms in the pathophysiology of brain damage in dementia. We have recently demonstrated that patients with Alzheimer's disease (AD) and vascular dementia (VaD) display an intrathecal production of proinflammatory cytokines. TNF-alpha, one of these cytokines, leads to the production of nitric oxide (NO), a potent inflammatory mediator, by induction of inducible NO synthase. The aim of the present study was to investigate the intrathecal levels of nitrate, one of the main metabolites of NO, and to relate its levels to the degree of intellectual impairment, in patients with AD and VaD. Twenty patients with early AD and 26 patients with VaD were analyzed with respect to cerebrospinal fluid levels of nitrate by gas chromatography/mass spectrometry. Interestingly, in patients with AD but not VaD, the intrathecal levels of nitrate were significantly and inversely correlated (r = -0.68, p = 0.002) to the degree of intellectual impairment. Our study demonstrates an inverse correlation between the intrathecal levels of nitrate and the degree of cognitive impairment in patients with AD, suggesting a neuroprotective effect of NO in AD.
Collapse
Affiliation(s)
- E Tarkowski
- Department of Rheumatology and Clinical Immunology, University of Göteborg, Sweden.
| | | | | | | | | |
Collapse
|
313
|
Guo ZH, Mattson MP. In vivo 2-deoxyglucose administration preserves glucose and glutamate transport and mitochondrial function in cortical synaptic terminals after exposure to amyloid beta-peptide and iron: evidence for a stress response. Exp Neurol 2000; 166:173-9. [PMID: 11031093 DOI: 10.1006/exnr.2000.7497] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mild metabolic stress can increase resistance of neurons in the brain to subsequent more severe insults, as exemplified by the beneficial effects of heat shock and ischemic preconditioning. Studies of Alzheimer's disease and other age-related neurodegenerative disorders indicate that dysfunction and degeneration of synapses occur early in the cell death process, and that oxidative stress and mitochondrial dysfunction are central events in this pathological process. It was recently shown that administration of 2-deoxy-d-glucose (2DG), a nonmetabolizable glucose analog that induces metabolic stress, to rats and mice can increase resistance of neurons in the brain to excitotoxic, ischemic, and oxidative injury. We now report that administration of 2DG to adult rats (daily i.p. injections of 100 mg/kg body weight) increases resistance of synaptic terminals to dysfunction and degeneration induced by amyloid beta-peptide and ferrous iron, an oxidative insult. The magnitude of impairment of glucose and glutamate transport induced by amyloid beta-peptide and iron was significantly reduced in cortical synaptosomes from 2DG-treated rats compared to saline-treated control rats. Mitochondrial dysfunction, as indicated by increased levels of reactive oxygen species and decreased transmembrane potential, was significantly attenuated after exposure to amyloid beta-peptide and iron in synaptosomes from 2DG-treated rats. Levels of the stress proteins HSP-70 and GRP-78 were increased in synaptosomes from 2DG-treated rats, suggesting a mechanism whereby 2DG protects synaptic terminals. We conclude that 2DG bolsters cytoprotective mechanisms within synaptic terminals, suggesting novel preventative and therapeutic approaches for neurodegenerative disorders.
Collapse
Affiliation(s)
- Z H Guo
- Laboratory of Neurosciences, Gerontology Research Center, National Institute on Aging, 5600 Nathan Shock Drive, Baltimore, Maryland 21224, USA
| | | |
Collapse
|
314
|
Gray CW, Ward RV, Karran E, Turconi S, Rowles A, Viglienghi D, Southan C, Barton A, Fantom KG, West A, Savopoulos J, Hassan NJ, Clinkenbeard H, Hanning C, Amegadzie B, Davis JB, Dingwall C, Livi GP, Creasy CL. Characterization of human HtrA2, a novel serine protease involved in the mammalian cellular stress response. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:5699-710. [PMID: 10971580 DOI: 10.1046/j.1432-1327.2000.01589.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Human HtrA2 is a novel member of the HtrA serine protease family and shows extensive homology to the Escherichia coli HtrA genes that are essential for bacterial survival at high temperatures. HumHtrA2 is also homologous to human HtrA1, also known as L56/HtrA, which is differentially expressed in human osteoarthritic cartilage and after SV40 transformation of human fibroblasts. HumHtrA2 is upregulated in mammalian cells in response to stress induced by both heat shock and tunicamycin treatment. Biochemical characterization of humHtrA2 shows it to be predominantly a nuclear protease which undergoes autoproteolysis. This proteolysis is abolished when the predicted active site serine residue is altered to alanine by site-directed mutagenesis. In human cell lines, it is present as two polypeptides of 38 and 40 kDa. HumHtrA2 cleaves beta-casein with an inhibitor profile similar to that previously described for E. coli HtrA, in addition to an increase in beta-casein turnover when the assay temperature is raised from 37 to 45 degrees C. The biochemical and sequence similarities between humHtrA2 and its bacterial homologues, in conjunction with its nuclear location and upregulation in response to tunicamycin and heat shock suggest that it is involved in mammalian stress response pathways.
Collapse
Affiliation(s)
- C W Gray
- SmithKline Beecham Pharmaceuticals, New Frontiers Science Park North, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
315
|
Leissring MA, Yamasaki TR, Wasco W, Buxbaum JD, Parker I, LaFerla FM. Calsenilin reverses presenilin-mediated enhancement of calcium signaling. Proc Natl Acad Sci U S A 2000; 97:8590-3. [PMID: 10900016 PMCID: PMC26992 DOI: 10.1073/pnas.97.15.8590] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Most cases of autosomal-dominant familial Alzheimer's disease are linked to mutations in the presenilin genes (PS1 and PS2). In addition to modulating beta-amyloid production, presenilin mutations also produce highly specific and selective alterations in intracellular calcium signaling. Although the molecular mechanisms underlying these changes are not known, one candidate molecular mediator is calsenilin, a recently identified calcium-binding protein that associates with the C terminus of both PS1 and PS2. In this study, we investigated the effects of calsenilin on calcium signaling in Xenopus oocytes expressing either wild-type or mutant PS1. In this system, mutant PS1 potentiated the amplitude of calcium signals evoked by inositol 1,4,5-trisphosphate and also accelerated their rates of decay. We report that calsenilin coexpression reverses both of these potentially pathogenic effects. Notably, expression of calsenilin alone had no discernable effects on calcium signaling, suggesting that calsenilin modulates these signals by a mechanism independent of simple calcium buffering. Our findings further suggest that the effects of presenilin mutations on calcium signaling are likely mediated through the C-terminal domain, a region that has also been implicated in the modulation of beta-amyloid production and cell death.
Collapse
Affiliation(s)
- M A Leissring
- Laboratories of Molecular Neuropathogenesis, and Molecular and Cellular Neurobiology, Department of Neurobiology and Behavior, University of California, 1109 Gillespie Neuroscience Research Facility, Irvine, CA 92697-4545, USA
| | | | | | | | | | | |
Collapse
|
316
|
Ackerley S, Grierson AJ, Brownlees J, Thornhill P, Anderton BH, Leigh PN, Shaw CE, Miller CC. Glutamate slows axonal transport of neurofilaments in transfected neurons. J Cell Biol 2000; 150:165-76. [PMID: 10893265 PMCID: PMC2185569 DOI: 10.1083/jcb.150.1.165] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/1999] [Accepted: 06/05/2000] [Indexed: 02/06/2023] Open
Abstract
Neurofilaments are transported through axons by slow axonal transport. Abnormal accumulations of neurofilaments are seen in several neurodegenerative diseases, and this suggests that neurofilament transport is defective. Excitotoxic mechanisms involving glutamate are believed to be part of the pathogenic process in some neurodegenerative diseases, but there is currently little evidence to link glutamate with neurofilament transport. We have used a novel technique involving transfection of the green fluorescent protein-tagged neurofilament middle chain to measure neurofilament transport in cultured neurons. Treatment of the cells with glutamate induces a slowing of neurofilament transport. Phosphorylation of the side-arm domains of neurofilaments has been associated with a slowing of neurofilament transport, and we show that glutamate causes increased phosphorylation of these domains in cell bodies. We also show that glutamate activates members of the mitogen-activated protein kinase family, and that these kinases will phosphorylate neurofilament side-arm domains. These results provide a molecular framework to link glutamate excitotoxicity with neurofilament accumulation seen in some neurodegenerative diseases.
Collapse
Affiliation(s)
- S Ackerley
- Department of Neuroscience, The Institute of Psychiatry, Kings College London, London SE5 8AF United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
317
|
Missiaen L, Robberecht W, van den Bosch L, Callewaert G, Parys JB, Wuytack F, Raeymaekers L, Nilius B, Eggermont J, De Smedt H. Abnormal intracellular ca(2+)homeostasis and disease. Cell Calcium 2000; 28:1-21. [PMID: 10942700 DOI: 10.1054/ceca.2000.0131] [Citation(s) in RCA: 161] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A whole range of cell functions are regulated by the free cytosolic Ca(2+)concentration. Activator Ca(2+)from the extracellular space enters the cell through various types of Ca(2+)channels and sometimes the Na(+)/Ca(2+)-exchanger, and is actively extruded from the cell by Ca(2+)pumps and Na(+)/Ca(2+)-exchangers. Activator Ca(2+)can also be released from internal Ca(2+)stores through inositol trisphosphate or ryanodine receptors and is taken up into these organelles by means of Ca(2+)pumps. The resulting Ca(2+)signal is highly organized in space, frequency and amplitude because the localization and the integrated free cytosolic Ca(2+)concentration over time contain specific information. Mutations or functional abnormalities in the various Ca(2+)transporters, which in vitro seem to induce trivial functional alterations, therefore, often lead to a plethora of diseases. Skeletal-muscle pathology can be caused by mutations in ryanodine receptors (malignant hyperthermia, porcine stress syndrome, central-core disease), dihydropyridine receptors (familial hypokalemic periodic paralysis, malignant hyperthermia, muscular dysgenesis) or Ca(2+)pumps (Brody disease). Ca(2+)-pump mutations in cutaneous epidermal keratinocytes and cochlear hair cells lead to, skin diseases (Darier and Hailey-Hailey) and hearing/vestibular problems respectively. Mutated Ca(2+)channels in the photoreceptor plasma membrane cause vision problems. Hemiplegic migraine, spinocerebellar ataxia type-6, one form of episodic ataxia and some forms of epilepsy can be due to mutations in plasma-membrane Ca(2+)channels, while antibodies against these channels play a pathogenic role in all patients with the Lambert-Eaton myasthenic syndrome and may be of significance in sporadic amyotrophic lateral sclerosis. Brain inositol trisphosphate receptors have been hypothesized to contribute to the pathology in opisthotonos mice, manic-depressive illness and perhaps Alzheimer's disease. Various abnormalities in Ca(2+)-handling proteins have been described in heart during aging, hypertrophy, heart failure and during treatment with immunosuppressive drugs and in diabetes mellitus. In some instances, disease-causing mutations or abnormalities provide us with new insights into the cell biology of the various Ca(2+)transporters.
Collapse
Affiliation(s)
- L Missiaen
- Laboratory of Physiology, K.U.Leuven Campus Gasthuisberg O/N, Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP. Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 2000; 275:18195-200. [PMID: 10764737 DOI: 10.1074/jbc.m000040200] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. PS1 mutations may perturb cellular Ca(2+) homeostasis and thereby render neurons vulnerable to excitotoxicity and apoptosis. We now report that PC12 cells expressing PS1 mutations and primary hippocampal neurons from PS1 mutant knockin mice exhibit greatly increased levels of ryanodine receptors (RyR) and enhanced Ca(2+) release following stimulation with caffeine. Double-labeling immunostaining and co-immunoprecipitation analyses indicate that PS1 and RyR are colocalized and interact physically. Caffeine treatment sensitizes neurons expressing mutant PS1 to apoptosis induced by amyloid beta-peptide, a neurotic peptide linked to the pathogenesis of AD. When taken together with recent evidence for alterations in RyR in brains of AD patients, our data suggest that PS1 mutations may promote neuronal degeneration in AD by increasing transcription and translation of RyR and altering functional properties of ryanodine-sensitive Ca(2+) pools.
Collapse
Affiliation(s)
- S L Chan
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
319
|
Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci 2000. [PMID: 10804206 DOI: 10.1523/jneurosci.20-10-03641.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Activation of ionotropic glutamate receptors of the AMPA and NMDA subtypes likely contributes to neuronal injury and death in various neurodegenerative disorders. Excitotoxicity can manifest as either apoptosis or necrosis, but the mechanisms that determine the mode of cell death are not known. We now report that levels of AMPA receptor subunits GluR-1 and GluR-4 are rapidly decreased in cultured rat hippocampal neurons undergoing apoptosis in response to withdrawal of trophic support (WTS), whereas levels of NMDA receptor subunits NR1, NR2A, and NR2B are unchanged. Exposure of isolated synaptosomal membranes to "apoptotic" cytosolic extracts resulted in rapid degradation of AMPA receptor subunits. Treatment of cells and synaptosomal membranes with the caspase inhibitors prevented degradation of AMPA receptor subunits, demonstrating a requirement for caspases in the process. Calcium responses to AMPA receptor activation were reduced after withdrawal of trophic support and enhanced after treatment with caspase inhibitors. Vulnerability of neurons to excitotoxic necrosis was decreased after withdrawal of trophic support and potentiated by treatment with caspase inhibitors. Our data indicate that caspase-mediated degradation of AMPA receptor subunits occurs during early periods of cell stress and may serve to ensure apoptosis by preventing excitotoxic necrosis.
Collapse
|
320
|
Leissring MA, Akbari Y, Fanger CM, Cahalan MD, Mattson MP, LaFerla FM. Capacitative calcium entry deficits and elevated luminal calcium content in mutant presenilin-1 knockin mice. J Cell Biol 2000; 149:793-8. [PMID: 10811821 PMCID: PMC2174559 DOI: 10.1083/jcb.149.4.793] [Citation(s) in RCA: 271] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2000] [Accepted: 04/12/2000] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| | - Yama Akbari
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| | - Christopher M. Fanger
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92697-4561
| | - Michael D. Cahalan
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California 92697-4561
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224
| | - Frank M. LaFerla
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory and Institute for Brain Aging and Dementia, University of California Irvine, Irvine, California 92697-4545
| |
Collapse
|
321
|
Amson R, Lassalle JM, Halley H, Prieur S, Lethrosne F, Roperch JP, Israeli D, Gendron MC, Duyckaerts C, Checler F, Dausset J, Cohen D, Oren M, Telerman A. Behavioral alterations associated with apoptosis and down-regulation of presenilin 1 in the brains of p53-deficient mice. Proc Natl Acad Sci U S A 2000; 97:5346-50. [PMID: 10805794 PMCID: PMC25831 DOI: 10.1073/pnas.97.10.5346] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2000] [Indexed: 02/06/2023] Open
Abstract
Presenilin 1 (PS1) expression is repressed by the p53 tumor suppressor. As shown herein, wild-type PS1 is an effective antiapoptotic molecule capable of significantly inhibiting p53-dependent and p53-independent cell death. We analyzed, at the functional and molecular levels, the brains of p53 knockout mice. Surprisingly, we found that lack of p53 expression induces apoptotic brain lesions, accompanied by learning deficiency and behavioral alterations. p53-deficient mice show an unexpected overexpression of p21(waf1) with subsequent down-regulation of PS1 in their brains. This process is progressive and age-dependent. These data indicate that the p53 pathway, besides affecting tumor suppression, may play a major role in regulating neurobehavioral function and cell survival in the brain.
Collapse
Affiliation(s)
- R Amson
- Fondation Jean Dausset-Centre d'Etude du Polymorphisme Humain, 27 rue Juliette Dodu, 75010 Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
322
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
323
|
Nicholls DG, Ward MW. Mitochondrial membrane potential and neuronal glutamate excitotoxicity: mortality and millivolts. Trends Neurosci 2000; 23:166-74. [PMID: 10717676 DOI: 10.1016/s0166-2236(99)01534-9] [Citation(s) in RCA: 433] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the past few years it has become apparent that mitochondria have an essential role in the life and death of neuronal and non-neuronal cells. The central mitochondrial bioenergetic parameter is the protonmotive force, Deltap. Much research has focused on the monitoring of the major component of Deltap, the mitochondrial membrane potential Deltapsim, in intact neurones exposed to excitotoxic stimuli, in the hope of establishing the causal relationships between cell death and mitochondrial dysfunction. Several fluorescent techniques have been used, and this article discusses their merits and pitfalls.
Collapse
Affiliation(s)
- D G Nicholls
- Neurosciences Institute, Dept of Pharmacology and Neuroscience, University of Dundee, Dundee, UK DD1 9SY
| | | |
Collapse
|
324
|
Barrow PA, Empson RM, Gladwell SJ, Anderson CM, Killick R, Yu X, Jefferys JG, Duff K. Functional phenotype in transgenic mice expressing mutant human presenilin-1. Neurobiol Dis 2000; 7:119-26. [PMID: 10783295 DOI: 10.1006/nbdi.1999.0276] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in the presenilin-1 (PS1) gene cause approximately 50% of cases of early onset familial Alzheimer's disease. The function of this protein remains unknown. We have made an electrophysiological study of hippocampal slices from transgenic mice expressing either a normal human PS1 transgene (WT) or one of two human PS1 transgenes bearing pathogenic mutations at codon M146 (M146L and M146V). Medium and late afterhyperpolarizations in CA3 pyramidal cells were larger in mice expressing either mutant form compared with WT and nontransgenic controls. Calcium responses to depolarization were larger in M146L mice compared with nontransgenic littermates; synaptic potentiation of the CA3 to CA1 projection was also stronger. These results demonstrate disruption of the control of intracellular calcium and electrophysiological dysfunction in PS1 mutant mice.
Collapse
Affiliation(s)
- P A Barrow
- Department of Neurophysiology, The Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Abstract
Mitochondrial Ca2+ sequestration likely contributes to cell death in excitotoxicity and ischemia reperfusion injury, and may also be involved in chronic forms of neurodegeneration in which a compromise in bioenergetic function alters cellular Ca2+ homeostasis. Bcl-2 overexpression is known to protect against Ca(2+)-mediated death; the mechanism of protection remains unresolved. Our data of the ability of Bcl-2 to potentiate mitochondrial Ca2+ uptake capacity and resistance to Ca(2+)-induced damage is discussed in light of current information on apoptotic signaling pathways.
Collapse
Affiliation(s)
- A N Murphy
- MitoKor, San Diego, California 92121, USA.
| |
Collapse
|
326
|
Mattson MP, Pedersen WA, Duan W, Culmsee C, Camandola S. Cellular and molecular mechanisms underlying perturbed energy metabolism and neuronal degeneration in Alzheimer's and Parkinson's diseases. Ann N Y Acad Sci 2000; 893:154-75. [PMID: 10672236 DOI: 10.1111/j.1749-6632.1999.tb07824.x] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synaptic degeneration and death of nerve cells are defining features of Alzheimer's disease (AD) and Parkinson's disease (PD), the two most prevalent age-related neurodegenerative disorders. In AD, neurons in the hippocampus and basal forebrain (brain regions that subserve learning and memory functions) are selectively vulnerable. In PD dopamine-producing neurons in the substantia nigra-striatum (brain regions that control body movements) selectively degenerate. Studies of postmortem brain tissue from AD and PD patients have provided evidence for increased levels of oxidative stress, mitochondrial dysfunction and impaired glucose uptake in vulnerable neuronal populations. Studies of animal and cell culture models of AD and PD suggest that increased levels of oxidative stress (membrane lipid peroxidation, in particular) may disrupt neuronal energy metabolism and ion homeostasis, by impairing the function of membrane ion-motive ATPases and glucose and glutamate transporters. Such oxidative and metabolic compromise may there-by render neurons vulnerable to excitotoxicity and apoptosis. Studies of the pathogenic mechanisms of AD-linked mutations in amyloid precursor protein (APP) and presenilins strongly support central roles for perturbed cellular calcium homeostasis and aberrant proteolytic processing of APP as pivotal events that lead to metabolic compromise in neurons. Specific molecular "players" in the neurodegenerative processes in AD and PD are being identified and include Par-4 and caspases (bad guys) and neurotrophic factors and stress proteins (good guys). Interestingly, while studies continue to elucidate cellular and molecular events occurring in the brain in AD and PD, recent data suggest that both AD and PD can manifest systemic alterations in energy metabolism (e.g., increased insulin resistance and dysregulation of glucose metabolism). Emerging evidence that dietary restriction can forestall the development of AD and PD is consistent with a major "metabolic" component to these disorders, and provides optimism that these devastating brain disorders of aging may be largely preventable.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, Maryland 21224, USA.
| | | | | | | | | |
Collapse
|
327
|
Czech C, Tremp G, Pradier L. Presenilins and Alzheimer's disease: biological functions and pathogenic mechanisms. Prog Neurobiol 2000; 60:363-84. [PMID: 10670705 DOI: 10.1016/s0301-0082(99)00033-7] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in the elderly population. Dementia is associated with massive accumulation of fibrillary aggregates in various cortical and subcortical regions of the brain. These aggregates appear intracellularly as neurofibrillary tangles, extracellularly as amyloid plaques and perivascular amyloid in cerebral blood vessels. The causative factors in AD etiology implicate both, genetic and environmental factors. The large majority of early-onset familial Alzheimer's disease (FAD) cases are linked to mutations in the genes coding for presenilin 1 (PS1) and presenilin 2 (PS2). The corresponding proteins are 467 (PS1) and 448 (PS2) amino-acids long, respectively. Both are membrane proteins with multiple transmembrane regions. Presenilins show a high degree of conservation between species and a presenilin homologue with definite conservation of the hydrophobic structure has been identified even in the plant Arabidopsis thaliana. More than 50 missense mutations in PS1 and two missense mutations in PS2 were identified which are causative for FAD. PS mutations lead to the same functional consequence as mutations on amyloid precursor protein (APP), altering the processing of APP towards the release of the more amyloidogenic form 1-42 of Abeta (Abeta42). In this regard, the physical interaction between APP and presenilins in the endoplasmic reticulum has been demonstrated and might play a key role in Abeta42 production. It was hypothesized that PS1 might directly cleave APP. However, extracellular amyloidogenesis and Abeta production might not be the sole factor involved in AD pathology and several lines of evidence support a role of apoptosis in the massive neuronal loss observed. Presenilins were shown to modify the apoptotic response in several cellular systems including primary neuronal cultures. Some evidence is accumulating which points towards the beta-catenin signaling pathways to be causally involved in presenilin mediated cell death. Increased degradation of beta-catenin has been shown in brain of AD patients with PS1 mutations and reduced beta-catenin signaling increased neuronal vulnerability to apoptosis in cell culture models. The study of presenilin physiological functions and the pathological mechanisms underlying their role in pathogenesis clearly advanced our understanding of cellular mechanisms underlying the neuronal cell death and will contribute to the identification of novel drug targets for the treatment of AD.
Collapse
Affiliation(s)
- C Czech
- Rhône-Poulenc Rorer, Research and Development, Vitry sur Seine, France.
| | | | | |
Collapse
|
328
|
Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci 2000. [PMID: 10662826 DOI: 10.1523/jneurosci.20-04-01358.2000] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Studies of cultured neural cells suggest that PS1 mutations result in perturbed cellular calcium homeostasis and may thereby render neurons vulnerable to apoptosis. In light of evidence that metabolic impairment plays a role in AD, that cerebral ischemia may be a risk factor for AD, and that individuals with AD have increased morbidity and mortality after stroke, we examined the impact of a PS1 mutation on neuronal vulnerability to ischemic injury. We report that the extent of brain injury after focal cerebral ischemia reperfusion is increased, and behavioral outcome is worsened, in PS1 mutant knock-in mice compared to wild-type mice. Cultured cortical neurons from PS1 mutant mice exhibit increased vulnerability to glucose deprivation and chemical hypoxia compared to their wild-type counterparts. Calcium imaging studies demonstrated enhanced elevation of intracellular calcium levels after glucose deprivation and chemical hypoxia in neurons from PS1 mutant mice. Agents that block calcium release from IP(3)- and ryanodine-sensitive stores (xestospongin and dantrolene, respectively) protected against the endangering action of the PS1 mutation. Our data suggest that presenilin mutations may promote neuronal degeneration in AD by increasing the sensitivity of neurons to age-related ischemia-like conditions. The data further suggest that drugs that stabilize endoplasmic reticulum calcium homeostasis may prove effective in suppressing the neurodegenerative process in AD patients.
Collapse
|
329
|
Zaman SH, Parent A, Laskey A, Lee MK, Borchelt DR, Sisodia SS, Malinow R. Enhanced synaptic potentiation in transgenic mice expressing presenilin 1 familial Alzheimer's disease mutation is normalized with a benzodiazepine. Neurobiol Dis 2000; 7:54-63. [PMID: 10671322 DOI: 10.1006/nbdi.1999.0271] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mutations in presenilin 1 (PS1) are the most common causes of familial Alzheimer's disease (FAD). We examined synaptic physiology in hippocampal brain slices of transgenic mice expressing the FAD-linked PS1 deletion of exon 9 variant. Basal excitatory transmission and paired-pulse facilitation in PS1 mutant mice were unchanged. Short- and long-term potentiation of excitatory transmission following high-frequency stimulation were greater in transgenic mice expressing mutant PS1. Mutants had enhanced synaptic inhibition, which may be a compensatory change offsetting an abnormally sensitized plasticity of excitatory transmission. Increasing inhibitory transmission in mutant animals even more with a benzodiazepine reverted synaptic potentiation to the levels of controls. These results support the potential use of benzodiazepines in the treatment of familial Alzheimer's disease.
Collapse
Affiliation(s)
- S H Zaman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724-0100, USA
| | | | | | | | | | | | | |
Collapse
|
330
|
Gary DS, Sooy K, Chan SL, Christakos S, Mattson MP. Concentration- and cell type-specific effects of calbindin D28k on vulnerability of hippocampal neurons to seizure-induced injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:89-95. [PMID: 10648891 DOI: 10.1016/s0169-328x(99)00299-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The calcium-binding protein calbindin D28k (CB) is expressed in limited subpopulations of neurons in the brain. In the hippocampus, CB is expressed in all dentate granule cells and a subpopulation of CA1 pyramidal neurons, but is absent from CA3 neurons. This pattern of CB expression is inversely correlated with neuronal vulnerability to seizure-induced damage suggesting the possibility that expression of CB confers resistance to excitotoxicity. While data from cell culture studies support an excitoprotective role for calbindin, it is not known whether CB is a key determinant of neuronal vulnerability in vivo. We therefore examined the pattern of damage to hippocampal neurons following intrahippocampal injection of the seizure-inducing excitotoxin kainate in CB homozygous (CB-/-) and CB heterozygous (CB+/-) knockout mice in comparison with wild-type mice (CB+/+). Whereas the extent of damage to CA1 neurons was similar in CB-/- and CB+/+ mice, damage to CA1 neurons was significantly reduced in CB+/- mice. Dentate granule neurons were not damaged following kainate-induced seizures in CB+/+, CB+/- or CB-/- mice. These findings suggest that CB can modify vulnerability of hippocampal CA1 neurons to seizure-induced injury, and that either CB is not a critical determinant of resistance of dentate granule neurons, or compensatory changes occur and lack of CB is not the only difference between CB-/- and CB+/+ mice.
Collapse
Affiliation(s)
- D S Gary
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, 211 Sanders-Brown Building, 800 South Limestone Street, Lexington, KY, USA
| | | | | | | | | |
Collapse
|
331
|
Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, Yoneda T, Gomi F, Mori Y, Nakano Y, Takeda J, Tsuda T, Itoyama Y, Murayama O, Takashima A, St George-Hyslop P, Takeda M, Tohyama M. Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat Cell Biol 1999; 1:479-85. [PMID: 10587643 DOI: 10.1038/70265] [Citation(s) in RCA: 411] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Missense mutations in the human presenilin-1 (PS1) gene, which is found on chromosome 14, cause early-onset familial Alzheimer's disease (FAD). FAD-linked PS1 variants alter proteolytic processing of the amyloid precursor protein and cause an increase in vulnerability to apoptosis induced by various cell stresses. However, the mechanisms responsible for these phenomena are not clear. Here we report that mutations in PS1 affect the unfolded-protein response (UPR), which responds to the increased amount of unfolded proteins that accumulate in the endoplasmic reticulum (ER) under conditions that cause ER stress. PS1 mutations also lead to decreased expression of GRP78/Bip, a molecular chaperone, present in the ER, that can enable protein folding. Interestingly, GRP78 levels are reduced in the brains of Alzheimer's disease patients. The downregulation of UPR signalling by PS1 mutations is caused by disturbed function of IRE1, which is the proximal sensor of conditions in the ER lumen. Overexpression of GRP78 in neuroblastoma cells bearing PS1 mutants almost completely restores resistance to ER stress to the level of cells expressing wild-type PS1. These results show that mutations in PS1 may increase vulnerability to ER stress by altering the UPR signalling pathway.
Collapse
Affiliation(s)
- T Katayama
- Department of Anatomy and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Leissring MA, Parker I, LaFerla FM. Presenilin-2 mutations modulate amplitude and kinetics of inositol 1, 4,5-trisphosphate-mediated calcium signals. J Biol Chem 1999; 274:32535-8. [PMID: 10551803 DOI: 10.1074/jbc.274.46.32535] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in the two presenilin genes (PS1, PS2) account for the majority of early-onset familial Alzheimer's disease (FAD) cases. Converging evidence from a variety of experimental systems, including fibroblasts from FAD patients and transgenic animals, indicates that PS1 mutations modulate intracellular calcium signaling pathways. Despite the potential relevance of these changes to the pathogenesis of FAD, a comparable effect for PS2 has not yet been demonstrated experimentally. We examined the effects of wild-type PS2, and both of the identified FAD mutations in PS2, on intracellular calcium signaling in Xenopus oocytes. Inositol 1,4, 5-trisphosphate (IP(3))-evoked calcium signals were significantly potentiated in cells expressing either of the PS2 mutations relative to wild-type PS2-expressing cells and controls. Decay rates of calcium signals were also significantly accelerated in mutant PS2-expressing cells in a manner dependent upon IP(3) concentration. The finding that mutations in both PS1 and PS2 modulate intracellular calcium signaling suggests that these disturbances may represent a common pathogenic mechanism of presenilin-associated FAD.
Collapse
Affiliation(s)
- M A Leissring
- Laboratory of Molecular Neuropathogenesis, Department of Neurobiology and Behavior, University of California, Irvine, California 92697-4545, USA
| | | | | |
Collapse
|
333
|
Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Brück W, Jellinger K, Lassmann H. Activation of caspase-3 in single neurons and autophagic granules of granulovacuolar degeneration in Alzheimer's disease. Evidence for apoptotic cell death. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 155:1459-66. [PMID: 10550301 PMCID: PMC1866960 DOI: 10.1016/s0002-9440(10)65460-0] [Citation(s) in RCA: 324] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuronal loss is prominent in Alzheimer's disease (AD), and its mechanisms remain unresolved. Apoptotic cell death has been implicated on the basis of studies demonstrating DNA fragmentation and an up-regulation of proapoptotic proteins in the AD brain. However, DNA fragmentation in neurons is too frequent to account for the continuous neuronal loss in a degenerative disease extending over many years. Furthermore, the typical apoptotic morphology has not been convincingly documented in AD neurons with fragmented DNA. We report the detection of the activated form of caspase-3, the central effector enzyme of the apoptotic cascade, in AD and Down's syndrome (DS) brain using an affinity-purified antiserum. In AD and DS, single neurons with apoptotic morphology showed cytoplasmic immunoreactivity for activated caspase-3, whereas no neurons were labeled in age-matched controls. Apoptotic neurons were identified at an approximate frequency of 1 in 1100 to 5000 neurons in the cases examined. Furthermore, caspase-3 immunoreactivity was detected in granules of granulovacuolar degeneration. Our results provide direct evidence for apoptotic neuronal death in AD with a frequency compatible with the progression of neuronal degeneration in this chronic disease and identify autophagic vacuoles of granulovacuolar degeneration as possible means for the protective segregation of early apoptotic alterations in the neuronal cytoplasm.
Collapse
Affiliation(s)
- Christine Stadelmann
- Brain Research Institute, University of Vienna, Vienna, Austria; IDUN Pharmaceuticals, Inc.,†
| | | | | | | | - Wolfgang Brück
- University of Göttingen, Göttingen, Germany; and the Ludwig Boltzmann Institute for Clinical Neurobiology,¶
| | | | - Hans Lassmann
- Brain Research Institute, University of Vienna, Vienna, Austria; IDUN Pharmaceuticals, Inc.,†
| |
Collapse
|
334
|
Abstract
Alzheimer's disease (AD) research has shown that patients with an inherited form of the disease carry mutations in the presenilin proteins or the amyloid precursor protein (APP). These disease-linked mutations result in increased production of the longer form of amyloid-beta (the primary component of the amyloid deposits found in AD brains). However, it is not clear how the presenilins contribute to this increase. New findings now show that the presenilins affect APP processing through their effects on gamma-secretase, an enzyme that cleaves APP. Also, it is known that the presenilins are involved in the cleavage of the Notch receptor, hinting that they either directly regulate gamma-secretase activity or themselves are protease enzymes. These findings suggest that the presenilins may prove to be valuable molecular targets for the development of drugs to combat AD.
Collapse
Affiliation(s)
- C Haass
- Adolf-Butenandt-Institute, Department of Biochemistry, Ludwig-Maximilians University Munich, Germany.
| | | |
Collapse
|
335
|
Lack of the p50 subunit of nuclear factor-kappaB increases the vulnerability of hippocampal neurons to excitotoxic injury. J Neurosci 1999. [PMID: 10516305 DOI: 10.1523/jneurosci.19-20-08856.1999] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is activated in brain cells after various insults, including cerebral ischemia and epileptic seizures. Although cell culture studies have suggested that the activation of NF-kappaB can prevent neuronal apoptosis, the role of this transcription factor in neuronal injury in vivo is unclear, and the specific kappaB subunits involved are unknown. We now report that mice lacking the p50 subunit of NF-kappaB exhibit increased damage to hippocampal pyramidal neurons after administration of the excitotoxin kainate. Gel-shift analyses showed that p50 is required for the majority of kappaB DNA-binding activity in hippocampus. Intraventricular administration of kappaB decoy DNA before kainate administration in wild-type mice resulted in an enhancement of damage to hippocampal pyramidal neurons, indicating that reduced NF-kappaB activity was sufficient to account for the enhanced excitotoxic neuronal injury in p50(-/-) mice. Cultured hippocampal neurons from p50(-/-) mice exhibited enhanced elevations of intracellular calcium levels and increased levels of oxidative stress after exposure to glutamate and were more vulnerable to excitotoxicity than were neurons from p50(+/+) and p50(+/-) mice. Collectively, our data demonstrate an important role for the p50 subunit of NF-kappaB in protecting neurons against excitotoxic cell death.
Collapse
|
336
|
Zhu H, Guo Q, Mattson MP. Dietary restriction protects hippocampal neurons against the death-promoting action of a presenilin-1 mutation. Brain Res 1999; 842:224-9. [PMID: 10526115 DOI: 10.1016/s0006-8993(99)01827-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alzheimer's disease (AD) is an age-related disorder that involves degeneration of synapses and neurons in brain regions involved in learning and memory processes. Some cases of AD are caused by mutations in presenilin-1 (PS1), an integral membrane protein located in the endoplasmic reticulum. Previous studies have shown that PS1 mutations increase neuronal vulnerability to excitotoxicity and apoptosis. Although dietary restriction (DR) can increase lifespan and reduce the incidence of several age-related diseases in rodents, the possibility that DR can modify the pathogenic actions of mutations that cause AD has not been examined. The vulnerability of hippocampal neurons to excitotoxic injury was increased in PS1 mutant knockin mice. PS1 mutant knockin mice and wild-type mice maintained on a DR regimen for 3 months exhibited reduced excitotoxic damage to hippocampal CA1 and CA3 neurons compared to mice fed ad libitum; the DR regimen completely counteracted the endangering effect of the PS1 mutation. The magnitude of increase in levels of the lipid peroxidation product 4-hydroxynonenal following the excitotoxic insult was lower in DR mice compared to mice fed ad libitum, suggesting that suppression of oxidative stress may be one mechanism underlying the neuroprotective effect of DR. These findings indicate that the neurodegeneration-promoting effect of an AD-linked mutation is subject to modification by diet.
Collapse
Affiliation(s)
- H Zhu
- Department of Anatomy and Neurobiology, Sanders-Brown Research Center on Aging, University of Kentucky, 211 Sanders-Brown Building, 800 South Limestone Street, Lexington, KY 40536, USA
| | | | | |
Collapse
|
337
|
Mattson MP, Duan W. “Apoptotic” biochemical cascades in synaptic compartments: Roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res 1999. [DOI: 10.1002/(sici)1097-4547(19991001)58:1<152::aid-jnr15>3.0.co;2-v] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
338
|
|
339
|
Abstract
An abundance of research has continued to link aluminium (Al) with Alzheimer's disease (AD) (Strong et al., J. Toxicol. Environ. Health 48 (1996) 599; Savory et al., J. Toxicol. Environ. Health 48 (1996) 615). Animals loaded with Al develop both symptoms and brain lesions that are similar to those found in AD. However, these animal models of Al intoxication are not representative of human exposure to Al. They have not addressed the significance of a truly chronic exposure to Al. If Al is a cause of AD it is effective at the level of our everyday exposure to the metal and AD will be one possible outcome of the life-long presence of a low, though burgeoning, brain Al burden. Individual susceptibility to AD will be as much to do with differences in brain physiology as with changes in our everyday exposure to the metal. There will be a chemical response and indeed biochemical/physiological response in the brain to Al. The question is whether brain Al homeostasis could impact upon brain function. In reviewing the recent literature covering the neurotoxicity of Al and, in particular, of the known and probable mechanisms involved in brain Al homeostasis I have identified a mechanism through which a truly chronic exposure to Al would bring about subtle and persistent changes in neurotransmission which, in time, could instigate the cascade of events known collectively as AD. This mechanism involves the potentiation of the activities of neurotransmitters by the action of Al-ATP at adenosine 5'-triphosphate (ATP) receptors in the brain.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| |
Collapse
|
340
|
Mattson MP, Guo ZH, Geiger JD. Secreted form of amyloid precursor protein enhances basal glucose and glutamate transport and protects against oxidative impairment of glucose and glutamate transport in synaptosomes by a cyclic GMP-mediated mechanism. J Neurochem 1999; 73:532-7. [PMID: 10428048 DOI: 10.1046/j.1471-4159.1999.0730532.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Synaptic dysfunction and degeneration are believed to underlie the cognitive deficits that characterize Alzheimer's disease, and overactivation of glutamate receptors under conditions of increased oxidative stress and metabolic compromise may contribute to the neurodegenerative process in many different disorders. The secreted form of amyloid precursor protein (sAPPalpha), which is released from neurons in an activity-dependent manner, can modulate neurite outgrowth, synaptic plasticity, and neuron survival. We now report that sAPPalpha can enhance glucose and glutamate transport in synaptic compartments. Treatment of cortical synaptosomes with nanomolar concentrations of sAPPalpha resulted in an attenuation of impairment of glutamate and glucose transport induced by exposure to amyloid beta-peptide and Fe2+. The protective effect of sAPPalpha was mimicked by treatment with 8-bromo-cyclic GMP and blocked by a cyclic GMP-dependent protein kinase inhibitor, suggesting that protective action of sAPPalpha is mediated by cyclic GMP. Our data suggest that glucose and glutamate transport can be regulated locally at the level of the synapse and further suggest important roles for sAPPalpha and cyclic GMP in modulating synaptic physiology under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | |
Collapse
|
341
|
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res 1999; 57:195-206. [PMID: 10398297 DOI: 10.1002/(sici)1097-4547(19990715)57:2<195::aid-jnr5>3.0.co;2-p] [Citation(s) in RCA: 334] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Parkinson's disease (PD) is an age-related disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra (SN) and corresponding motor deficits. Oxidative stress and mitochondrial dysfunction are implicated in the neurodegenerative process in PD. Although dietary restriction (DR) extends lifespan and reduces levels of cellular oxidative stress in several different organ systems, the impact of DR on age-related neurodegenerative disorders is unknown. We report that DR in adult mice results in resistance of dopaminergic neurons in the SN to the toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). MPTP-induced loss of dopaminergic neurons and deficits in motor function were ameliorated in DR rats. To mimic the beneficial effect of DR on dopaminergic neurons, we administered 2-deoxy-D-glucose (2-DG; a nonmetabolizable analogue of glucose) to mice fed ad libitum. Mice receiving 2-DG exhibited reduced damage to dopaminergic neurons in the SN and improved behavioral outcome following MPTP treatment. The 2-DG treatment suppressed oxidative stress, preserved mitochondrial function, and attenuated cell death in cultured dopaminergic cells exposed to the complex I inhibitor rotenone or Fe2+. 2-DG and DR induced expression of the stress proteins heat-shock protein 70 and glucose-regulated protein 78 in dopaminergic cells, suggesting involvement of these cytoprotective proteins in the neuroprotective actions of 2-DG and DR. The striking beneficial effects of DR and 2-DG in models of PD, when considered in light of recent epidemiological data, suggest that DR may prove beneficial in reducing the incidence of PD in humans.
Collapse
Affiliation(s)
- W Duan
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, USA.
| | | |
Collapse
|
342
|
Nakano Y, Kondoh G, Kudo T, Imaizumi K, Kato M, Miyazaki JI, Tohyama M, Takeda J, Takeda M. Accumulation of murine amyloidbeta42 in a gene-dosage-dependent manner in PS1 'knock-in' mice. Eur J Neurosci 1999; 11:2577-81. [PMID: 10383647 DOI: 10.1046/j.1460-9568.1999.00698.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The establishment of an animal model with a missense mutation of presenilin-1 (PS1) is an initial step toward understanding the molecular pathogenesis of familial Alzheimer's disease (FAD) and developing therapeutic strategies for the disease. We previously described a Japanese family with FAD caused by the I213T mutation of PS1, in which typical signs and symptoms of Alzheimer's disease were observed at the age of 45 +/- 4.2 years [Hardy, J. (1997) Trends. Neurosci., 20, 154-159; Kamino, K et al. (1996) Neurosci. Lett., 208, 195-198]. Here, we report the establishment of 'knock-in' mice with the I213T PS1 missense mutation. Northern blot and reverse transcription polymerase chain reaction (RT-PCR) analyses showed that the mutated PS1 allele was expressed at the same level as the endogenous PS1 allele, demonstrating that the PS1 missense mutation was successfully introduced into the mouse PS1 locus, and therefore that the situation mimics that in FAD patients bearing PS1 missense mutations. Amyloid beta (Abeta) 42(43) peptide, but not Abeta40 peptide, accumulated in 'knock-in' mice at the age of 16-20 weeks. A clear gene-dosage effect on the increase of Abeta42(43) was observed in 'knock-in' mice: the percentage increase of Abeta42(43) in mice with mutations in both alleles was twice as high as that in mice with a single allele. These results indicate that the level of the mutated PS1 gene expression is likely to be critically involved in the production of highly amyloidogenic Abeta42(43), and confirm that PS1 mutation has an important effect on amyloid precursor protein (APP) processing, in proportion to the level of the expression of the mutant gene.
Collapse
Affiliation(s)
- Y Nakano
- Department of Environmental Medicine, Osaka University Medical School, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Guo Q, Sebastian L, Sopher BL, Miller MW, Glazner GW, Ware CB, Martin GM, Mattson MP. Neurotrophic factors [activity-dependent neurotrophic factor (ADNF) and basic fibroblast growth factor (bFGF)] interrupt excitotoxic neurodegenerative cascades promoted by a PS1 mutation. Proc Natl Acad Sci U S A 1999; 96:4125-30. [PMID: 10097174 PMCID: PMC22431 DOI: 10.1073/pnas.96.7.4125] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although an excitotoxic mechanism of neuronal injury has been proposed to play a role in chronic neurodegenerative disorders such as Alzheimer's disease, and neurotrophic factors have been put forward as potential therapeutic agents, direct evidence is lacking. Taking advantage of the fact that mutations in the presenilin-1 (PS1) gene are causally linked to many cases of early-onset inherited Alzheimer's disease, we generated PS1 mutant knock-in mice and directly tested the excitotoxic and neurotrophic hypotheses of Alzheimer's disease. Primary hippocampal neurons from PS1 mutant knock-in mice exhibited increased production of amyloid beta-peptide 42/43 and increased vulnerability to excitotoxicity, which occurred in a gene dosage-dependent manner. Neurons expressing mutant PS1 exhibited enhanced calcium responses to glutamate and increased oxyradical production and mitochondrial dysfunction. Pretreatment with either basic fibroblast growth factor or activity-dependent neurotrophic factor protected neurons expressing mutant PS1 against excitotoxicity. Both basic fibroblast growth factor and activity-dependent neurotrophic factor stabilized intracellular calcium levels and abrogated the increased oxyradical production and mitochondrial dysfunction otherwise caused by the PS1 mutation. Our data indicate that neurotrophic factors can interrupt excitotoxic neurodegenerative cascades promoted by PS1 mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | | | | | | | | | |
Collapse
|
344
|
Guo Q, Sebastian L, Sopher BL, Miller MW, Ware CB, Martin GM, Mattson MP. Increased vulnerability of hippocampal neurons from presenilin-1 mutant knock-in mice to amyloid beta-peptide toxicity: central roles of superoxide production and caspase activation. J Neurochem 1999; 72:1019-29. [PMID: 10037473 DOI: 10.1046/j.1471-4159.1999.0721019.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many cases of early-onset inherited Alzheimer's disease (AD) are caused by mutations in the presenilin-1 (PS1) gene. Overexpression of PS1 mutations in cultured PC12 cells increases their vulnerability to apoptosis-induced trophic factor withdrawal and oxidative insults. We now report that primary hippocampal neurons from PS1 mutant knock-in mice, which express the human PS1M146V mutation at normal levels, exhibit increased vulnerability to amyloid beta-peptide toxicity. The endangering action of mutant PS1 was associated with increased superoxide production, mitochondrial membrane depolarization, and caspase activation. The peroxynitrite-scavenging antioxidant uric acid and the caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone protected hippocampal neurons expressing mutant PS1 against cell death induced by amyloid beta-peptide. Increased oxidative stress may contribute to the pathogenic action of PS1 mutations, and antioxidants may counteract the adverse property of such AD-linked mutations.
Collapse
Affiliation(s)
- Q Guo
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|
345
|
Begley JG, Duan W, Chan S, Duff K, Mattson MP. Altered calcium homeostasis and mitochondrial dysfunction in cortical synaptic compartments of presenilin-1 mutant mice. J Neurochem 1999; 72:1030-9. [PMID: 10037474 DOI: 10.1046/j.1471-4159.1999.0721030.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Alzheimer's disease is characterized by amyloid beta-peptide deposition, synapse loss, and neuronal death, which are correlated with cognitive impairments. Mutations in the presenilin-1 gene on chromosome 14 are causally linked to many cases of early-onset inherited Alzheimer's disease. We report that synaptosomes prepared from transgenic mice harboring presenilin-1 mutations exhibit enhanced elevations of cytoplasmic calcium levels following exposure to depolarizing agents, amyloid beta-peptide, and a mitochondrial toxin compared with synaptosomes from nontransgenic mice and mice overexpressing wild-type presenilin-1. Mitochondrial dysfunction and caspase activation following exposures to amyloid beta-peptide and metabolic insults were exacerbated in synaptosomes from presenilin-1 mutant mice. Agents that buffer cytoplasmic calcium or that prevent calcium release from the endoplasmic reticulum protected synaptosomes against the adverse effect of presenilin-1 mutations on mitochondrial function. Abnormal synaptic calcium homeostasis and mitochondrial dysfunction may contribute to the pathogenic mechanism of presenilin-1 mutations.
Collapse
Affiliation(s)
- J G Begley
- Sanders-Brown Research Center on Aging and Department of Anatomy and Neurobiology, University of Kentucky, Lexington 40536-0230, USA
| | | | | | | | | |
Collapse
|
346
|
MATTSON MARKP. Impact of Dietary Restriction on Brain Aging and Neurodegenerative Disorders: Emerging Findings from Experimental and Epidemiological Studies. ACTA ACUST UNITED AC 1999. [DOI: 10.1089/rej.1.1999.2.331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
347
|
Glutamate Receptors and Excitotoxic Mechanisms in Alzheimer’s Disease. Cereb Cortex 1999. [DOI: 10.1007/978-1-4615-4885-0_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
348
|
Mattson MP, Pedersen WA. Effects of amyloid precursor protein derivatives and oxidative stress on basal forebrain cholinergic systems in Alzheimer's disease. Int J Dev Neurosci 1998; 16:737-53. [PMID: 10198821 DOI: 10.1016/s0736-5748(98)00082-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The dysfunction and degeneration of cholinergic neuronal circuits in the brain is a prominent feature of Alzheimer's disease. Increasing data suggest that age-related oxidative stress contributes to degenerative changes in basal forebrain cholinergic systems. Experimental studies have shown that oxidative stress, and membrane lipid peroxidation in particular, can disrupt muscarinic cholinergic signaling by impairing coupling of receptors to GTP-binding proteins. Altered proteolytic processing of the beta-amyloid precursor protein (APP) may contribute to impaired cholinergic signaling and neuronal degeneration in at least two ways. First, levels of cytotoxic forms of amyloid beta-peptide (A beta) are increased; A beta damages and kills neurons by inducing membrane lipid peroxidation resulting in impairment of ion-motive ATPases, and glucose and glutamate transporters, thereby rendering neurons vulnerable to excitotoxicity. The latter actions of A beta may be mediated by 4-hydroxynonenal, an aldehydic product of membrane lipid peroxidation that covalently modifies and inactivates the various transporter proteins. Subtoxic levels of A beta can also suppress choline acetyltransferase levels, and may thereby promote dysfunction of intact cholinergic circuits. A second way in which altered APP processing may endanger cholinergic neurons is by reducing levels of a secreted form of APP which has been shown to modulate neuronal excitability, and to protect neurons against excitotoxic, metabolic and oxidative insults. Mutations in presenilin genes, which are causally linked to many cases of early-onset inherited Alzheimer's disease, may increase vulnerability of cholinergic neurons to apoptosis. The underlying mechanism appears to involve perturbed calcium regulation in the endoplasmic reticulum, which promotes loss of cellular calcium homeostasis, mitochondrial dysfunction and oxyradical production. Knowledge of the cellular and molecular underpinnings of dysfunction and degeneration of cholinergic circuits is leading to the development of novel preventative and therapeutic approaches for Alzheimer's disease and related disorders.
Collapse
Affiliation(s)
- M P Mattson
- Sanders-Brown Research Center on Aging, University of Kentucky, Lexington 40536, USA.
| | | |
Collapse
|