301
|
Bennett C, Gale SD, Garrett ME, Newton ML, Callaway EM, Murphy GJ, Olsen SR. Higher-Order Thalamic Circuits Channel Parallel Streams of Visual Information in Mice. Neuron 2019; 102:477-492.e5. [DOI: 10.1016/j.neuron.2019.02.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/28/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022]
|
302
|
Bartholomew ME, Heller W, Miller GA. Inhibitory control of emotional processing: Theoretical and empirical considerations. Int J Psychophysiol 2019; 163:5-10. [PMID: 30936042 DOI: 10.1016/j.ijpsycho.2019.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/19/2019] [Accepted: 03/28/2019] [Indexed: 11/24/2022]
Abstract
Although inhibitory control appears to support successful emotion regulation (ER; Joorman and Gotlib, 2010; McCabe et al., 2010), few emotion inhibition studies position themselves in the literature on ER, and even fewer ER studies reference the role of emotion inhibition. Perhaps contributing to this, the ER literature is frequently divided into implicit or "automatic" (which subsumes emotion inhibition) and explicit or "effortful" control (Braunstein et al., 2017; Gyurak et al., 2011). The present paper evaluates relationships among constructs of inhibitory control, emotion inhibition, and ER to assess neural evidence for and against distinctions between implicit and explicit ER. We argue that, whereas the distinction between implicit and explicit ER may appear organizationally or conceptually helpful, such categorical distinctions are not supported by available research and in fact contribute to imbalances in the research literature.
Collapse
Affiliation(s)
- Morgan E Bartholomew
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States.
| | - Wendy Heller
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gregory A Miller
- Department of Psychology, University of California Los Angeles, Los Angeles, CA, United States; Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, United States; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
303
|
Francoeur MJ, Wormwood BA, Gibson BM, Mair RG. Central thalamic inactivation impairs the expression of action- and outcome-related responses of medial prefrontal cortex neurons in the rat. Eur J Neurosci 2019; 50:1779-1798. [PMID: 30919548 DOI: 10.1111/ejn.14350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 11/29/2018] [Accepted: 01/10/2019] [Indexed: 12/01/2022]
Abstract
The mediodorsal (MD) and adjacent intralaminar (IL) and midline nuclei provide the main thalamic input to the medial prefrontal cortex (mPFC) and are critical for associative learning and decision-making. MD neurons exhibit activity related to actions and outcomes that mirror responses of mPFC neurons in rats during dynamic delayed non-match to position (dDNMTP), a variation of DNMTP where start location is varied randomly within an open octagonal arena to avoid confounding behavioral events with spatial location. To test whether the thalamus affects the expression of these responses in mPFC, we inhibited the central thalamus unilaterally by microinjecting muscimol at doses and sites found to affect decision-making when applied bilaterally. Unilateral inactivation reduced normalized task-related responses in the ipsilateral mPFC without disrupting behavior needed to characterize event-related neuronal activity. Our results extend earlier findings that focused on delay-related activity by showing that central thalamic inactivation interferes with responses related to actions and outcomes that occur outside the period of memory delay. These findings are consistent with the broad effects of central thalamic lesions on behavioral measures of reinforcement-guided responding. Most (7/8) of the prefrontal response types affected by thalamic inactivation have also been observed in MD during dDNMTP. These results support the hypothesis that MD and IL act as transthalamic gates: monitoring prefrontal activity through corticothalamic inputs; integrating this information with signals from motivational and sensorimotor systems that converge in thalamus; and acting through thalamocortical projections to enhance expression of neuronal responses in the PFC that support adaptive goal-directed behavior.
Collapse
Affiliation(s)
- Miranda J Francoeur
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Benjamin A Wormwood
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Brett M Gibson
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| | - Robert G Mair
- Department of Psychology, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
304
|
Casas-Torremocha D, Porrero C, Rodriguez-Moreno J, García-Amado M, Lübke JHR, Núñez Á, Clascá F. Posterior thalamic nucleus axon terminals have different structure and functional impact in the motor and somatosensory vibrissal cortices. Brain Struct Funct 2019; 224:1627-1645. [PMID: 30919051 PMCID: PMC6509070 DOI: 10.1007/s00429-019-01862-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 12/20/2022]
Abstract
Rodents extract information about nearby objects from the movement of their whiskers through dynamic computations that are carried out by a network of forebrain structures that includes the thalamus and the primary sensory (S1BF) and motor (M1wk) whisker cortices. The posterior nucleus (Po), a higher order thalamic nucleus, is a key hub of this network, receiving cortical and brainstem sensory inputs and innervating both motor and sensory whisker-related cortical areas. In a recent study in rats, we showed that Po inputs differently impact sensory processing in S1BF and M1wk. Here, in C57BL/6 mice, we measured Po synaptic bouton layer distribution and size, compared cortical unit response latencies to "in vivo" Po activation, and pharmacologically examined the glutamatergic receptor mechanisms involved. We found that, in S1BF, a large majority (56%) of Po axon varicosities are located in layer (L)5a and only 12% in L2-L4, whereas in M1wk this proportion is inverted to 18% and 55%, respectively. Light and electron microscopic measurements showed that Po synaptic boutons in M1wk layers 3-4 are significantly larger (~ 50%) than those in S1BF L5a. Electrical Po stimulation elicits different area-specific response patterns. In S1BF, responses show weak or no facilitation, and involve both ionotropic and metabotropic glutamate receptors, whereas in M1wk, unit responses exhibit facilitation to repetitive stimulation and involve ionotropic NMDA glutamate receptors. Because of the different laminar distribution of axon terminals, synaptic bouton size and receptor mechanisms, the impact of Po signals on M1wk and S1BF, although simultaneous, is likely to be markedly different.
Collapse
Affiliation(s)
- Diana Casas-Torremocha
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - César Porrero
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Javier Rodriguez-Moreno
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - María García-Amado
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Joachim H R Lübke
- Institute of Neuroscience and Medicine INM-10, Research Centre Jülich GmbH, 52425, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.,JARA-Brain Medicine, Aachen, Germany
| | - Ángel Núñez
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Francisco Clascá
- Department of Anatomy and Graduate Program in Neuroscience, School of Medicine, Autónoma de Madrid University, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.
| |
Collapse
|
305
|
Cai H, Xu X, Zhang Y, Cong X, Lu X, Huo X. Elevated lead levels from e-waste exposure are linked to sensory integration difficulties in preschool children. Neurotoxicology 2019; 71:150-158. [PMID: 30664973 DOI: 10.1016/j.neuro.2019.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/22/2018] [Accepted: 01/16/2019] [Indexed: 02/05/2023]
Abstract
Exposure to lead is associated with adverse effects on neurodevelopment. However, studies of the effects of lead on sensory integration are few. The purpose of this research is to investigate the effect of lead exposure on child sensory integration by correlating the blood lead levels of children with sensory processing measures. A total of 574 children, from 3 to 6 years of age, 358 from an electronic waste (e-waste) recycling town named Guiyu, and 216 from Haojiang, a nearby town with no e-waste recycling activity, were recruited in this study. The median blood lead level in Guiyu children was 4.88 μg/dL, higher than the 3.47 μg/dL blood lead level in Haojiang children (P < 0.001). 47.2% of Guiyu children had blood lead levels exceeding 5 μg/dL. The median concentration of serum cortisol, an HPA-axis biomarker, in Guiyu children was significantly lower than in Haojiang, and was negatively correlated with blood lead levels. All subscale scores and the total score of the Sensory Processing Measure (Hong Kong Chinese version, SPM-HKC) in Guiyu children were higher than Haojiang children, indicating greater difficulties, especially for touch, body awareness, balance and motion, and total sensory systems. Sensory processing scores were positively correlated with blood lead, except for touch, which was negatively correlated with serum cortisol levels. Simultaneously, all subscale scores and the total SPM-HKC scores for children with high blood lead levels (blood lead > 5 μg/dL) were higher than those in the low blood lead level group (blood lead < 5 μg/dL), especially for hearing, touch, body awareness, balance and motion, and total sensory systems. Our findings suggest that lead exposure in e-waste recycling areas may result in a decrease in serum cortisol levels and an increase in child sensory integration difficulties. Cortisol may be involved in touch-related sensory integration difficulties.
Collapse
Affiliation(s)
- Haoxing Cai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yu Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xiaowei Cong
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xueling Lu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Epidemiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 855 East Xingye Avenue, Guangzhou 511486, Guangdong, China.
| |
Collapse
|
306
|
Association between Thalamocortical Functional Connectivity Abnormalities and Cognitive Deficits in Schizophrenia. Sci Rep 2019; 9:2952. [PMID: 30814558 PMCID: PMC6393449 DOI: 10.1038/s41598-019-39367-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/22/2019] [Indexed: 02/08/2023] Open
Abstract
Cognitive deficits are considered a core component of schizophrenia and may predict functional outcome. However, the neural underpinnings of neuropsychological impairment remain to be fully elucidated. Data of 59 schizophrenia patients and 72 healthy controls from a public resting-state fMRI database was employed in our study. Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) Battery was used to measure deficits of cognitive abilities in schizophrenia. Neural correlates of cognitive deficits in schizophrenia were examined by linear regression analysis of the thalamocortical network activity with scores of seven cognitive domains. We confirmed the combination of reduced prefrontal-thalamic connectivity and increased sensorimotor-thalamic connectivity in patients with schizophrenia. Correlation analysis with cognition revealed that in schizophrenia (1) the thalamic functional connectivity in the bilateral pre- and postcentral gyri was negatively correlated with attention/vigilance and speed of processing (Pearson’s r ≤ −0.443, p ≤ 0.042, FWE corrected), and positively correlated with patients’ negative symptoms (Pearson’s r ≥ 0.375, p ≤ 0.003, FWE corrected); (2) the thalamic functional connectivity in the right cerebellum was positively correlated with speed of processing (Pearson’s r = 0.388, p = 0.01, FWE corrected). Our study demonstrates that thalamic hyperconnectivity with sensorimotor areas is related to the severity of cognitive deficits and clinical symptoms, and extends our understanding of the neural underpinnings of “cognitive dysmetria” in schizophrenia.
Collapse
|
307
|
Ding Y, Ou Y, Su Q, Pan P, Shan X, Chen J, Liu F, Zhang Z, Zhao J, Guo W. Enhanced Global-Brain Functional Connectivity in the Left Superior Frontal Gyrus as a Possible Endophenotype for Schizophrenia. Front Neurosci 2019; 13:145. [PMID: 30863277 PMCID: PMC6399149 DOI: 10.3389/fnins.2019.00145] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The notion of dysconnectivity in schizophrenia has been put forward for many years and results in substantial attempts to explore altered functional connectivity (FC) within different networks with inconsistent results. Clinical, demographical, and methodological heterogeneity may contribute to the inconsistency. Forty-four patients with first-episode, drug-naive schizophrenia, 42 unaffected siblings of schizophrenia patients and 44 healthy controls took part in this study. Global-brain FC (GFC) was employed to analyze the imaging data. Compared with healthy controls, patients with schizophrenia and unaffected siblings shared enhanced GFC in the left superior frontal gyrus (SFG). In addition, patients had increased GFC mainly in the thalamo-cortical network, including the bilateral thalamus, bilateral posterior cingulate cortex (PCC)/precuneus, left superior medial prefrontal cortex (MPFC), right angular gyrus, and right SFG/middle frontal gyrus and decreased GFC in the left ITG/cerebellum Crus I. No other altered GFC values were observed in the siblings group relative to the control group. Further ROC analysis showed that increased GFC in the left SFG could separate the patients or the siblings from the controls with acceptable sensitivities. Our findings suggest that increased GFC in the left SFG may serve as a potential endophenotype for schizophrenia.
Collapse
Affiliation(s)
- Yudan Ding
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yangpan Ou
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qinji Su
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Pan Pan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoxiao Shan
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jindong Chen
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhikun Zhang
- Mental Health Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jingping Zhao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
308
|
Abstract
Changes in brain function in chronic pain have been studied using paradigms that deliver acute pain-eliciting stimuli or assess the brain at rest. Although motor disability accompanies many chronic pain conditions, few studies have directly assessed brain activity during motor function in individuals with chronic pain. Using chronic jaw pain as a model, we assessed brain activity during a precisely controlled grip force task and during a precisely controlled pain-eliciting stimulus on the forearm. We used multivariate analyses to identify regions across the brain whose activity together best separated the groups. We report 2 novel findings. First, although the parameters of grip force production were similar between the groups, the functional activity in regions including the prefrontal cortex, insula, and thalamus best separated the groups. Second, although stimulus intensity and pain perception were similar between the groups, functional activity in brain regions including the dorsal lateral prefrontal cortex, rostral ventral premotor cortex, and inferior parietal lobule best separated the groups. Our observations suggest that chronic jaw pain is associated with changes in how the brain processes motor and pain-related information even when the effector producing the force or experiencing the pain-eliciting stimulus is distant from the jaw. We also demonstrate that motor tasks and multivariate analyses offer alternative approaches for studying brain function in chronic jaw pain.
Collapse
|
309
|
Thalamic connectivity measured with fMRI is associated with a polygenic index predicting thalamo-prefrontal gene co-expression. Brain Struct Funct 2019; 224:1331-1344. [DOI: 10.1007/s00429-019-01843-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 01/31/2019] [Indexed: 01/11/2023]
|
310
|
Lee I, Nielsen K, Nawaz U, Hall MH, Öngür D, Keshavan M, Brady R. Diverse pathophysiological processes converge on network disruption in mania. J Affect Disord 2019; 244:115-123. [PMID: 30340100 PMCID: PMC6785980 DOI: 10.1016/j.jad.2018.10.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Neuroimaging of psychiatric disease is challenged by the difficulty of establishing the causal role of neuroimaging abnormalities. Lesions that cause mania present a unique opportunity to understand how brain network disruption may cause mania in both lesions and in bipolar disorder. METHODS A literature search revealed 23 case reports with imaged lesions that caused mania in patients without history of bipolar disorder. We traced these lesions and examined resting-state functional Magnetic Resonance Imaging (rsfMRI) connectivity to these lesions and control lesions to find networks that would be disrupted specifically by mania-causing lesions. The results were then used as regions-of-interest to examine rsfMRI connectivity in patients with bipolar disorder (n = 16) who underwent imaging longitudinally across states of both mania and euthymia alongside a cohort of healthy participants scanned longitudinally. We then sought to replicate these results in independent cohorts of manic (n = 26) and euthymic (n = 21) participants with bipolar disorder. RESULTS Mania-inducing lesions overlap significantly in network connectivity. Mania-causing lesions selectively disrupt networks that include orbitofrontal cortex, dorsolateral prefrontal cortex, and temporal lobes. In bipolar disorder, the manic state was reflected in strong, significant, and specific disruption in network communication between these regions and regions implicated in bipolar pathophysiology: the amygdala and ventro-lateral prefrontal cortex. LIMITATIONS There was heterogeneity in the clinical characterization of mania causing lesions. CONCLUSIONS Lesions causing mania demonstrate shared and specific network disruptions. These disruptions are also observed in bipolar mania and suggest a convergence of multiple disorders on shared circuit dysfunction to cause mania.
Collapse
Affiliation(s)
- Ivy Lee
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kathryn Nielsen
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Uzma Nawaz
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Mei-Hua Hall
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Dost Öngür
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA,Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Roscoe Brady
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
311
|
Phillips JM, Fish LR, Kambi NA, Redinbaugh MJ, Mohanta S, Kecskemeti SR, Saalmann YB. Topographic organization of connections between prefrontal cortex and mediodorsal thalamus: Evidence for a general principle of indirect thalamic pathways between directly connected cortical areas. Neuroimage 2019; 189:832-846. [PMID: 30711468 DOI: 10.1016/j.neuroimage.2019.01.078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/13/2019] [Accepted: 01/30/2019] [Indexed: 02/02/2023] Open
Abstract
Our ability to act flexibly, according to goals and context, is known as cognitive control. Hierarchical levels of control, reflecting different levels of abstraction, are represented across prefrontal cortex (PFC). Although the mediodorsal thalamic nucleus (MD) is extensively interconnected with PFC, the role of MD in cognitive control is unclear. Tract tracer studies in macaques, involving subsets of PFC areas, have converged on coarse MD-PFC connectivity principles; but proposed finer-grained topographic schemes, which constrain interactions between MD and PFC, disagree in many respects. To investigate a unifying topographic scheme, we performed probabilistic tractography on diffusion MRI data from eight macaque monkeys, and estimated the probable paths connecting MD with each of all 19 architectonic areas of PFC. We found a connectional topography where the orderly progression from ventromedial to anterior to posterolateral PFC was represented from anteromedial to posterolateral MD. The projection zones of posterolateral PFC areas in MD showed substantial overlap, and those of ventral and anteromedial PFC areas in MD overlapped. The exception was cingulate area 24: its projection zone overlapped with projections zones of all other PFC areas. Overall, our data suggest that nearby, functionally related, directly connected PFC areas have partially overlapping projection zones in MD, consistent with a role for MD in coordinating communication across PFC. Indeed, the organizing principle for PFC projection zones in MD appears to reflect the flow of information across the hierarchical, multi-level PFC architecture. In addition, cingulate area 24 may have privileged access to influence thalamocortical interactions involving all other PFC areas.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, United States.
| | - Lesenia R Fish
- Department of Psychology, University of Wisconsin-Madison, United States
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, United States
| | | | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, United States
| | - Steven R Kecskemeti
- Brain Imaging Core, Waisman Center, University of Wisconsin-Madison, United States
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, United States; Wisconsin National Primate Research Center, University of Wisconsin-Madison, United States.
| |
Collapse
|
312
|
Bartholomew ME, Yee CM, Heller W, Miller GA, Spielberg JM. Reconfiguration of brain networks supporting inhibition of emotional challenge. Neuroimage 2019; 186:350-357. [PMID: 30394327 PMCID: PMC6372757 DOI: 10.1016/j.neuroimage.2018.10.066] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 09/25/2018] [Accepted: 10/24/2018] [Indexed: 01/28/2023] Open
Abstract
Reacting to the salient emotional features of a stimulus is adaptive unless the information is irrelevant or interferes with goal-directed behavior. The ability to ignore salient but otherwise extraneous information involves restructuring of brain networks and is a key impairment in several psychological disorders. Despite the importance of understanding inhibitory control of emotional response, the associated brain network mechanisms remain unknown. Utilizing functional magnetic resonance imaging (fMRI) data obtained from 103 participants performing an emotion-word Stroop (EWS) task, the present study applied graph-theory analysis to identify how brain regions subserving emotion processing and cognitive control are integrated within the global brain network to promote more specialized and efficient processing during successful inhibition of response to emotional distractors. The present study identified two sub-networks associated with emotion inhibition, one involving hyper-connectivity to prefrontal cortex and one involving hyper-connectivity to thalamus. Brain regions typically associated with identifying emotion salience were more densely connected with the thalamic hub, consistent with thalamic amplification of prefrontal cortex control of these regions. Additionally, stimuli high in emotional arousal prompted restructuring of the global network to increase clustered processing and overall communication efficiency. These results provide evidence that inhibition of emotion relies on interactions between cognitive control and emotion salience sub-networks.
Collapse
Affiliation(s)
- Morgan E Bartholomew
- Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA.
| | - Cindy M Yee
- Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Los Angeles, CA, 90095, USA.
| | - Wendy Heller
- Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA.
| | - Gregory A Miller
- Department of Psychology, UCLA, 1285 Franz Hall, Box 951563, Los Angeles, CA, 90095-1563, USA; Department of Psychiatry and Biobehavioral Sciences, UCLA, 760 Westwood Plaza, Los Angeles, CA, 90095, USA; Department of Psychology, University of Illinois at Urbana-Champaign, 603 East Daniel Street, Champaign, IL, 61820, USA.
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, 105 the Green, Newark, DE, 19716, USA.
| |
Collapse
|
313
|
A diverse range of factors affect the nature of neural representations underlying short-term memory. Nat Neurosci 2019; 22:275-283. [PMID: 30664767 DOI: 10.1038/s41593-018-0314-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 12/04/2018] [Indexed: 11/09/2022]
Abstract
Sequential and persistent activity models are two prominent models of short-term memory in neural circuits. In persistent activity models, memories are represented in persistent or nearly persistent activity patterns across a population of neurons, whereas in sequential models, memories are represented dynamically by a sequential activity pattern across the population. Experimental evidence for both models has been reported previously. However, it has been unclear under what conditions these two qualitatively different types of solutions emerge in neural circuits. Here, we address this question by training recurrent neural networks on several short-term memory tasks under a wide range of circuit and task manipulations. We show that both sequential and nearly persistent solutions are part of a spectrum that emerges naturally in trained networks under different conditions. Our results help to clarify some seemingly contradictory experimental results on the existence of sequential versus persistent activity-based short-term memory mechanisms in the brain.
Collapse
|
314
|
Morita K, Kawaguchi Y. A Dual Role Hypothesis of the Cortico-Basal-Ganglia Pathways: Opponency and Temporal Difference Through Dopamine and Adenosine. Front Neural Circuits 2019; 12:111. [PMID: 30687019 PMCID: PMC6338031 DOI: 10.3389/fncir.2018.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
The hypothesis that the basal-ganglia direct and indirect pathways represent goodness (or benefit) and badness (or cost) of options, respectively, explains a wide range of phenomena. However, this hypothesis, named the Opponent Actor Learning (OpAL), still has limitations. Structurally, the OpAL model does not incorporate differentiation of the two types of cortical inputs to the basal-ganglia pathways received from intratelencephalic (IT) and pyramidal-tract (PT) neurons. Functionally, the OpAL model does not describe the temporal-difference (TD)-type reward-prediction-error (RPE), nor explains how RPE is calculated in the circuitry connecting to the DA neurons. In fact, there is a different hypothesis on the basal-ganglia pathways and DA, named the Cortico-Striatal-Temporal-Difference (CS-TD) model. The CS-TD model differentiates the IT and PT inputs, describes the TD-type RPE, and explains how TD-RPE is calculated. However, a critical difficulty in this model lies in its assumption that DA induces the same direction of plasticity in both direct and indirect pathways, which apparently contradicts the experimentally observed opposite effects of DA on these pathways. Here, we propose a new hypothesis that integrates the OpAL and CS-TD models. Specifically, we propose that the IT-basal-ganglia pathways represent goodness/badness of current options while the PT-indirect pathway represents the overall value of the previously chosen option, and both of these have influence on the DA neurons, through the basal-ganglia output, so that a variant of TD-RPE is calculated. A key assumption is that opposite directions of plasticity are induced upon phasic activation of DA neurons in the IT-indirect pathway and PT-indirect pathway because of different profiles of IT and PT inputs. Specifically, at PT→indirect-pathway-medium-spiny-neuron (iMSN) synapses, sustained glutamatergic inputs generate rich adenosine, which allosterically prevents DA-D2 receptor signaling and instead favors adenosine-A2A receptor signaling. Then, phasic DA-induced phasic adenosine, which reflects TD-RPE, causes long-term synaptic potentiation. In contrast, at IT→iMSN synapses where adenosine is scarce, phasic DA causes long-term synaptic depression via D2 receptor signaling. This new Opponency and Temporal-Difference (OTD) model provides unique predictions, part of which is potentially in line with recently reported activity patterns of neurons in the globus pallidus externus on the indirect pathway.
Collapse
Affiliation(s)
- Kenji Morita
- Physical and Health Education, Graduate School of Education, The University of Tokyo, Tokyo, Japan.,International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
315
|
Canetta S, Kellendonk C. Can we use mice to study schizophrenia? Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0032. [PMID: 29352031 DOI: 10.1098/rstb.2017.0032] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/03/2023] Open
Abstract
The validity of rodent models for the study of psychiatric disorders is controversial. Despite great efforts from academic institutions and pharmaceutical companies, as of today, no major therapeutic intervention has been developed for the treatment of psychiatric disorders based on mechanistic insights from rodent models. Here, we argue that despite these historical shortcomings, rodent studies are nevertheless instrumental for identifying neuronal circuit mechanisms underlying behaviours that are affected in psychiatric disorders. Focusing on schizophrenia, we will give four examples of rodent models that were generated based on genetic and environmental risk factors or pathophysiological evidence as entry points. We will then discuss how circuit analysis in these specific examples can be used for testing hypotheses about neuronal mechanisms underlying symptoms of schizophrenia, which will then guide the development of new therapies.This article is part of a discussion meeting issue 'Of mice and mental health: facilitating dialogue between basic and clinical neuroscientists'.
Collapse
Affiliation(s)
- Sarah Canetta
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY, USA .,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, USA.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
316
|
Wolff M, Vann SD. The Cognitive Thalamus as a Gateway to Mental Representations. J Neurosci 2019; 39:3-14. [PMID: 30389839 PMCID: PMC6325267 DOI: 10.1523/jneurosci.0479-18.2018] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/24/2018] [Accepted: 10/28/2018] [Indexed: 01/16/2023] Open
Abstract
Historically, the thalamus has been viewed as little more than a relay, simply transferring information to key players of the cast, the cortex and hippocampus, without providing any unique functional contribution. In recent years, evidence from multiple laboratories researching different thalamic nuclei has contradicted this idea of the thalamus as a passive structure. Dated models of thalamic functions are being pushed aside, revealing a greater and far more complex contribution of the thalamus for cognition. In this Viewpoints article, we show how recent data support novel views of thalamic functions that emphasize integrative roles in cognition, ranging from learning and memory to flexible adaption. We propose that these apparently separate cognitive functions may indeed be supported by a more general role in shaping mental representations. Several features of thalamocortical circuits are consistent with this suggested role, and we highlight how divergent and convergent thalamocortical and corticothalamic pathways may complement each other to support these functions. Furthermore, the role of the thalamus for subcortical integration is highlighted as a key mechanism for maintaining and updating representations. Finally, we discuss future areas of research and stress the importance of incorporating new experimental findings into existing knowledge to continue developing thalamic models. The presence of thalamic pathology in a number of neurological conditions reinforces the need to better understand the role of this region in cognition.
Collapse
Affiliation(s)
- Mathieu Wolff
- Centre National de la Recherche Scientifique, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France,
- University of Bordeaux, INCIA, Unité Mixte de Recherche 5287, Bordeaux, France, and
| | - Seralynne D Vann
- School of Psychology, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| |
Collapse
|
317
|
Helfrich RF, Knight RT. Cognitive neurophysiology of the prefrontal cortex. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:35-59. [DOI: 10.1016/b978-0-12-804281-6.00003-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
318
|
Zhu Y, Nachtrab G, Keyes PC, Allen WE, Luo L, Chen X. Dynamic salience processing in paraventricular thalamus gates associative learning. Science 2018; 362:423-429. [PMID: 30361366 DOI: 10.1126/science.aat0481] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 08/28/2018] [Indexed: 01/17/2023]
Abstract
The salience of behaviorally relevant stimuli is dynamic and influenced by internal state and external environment. Monitoring such changes is critical for effective learning and flexible behavior, but the neuronal substrate for tracking the dynamics of stimulus salience is obscure. We found that neurons in the paraventricular thalamus (PVT) are robustly activated by a variety of behaviorally relevant events, including novel ("unfamiliar") stimuli, reinforcing stimuli and their predicting cues, as well as omission of the expected reward. PVT responses are scaled with stimulus intensity and modulated by changes in homeostatic state or behavioral context. Inhibition of the PVT responses suppresses appetitive or aversive associative learning and reward extinction. Our findings demonstrate that the PVT gates associative learning by providing a dynamic representation of stimulus salience.
Collapse
Affiliation(s)
- Yingjie Zhu
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gregory Nachtrab
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Piper C Keyes
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - William E Allen
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Neurosciences Program, Stanford University, Stanford, CA 94305, USA
| | - Liqun Luo
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiaoke Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
319
|
Engagement of Pulvino-cortical Feedforward and Feedback Pathways in Cognitive Computations. Neuron 2018; 101:321-336.e9. [PMID: 30553546 DOI: 10.1016/j.neuron.2018.11.023] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/14/2018] [Accepted: 11/12/2018] [Indexed: 01/18/2023]
Abstract
Computational modeling of brain mechanisms of cognition has largely focused on the cortex, but recent experiments have shown that higher-order nuclei of the thalamus participate in major cognitive functions and are implicated in psychiatric disorders. Here, we show that a pulvino-cortical circuit model, composed of the pulvinar and two cortical areas, captures several physiological and behavioral observations related to the macaque pulvinar. Effective connections between the two cortical areas are gated by the pulvinar, allowing the pulvinar to shift the operation regime of these areas during attentional processing and working memory and resolve conflict in decision making. Furthermore, cortico-pulvinar projections that engage the thalamic reticular nucleus enable the pulvinar to estimate decision confidence. Finally, feedforward and feedback pulvino-cortical pathways participate in frequency-dependent inter-areal interactions that modify the relative hierarchical positions of cortical areas. Overall, our model suggests that the pulvinar provides crucial contextual modulation to cortical computations associated with cognition.
Collapse
|
320
|
Weele CMV, Siciliano CA, Tye KM. Dopamine tunes prefrontal outputs to orchestrate aversive processing. Brain Res 2018; 1713:16-31. [PMID: 30513287 DOI: 10.1016/j.brainres.2018.11.044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/25/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
Decades of research suggest that the mesocortical dopamine system exerts powerful control over mPFC physiology and function. Indeed, dopamine signaling in the medial prefrontal cortex (mPFC) is implicated in a vast array of processes, including working memory, stimulus discrimination, stress responses, and emotional and behavioral control. Consequently, even slight perturbations within this delicate system result in profound disruptions of mPFC-mediated processes. Many neuropsychiatric disorders are associated with dysregulation of mesocortical dopamine, including schizophrenia, depression, attention deficit hyperactivity disorder, post-traumatic stress disorder, among others. Here, we review the anatomy and functions of the mesocortical dopamine system. In contrast to the canonical role of striatal dopamine in reward-related functions, recent work has revealed that mesocortical dopamine fine-tunes distinct efferent projection populations in a manner that biases subsequent behavior towards responding to stimuli associated with potentially aversive outcomes. We propose a framework wherein dopamine can serve as a signal for switching mPFC states by orchestrating how information is routed to the rest of the brain.
Collapse
Affiliation(s)
- Caitlin M Vander Weele
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Cody A Siciliano
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kay M Tye
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
321
|
Courtiol E, Neiman M, Fleming G, Teixeira CM, Wilson DA. A specific olfactory cortico-thalamic pathway contributing to sampling performance during odor reversal learning. Brain Struct Funct 2018; 224:961-971. [PMID: 30506279 DOI: 10.1007/s00429-018-1807-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/27/2018] [Indexed: 12/17/2022]
Abstract
A growing body of evidence shows that olfactory information is processed within a thalamic nucleus in both rodents and humans. The mediodorsal thalamic nucleus (MDT) receives projections from olfactory cortical areas including the piriform cortex (PCX) and is interconnected with the orbitofrontal cortex (OFC). Using electrophysiology in freely moving rats, we recently demonstrated the representation of olfactory information in the MDT and the dynamics of functional connectivity between the PCX, MDT and OFC. Notably, PCX-MDT coupling is specifically increased during odor sampling of an odor discrimination task. However, whether this increase of coupling is functionally relevant is unknown. To decipher the importance of PCX-MDT coupling during the sampling period, we used optogenetics to specifically inactivate the PCX inputs to MDT during an odor discrimination task and its reversal in rats. We demonstrate that inactivating the PCX inputs to MDT does not affect the performance accuracy of an odor discrimination task and its reversal, however, it does impact the rats' sampling duration. Indeed, rats in which PCX inputs to MDT were inactivated during the sampling period display longer sampling duration during the odor reversal learning compared to controls-an effect not observed when inactivating OFC inputs to MDT. We demonstrate a causal link between the PCX inputs to MDT and the odor sampling performance, highlighting the importance of this specific cortico-thalamic pathway in olfaction.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA. .,Department of Child and Adolescent Psychiatry, New York Langone Medical Center, 1 Park Avenue, New York, NY, 10016, USA. .,Neuroscience Research Center of Lyon, Team CMO, CNRS UMR 5292-INSERM U1028-Université Lyon 1, 50 Avenue Tony Garnier, 69366, Lyon Cedex 07, France.
| | - Michelle Neiman
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.,Department of Child and Adolescent Psychiatry, New York Langone Medical Center, 1 Park Avenue, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, 10962, USA.,Department of Child and Adolescent Psychiatry, New York Langone Medical Center, 1 Park Avenue, New York, NY, 10016, USA
| |
Collapse
|
322
|
Occurrence of Hippocampal Ripples is Associated with Activity Suppression in the Mediodorsal Thalamic Nucleus. J Neurosci 2018; 39:434-444. [PMID: 30459228 DOI: 10.1523/jneurosci.2107-18.2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 10/20/2018] [Indexed: 12/11/2022] Open
Abstract
Forming reliable memories requires coordinated activity within distributed brain networks. At present, neural mechanisms underlying systems-level consolidation of declarative memory beyond the hippocampal-prefrontal interactions remain largely unexplored. The mediodorsal thalamic nucleus (MD) is reciprocally connected with the medial prefrontal cortex (mPFC) and also receives inputs from parahippocampal regions. The MD may thus modulate functional connectivity between the hippocampus and the mPFC at different stages of information processing. Here, we characterized, in freely behaving Sprague Dawley male rats, the MD neural activity around hippocampal ripples, indicators of memory replay and hippocampal-cortical information transfer. Overall, the MD firing rate was transiently (0.76 ± 0.06 s) decreased around ripples, with the MD activity suppression preceding the ripple onset for 0.41 ± 0.04 s (range, 0.01-0.95 s). The degree of MD modulation correlated with ripple amplitude, differed across behavioral states, and also depended on the dynamics of hippocampal-cortical population activity. The MD suppression was the strongest and the most consistent during awake ripples. During non-rapid eye movement sleep, MD firing rate decreased around spindle-uncoupled ripples, but increased around spindle-coupled ripples. Our results suggest a competitive interaction between the thalamocortical and hippocampal-cortical networks supporting "on-line" and "off-line" information processing, respectively. We hypothesize that thalamic activity suppression during spindle-uncoupled ripples is favorable for memory replay, as it reduces interference from sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer. Both predictions need to be tested in future experiments.SIGNIFICANCE STATEMENT Systems mechanisms of declarative memory consolidation beyond the hippocampal-prefrontal interactions remain largely unexplored. The connectivity of the mediodorsal thalamic nucleus (MD) with extrahippocampal regions and with medial prefrontal cortex underlies its role in execution of diverse cognitive functions. However, little is known about the MD involvement in "off-line" consolidation. We found that MD neural activity was transiently suppressed around hippocampal ripples, except for ripples co-occurring with sleep spindles, when the MD activity was elevated. The thalamic activity suppression at times of spindle-uncoupled ripples may be favorable for memory replay, as it reduces interference with sensory relay. In turn, the thalamic input during hippocampal-cortical communication, as indicated by spindle/ripple coupling, may contribute to selectivity and reliability of information transfer.
Collapse
|
323
|
Rikhye RV, Gilra A, Halassa MM. Thalamic regulation of switching between cortical representations enables cognitive flexibility. Nat Neurosci 2018; 21:1753-1763. [PMID: 30455456 PMCID: PMC7225728 DOI: 10.1038/s41593-018-0269-z] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023]
Abstract
Interactions between the prefrontal cortex (PFC) and mediodorsal thalamus (MD) are critical for cognitive flexibility, yet the underlying computations are unknown. To investigate fronto-thalamic substrates of cognitive flexibility, we developed a behavioral task, where mice switched between different sets of learned cues that guided attention towards either visual or auditory targets. We found that PFC responses reflected both the individual cues and their meaning as task rules, indicating a hierarchical cue-to-rule transformation. Conversely, MD responses reflected the statistical regularity of cue presentation, and were required for switching between such experimentally-specified cueing contexts. A subset of these thalamic responses sustained context-relevant PFC representations, while another suppressed the context-irrelevant ones. Through modeling and experimental validation, we find that thalamic-mediated suppression may not only reduce PFC representational interference but could also preserve unused cortical traces for future use. Overall, our study provides a computational foundation for thalamic engagement in cognitive flexibility.
Collapse
Affiliation(s)
- Rajeev V Rikhye
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aditya Gilra
- Neural Network Dynamics and Computation Group, Institute for Genetics, University of Bonn, Bonn, Germany
| | - Michael M Halassa
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
324
|
Pergola G, Danet L, Pitel AL, Carlesimo GA, Segobin S, Pariente J, Suchan B, Mitchell AS, Barbeau EJ. The Regulatory Role of the Human Mediodorsal Thalamus. Trends Cogn Sci 2018; 22:1011-1025. [PMID: 30236489 PMCID: PMC6198112 DOI: 10.1016/j.tics.2018.08.006] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
The function of the human mediodorsal thalamic nucleus (MD) has so far eluded a clear definition in terms of specific cognitive processes and tasks. Although it was at first proposed to play a role in long-term memory, a set of recent studies in animals and humans has revealed a more complex, and broader, role in several cognitive functions. The MD seems to play a multifaceted role in higher cognitive functions together with the prefrontal cortex and other cortical and subcortical brain areas. Specifically, we propose that the MD is involved in the regulation of cortical networks especially when the maintenance and temporal extension of persistent activity patterns in the frontal lobe areas are required.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy.
| | - Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University and S. Lucia Foundation, Rome, Italy
| | - Shailendra Segobin
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Boris Suchan
- Clinical Neuropsychology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Equivalent contribution as last authors.
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition, UMR5549, Université de Toulouse - CNRS, Toulouse 31000, France; Equivalent contribution as last authors
| |
Collapse
|
325
|
Miller EK, Lundqvist M, Bastos AM. Working Memory 2.0. Neuron 2018; 100:463-475. [PMID: 30359609 PMCID: PMC8112390 DOI: 10.1016/j.neuron.2018.09.023] [Citation(s) in RCA: 418] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/04/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Working memory is the fundamental function by which we break free from reflexive input-output reactions to gain control over our own thoughts. It has two types of mechanisms: online maintenance of information and its volitional or executive control. Classic models proposed persistent spiking for maintenance but have not explicitly addressed executive control. We review recent theoretical and empirical studies that suggest updates and additions to the classic model. Synaptic weight changes between sparse bursts of spiking strengthen working memory maintenance. Executive control acts via interplay between network oscillations in gamma (30-100 Hz) in superficial cortical layers (layers 2 and 3) and alpha and beta (10-30 Hz) in deep cortical layers (layers 5 and 6). Deep-layer alpha and beta are associated with top-down information and inhibition. It regulates the flow of bottom-up sensory information associated with superficial layer gamma. We propose that interactions between different rhythms in distinct cortical layers underlie working memory maintenance and its volitional control.
Collapse
Affiliation(s)
- Earl K Miller
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mikael Lundqvist
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - André M Bastos
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
326
|
Najafi F, Churchland AK. Perceptual Decision-Making: A Field in the Midst of a Transformation. Neuron 2018; 100:453-462. [PMID: 30359608 PMCID: PMC6427923 DOI: 10.1016/j.neuron.2018.10.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/03/2018] [Accepted: 10/08/2018] [Indexed: 12/30/2022]
Abstract
Major changes are underway in the field of perceptual decision-making. Single-neuron studies have given way to population recordings with identified cell types, traditional analyses have been extended to accommodate these large and diverse collections of neurons, and novel methods of neural disruption have provided insights about causal circuits. Further, the field has expanded to include multiple new species: rodents and invertebrates, for example, have been instrumental in demonstrating the importance of internal state on neural responses. Finally, a renewed interest in ethological stimuli prompted development of new behaviors, frequently analyzed by new, automated movement tracking methods. Taken together, these advances constitute a seismic shift in both our approach and understanding of how incoming sensory signals are used to guide decisions.
Collapse
|
327
|
Keller GB, Mrsic-Flogel TD. Predictive Processing: A Canonical Cortical Computation. Neuron 2018; 100:424-435. [PMID: 30359606 PMCID: PMC6400266 DOI: 10.1016/j.neuron.2018.10.003] [Citation(s) in RCA: 325] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/07/2018] [Accepted: 10/01/2018] [Indexed: 01/15/2023]
Abstract
This perspective describes predictive processing as a computational framework for understanding cortical function in the context of emerging evidence, with a focus on sensory processing. We discuss how the predictive processing framework may be implemented at the level of cortical circuits and how its implementation could be falsified experimentally. Lastly, we summarize the general implications of predictive processing on cortical function in healthy and diseased states.
Collapse
Affiliation(s)
- Georg B Keller
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Faculty of Natural Sciences, University of Basel, Basel, Switzerland.
| | - Thomas D Mrsic-Flogel
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| |
Collapse
|
328
|
Kang L, Zhang A, Sun N, Liu P, Yang C, Li G, Liu Z, Wang Y, Zhang K. Functional connectivity between the thalamus and the primary somatosensory cortex in major depressive disorder: a resting-state fMRI study. BMC Psychiatry 2018; 18:339. [PMID: 30340472 PMCID: PMC6194586 DOI: 10.1186/s12888-018-1913-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/26/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Studies have confirmed that the thalamus and the primary somatosensory cortex (SI) are associated with cognitive function. These two brain regions are closely related in structure and function. The interactions between SI and the thalamus are of crucial significance for the cognitive process. Patients with major depressive disorder (MDD) have significant cognitive impairment. Based on these observations, we used resting-state functional magnetic resonance imaging (rs-fMRI) to investigate whether there is an abnormality in the SI-thalamic functional connection in MDD. Furthermore, we explored the clinical symptoms related to this abnormality. METHODS We included 31 patients with first-episode major depressive disorder and 28 age-, gender-, and education-matched healthy controls (HC). The SI-thalamic functional connectivity was compared between the MDD and HC groups. The correlation analyses were performed between areas with abnormal connectivity and clinical characteristics. RESULTS Compared with healthy subjects, the MDD patients had enhanced functional connectivity between the thalamus and SI (p < 0.05, corrected). Brain areas with significantly different levels of connectivity had a negative correlation with the Assessment of Neuropsychological Status total score (r = - 0.383, p = 0.033), delayed memory score (r = - 0.376, p = 0.037) and two-digit continuous operation test score (r = - 0.369, p = 0.041) in MDD patients. CONCLUSIONS These results demonstrate that SI-thalamic functional connectivity is abnormal and associated with the core clinical symptoms in MDD. The SI-thalamic functional connectivity functions as a neurobiological feature and potential biomarker for MDD.
Collapse
Affiliation(s)
- Lijun Kang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China ,grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Aixia Zhang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Ning Sun
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Penghong Liu
- grid.263452.4Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Chunxia Yang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Gaizhi Li
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Zhifen Liu
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Yanfang Wang
- 0000 0004 1762 8478grid.452461.0Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001 People’s Republic of China
| | - Kerang Zhang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, 030001, People's Republic of China.
| |
Collapse
|
329
|
Crabtree JW. Functional Diversity of Thalamic Reticular Subnetworks. Front Syst Neurosci 2018; 12:41. [PMID: 30405364 PMCID: PMC6200870 DOI: 10.3389/fnsys.2018.00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/23/2018] [Indexed: 11/13/2022] Open
Abstract
The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long been known to play important roles in modulating the flow of information through the thalamus and in generating changes in thalamic activity during transitions from wakefulness to sleep. Recently, technological advances have considerably expanded our understanding of the functional organization of TRN. These have identified an impressive array of functionally distinct subnetworks in TRN that participate in sensory, motor, and/or cognitive processes through their different functional connections with thalamic projection neurons. Accordingly, "first order" projection neurons receive "driver" inputs from subcortical sources and are usually connected to a densely distributed TRN subnetwork composed of multiple elongated neural clusters that are topographically organized and incorporate spatially corresponding electrically connected neurons-first order projection neurons are also connected to TRN subnetworks exhibiting different state-dependent activity profiles. "Higher order" projection neurons receive driver inputs from cortical layer 5 and are mainly connected to a densely distributed TRN subnetwork composed of multiple broad neural clusters that are non-topographically organized and incorporate spatially corresponding electrically connected neurons. And projection neurons receiving "driver-like" inputs from the superior colliculus or basal ganglia are connected to TRN subnetworks composed of either elongated or broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among neurons within groups of thalamic nuclei are connected to all three types of thalamic projection neurons. In addition, several TRN subnetworks mediate various bottom-up, top-down, and internuclear attentional processes: some bottom-up and top-down attentional mechanisms are specifically related to first order projection neurons whereas internuclear attentional mechanisms engage all three types of projection neurons. The TRN subnetworks formed by elongated and broad neural clusters may act as templates to guide the operations of the TRN subnetworks related to attentional processes. In this review article, the evidence revealing the functional TRN subnetworks will be evaluated and will be discussed in relation to the functions of the various sensory and motor thalamic nuclei with which these subnetworks are connected.
Collapse
Affiliation(s)
- John W Crabtree
- School of Physiology, Pharmacology, and Neuroscience, Medical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
330
|
Abbas AI, Sundiang MJM, Henoch B, Morton MP, Bolkan SS, Park AJ, Harris AZ, Kellendonk C, Gordon JA. Somatostatin Interneurons Facilitate Hippocampal-Prefrontal Synchrony and Prefrontal Spatial Encoding. Neuron 2018; 100:926-939.e3. [PMID: 30318409 DOI: 10.1016/j.neuron.2018.09.029] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/30/2018] [Accepted: 09/18/2018] [Indexed: 01/04/2023]
Abstract
Decreased hippocampal-prefrontal synchrony may mediate cognitive deficits in schizophrenia, but it remains unclear which cells orchestrate this long-range synchrony. Parvalbumin (PV)- and somatostatin (SOM)-expressing interneurons show histological abnormalities in individuals with schizophrenia and are hypothesized to regulate oscillatory synchrony within the prefrontal cortex. To examine the relationship between interneuron function, long-range hippocampal-prefrontal synchrony, and cognition, we optogenetically inhibited SOM and PV neurons in the medial prefrontal cortex (mPFC) of mice performing a spatial working memory task while simultaneously recording neural activity in the mPFC and the hippocampus (HPC). We found that inhibiting SOM, but not PV, interneurons during the encoding phase of the task impaired working memory accuracy. This behavioral impairment was associated with decreased hippocampal-prefrontal synchrony and impaired spatial encoding in mPFC neurons. These findings suggest that interneuron dysfunction may contribute to cognitive deficits associated with schizophrenia by disrupting long-range synchrony between the HPC and PFC.
Collapse
Affiliation(s)
- Atheir I Abbas
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Marina J M Sundiang
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Britt Henoch
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Mitchell P Morton
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Scott S Bolkan
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alan J Park
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Integrative Neuroscience, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Joshua A Gordon
- National Institute of Mental Health, Bethesda, MD 20892, USA.
| |
Collapse
|
331
|
de Haan R, Lim J, van der Burg SA, Pieneman AW, Nigade V, Mansvelder HD, de Kock CPJ. Neural Representation of Motor Output, Context and Behavioral Adaptation in Rat Medial Prefrontal Cortex During Learned Behavior. Front Neural Circuits 2018; 12:75. [PMID: 30327591 PMCID: PMC6174330 DOI: 10.3389/fncir.2018.00075] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/04/2018] [Indexed: 11/13/2022] Open
Abstract
Selecting behavioral outputs in a dynamic environment is the outcome of integrating multiple information streams and weighing possible action outcomes with their value. Integration depends on the medial prefrontal cortex (mPFC), but how mPFC neurons encode information necessary for appropriate behavioral adaptation is poorly understood. To identify spiking patterns of mPFC during learned behavior, we extracellularly recorded neuronal action potential firing in the mPFC of rats performing a whisker-based "Go"/"No-go" object localization task. First, we identify three functional groups of neurons, which show different degrees of spiking modulation during task performance. One group increased spiking activity during correct "Go" behavior (positively modulated), the second group decreased spiking (negatively modulated) and one group did not change spiking. Second, the relative change in spiking was context-dependent and largest when motor output had contextual value. Third, the negatively modulated population spiked more when rats updated behavior following an error compared to trials without integration of error information. Finally, insufficient spiking in the positively modulated population predicted erroneous behavior under dynamic "No-go" conditions. Thus, mPFC neuronal populations with opposite spike modulation characteristics differentially encode context and behavioral updating and enable flexible integration of error corrections in future actions.
Collapse
Affiliation(s)
- Roel de Haan
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Judith Lim
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Sven A van der Burg
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Anton W Pieneman
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Vinod Nigade
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Huibert D Mansvelder
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| | - Christiaan P J de Kock
- Center for Neurogenomics and Cognitive Research, Department of Integrative Neurophysiology, VU Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
332
|
Spencer E, Martinet LE, Eskandar EN, Chu CJ, Kolaczyk ED, Cash SS, Eden UT, Kramer MA. A procedure to increase the power of Granger-causal analysis through temporal smoothing. J Neurosci Methods 2018; 308:48-61. [PMID: 30031776 PMCID: PMC6200653 DOI: 10.1016/j.jneumeth.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/06/2018] [Accepted: 07/14/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND How the human brain coordinates network activity to support cognition and behavior remains poorly understood. New high-resolution recording modalities facilitate a more detailed understanding of the human brain network. Several approaches have been proposed to infer functional networks, indicating the transient coordination of activity between brain regions, from neural time series. One category of approach is based on statistical modeling of time series recorded from multiple sensors (e.g., multivariate Granger causality). However, fitting such models remains computationally challenging as the history structure may be long in neural activity, requiring many model parameters to fully capture the dynamics. NEW METHOD We develop a method based on Granger causality that makes the assumption that the history dependence varies smoothly. We fit multivariate autoregressive models such that the coefficients of the lagged history terms are smooth functions. We do so by modelling the history terms with a lower dimensional spline basis, which requires many fewer parameters than the standard approach and increases the statistical power of the model. RESULTS We show that this procedure allows accurate estimation of brain dynamics and functional networks in simulations and examples of brain voltage activity recorded from a patient with pharmacoresistant epilepsy. COMPARISON WITH EXISTING METHOD The proposed method has more statistical power than the Granger method for networks of signals that exhibit extended and smooth history dependencies. CONCLUSIONS The proposed tool permits conditional inference of functional networks from many brain regions with extended history dependence, furthering the applicability of Granger causality to brain network science.
Collapse
Affiliation(s)
- E Spencer
- Graduate Program in Neuroscience, Boston University, United States
| | - L-E Martinet
- Department of Neurology, Massachusetts General Hospital, United States
| | - E N Eskandar
- Department of Neurology, Massachusetts General Hospital, United States; Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, United States
| | - C J Chu
- Department of Neurology, Massachusetts General Hospital, United States
| | - E D Kolaczyk
- Department of Mathematics and Statistics, Boston University, United States
| | - S S Cash
- Department of Neurology, Massachusetts General Hospital, United States
| | - U T Eden
- Department of Mathematics and Statistics, Boston University, United States
| | - M A Kramer
- Department of Mathematics and Statistics, Boston University, United States.
| |
Collapse
|
333
|
Mihali A, Young AG, Adler LA, Halassa MM, Ma WJ. A Low-Level Perceptual Correlate of Behavioral and Clinical Deficits in ADHD. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2018; 2:141-163. [PMID: 30381800 PMCID: PMC6184361 DOI: 10.1162/cpsy_a_00018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 07/10/2018] [Indexed: 11/04/2022]
Abstract
In many studies of attention-deficit hyperactivity disorder (ADHD), stimulus encoding and processing (perceptual function) and response selection (executive function) have been intertwined. To dissociate deficits in these functions, we introduced a task that parametrically varied low-level stimulus features (orientation and color) for fine-grained analysis of perceptual function. It also required participants to switch their attention between feature dimensions on a trial-by-trial basis, thus taxing executive processes. Furthermore, we used a response paradigm that captured task-irrelevant motor output (TIMO), reflecting failures to use the correct stimulus-response rule. ADHD participants had substantially higher perceptual variability than controls, especially for orientation, as well as higher TIMO. In both ADHD and controls, TIMO was strongly affected by the switch manipulation. Across participants, the perceptual variability parameter was correlated with TIMO, suggesting that perceptual deficits are associated with executive function deficits. Based on perceptual variability alone, we were able to classify participants into ADHD and controls with a mean accuracy of about 77%. Participants' self-reported General Executive Composite score correlated not only with TIMO but also with the perceptual variability parameter. Our results highlight the role of perceptual deficits in ADHD and the usefulness of computational modeling of behavior in dissociating perceptual from executive processes.
Collapse
Affiliation(s)
- Andra Mihali
- Center for Neural Science, New York University, New York, New York, USA
- Department of Psychology, New York University, New York, New York, USA
| | - Allison G. Young
- Department of Psychiatry, NYU School of Medicine, New York, New York, USA
| | - Lenard A. Adler
- Department of Psychiatry, NYU School of Medicine, New York, New York, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Science, MIT, Boston, Massachusetts, USA
| | - Wei Ji Ma
- Center for Neural Science, New York University, New York, New York, USA
- Department of Psychology, New York University, New York, New York, USA
| |
Collapse
|
334
|
Stout DM, Buchsbaum MS, Spadoni AD, Risbrough VB, Strigo IA, Matthews SC, Simmons AN. Multimodal canonical correlation reveals converging neural circuitry across trauma-related disorders of affect and cognition. Neurobiol Stress 2018; 9:241-250. [PMID: 30450388 PMCID: PMC6234282 DOI: 10.1016/j.ynstr.2018.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 07/02/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Trauma-related disorders of affect and cognition (TRACs) are associated with a high degree of diagnostic comorbidity, which may suggest that these disorders share a set of underlying neural mechanisms. TRACs are characterized by aberrations in functional and structural circuits subserving verbal memory and affective anticipation. Yet, it remains unknown how the neural circuitry underlying these multiple mechanisms contribute to TRACs. Here, in a sample of 47 combat Veterans, we measured affective anticipation using functional magnetic resonance imaging (fMRI), verbal memory with fluorodeoxyglucose positron emission tomography (FDG-PET), and grey matter volume with structural magnetic resonance imaging (sMRI). Using a voxel-based multimodal canonical correlation analysis (mCCA), the set of neural measures were statistically integrated, or fused, with a set of TRAC symptom measures including mild traumatic brain injury (mTBI), posttraumatic stress, and depression severity. The first canonical correlation pair revealed neural convergence in clusters encompassing the middle frontal gyrus and supplemental motor area, regions implicated in top-down cognitive control and affect regulation. These results highlight the potential of leveraging multivariate neuroimaging analysis for linking neurobiological mechanisms associated with TRACs, paving the way for transdiagnostic biomarkers and targets for treatment.
Collapse
Affiliation(s)
- Daniel M Stout
- Center of Excellence in Stress and Mental Health, San Diego VA Health Care System, USA.,Department of Psychiatry, University of California, San Diego, USA
| | - Monte S Buchsbaum
- Department of Psychiatry, University of California, San Diego, USA.,Department of Radiology, University of California, San Diego, USA
| | - Andrea D Spadoni
- Center of Excellence in Stress and Mental Health, San Diego VA Health Care System, USA.,Department of Psychiatry, University of California, San Diego, USA
| | - Victoria B Risbrough
- Center of Excellence in Stress and Mental Health, San Diego VA Health Care System, USA.,Department of Psychiatry, University of California, San Diego, USA
| | - Irina A Strigo
- Department of Psychiatry, University of California, San Francisco, & San Francisco VA Health Care System, USA
| | - Scott C Matthews
- Center of Excellence in Stress and Mental Health, San Diego VA Health Care System, USA.,Department of Psychiatry, University of California, San Diego, USA
| | - Alan N Simmons
- Center of Excellence in Stress and Mental Health, San Diego VA Health Care System, USA.,Department of Psychiatry, University of California, San Diego, USA
| |
Collapse
|
335
|
Kamigaki T. Prefrontal circuit organization for executive control. Neurosci Res 2018; 140:23-36. [PMID: 30227166 DOI: 10.1016/j.neures.2018.08.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/21/2018] [Accepted: 08/29/2018] [Indexed: 10/28/2022]
Abstract
The essential role of executive control is to select the most appropriate behavior among other candidates depending on the sensory information (exogenous information) and on the subject's internal state (endogenous information). Here I review series of the evidence implicating that the rodent prefrontal cortex (PFC) evaluates and compares the expected outcome for candidate actions that are automatically primed by exogenous and endogenous information, and selects the most appropriate action while inhibiting the others, with different PFC subregions contributing to distinct aspects of the computation via differential recruitments of the distributed networks. The recurrent nature of the PFC networks further facilitates the computation by integrating bottom-up signals over a long timescale. I also overview the local circuit organization in the PFC, where vasoactive intestinal peptide-positive (VIP) GABAergic interneurons are tightly linked with the cholinergic system and play significant roles in regulating executive control signals. The empirical evidence inspires the disinhibitory module hypothesis of the PFC organization that a group of pyramidal neurons and interneurons forms a disinhibitory module with similar task-variable selectivity in the PFC, and long-range inputs and neuromodulations in these modules exert a distributed gain modulation of the ongoing executive control signals by adjusting VIP neuron activity.
Collapse
Affiliation(s)
- Tsukasa Kamigaki
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
336
|
Burke KJ, Keeshen CM, Bender KJ. Two Forms of Synaptic Depression Produced by Differential Neuromodulation of Presynaptic Calcium Channels. Neuron 2018; 99:969-984.e7. [PMID: 30122380 PMCID: PMC7874512 DOI: 10.1016/j.neuron.2018.07.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/03/2018] [Accepted: 07/18/2018] [Indexed: 01/09/2023]
Abstract
Neuromodulators are important regulators of synaptic transmission throughout the brain. At the presynaptic terminal, neuromodulation of calcium channels (CaVs) can affect transmission not only by changing neurotransmitter release probability, but also by shaping short-term plasticity (STP). Indeed, changes in STP are often considered a requirement for defining a presynaptic site of action. Nevertheless, some synapses exhibit non-canonical forms of neuromodulation, where release probability is altered without a corresponding change in STP. Here, we identify biophysical mechanisms whereby both canonical and non-canonical presynaptic neuromodulation can occur at the same synapse. At a subset of glutamatergic terminals in prefrontal cortex, GABAB and D1/D5 dopamine receptors suppress release probability with and without canonical increases in short-term facilitation by modulating different aspects of presynaptic CaV function. These findings establish a framework whereby signaling from multiple neuromodulators can converge on presynaptic CaVs to differentially tune release dynamics at the same synapse.
Collapse
Affiliation(s)
- Kenneth J Burke
- Neuroscience Graduate Program, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Caroline M Keeshen
- Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin J Bender
- Neuroscience Graduate Program, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
337
|
Barnett L, Barrett AB, Seth AK. Solved problems for Granger causality in neuroscience: A response to Stokes and Purdon. Neuroimage 2018; 178:744-748. [DOI: 10.1016/j.neuroimage.2018.05.067] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/01/2018] [Accepted: 05/27/2018] [Indexed: 10/14/2022] Open
|
338
|
Huk A, Bonnen K, He BJ. Beyond Trial-Based Paradigms: Continuous Behavior, Ongoing Neural Activity, and Natural Stimuli. J Neurosci 2018; 38:7551-7558. [PMID: 30037835 PMCID: PMC6113904 DOI: 10.1523/jneurosci.1920-17.2018] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/21/2022] Open
Abstract
The vast majority of experiments examining perception and behavior are conducted using experimental paradigms that adhere to a rigid trial structure: each trial consists of a brief and discrete series of events and is regarded as independent from all other trials. The assumptions underlying this structure ignore the reality that natural behavior is rarely discrete, brain activity follows multiple time courses that do not necessarily conform to the trial structure, and the natural environment has statistical structure and dynamics that exhibit long-range temporal correlation. Modern advances in statistical modeling and analysis offer tools that make it feasible for experiments to move beyond rigid independent and identically distributed trial structures. Here we review literature that serves as evidence for the feasibility and advantages of moving beyond trial-based paradigms to understand the neural basis of perception and cognition. Furthermore, we propose a synthesis of these efforts, integrating the characterization of natural stimulus properties with measurements of continuous neural activity and behavioral outputs within the framework of sensory-cognitive-motor loops. Such a framework provides a basis for the study of natural statistics, naturalistic tasks, and/or slow fluctuations in brain activity, which should provide starting points for important generalizations of analytical tools in neuroscience and subsequent progress in understanding the neural basis of perception and cognition.
Collapse
Affiliation(s)
- Alexander Huk
- Center for Perceptual Systems,
- Institute for Neuroscience
- Departments of Psychology and Neuroscience, The University of Texas at Austin, Austin 78712, Texas, and
| | | | - Biyu J He
- Departments of Neurology, Neuroscience and Physiology, and Radiology, Neuroscience Institute, New York University Langone Medical Center, New York, New York 10016
| |
Collapse
|
339
|
Chakraborty S, Ouhaz Z, Mason S, Mitchell AS. Macaque parvocellular mediodorsal thalamus: dissociable contributions to learning and adaptive decision-making. Eur J Neurosci 2018; 49:1041-1054. [PMID: 30022540 PMCID: PMC6519510 DOI: 10.1111/ejn.14078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/13/2022]
Abstract
Distributed brain networks govern adaptive decision‐making, new learning and rapid updating of information. However, the functional contribution of the rhesus macaque monkey parvocellular nucleus of the mediodorsal thalamus (MDpc) in these key higher cognitive processes remains unknown. This study investigated the impact of MDpc damage in cognition. Preoperatively, animals were trained on an object‐in‐place scene discrimination task that assesses rapid learning of novel information within each session. Bilateral neurotoxic (NMDA and ibotenic acid) MDpc lesions did not impair new learning unless the monkey had also sustained damage to the magnocellular division of the MD (MDmc). Contralateral unilateral MDpc and MDmc damage also impaired new learning, while selective unilateral MDmc damage produced new learning deficits that eventually resolved with repeated testing. In contrast, during food reward (satiety) devaluation, monkeys with either bilateral MDpc damage or combined MDpc and MDmc damage showed attenuated food reward preferences compared to unoperated control monkeys; the selective unilateral MDmc damage left performance intact. Our preliminary results demonstrate selective dissociable roles for the two adjacent nuclei of the primate MD, namely, MDpc, as part of a frontal cortical network, and the MDmc, as part of a frontal‐temporal cortical network, in learning, memory and the cognitive control of behavioural choices after changes in reward value. Moreover, the functional cognitive deficits produced after differing MD damage show that the different subdivisions of the MD thalamus support distributed neural networks to rapidly and fluidly incorporate task‐relevant information, in order to optimise the animals’ ability to receive rewards.
Collapse
Affiliation(s)
- Subhojit Chakraborty
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Zakaria Ouhaz
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Stuart Mason
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford, OX1 3SR, UK
| |
Collapse
|
340
|
Dissecting executive control circuits with neuron types. Neurosci Res 2018; 141:13-22. [PMID: 30110598 DOI: 10.1016/j.neures.2018.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/30/2018] [Accepted: 07/23/2018] [Indexed: 12/17/2022]
Abstract
Executive control supports our ability to behave flexibly in accordance with a given situation. In order to fully understand how cortical circuits achieve this task, we need to determine the intrinsic physiological and connection profiles of neuron types and analyze their functional roles during behavior. This article introduces current knowledge regarding neuron type classification in the cortex and reviews our understanding of how each neuron type is incorporated in the functional cortical circuit to implement executive control. Recent work using neuron-type specific imaging/recording has begun to reveal significant functional organizations of pyramidal neurons and their subtypes depending on the layers and long-range projection targets. GABAergic interneurons also make crucial contributions to executive control in a subtype-specific manner. Vasoactive intestinal peptide (VIP)-positive interneurons are preferentially recruited by top-down inputs from higher-order cortical regions and amplify the signals in pyramidal neurons by inhibiting other interneuron subtypes. Particularly in the prefrontal cortex, one of the hierarchically highest cortices, executive control signals are regulated by the VIP neuron-mediated disinhibition and robustly maintained through recurrent connections at a long time scale. The differences and commonalities in the functional organization between sensory areas and the prefrontal cortex are discussed.
Collapse
|
341
|
Abstract
The thalamus has long been suspected to have an important role in cognition, yet recent theories have favored a more corticocentric view. According to this view, the thalamus is an excitatory feedforward relay to or between cortical regions, and cognitively relevant computations are exclusively cortical. Here, we review anatomical, physiological, and behavioral studies along evolutionary and theoretical dimensions, arguing for essential and unique thalamic computations in cognition. Considering their architectural features as well as their ability to initiate, sustain, and switch cortical activity, thalamic circuits appear uniquely suited for computing contextual signals that rapidly reconfigure task-relevant cortical representations. We introduce a framework that formalizes this notion, show its consistency with several findings, and discuss its prediction of thalamic roles in perceptual inference and behavioral flexibility. Overall, our framework emphasizes an expanded view of the thalamus in cognitive computations and provides a roadmap to test several of its theoretical and experimental predictions.
Collapse
Affiliation(s)
- Rajeev V. Rikhye
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Ralf D. Wimmer
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Stanley Center for Psychiatric Genetics, Broad Institute, Cambridge, Massachusetts 02139, USA
| | - Michael M. Halassa
- Department of Brain and Cognitive Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Stanley Center for Psychiatric Genetics, Broad Institute, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
342
|
Setareh H, Deger M, Gerstner W. Excitable neuronal assemblies with adaptation as a building block of brain circuits for velocity-controlled signal propagation. PLoS Comput Biol 2018; 14:e1006216. [PMID: 29979674 PMCID: PMC6051644 DOI: 10.1371/journal.pcbi.1006216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 07/18/2018] [Accepted: 05/21/2018] [Indexed: 01/07/2023] Open
Abstract
The time scale of neuronal network dynamics is determined by synaptic interactions and neuronal signal integration, both of which occur on the time scale of milliseconds. Yet many behaviors like the generation of movements or vocalizations of sounds occur on the much slower time scale of seconds. Here we ask the question of how neuronal networks of the brain can support reliable behavior on this time scale. We argue that excitable neuronal assemblies with spike-frequency adaptation may serve as building blocks that can flexibly adjust the speed of execution of neural circuit function. We show in simulations that a chain of neuronal assemblies can propagate signals reliably, similar to the well-known synfire chain, but with the crucial difference that the propagation speed is slower and tunable to the behaviorally relevant range. Moreover we study a grid of excitable neuronal assemblies as a simplified model of the somatosensory barrel cortex of the mouse and demonstrate that various patterns of experimentally observed spatial activity propagation can be explained. Models of activity propagation in cortical networks have often been based on feedforward structures. Here we propose a model of activity propagation, called excitation chain, which does not need such a feedforward structure. The model is composed of excitable neural assemblies with spike-frequency adaptation, connected bidirectionally in a row or a grid. This prototypical neural circuit can propagate activity forwards, backwards or in both directions. Furthermore, the propagation speed is slow enough to trigger the generation of behaviors on the time scale of hundreds of milliseconds. A two-dimensional variant of the model is able to generate different activity propagation patterns, similar to spontaneous activity and stimulus-evoked responses in anesthetized mouse barrel cortex. We propose the excitation chain model as a basic component that can be employed in various ways to create spiking neural circuit models that generate signals on behavioral time scales. In contrast to abstract models of excitable media, our model makes an explicit link to the time scale of neuronal spikes.
Collapse
Affiliation(s)
- Hesam Setareh
- School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
| | - Moritz Deger
- School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
- Institute for Zoology, Faculty of Mathematics and Natural Sciences, University of Cologne, Köln, Germany
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and Brain Mind Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
343
|
Kawaguchi Y. Pyramidal Cell Subtypes and Their Synaptic Connections in Layer 5 of Rat Frontal Cortex. Cereb Cortex 2018; 27:5755-5771. [PMID: 29028949 DOI: 10.1093/cercor/bhx252] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/06/2017] [Indexed: 12/31/2022] Open
Abstract
The frontal cortical areas make a coordinated response that generates appropriate behavior commands, using individual local circuits with corticostriatal and corticocortical connections in longer time scales than sensory areas. In secondary motor cortex (M2), situated between the prefrontal and primary motor areas, major subtypes of layer 5 corticostriatal cells are crossed-corticostriatal (CCS) cells innervating both sides of striatum, and corticopontine (CPn) cells projecting to the ipsilateral striatum and pontine nuclei. CCS cells innervate CPn cells unidirectionally: the former are therefore hierarchically higher than the latter among L5 corticostriatal cells. CCS cells project directly to both frontal and nonfrontal areas. On the other hand, CPn cells innervate the thalamus and layer 1a of frontal areas, where thalamic fibers relaying basal ganglia outputs are distributed. Thus, CCS cells can make activities of frontal areas in concert with those of nonfrontal area using corticocortical loops, whereas CPn cells are more involved in closed corticostriatal loops than CCS cells. Since reciprocal connections between CPn cells with facilitatory synapses may be related to persistent activity, CPn cells play a key role of longer time constant processes in corticostriatal as well as in corticocortical loops between the frontal areas.
Collapse
Affiliation(s)
- Yasuo Kawaguchi
- Division of Cerebral Circuitry, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.,Department of Physiological Sciences, SOKENDAI (Graduate University for Advanced Studies), Okazaki, Japan
| |
Collapse
|
344
|
Phillips WA, Bachmann T, Storm JF. Apical Function in Neocortical Pyramidal Cells: A Common Pathway by Which General Anesthetics Can Affect Mental State. Front Neural Circuits 2018; 12:50. [PMID: 30013465 PMCID: PMC6036169 DOI: 10.3389/fncir.2018.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/05/2018] [Indexed: 11/27/2022] Open
Abstract
It has been argued that general anesthetics suppress the level of consciousness, or the contents of consciousness, or both. The distinction between level and content is important because, in addition to clarifying the mechanisms of anesthesia, it may help clarify the neural bases of consciousness. We assess these arguments in the light of evidence that both the level and the content of consciousness depend upon the contribution of apical input to the information processing capabilities of neocortical pyramidal cells which selectively amplify relevant signals. We summarize research suggesting that what neocortical pyramidal cells transmit information about can be distinguished from levels of arousal controlled by sub-cortical nuclei and from levels of prioritization specified by interactions within the thalamocortical system. Put simply, on the basis of the observations reviewed, we hypothesize that when conscious we have particular, directly experienced, percepts, thoughts, feelings and intentions, and that general anesthetics affect consciousness by interfering with the subcellular processes by which particular activities are selectively amplified when relevant to the current context.
Collapse
Affiliation(s)
- William A. Phillips
- Faculty of Natural Sciences, Psychology, University of Stirling, Stirling, United Kingdom
| | - Talis Bachmann
- Department of Penal Law, University of Tartu, Tartu, Estonia
| | - Johan F. Storm
- IBMS Department of Physiology, University of Oslo, Oslo, Norway
| |
Collapse
|
345
|
Barnett SC, Perry BAL, Dalrymple-Alford JC, Parr-Brownlie LC. Optogenetic stimulation: Understanding memory and treating deficits. Hippocampus 2018; 28:457-470. [DOI: 10.1002/hipo.22960] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 01/01/2023]
Affiliation(s)
- S. C. Barnett
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - B. A. L. Perry
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
| | - J. C. Dalrymple-Alford
- Department of Psychology; University of Canterbury; Christchurch 8041 New Zealand
- Brain Research New Zealand; New Zealand
- New Zealand Brain Research Institute; Christchurch New Zealand
| | - L. C. Parr-Brownlie
- Brain Research New Zealand; New Zealand
- Department of Anatomy, School of Biomedical Science; Brain Health Research Centre, University of Otago; Dunedin New Zealand
| |
Collapse
|
346
|
Beas BS, Wright BJ, Skirzewski M, Leng Y, Hyun JH, Koita O, Ringelberg N, Kwon HB, Buonanno A, Penzo MA. The locus coeruleus drives disinhibition in the midline thalamus via a dopaminergic mechanism. Nat Neurosci 2018; 21:963-973. [PMID: 29915192 PMCID: PMC6035776 DOI: 10.1038/s41593-018-0167-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/25/2018] [Indexed: 12/13/2022]
Abstract
The paraventricular nucleus of the thalamus (PVT) is increasingly being recognized as a critical node linking stress detection to the emergence of adaptive behavioral responses to stress. However, despite growing evidence implicating the PVT in stress processing, the neural mechanisms by which stress impacts PVT neurocircuitry and promotes stressed states remain unknown. Here we show that stress exposure drives a rapid and persistent reduction of inhibitory transmission onto projection neurons of the posterior PVT (pPVT). This stress-induced disinhibition of the pPVT was associated with a locus coeruleus (LC)-mediated rise in the extracellular concentration of dopamine in the midline thalamus, required the function of dopamine D2 receptors on PVT neurons and increased sensitivity to stress. Our findings define the LC as an important modulator of PVT function: by controlling the inhibitory tone of the pPVT, it modulates the excitability of pPVT projection neurons and controls stress responsivity.
Collapse
Affiliation(s)
- B Sofia Beas
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Miguel Skirzewski
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Yan Leng
- National Institute of Mental Health, Bethesda, MD, USA
| | - Jung Ho Hyun
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Omar Koita
- National Institute of Mental Health, Bethesda, MD, USA
| | | | - Hyung-Bae Kwon
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.,Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Andres Buonanno
- National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Mario A Penzo
- National Institute of Mental Health, Bethesda, MD, USA.
| |
Collapse
|
347
|
Gent TC, Bandarabadi M, Herrera CG, Adamantidis AR. Thalamic dual control of sleep and wakefulness. Nat Neurosci 2018; 21:974-984. [PMID: 29892048 PMCID: PMC6438460 DOI: 10.1038/s41593-018-0164-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 04/28/2018] [Indexed: 12/31/2022]
Abstract
Slow-waves (0.5 - 4 Hz) predominate in the cortical electroencephalogram during non-rapid eye movement (NREM) sleep in mammals. They reflect the synchronization of large neuronal ensembles alternating between active (UP) and quiescent (Down) states and propagating along the neocortex. The thalamic contribution to cortical UP-states and sleep modulation remains unclear. Here we show that spontaneous firing of centromedial thalamus (CMT) neurons in mice is phase advanced to global cortical UP-states and NREM–wake transitions. Tonic optogenetic activation of CMT neurons induces NREM–wake transitions, whereas burst activation mimics UP-states in the cingulate cortex (CING) and enhances brain-wide synchrony of cortical slow-waves during sleep, through a relay in the antero-dorsal thalamus (AD). Finally, we demonstrate that CMT and AD relay neurons promote sleep recovery. These findings suggest that the firing pattern of CMT neurons can modulate brain-wide cortical activity during sleep and provides dual control of sleep-wake states.
Collapse
Affiliation(s)
- Thomas C Gent
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Carolina Gutierrez Herrera
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Antoine R Adamantidis
- Centre for Experimental Neurology, Department of Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland. .,Department of Biomedical Research (DBMR), Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.
| |
Collapse
|
348
|
Khan AG, Hofer SB. Contextual signals in visual cortex. Curr Opin Neurobiol 2018; 52:131-138. [PMID: 29883940 DOI: 10.1016/j.conb.2018.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/11/2018] [Indexed: 11/15/2022]
Abstract
Vision is an active process. What we perceive strongly depends on our actions, intentions and expectations. During visual processing, these internal signals therefore need to be integrated with the visual information from the retina. The mechanisms of how this is achieved by the visual system are still poorly understood. Advances in recording and manipulating neuronal activity in specific cell types and axonal projections together with tools for circuit tracing are beginning to shed light on the neuronal circuit mechanisms of how internal, contextual signals shape sensory representations. Here we review recent work, primarily in mice, that has advanced our understanding of these processes, focusing on contextual signals related to locomotion, behavioural relevance and predictions.
Collapse
Affiliation(s)
- Adil G Khan
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
349
|
Choking on Inhibition in the Reticular Thalamus. Epilepsy Curr 2018; 18:187-188. [DOI: 10.5698/1535-7597.18.3.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
350
|
Wicker E, Turchi J, Malkova L, Forcelli PA. Mediodorsal thalamus is required for discrete phases of goal-directed behavior in macaques. eLife 2018; 7:37325. [PMID: 29848447 PMCID: PMC6010338 DOI: 10.7554/elife.37325] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/31/2018] [Indexed: 01/01/2023] Open
Abstract
Reward contingencies are dynamic: outcomes that were valued at one point may subsequently lose value. Action selection in the face of dynamic reward associations requires several cognitive processes: registering a change in value of the primary reinforcer, adjusting the value of secondary reinforcers to reflect the new value of the primary reinforcer, and guiding action selection to optimal choices. Flexible responding has been evaluated extensively using reinforcer devaluation tasks. Performance on this task relies upon amygdala, Areas 11 and 13 of orbitofrontal cortex (OFC), and mediodorsal thalamus (MD). Differential contributions of amygdala and Areas 11 and 13 of OFC to specific sub-processes have been established, but the role of MD in these sub-processes is unknown. Pharmacological inactivation of the macaque MD during specific phases of this task revealed that MD is required for reward valuation and action selection. This profile is unique, differing from both amygdala and subregions of the OFC. Most of us have experienced feeling full after a main course, only to discover that we somehow still have room for dessert. Eating a particular foodstuff to the point of satiety makes that item temporarily less appealing. This is an example of reward devaluation. We typically respond to this phenomenon by adjusting our behavior. We give up on the main course, for example, and turn our attention instead to dessert. This ability to adjust our actions based on changes in the value of their outcomes is a form of behavioral flexibility. Several brain regions contribute to behavioral flexibility. These include the amygdala, parts of the orbitofrontal cortex, and the mediodorsal thalamus. Wicker et al. have now explored the role of the mediodorsal thalamus by temporarily inactivating it in monkeys performing a task involving reward devaluation. The monkeys learned to associate one set of objects with peanuts and another with fruit. They were then given unlimited access to either peanuts or fruit. Finally, they were offered a choice between the two sets of objects. Like people who opt for dessert rather than another helping of a main course, the monkeys that had received peanuts chose the objects associated with fruit, and vice versa. Temporarily inactivating the mediodorsal thalamus prevented this change in behavior. This occurred if the inactivation took place while the monkeys had unlimited access to the reward, or if it took place while they were choosing between the two objects. The mediodorsal thalamus is thus required both to update the value of a reward and to select the best course of action. This is in contrast to the amygdala and the orbitofrontal cortex, which each support only one of these processes. Impaired behavioral flexibility is a hallmark of neuropsychiatric disorders, including addiction. Understanding the brain networks that support flexible responding may help improve the treatment of such disorders. As therapies that involve electrically stimulating the brain become more common, knowing which regions to avoid will be just as important as identifying new targets.
Collapse
Affiliation(s)
- Evan Wicker
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States
| | - Janita Turchi
- Laboratory of Neuropsychology, National Institute of Mental Health, Maryland, United States
| | - Ludise Malkova
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, United States
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, United States.,Department of Neuroscience, Georgetown University, Washington, United States
| |
Collapse
|