301
|
Abstract
Mitochondria are the source of damage-associated molecular patterns (DAMPs), which are molecules that play a key modulatory role in immune cells. These molecules include proteins and peptides, such as N-formyl peptides and TFAM, as well as lipids, and metabolites such as cardiolipin, succinate and ATP, and also mitochondrial DNA (mtDNA). Recent data indicate that somatic cells sense mitochondrial DAMPs and trigger protective mechanisms in response to these signals. In this review we focus on the well-described effects of mitochondrial DAMPs on immune cells and also how these molecules induce immunogenic responses in non-immune cells. Special attention will be paid to the response to mtDNA.
Collapse
Affiliation(s)
- Aida Rodríguez-Nuevo
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, 08028 Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III
| | - Antonio Zorzano
- Institute for Research in Biomedicine (IRB Barcelona). The Barcelona Institute of Science and Technology, Barcelona, Spain.,Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, 08028 Barcelona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III
| |
Collapse
|
302
|
Fu YZ, Guo Y, Zou HM, Su S, Wang SY, Yang Q, Luo MH, Wang YY. Human cytomegalovirus protein UL42 antagonizes cGAS/MITA-mediated innate antiviral response. PLoS Pathog 2019; 15:e1007691. [PMID: 31107917 PMCID: PMC6527189 DOI: 10.1371/journal.ppat.1007691] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 03/08/2019] [Indexed: 12/20/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) senses viral DNA in the cytosol and then catalyzes synthesis of the second messenger cGAMP, which activates the ER-localized adaptor protein Mediator of IRF3 Activator (MITA) to initiate innate antiviral response. Human cytomegalovirus (HCMV) proteins can antagonize host immune responses to promote latent infection. Here, we identified HCMV UL42 as a negative regulator of cGAS/MITA-dependent antiviral response. UL42-deficiency enhances HCMV-induced production of type I interferons (IFNs) and downstream antiviral genes. Consistently, wild-type HCMV replicates more efficiently than UL42-deficient HCMV. UL42 interacts with both cGAS and MITA. UL42 inhibits DNA binding, oligomerization and enzymatic activity of cGAS. UL42 also impairs translocation of MITA from the ER to perinuclear punctate structures, which is required for MITA activation, by facilitating p62/LC3B-mediated degradation of translocon-associated protein β (TRAPβ). These results suggest that UL42 can antagonize innate immune response to HCMV by targeting the core components of viral DNA-triggered signaling pathways. Recognition of viral DNA by the cytosolic DNA sensor cGAS and subsequent induction of type I IFNs via the cGAS-MITA signaling axis are important for host antiviral innate immunity. The human cytomegalovirus (HCMV) causes complications in immunodeficient populations and is a major cause of birth defects. It is known that HCMV suppresses innate immunity, which is pivotal for establishing immune evasion and latent infection. In this study, we found that HCMV protein UL42 inhibits innate antiviral responses thus promotes HCMV replication. UL42 functions by targeting cGAS and MITA through distinct mechanisms. UL42 inhibits cGAS activation by interrupting its DNA binding and oligomerization, while it targets MITA by interfering trafficking of MITA from the ER to perinuclear punctate structures, a process required for MITA activation. These findings defined an important mechanism for HCMV immune evasion, which may provide a therapeutic target for the treatment of HCMV infection.
Collapse
Affiliation(s)
- Yu-Zhi Fu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Guo
- Medical Research Institute, School of Medicine, Wuhan University,Wuhan, China
| | - Hong-Mei Zou
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shan Su
- Medical Research Institute, School of Medicine, Wuhan University,Wuhan, China
| | - Su-Yun Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qing Yang
- Medical Research Institute, School of Medicine, Wuhan University,Wuhan, China
| | - Min-Hua Luo
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yan-Yi Wang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
303
|
Cadena C, Ahmad S, Xavier A, Willemsen J, Park S, Park JW, Oh SW, Fujita T, Hou F, Binder M, Hur S. Ubiquitin-Dependent and -Independent Roles of E3 Ligase RIPLET in Innate Immunity. Cell 2019; 177:1187-1200.e16. [PMID: 31006531 PMCID: PMC6525047 DOI: 10.1016/j.cell.2019.03.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/28/2019] [Accepted: 03/07/2019] [Indexed: 01/22/2023]
Abstract
The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.
Collapse
Affiliation(s)
- Cristhian Cadena
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Sadeem Ahmad
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Audrey Xavier
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Institute of Chemistry and Biochemistry, Free University of Berlin, Germany
| | - Joschka Willemsen
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sehoon Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA
| | - Ji Woo Park
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA; Biology Department, Boston College, Chestnut Hill, MA, USA
| | - Seong-Wook Oh
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Takashi Fujita
- Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Japan
| | - Fajian Hou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, China
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response" (division F170), German Cancer Research Center, 69120 Heidelberg, Germany
| | - Sun Hur
- Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA 02115, USA.
| |
Collapse
|
304
|
Abstract
Cyclic GMP-AMP synthase (cGAS) is an innate immune system enzyme responsible for recognition of double-stranded DNA aberrantly localized in the cell cytosol. cGAS binds DNA and is activated to catalyze production of the nucleotide second messenger 2'-5'/3'-5' cyclic GMP-AMP (2'3' cGAMP). In spite of a major role for cGAS in the cellular immune response, a complete understanding of cGAS biology has been limited by a lack of genetic tools to rapidly screen cGAS activity, instability of human cGAS-DNA interactions in vitro, and a previous absence of structural information for the human cGAS-DNA complex. Here we detail procedures to map the molecular determinants of cGAS activation and describe methods developed to prepare human cGAS-DNA crystals for structural analysis. Together with earlier systems established to study mammalian homologs of cGAS, these innovations provide a foundation to understand and therapeutically target human cGAS biology.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Microbiology, Harvard Medical School, Boston, MA, United States; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Aaron T Whiteley
- Department of Microbiology, Harvard Medical School, Boston, MA, United States; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, MA, United States; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, United States; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, United States.
| |
Collapse
|
305
|
Ng CS, Kato H, Fujita T. Fueling Type I Interferonopathies: Regulation and Function of Type I Interferon Antiviral Responses. J Interferon Cytokine Res 2019; 39:383-392. [PMID: 30897023 DOI: 10.1089/jir.2019.0037] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In conjunction with the development of genome-wide technology, numerous studies have revealed the importance of regulatory mechanisms to avoid the onset of autoimmunity. In this, protein regulators and the newly identified low-abundant RNA species participate in the regulation of type I interferon (IFN-I) and proinflammatory genes induced by innate immune sensors. In this review, we briefly look into some of the autoimmune diseases profiled by dysregulations of IFN-I signaling and the regulatory mechanisms critical for immunological homeostasis.
Collapse
Affiliation(s)
- Chen Seng Ng
- 1 Institute for Quantitative and Computational Biosciences, Immunology and Molecular Genetics, University of California, Los Angeles, California.,2 Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California
| | - Hiroki Kato
- 3 Institute of Cardiovascular Immunology, University Hospitals, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- 4 Laboratory of Molecular Genetics, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.,5 Laboratory of Molecular and Cellular Immunology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
306
|
Duvvuri B, Lood C. Cell-Free DNA as a Biomarker in Autoimmune Rheumatic Diseases. Front Immunol 2019; 10:502. [PMID: 30941136 PMCID: PMC6433826 DOI: 10.3389/fimmu.2019.00502] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/25/2019] [Indexed: 12/11/2022] Open
Abstract
Endogenous DNA is primarily found intracellularly in nuclei and mitochondria. However, extracellular, cell-free (cf) DNA, has been observed in several pathological conditions, including autoimmune diseases, prompting the interest of developing cfDNA as a potential biomarker. There is an upsurge in studies considering cfDNA to stratify patients, monitor the treatment response and predict disease progression, thus evaluating the prognostic potential of cfDNA for autoimmune diseases. Since the discovery of elevated cfDNA levels in lupus patients in the 1960s, cfDNA research in autoimmune diseases has mainly focused on the overall quantification of cfDNA and the association with disease activity. However, with recent technological advancements, including genomic and methylomic sequencing, qualitative changes in cfDNA are being explored in autoimmune diseases, similar to the ones used in molecular profiling of cfDNA in cancer patients. Further, the intracellular origin, e.g., if derived from mitochondrial or nuclear source, as well as the complexing with carrier molecules, including LL-37 and HMGB1, has emerged as important factors to consider when analyzing the quality and inflammatory potential of cfDNA. The clinical relevance of cfDNA in autoimmune rheumatic diseases is strengthened by mechanistic insights into the biological processes that result in an enhanced release of DNA into the circulation during autoimmune and inflammatory conditions. Prior work have established an important role of accelerated apoptosis and impaired clearance in leakage of nucleic acids into the extracellular environment. Findings from more recent studies, including our own investigations, have demonstrated that NETosis, a neutrophil cell death process, can result in a selective extrusion of inflammatory mitochondrial DNA; a process which is enhanced in patients with lupus and rheumatoid arthritis. In this review, we will summarize the evolution of cfDNA, both nuclear and mitochondrial DNA, as biomarkers for autoimmune rheumatic diseases and discuss limitations, challenges and implications to establish cfDNA as a biomarker for clinical use. This review will also highlight recent advancements in mechanistic studies demonstrating mitochondrial DNA as a central component of cfDNA in autoimmune rheumatic diseases.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Christian Lood
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
307
|
Yum S, Li M, Frankel AE, Chen ZJ. Roles of the cGAS-STING Pathway in Cancer Immunosurveillance and Immunotherapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2019. [DOI: 10.1146/annurev-cancerbio-030518-055636] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor that initiates innate immune responses. DNA-bound cGAS produces cyclic GMP-AMP (cGAMP), which activates stimulator of interferon genes (STING) to induce inflammatory cytokines and other immune mediators. cGAS detects DNA without sequence specificity and responds to both cytosolic foreign DNA from pathogens and self-DNA leaked into the cytosol due to genome instability or cellular damage. Because of the diverse sources of cytosolic DNA, the cGAS-STING pathway plays a critical role during infection, autoimmune diseases, and senescence. Moreover, cGAS detects tumor-derived DNA and stimulates endogenous antitumor immunity. Thus, the cGAS-STING pathway is a promising target for cancer immunotherapy. Here, we review the role of the cGAS-STING pathway in various diseases and highlight various approaches targeting the cGAS-STING pathway for cancer therapy.
Collapse
Affiliation(s)
- Seoyun Yum
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Minghao Li
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Arthur E. Frankel
- Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama 36604, USA
| | - Zhijian J. Chen
- Department of Molecular Biology and Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
308
|
Maeda M, Kojima T, Song Y, Takayama S. DNA-Based Biomaterials for Immunoengineering. Adv Healthc Mater 2019; 8:e1801243. [PMID: 30516349 PMCID: PMC6407644 DOI: 10.1002/adhm.201801243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Indexed: 12/19/2022]
Abstract
Man-made DNA materials hold the potential to modulate specific immune pathways toward immunoactivating or immunosuppressive cascades. DNA-based biomaterials introduce DNA into the extracellular environment during implantation or delivery, and subsequently intracellularly upon phagocytosis or degradation of the material. Therefore, the immunogenic functionality of biological and synthetic extracellular DNA should be considered to achieve desired immune responses. In vivo, extracellular DNA from both endogenous and exogenous sources holds immunoactivating functions which can be traced back to the molecular features of DNA, such as sequence and length. Extracellular DNA is recognized as damage-associated molecular patterns (DAMPs), or pathogen-associated molecular patterns (PAMPs), by immune cell receptors, activating either proinflammatory signaling pathways or immunosuppressive cell functions. Although extracellular DNA promotes protective immune responses during early inflammation such as bacterial killing, recent advances demonstrate that unresolved and elevated DNA concentrations may contribute to the pathogenesis of autoimmune diseases, cancer, and fibrosis. Therefore, addressing the immunogenicity of DNA enables immune responses to be engineered by optimizing their activating and suppressive performance per application. To this end, emerging biology relevant to the generation of extracellular DNA, DNA sensors, and its role concerning existing and future synthetic DNA biomaterials are reviewed.
Collapse
Affiliation(s)
- Midori Maeda
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 950 Atlantic Dr NW. Atlanta, GA 30332 USA
- The Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA 30332 USA
| | - Taisuke Kojima
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 950 Atlantic Dr NW. Atlanta, GA 30332 USA
- The Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA 30332 USA
| | - Yang Song
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 950 Atlantic Dr NW. Atlanta, GA 30332 USA
- The Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA 30332 USA
| | - Shuichi Takayama
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, 950 Atlantic Dr NW. Atlanta, GA 30332 USA
- The Parker H Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta GA 30332 USA,
| |
Collapse
|
309
|
Gregg RW, Sarkar SN, Shoemaker JE. Mathematical modeling of the cGAS pathway reveals robustness of DNA sensing to TREX1 feedback. J Theor Biol 2019; 462:148-157. [DOI: 10.1016/j.jtbi.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/09/2018] [Accepted: 11/01/2018] [Indexed: 01/12/2023]
|
310
|
Uggenti C, Lepelley A, Crow YJ. Self-Awareness: Nucleic Acid-Driven Inflammation and the Type I Interferonopathies. Annu Rev Immunol 2019; 37:247-267. [PMID: 30633609 DOI: 10.1146/annurev-immunol-042718-041257] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recognition of foreign nucleic acids is the primary mechanism by which a type I interferon-mediated antiviral response is triggered. Given that human cells are replete with DNA and RNA, this evolutionary strategy poses an inherent biological challenge, i.e., the fundamental requirement to reliably differentiate self-nucleic acids from nonself nucleic acids. We suggest that the group of Mendelian inborn errors of immunity referred to as the type I interferonopathies relate to a breakdown of self/nonself discrimination, with the associated mutant genotypes involving molecules playing direct or indirect roles in nucleic acid signaling. This perspective begs the question as to the sources of self-derived nucleic acids that drive an inappropriate immune response. Resolving this question will provide fundamental insights into immune tolerance, antiviral signaling, and complex autoinflammatory disease states. Here we develop these ideas, discussing type I interferonopathies within the broader framework of nucleic acid-driven inflammation.
Collapse
Affiliation(s)
- Carolina Uggenti
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom;
| | - Alice Lepelley
- Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris 75015, France
| | - Yanick J Crow
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom; .,Laboratory of Neurogenetics and Neuroinflammation, Institut Imagine, Paris 75015, France.,Paris Descartes University, Sorbonne-Paris-Cité, Paris 75006, France
| |
Collapse
|
311
|
Ghosh A, Shao L, Sampath P, Zhao B, Patel NV, Zhu J, Behl B, Parise RA, Beumer JH, O'Sullivan RJ, DeLuca NA, Thorne SH, Rathinam VAK, Li P, Sarkar SN. Oligoadenylate-Synthetase-Family Protein OASL Inhibits Activity of the DNA Sensor cGAS during DNA Virus Infection to Limit Interferon Production. Immunity 2019; 50:51-63.e5. [PMID: 30635239 DOI: 10.1016/j.immuni.2018.12.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/23/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
Interferon-inducible human oligoadenylate synthetase-like (OASL) and its mouse ortholog, Oasl2, enhance RNA-sensor RIG-I-mediated type I interferon (IFN) induction and inhibit RNA virus replication. Here, we show that OASL and Oasl2 have the opposite effect in the context of DNA virus infection. In Oasl2-/- mice and OASL-deficient human cells, DNA viruses such as vaccinia, herpes simplex, and adenovirus induced increased IFN production, which resulted in reduced virus replication and pathology. Correspondingly, ectopic expression of OASL in human cells inhibited IFN induction through the cGAS-STING DNA-sensing pathway. cGAS was necessary for the reduced DNA virus replication observed in OASL-deficient cells. OASL directly and specifically bound to cGAS independently of double-stranded DNA, resulting in a non-competitive inhibition of the second messenger cyclic GMP-AMP production. Our findings define distinct mechanisms by which OASL differentially regulates host IFN responses during RNA and DNA virus infection and identify OASL as a negative-feedback regulator of cGAS.
Collapse
Affiliation(s)
- Arundhati Ghosh
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Lulu Shao
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Padmavathi Sampath
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Nidhi V Patel
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Bharat Behl
- Department of Immunology, University of Connecticut Health School of Medicine, Farmington, CT 06030, USA
| | - Robert A Parise
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15213, USA
| | - Jan H Beumer
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA 15213, USA
| | - Roderick J O'Sullivan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Neal A DeLuca
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Stephen H Thorne
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Vijay A K Rathinam
- Department of Immunology, University of Connecticut Health School of Medicine, Farmington, CT 06030, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Saumendra N Sarkar
- Cancer Virology Program, University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
312
|
de Sousa-Pereira P, Abrantes J, Bauernfried S, Pierini V, Esteves PJ, Keppler OT, Pizzato M, Hornung V, Fackler OT, Baldauf HM. The antiviral activity of rodent and lagomorph SERINC3 and SERINC5 is counteracted by known viral antagonists. J Gen Virol 2018; 100:278-288. [PMID: 30566072 DOI: 10.1099/jgv.0.001201] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A first step towards the development of a human immunodeficiency virus (HIV) animal model has been the identification and surmounting of species-specific barriers encountered by HIV along its replication cycle in cells from small animals. Serine incorporator proteins 3 (SERINC3) and 5 (SERINC5) were recently identified as restriction factors that reduce HIV-1 infectivity. Here, we compared the antiviral activity of SERINC3 and SERINC5 among mice, rats and rabbits, and their susceptibility to viral counteraction to their human counterparts. In the absence of viral antagonists, rodent and lagomorph SERINC3 and SERINC5 displayed anti-HIV activity in a similar range to human controls. Vesicular stomatitis virus G protein (VSV-G) pseudotyped virions were considerably less sensitive to restriction by all SERINC3/5 orthologs. Interestingly, HIV-1 Nef, murine leukemia virus (MLV) GlycoGag and equine infectious anemia virus (EIAV) S2 counteracted the antiviral activity of all SERINC3/5 orthologs with similar efficiency. Our results demonstrate that the antiviral activity of SERINC3/5 proteins is conserved in rodents and rabbits, and can be overcome by all three previously reported viral antagonists.
Collapse
Affiliation(s)
- Patrícia de Sousa-Pereira
- 3Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany.,1CIBIO/InBIO- Research Network in Biodiversity and Evolutionary Biology, Campus de Vairão, University of Porto, Vairão, Portugal.,5Institute of Virology, Technische Universität München/Helmholtz Zentrum, Munich, Germany.,4Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,2Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Joana Abrantes
- 1CIBIO/InBIO- Research Network in Biodiversity and Evolutionary Biology, Campus de Vairão, University of Porto, Vairão, Portugal
| | - Stefan Bauernfried
- 6Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Virginia Pierini
- 7Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Pedro José Esteves
- 1CIBIO/InBIO- Research Network in Biodiversity and Evolutionary Biology, Campus de Vairão, University of Porto, Vairão, Portugal.,2Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal.,8CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, Gandra, Portugal
| | - Oliver T Keppler
- 3Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany.,4Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany.,5Institute of Virology, Technische Universität München/Helmholtz Zentrum, Munich, Germany
| | - Massimo Pizzato
- 9University of Trento, Centre for Integrative Biology, Trento, Italy
| | - Veit Hornung
- 6Gene Center and Department of Biochemistry, LMU München, Munich, Germany
| | - Oliver T Fackler
- 7Department of Infectious Diseases, Integrative Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hanna-Mari Baldauf
- 5Institute of Virology, Technische Universität München/Helmholtz Zentrum, Munich, Germany.,3Institute of Medical Virology, University Hospital Frankfurt, Frankfurt, Germany.,4Max von Pettenkofer Institute & Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| |
Collapse
|
313
|
G3BP1 promotes DNA binding and activation of cGAS. Nat Immunol 2018; 20:18-28. [PMID: 30510222 DOI: 10.1038/s41590-018-0262-4] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/17/2018] [Indexed: 01/05/2023]
Abstract
Cyclic GMP-AMP synthase (cGAS) is a key sensor responsible for cytosolic DNA detection. Here we report that GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) is critical for DNA sensing and efficient activation of cGAS. G3BP1 enhanced DNA binding of cGAS by promoting the formation of large cGAS complexes. G3BP1 deficiency led to inefficient DNA binding by cGAS and inhibited cGAS-dependent interferon (IFN) production. The G3BP1 inhibitor epigallocatechin gallate (EGCG) disrupted existing G3BP1-cGAS complexes and inhibited DNA-triggered cGAS activation, thereby blocking DNA-induced IFN production both in vivo and in vitro. EGCG administration blunted self DNA-induced autoinflammatory responses in an Aicardi-Goutières syndrome (AGS) mouse model and reduced IFN-stimulated gene expression in cells from a patient with AGS. Thus, our study reveals that G3BP1 physically interacts with and primes cGAS for efficient activation. Furthermore, EGCG-mediated inhibition of G3BP1 provides a potential treatment for cGAS-related autoimmune diseases.
Collapse
|
314
|
Heil M, Vega-Muñoz I. Nucleic Acid Sensing in Mammals and Plants: Facts and Caveats. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 345:225-285. [PMID: 30904194 DOI: 10.1016/bs.ircmb.2018.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The accumulation of nucleic acids in aberrant compartments is a signal of danger: fragments of cytosolic or extracellular self-DNA indicate cellular dysfunctions or disruption, whereas cytosolic fragments of nonself-DNA or RNA indicate infections. Therefore, nucleic acids trigger immunity in mammals and plants. In mammals, endosomal Toll-like receptors (TLRs) sense single-stranded (ss) or double-stranded (ds) RNA or CpG-rich DNA, whereas various cytosolic receptors sense dsDNA. Although a self/nonself discrimination could favor targeted immune responses, no sequence-specific sensing of nucleic acids has been reported for mammals. Specific immune responses to extracellular self-DNA versus DNA from related species were recently reported for plants, but the underlying mechanism remains unknown. The subcellular localization of mammalian receptors can favor self/nonself discrimination based on the localization of DNA fragments. However, autoantibodies and diverse damage-associated molecular patterns (DAMPs) shuttle DNA through membranes, and most of the mammalian receptors share downstream signaling elements such as stimulator of interferon genes (STING) and the master transcription regulators, nuclear factor (NF)-κB, and interferon regulatory factor 3 (IRF3). The resulting type I interferon (IFN) response stimulates innate immunity against multiple threats-from infection to physical injury or endogenous DNA damage-all of which lead to the accumulation of eDNA or cytoplasmatic dsDNA. Therefore, no or only low selective pressures might have favored a strict self/nonself discrimination in nucleic acid sensing. We conclude that the discrimination between self- and nonself-DNA is likely to be less strict-and less important-than assumed originally.
Collapse
Affiliation(s)
- Martin Heil
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico.
| | - Isaac Vega-Muñoz
- Departmento de Ingeniería Genética, CINVESTAV-Irapuato, Irapuato, Guanajuato, Mexico
| |
Collapse
|
315
|
Zheng L, Zhang H, Tang Y. In lupus nephritis, how do extracellular DNAs trigger type I interferon secretion: Under the assistance of HMGB1-cGAS? Med Hypotheses 2018; 121:51-53. [PMID: 30396490 DOI: 10.1016/j.mehy.2018.09.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 07/11/2018] [Accepted: 09/09/2018] [Indexed: 11/26/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease with multiple organs involved. Kidney damage is common among SLE patients. In lupus nephritis, extracellular DNA accumulation from necrosis cells and activated cells is perceived as initial step of inflammation. The up-regulated type I IFN is one pivotal cytokine causing downstream inflammation enlargement. Currently, intracellular DNA sensor cGAS signaling has been found to be related to lupus nephritis and the aberrant up-regulation of type I IFN. However, how extracellular accumulated DNA activates intracellular cGAS is still unknown. It was reported that nuclear protein HMGB1 takes part in multiple autoimmune diseases and inflammation induction. When HMGB1 is secreted to extracellular environment under certain conditions, it combines with DNA and triggers IFN-I secretion. It has been reported that HMGB1 level in renal tissue and cGAS level in peripheral blood mononuclear cells were both significantly up-regulated in SLE patients. Hence, we present a hypothesis that in lupus nephritis, the released HMGB1 helps extracellular accumulated DNA endocytosis and cGAS signaling pathway activation, followed by IFN-I secretion. We infer this is one pivotal pro-inflammation pathway in lupus nephritis progression.
Collapse
Affiliation(s)
- Li Zheng
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China
| | - Youzhou Tang
- Department of Nephrology, The Third Xiangya Hospital of Central South University, 138 Tongzipo Road, Changsha, Hunan, China.
| |
Collapse
|
316
|
Vijay N, Chande A. A hypothetical new role for single-stranded DNA binding proteins in the immune system. Immunobiology 2018; 223:671-676. [DOI: 10.1016/j.imbio.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/25/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
|
317
|
Kawasaki T, Kawai T. Discrimination Between Self and Non-Self-Nucleic Acids by the Innate Immune System. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 344:1-30. [PMID: 30798985 PMCID: PMC7105031 DOI: 10.1016/bs.ircmb.2018.08.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During viral and bacterial infections, the innate immune system recognizes various types of pathogen-associated molecular patterns (PAMPs), such as nucleic acids, via a series of membrane-bound or cytosolic pattern-recognition receptors. These include Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), AIM2-like receptors (ALRs), and cytosolic DNA sensors. The binding of PAMPs to these receptors triggers the production of type I interferon (IFN) and inflammatory cytokines. Type I IFN induces the expression of interferon stimulated genes (ISGs), which protect surrounding cells from infection. Some ISGs are nucleic acids-binding proteins that bind viral nucleic acids and suppress their replication. As nucleic acids are essential components that store and transmit genetic information in every species, infectious pathogens have developed systems to escape from the host nucleic acid recognition system. Host cells also have their own nucleic acids that are frequently released to the extracellular milieu or the cytoplasm during cell death or stress responses, which, if able to bind pattern-recognition receptors, would induce autoimmunity and inflammation. Therefore, host cells have acquired mechanisms to protect themselves from contact with their own nucleic acids. In this review, we describe recent research progress into the nucleic acid recognition mechanism and the molecular bases of discrimination between self and non-self-nucleic acids.
Collapse
Affiliation(s)
- Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan.
| |
Collapse
|
318
|
Holleufer A, Hartmann R. A Highly Sensitive Anion Exchange Chromatography Method forMeasuring cGAS Activity in vitro. Bio Protoc 2018; 8:e3055. [PMID: 34532524 DOI: 10.21769/bioprotoc.3055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/27/2018] [Accepted: 10/18/2018] [Indexed: 11/02/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a pattern recognition receptor (PRR) that senses double stranded DNA (dsDNA) in the cytosol and this leads to the activation of stimulator of interferon genes (STING) via the secondary messenger 2'3'-cyclic GMP-AMP (2'3'-cGAMP). STING then recruits TANK binding kinase 1 (TBK-1) and this complex can phosphorylate and activate interferon regulatory factor 3 (IRF3) leading to the induction of type I interferons and other antiviral genes. The cGAS:DNA complex catalyzes the synthesis of 2'3'-cGAMP and the purpose of the protocol presented here is to measure the in vitro activity of purified cGAS in the presence of dsDNA. The protocol was developed to elucidate the relationship between dsDNA length and the level of cGAS activity. The method involves an in vitro reaction with low concentrations of cGAS and dsDNA followed by quantification of the reaction product using anion exchange chromatography. The low concentrations of cGAS and dsDNA and the high sensitivity of this assay is a key advantage when comparing different DNA fragments' ability to activate cGAS.
Collapse
Affiliation(s)
- Andreas Holleufer
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
319
|
Hooy RM, Sohn J. The allosteric activation of cGAS underpins its dynamic signaling landscape. eLife 2018; 7:39984. [PMID: 30295605 PMCID: PMC6211831 DOI: 10.7554/elife.39984] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/05/2018] [Indexed: 12/22/2022] Open
Abstract
Cyclic G/AMP synthase (cGAS) initiates type-1 interferon responses against cytosolic double-stranded (ds)DNA, which range from antiviral gene expression to apoptosis. The mechanism by which cGAS shapes this diverse signaling landscape remains poorly defined. We find that substrate-binding and dsDNA length-dependent binding are coupled to the intrinsic dimerization equilibrium of cGAS, with its N-terminal domain potentiating dimerization. Notably, increasing the dimeric fraction by raising cGAS and substrate concentrations diminishes duplex length-dependent activation, but does not negate the requirement for dsDNA. These results demonstrate that reaction context dictates the duplex length dependence, reconciling competing claims on the role of dsDNA length in cGAS activation. Overall, our study reveals how ligand-mediated allostery positions cGAS in standby, ready to tune its signaling pathway in a switch-like fashion. The human immune system protects the body from various threats such as damaged cells or invading microbes. Many of these threats can move molecules of DNA, which are usually only found within a central compartment in the cell known as the nucleus, to the surrounding area, the cytoplasm. An enzyme called cGAS searches for DNA in the cytoplasm of human cells. When DNA binds to cGAS it activates the enzyme to convert certain molecules (referred to as ‘substrates’) into another molecule (the ‘signal’) that triggers various immune responses to protect the body against the threat. To produce the signal, two cGAS enzymes need to work together as a single unit called a dimer. The length of DNA molecules in the cytoplasm of cells can vary widely. It was initially thought that DNA molecules of any length binding to cGAS could activate the enzyme to a similar degree, but later studies demonstrated that this is not the case. However, it remains unclear how the length of the DNA could affect the activity of the enzyme, or why some of the earlier studies reported different findings. Hooy and Sohn used biochemical approaches to study the human cGAS enzyme. The experiments show that cGAS can form dimers even when no DNA is present. However, when DNA bound to cGAS, the enzyme was more likely to form dimers. Longer DNA molecules were better at promoting cGAS dimers to form than shorter DNA molecules. The binding of substrates to cGAS also made it more likely that the enzyme would form dimers. These findings suggest that inside cells cGAS is primed to trigger a switch-like response when it detects DNA in the cytoplasm. The work of Hooy and Sohn establishes a simple set of rules to predict how cGAS might respond in a given situation. Such information may aid in designing and tailoring efforts to regulate immune responses in human patients, and may provide insight into why the body responds to biological threats in different ways.
Collapse
Affiliation(s)
- Richard M Hooy
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Jungsan Sohn
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, United States
| |
Collapse
|
320
|
Coquel F, Neumayer C, Lin YL, Pasero P. SAMHD1 and the innate immune response to cytosolic DNA during DNA replication. Curr Opin Immunol 2018; 56:24-30. [PMID: 30292848 DOI: 10.1016/j.coi.2018.09.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/17/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
Cytosolic DNA of endogenous or exogenous origin is sensed by the cGAS-STING pathway to activate innate immune responses. Besides microbial DNA, this pathway detects self-DNA in the cytoplasm of damaged or abnormal cells and plays a central role in antitumor immunity. The mechanism by which cytosolic DNA accumulates under genotoxic stress conditions is currently unclear, but recent studies on factors mutated in the Aicardi-Goutières syndrome cells, such as SAMHD1, RNase H2 and TREX1, are shedding new light on this key process. In particular, these studies indicate that the rupture of micronuclei and the release of ssDNA fragments during the processing of stalled replication forks and chromosome breaks represent potent inducers of the cGAS-STING pathway.
Collapse
Affiliation(s)
- Flavie Coquel
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France
| | - Christoph Neumayer
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France
| | - Yea-Lih Lin
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France.
| | - Philippe Pasero
- Institut de Génétique Humaine, CNRS, Université de Montpellier, Equipe Labellisée Ligue contre le Cancer, Montpellier France.
| |
Collapse
|
321
|
Carter-Timofte ME, Paludan SR, Mogensen TH. RNA Polymerase III as a Gatekeeper to Prevent Severe VZV Infections. Trends Mol Med 2018; 24:904-915. [PMID: 30115567 DOI: 10.1016/j.molmed.2018.07.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/07/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
In most individuals, varicella zoster virus (VZV) causes varicella upon primary infection and zoster during reactivation. However, in a subset of individuals, VZV may cause severe disease, including encephalitis. Host genetics is believed to be the main determinant of exacerbated disease manifestations. Recent studies have demonstrated that defects in the DNA sensor RNA polymerase III (POL III) confer selective increased susceptibility to VZV infection, thus providing fundamental new insight into VZV immunity. Here we describe the roles of POL III in housekeeping and immune surveillance during VZV infection. We present the latest knowledge on the role of POL III in VZV infection and discuss outstanding questions related to the role of POL III in VZV immunity, and how this insight can be translated into clinical medicine.
Collapse
MESH Headings
- Adult
- Chickenpox/genetics
- Chickenpox/immunology
- Chickenpox/pathology
- Chickenpox/virology
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DNA, Viral/genetics
- DNA, Viral/immunology
- Encephalitis, Varicella Zoster/genetics
- Encephalitis, Varicella Zoster/immunology
- Encephalitis, Varicella Zoster/pathology
- Encephalitis, Varicella Zoster/virology
- Gene Expression Regulation
- Genetic Predisposition to Disease
- Herpes Zoster/genetics
- Herpes Zoster/immunology
- Herpes Zoster/pathology
- Herpes Zoster/virology
- Herpesvirus 3, Human/genetics
- Herpesvirus 3, Human/immunology
- Host-Pathogen Interactions
- Humans
- Immunity, Innate
- Immunologic Surveillance
- Interferons/genetics
- Interferons/immunology
- Protein Subunits/genetics
- Protein Subunits/immunology
- RNA Polymerase III/genetics
- RNA Polymerase III/immunology
- Receptors, Immunologic
- Virus Activation
Collapse
Affiliation(s)
- Madalina E Carter-Timofte
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark
| | - Søren R Paludan
- Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens Boulevard 99, 8200 Aarhus N, Denmark; Department of Biomedicine, Aarhus University, Wilhelm Meyers Alle 4, 8000 Aarhus C, Denmark; Department of Clinical Medicine, Aarhus University, Palle Juul Jensens Boulevard 82, 8200 Aarhus N, Denmark.
| |
Collapse
|
322
|
Lahaye X, Gentili M, Silvin A, Conrad C, Picard L, Jouve M, Zueva E, Maurin M, Nadalin F, Knott GJ, Zhao B, Du F, Rio M, Amiel J, Fox AH, Li P, Etienne L, Bond CS, Colleaux L, Manel N. NONO Detects the Nuclear HIV Capsid to Promote cGAS-Mediated Innate Immune Activation. Cell 2018; 175:488-501.e22. [PMID: 30270045 DOI: 10.1016/j.cell.2018.08.062] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 07/05/2018] [Accepted: 08/28/2018] [Indexed: 12/26/2022]
Abstract
Detection of viruses by innate immune sensors induces protective antiviral immunity. The viral DNA sensor cyclic GMP-AMP synthase (cGAS) is necessary for detection of HIV by human dendritic cells and macrophages. However, synthesis of HIV DNA during infection is not sufficient for immune activation. The capsid protein, which associates with viral DNA, has a pivotal role in enabling cGAS-mediated immune activation. We now find that NONO is an essential sensor of the HIV capsid in the nucleus. NONO protein directly binds capsid with higher affinity for weakly pathogenic HIV-2 than highly pathogenic HIV-1. Upon infection, NONO is essential for cGAS activation by HIV and cGAS association with HIV DNA in the nucleus. NONO recognizes a conserved region in HIV capsid with limited tolerance for escape mutations. Detection of nuclear viral capsid by NONO to promote DNA sensing by cGAS reveals an innate strategy to achieve distinction of viruses from self in the nucleus.
Collapse
Affiliation(s)
- Xavier Lahaye
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Matteo Gentili
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Aymeric Silvin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Cécile Conrad
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Léa Picard
- CIRI-International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon, 69007 Lyon, France; LBBE-Laboratoire de Biométrie et Biologie Evolutive CNRS UMR 5558, Universite Lyon 1, Univ Lyon, 69622 Villeurbanne, France
| | - Mabel Jouve
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Elina Zueva
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Mathieu Maurin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Francesca Nadalin
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France
| | - Gavin J Knott
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Fenglei Du
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Marlène Rio
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, 75015 Paris, France; Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Jeanne Amiel
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, 75015 Paris, France; Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Archa H Fox
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia; School of Human Sciences, The University of Western Australia, Crawley, WA 6009, Australia; The Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Lucie Etienne
- CIRI-International Center for Infectiology Research, Inserm U1111, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Univ Lyon, 69007 Lyon, France
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Laurence Colleaux
- INSERM UMR 1163, Paris-Descartes-Sorbonne Paris Cité University, Institut IMAGINE, Necker-Enfants Malades Hospital, 75015 Paris, France; Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, 75005 Paris, France.
| |
Collapse
|
323
|
Vanpouille-Box C, Demaria S, Formenti SC, Galluzzi L. Cytosolic DNA Sensing in Organismal Tumor Control. Cancer Cell 2018; 34:361-378. [PMID: 30216189 DOI: 10.1016/j.ccell.2018.05.013] [Citation(s) in RCA: 182] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
Besides constituting a first layer of defense against microbial challenges, the detection of cytosolic DNA is fundamental for mammalian organisms to control malignant transformation and tumor progression. The accumulation of DNA in the cytoplasm can initiate the proliferative inactivation (via cellular senescence) or elimination (via regulated cell death) of neoplastic cell precursors. Moreover, cytosolic DNA sensing is intimately connected to the secretion of cytokines that support innate and adaptive antitumor immunity. Here, we discuss the molecular mechanisms whereby cytosolic DNA enables cell-intrinsic and -extrinsic oncosuppression, and their relevance for the development of novel therapeutic approaches that reinstate anticancer immunosurveillance.
Collapse
Affiliation(s)
- Claire Vanpouille-Box
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, Stich Radiation Oncology, 525 East 68th Street, Box #169, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Université Paris Descartes/Paris V, Paris, France.
| |
Collapse
|
324
|
Tan X, Sun L, Chen J, Chen ZJ. Detection of Microbial Infections Through Innate Immune Sensing of Nucleic Acids. Annu Rev Microbiol 2018; 72:447-478. [DOI: 10.1146/annurev-micro-102215-095605] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial infections are recognized by the innate immune system through germline-encoded pattern recognition receptors (PRRs). As most microbial pathogens contain DNA and/or RNA during their life cycle, nucleic acid sensing has evolved as an essential strategy for host innate immune defense. Pathogen-derived nucleic acids with distinct features are recognized by specific host PRRs localized in endolysosomes and the cytosol. Activation of these PRRs triggers signaling cascades that culminate in the production of type I interferons and proinflammatory cytokines, leading to induction of an antimicrobial state, activation of adaptive immunity, and eventual clearance of the infection. Here, we review recent progress in innate immune recognition of nucleic acids upon microbial infection, including pathways involving endosomal Toll-like receptors, cytosolic RNA sensors, and cytosolic DNA sensors. We also discuss the mechanisms by which infectious microbes counteract host nucleic acid sensing to evade immune surveillance.
Collapse
Affiliation(s)
- Xiaojun Tan
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lijun Sun
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | - Jueqi Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Zhijian J. Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA;, , , ,
- Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| |
Collapse
|
325
|
DNA-loaded nano-adjuvant formed with a vitamin E-scaffold intracellular environmentally-responsive lipid-like material for cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:2587-2597. [PMID: 30170077 DOI: 10.1016/j.nano.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/26/2018] [Accepted: 08/14/2018] [Indexed: 12/30/2022]
Abstract
Cytoplasmic DNA triggers cellular immunity via activating the stimulator of interferon genes pathway. Since DNA is degradable and membrane impermeable, delivery system would permit cytoplasmic delivery by destabilizing the endosomal membrane for the use as an adjuvant. Herein, we report on the development of a plasmid DNA (pDNA)-encapsulating lipid nanoparticle (LNP). The structural components include an SS-cleavable and pH-activated lipid-like material that mounts vitamin E as a hydrophobic scaffold, and dual sensing motifs that are responsive to the intracellular environment (ssPalmE). The pDNA-encapsulating LNP (ssPalmE-LNP) induced a high interferon-β production in Raw 264.7 cells. The subcutaneous injection of ssPalmE-LNP strongly enhanced antigen-specific cytotoxic T cell activity. The ssPalmE-LNP treatment efficiently induced antitumor effects against E.G7-OVA tumor and B16-F10 melanoma metastasis. Furthermore, when combined with an anti-programmed death 1 antibody, an extensive therapeutic antitumor effect was observed. Therefore, the ssPalmE-LNP is a promising carrier of adjuvants for cancer immunotherapy.
Collapse
|
326
|
Lian H, Wei J, Zang R, Ye W, Yang Q, Zhang XN, Chen YD, Fu YZ, Hu MM, Lei CQ, Luo WW, Li S, Shu HB. ZCCHC3 is a co-sensor of cGAS for dsDNA recognition in innate immune response. Nat Commun 2018; 9:3349. [PMID: 30135424 PMCID: PMC6105683 DOI: 10.1038/s41467-018-05559-w] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 07/12/2018] [Indexed: 01/07/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) senses double-strand (ds) DNA in the cytosol and then catalyzes synthesis of the second messenger cGAMP, which activates the adaptor MITA/STING to initiate innate antiviral response. How cGAS activity is regulated remains enigmatic. Here, we identify ZCCHC3, a CCHC-type zinc-finger protein, as a positive regulator of cytosolic dsDNA- and DNA virus-triggered signaling. We show that ZCCHC3-deficiency inhibits dsDNA- and DNA virus-triggered induction of downstream effector genes, and that ZCCHC3-deficient mice are more susceptible to lethal herpes simplex virus type 1 or vaccinia virus infection. ZCCHC3 directly binds to dsDNA, enhances the binding of cGAS to dsDNA, and is important for cGAS activation following viral infection. Our results suggest that ZCCHC3 is a co-sensor for recognition of dsDNA by cGAS, which is important for efficient innate immune response to cytosolic dsDNA and DNA virus. cGAS is an important mediator of antiviral immune responses, but the regulation of its activity is unknown. Here, the authors identify a zinc finger protein, ZCCHC3, that enhances the binding of cGAS to dsDNA and is important for its activation following viral infection.
Collapse
Affiliation(s)
- Huan Lian
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Jin Wei
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Ru Zang
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Wen Ye
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Qing Yang
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Xia-Nan Zhang
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.,College of Life Sciences Wuhan University, 430072, Wuhan, China
| | - Yun-Da Chen
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.,College of Life Sciences Wuhan University, 430072, Wuhan, China
| | - Yu-Zhi Fu
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Ming-Ming Hu
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China
| | - Cao-Qi Lei
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.,College of Life Sciences Wuhan University, 430072, Wuhan, China
| | - Wei-Wei Luo
- Wuhan Institute of Virology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Shu Li
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China.
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, 430071, Wuhan, China. .,College of Life Sciences Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
327
|
Abstract
The nucleotidyltransferase cGAS performs a crucial role in innate immunity by binding double-stranded DNA and catalyzing the production of cGAMP. A structure of the human cGAS-DNA complex reported in Cell provides a fresh perspective on its mechanism of activation.
Collapse
Affiliation(s)
- Alexiane Decout
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
328
|
Affiliation(s)
- Andrea Ablasser
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
329
|
|
330
|
Abstract
Microbial nucleic acids are major signatures of invading pathogens, and their recognition by various host pattern recognition receptors (PRRs) represents the first step toward an efficient innate immune response to clear the pathogens. The nucleic acid-sensing PRRs are localized at the plasma membrane, the cytosol, and/or various cellular organelles. Sensing of nucleic acids and signaling by PRRs involve recruitment of distinct signaling components, and PRRs are intensively regulated by cellular organelle trafficking. PRR-mediated innate immune responses are also heavily regulated by posttranslational modifications, including phosphorylation, polyubiquitination, sumoylation, and glutamylation. In this review, we focus on our current understanding of recognition of microbial nucleic acid by PRRs, particularly on their regulation by organelle trafficking and posttranslational modifications. We also discuss how sensing of self nucleic acids and dysregulation of PRR-mediated signaling lead to serious human diseases.
Collapse
Affiliation(s)
- Ming-Ming Hu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| | - Hong-Bing Shu
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; ,
| |
Collapse
|
331
|
Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells. Semin Immunol 2018. [DOI: 10.1016/j.smim.2018.02.011] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
332
|
Zhou W, Whiteley AT, de Oliveira Mann CC, Morehouse BR, Nowak RP, Fischer ES, Gray NS, Mekalanos JJ, Kranzusch PJ. Structure of the Human cGAS-DNA Complex Reveals Enhanced Control of Immune Surveillance. Cell 2018; 174:300-311.e11. [PMID: 30007416 PMCID: PMC6084792 DOI: 10.1016/j.cell.2018.06.026] [Citation(s) in RCA: 234] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/01/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Aaron T Whiteley
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carina C de Oliveira Mann
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Benjamin R Morehouse
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Radosław P Nowak
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Eric S Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - John J Mekalanos
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Philip J Kranzusch
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
333
|
Du M, Chen ZJ. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science 2018; 361:704-709. [PMID: 29976794 PMCID: PMC9417938 DOI: 10.1126/science.aat1022] [Citation(s) in RCA: 590] [Impact Index Per Article: 98.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/27/2018] [Indexed: 12/27/2022]
Abstract
The binding of DNA to cyclic GMP-AMP synthase (cGAS) leads to the production of the secondary messenger cyclic GMP-AMP (cGAMP), which activates innate immune responses. Here, we show that DNA binding to cGAS robustly induced the formation of liquid-like droplets in which cGAS was activated. The disordered and positively charged cGAS N-terminus enhanced cGAS–DNA phase separation by increasing the valencies of DNA binding. Long DNA was more efficient in promoting cGAS liquid phase separation and cGAS enzyme activity than short DNA. Moreover, free zinc ion enhanced cGAS enzyme activity both in vitro and in cells by promoting cGAS–DNA phase separation. These results demonstrated that the DNA-induced phase transition of cGAS promotes cGAMP production and innate immune signaling. The DNA-sensing enzyme cGAS forms liquid droplets to stimulate innate immune responses.
Collapse
Affiliation(s)
- Mingjian Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. .,Center for Inflammation Research, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| |
Collapse
|
334
|
Lei Z, Deng M, Yi Z, Sun Q, Shapiro RA, Xu H, Li T, Loughran PA, Griepentrog JE, Huang H, Scott MJ, Huang F, Billiar TR. cGAS-mediated autophagy protects the liver from ischemia-reperfusion injury independently of STING. Am J Physiol Gastrointest Liver Physiol 2018; 314:G655-G667. [PMID: 29446653 PMCID: PMC6032062 DOI: 10.1152/ajpgi.00326.2017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liver ischemia-reperfusion (I/R) injury occurs through induction of oxidative stress and release of damage-associated molecular patterns (DAMPs), including cytosolic DNA released from dysfunctional mitochondria or from the nucleus. Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) is a cytosolic DNA sensor known to trigger stimulator of interferon genes (STING) and downstream type 1 interferon (IFN-I) pathways, which are pivotal innate immune system responses to pathogen. However, little is known about the role of cGAS/STING in liver I/R injury. We subjected C57BL/6 (WT), cGAS knockout (cGAS-/-), and STING-deficient (STINGgt/gt) mice to warm liver I/R injury and that found cGAS-/- mice had significantly increased liver injury compared with WT or STINGgt/gt mice, suggesting a protective effect of cGAS independent of STING. Liver I/R upregulated cGAS in vivo and also in vitro in hepatocytes subjected to anoxia/reoxygenation (A/R). We confirmed a previously published finding that hepatocytes do not express STING under normoxic conditions or after A/R. Hepatocytes and liver from cGAS-/- mice had increased cell death and reduced induction of autophagy under hypoxic conditions as well as increased apoptosis. Protection could be restored in cGAS-/- hepatocytes by overexpression of cGAS or by pretreatment of mice with autophagy inducer rapamycin. Our findings indicate a novel protective role for cGAS in the regulation of autophagy during liver I/R injury that occurs independently of STING. NEW & NOTEWORTHY Our studies are the first to document the important role of cGAS in the acute setting of sterile injury induced by I/R. Specifically, we provide evidence that cGAS protects liver from I/R injury in a STING-independent manner.
Collapse
Affiliation(s)
- Zhao Lei
- 1Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Meihong Deng
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhongjie Yi
- 1Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qian Sun
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard A. Shapiro
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hongbo Xu
- 1Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tunliang Li
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patricia A. Loughran
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,4Center for Biologic Imaging, University of Pittsburgh, Pennsylvania
| | | | - Hai Huang
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,3Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania
| | - Melanie J. Scott
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,3Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania
| | - Feizhou Huang
- 1Department of Hepatopancreatobiliary Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Timothy R. Billiar
- 2Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,3Pittsburgh Liver Research Center, University of Pittsburgh, Pennsylvania
| |
Collapse
|
335
|
Patel SA, Minn AJ. Combination Cancer Therapy with Immune Checkpoint Blockade: Mechanisms and Strategies. Immunity 2018; 48:417-433. [PMID: 29562193 PMCID: PMC6948191 DOI: 10.1016/j.immuni.2018.03.007] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/13/2022]
Abstract
The success of immune checkpoint blockade in patients with a wide variety of malignancies has changed the treatment paradigm in oncology. However, combination therapies with immune checkpoint blockade will be needed to overcome resistance and broaden the clinical utility of immunotherapy. Here we discuss a framework for rationally designing combination therapy strategies based on enhancing major discriminatory functions of the immune system that are corrupted by cancer-namely, antigenicity, adjuvanticity, and homeostatic feedback inhibition. We review recent advances on how conventional genotoxic cancer therapies, molecularly targeted therapies, epigenetic agents, and immune checkpoint inhibitors can restore these discriminatory functions. Potential barriers that can impede response despite combination therapy are also discussed.
Collapse
Affiliation(s)
- Shetal A Patel
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy J Minn
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
336
|
Krapp C, Jønsson K, Jakobsen MR. STING dependent sensing - Does HIV actually care? Cytokine Growth Factor Rev 2018; 40:68-76. [PMID: 29548644 DOI: 10.1016/j.cytogfr.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/26/2018] [Accepted: 03/08/2018] [Indexed: 02/07/2023]
Abstract
Sensing of DNA is essential for the innate immune system to detect threats, like viruses, intracellular bacteria or cellular DNA damage. At the centre of this conserved mammalian mechanism stands the adaptor protein STING. STING is highly regulated and is part of a complex signalling network. This network depends on the sensors cGAS and IFI16 to detect misplaced DNA in the cytoplasm as well as on the kinase TBK1 and the transcription factor IRF3. The DNA sensing machinery has been implicated in many diseases, among others HIV. Here we present a comprehensive review of current status on the STING pathway with all its components and regulations related to HIV pathogenesis. By this, we try to answer the question if STING-mediated DNA sensing plays a role in HIV infections.
Collapse
Affiliation(s)
- Christian Krapp
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Kasper Jønsson
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark
| | - Martin R Jakobsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Denmark.
| |
Collapse
|
337
|
Kang I, Chu CT, Kaufman BA. The mitochondrial transcription factor TFAM in neurodegeneration: emerging evidence and mechanisms. FEBS Lett 2018; 592:793-811. [PMID: 29364506 PMCID: PMC5851836 DOI: 10.1002/1873-3468.12989] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 01/18/2018] [Accepted: 01/19/2018] [Indexed: 12/30/2022]
Abstract
The mitochondrial transcription factor A, or TFAM, is a mitochondrial DNA (mtDNA)-binding protein essential for genome maintenance. TFAM functions in determining the abundance of the mitochondrial genome by regulating packaging, stability, and replication. More recently, TFAM has been shown to play a central role in the mtDNA stress-mediated inflammatory response. Emerging evidence indicates that decreased mtDNA copy number is associated with several aging-related pathologies; however, little is known about the association of TFAM abundance and disease. In this Review, we evaluate the potential associations of altered TFAM levels or mtDNA copy number with neurodegeneration. We also describe potential mechanisms by which mtDNA replication, transcription initiation, and TFAM-mediated endogenous danger signals may impact mitochondrial homeostasis in Alzheimer, Huntington, Parkinson, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Inhae Kang
- Department of Food Science and Nutrition, Jeju National University, Jeju, Korea
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine Center for Metabolic and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Charleen T. Chu
- Department of Pathology, Center for Neuroscience, Pittsburgh Institute for Neurodegenerative Diseases, Conformational Protein Diseases Center, and the McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Brett A. Kaufman
- Division of Cardiology, Vascular Medicine Institute, Department of Medicine Center for Metabolic and Mitochondrial Medicine (C3M), University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| |
Collapse
|
338
|
McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, San Chin H, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science 2018; 359:359/6378/eaao6047. [DOI: 10.1126/science.aao6047] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/20/2017] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
|
339
|
Mladenov E, Li F, Zhang L, Klammer H, Iliakis G. Intercellular communication of DNA damage and oxidative status underpin bystander effects. Int J Radiat Biol 2018; 94:719-726. [PMID: 29377786 DOI: 10.1080/09553002.2018.1434323] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE A well-known phenomenon in the field of radiation biology is that cells exposed to ionizing radiation (IR) (targeted cells) can induce in non-irradiated (non-targeted), bystander cells effects reminiscent of DNA damage responses (DDR) normally expected, exclusively in targeted cells. These phenomena are collectively referred to as radiation-induced bystander effects (RIBE) and have different manifestations depending on the endpoint studied. Although it is now recognized that RIBE reflects to a considerable extent communication by the targeted cells to undamaged cells of their damaged status, the molecular underpinnings of this communication and its significance for the organism are only partly understood. In particular, it remains unknown why and how targeted cells induce DNA damage in non-targeted, bystander cells threatening their genomic stability and risking thus their transformation to cancer cells. Here, we outline observations hinting to possible sources of artifacts in experiments designed to detect RIBE and summarize a model according to which targeted cells modulate their redox status as part of their overall response to IR and use this modified redox status as a source to generate signals that are transmitted to non-irradiated cells of the organism. MATERIAL AND METHODS A synthesis of published evidence is presented. RESULTS Depending on type, RIBE signals may be transmitted through various forms of direct intercellular contact, through molecules acting locally in a paracrine fashion, or through molecules acting remotely in an endocrine fashion. We reason that DNA damage generated in bystander cells is unlikely to manifest the clustered character exhibited in directly exposed cells and postulate that RIBE will depend on complications generated when simpler forms of damage encounter the DNA replication fork. CONCLUSIONS We suggest that RIBE result from intercellular communication mechanisms designed to spread within tissues, or the organism, alarm signals of DNA damage inflicted in subsets of the constituent cells. This response likely evolved to protect organisms by appropriately modulating stress response, repair or apoptosis, and may in some instances also cause adverse effects, e.g. as collateral damage.
Collapse
Affiliation(s)
- Emil Mladenov
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Fanghua Li
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Lihua Zhang
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - Holger Klammer
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| | - George Iliakis
- a Institute of Medical Radiation Biology , University of Duisburg-Essen Medical School , Essen , Germany
| |
Collapse
|
340
|
Cytosolic sensing of immuno-stimulatory DNA, the enemy within. Curr Opin Immunol 2017; 50:82-87. [PMID: 29247853 DOI: 10.1016/j.coi.2017.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 11/24/2017] [Indexed: 12/19/2022]
Abstract
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults.
Collapse
|
341
|
TREX1 is a checkpoint for innate immune sensing of DNA damage that fosters cancer immune resistance. Emerg Top Life Sci 2017; 1:509-515. [DOI: 10.1042/etls20170063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022]
Abstract
Genomic instability is a hallmark of neoplastic transformation that leads to the accumulation of mutations, and generates a state of replicative stress in neoplastic cells associated with dysregulated DNA damage repair (DDR) responses. The importance of increasing mutations in driving cancer progression is well established, whereas relatively little attention has been devoted to the DNA displaced to the cytosol of cancer cells, a byproduct of genomic instability and of the ensuing DDR response. The presence of DNA in the cytosol promotes the activation of viral defense pathways in all cells, leading to activation of innate and adaptive immune responses. In fact, the improper accumulation of cytosolic DNA in normal cells is known to drive severe autoimmune pathology. Thus, cancer cells must evade cytoplasmic DNA detection pathways to avoid immune-mediated destruction. The main sensor for cytoplasmic DNA is the cyclic GMP–AMP synthase, cGAS. Upon activation by cytosolic DNA, cGAS catalyzes the formation of the second messenger cGAMP, which activates STING (stimulator of IFN genes), leading to the production of type I interferon (IFN-I). IFN-I is a critical effector of cell-mediated antiviral and antitumor immunity, and its production by cancer cells can be subverted by several mechanisms. However, the key upstream regulator of cytosolic DNA-mediated immune stimulation is the DNA exonuclease 3′-repair exonuclease 1 (TREX1). Here, we will discuss evidence in support of a role of TREX1 as an immune checkpoint that, when up-regulated, hinders the development of antitumor immune responses.
Collapse
|
342
|
Abstract
Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are recognized by different cellular pathogen recognition receptors (PRRs), which are expressed on cell membrane or in the cytoplasm of cells of the innate immune system. Nucleic acids derived from pathogens or from certain cellular conditions represent a large category of PAMPs/DAMPs that trigger production of type I interferons (IFN-I) in addition to pro-inflammatory cytokines, by specifically binding to intracellular Toll-like receptors or cytosolic receptors. These cytosolic receptors, which are not related to TLRs and we call them “Toll-free” receptors, include the RNA-sensing RIG-I like receptors (RLRs), the DNA-sensing HIN200 family, and cGAS, amongst others. Viruses have evolved myriad strategies to evoke both host cellular and viral factors to evade IFN-I-mediated innate immune responses, to facilitate their infection, replication, and establishment of latency. This review outlines these “Toll-free” innate immune pathways and recent updates on their regulation, with focus on cellular and viral factors with enzyme activities.
Collapse
Affiliation(s)
- Ling Wang
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| | - Shunbin Ning
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA.,Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, USA
| |
Collapse
|
343
|
VanHook AM. Papers of note in
Nature
549
(7672). Sci Signal 2017. [DOI: 10.1126/scisignal.aaq0242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This week’s articles highlight the role of AMPA receptor diffusion in long-term potentiation; a mutation in an embryonic cell lineage that leads to adult neurodegeneration; the structural basis of cGAS activation; a posttranslational modification of the melanocortin-1 receptor that protects against melanoma; and factors from maternal cells that determine whether daughter cells will proliferate.
Collapse
|