301
|
Cortes JR, Ambesi-Impiombato A, Couronné L, Quinn SA, Kim CS, da Silva Almeida AC, West Z, Belver L, Martin MS, Scourzic L, Bhagat G, Bernard OA, Ferrando AA, Palomero T. RHOA G17V Induces T Follicular Helper Cell Specification and Promotes Lymphomagenesis. Cancer Cell 2018; 33:259-273.e7. [PMID: 29398449 PMCID: PMC5811310 DOI: 10.1016/j.ccell.2018.01.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/06/2017] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
Angioimmunoblastic T cell lymphoma (AITL) is an aggressive tumor derived from malignant transformation of T follicular helper (Tfh) cells. AITL is characterized by loss-of-function mutations in Ten-Eleven Translocation 2 (TET2) epigenetic tumor suppressor and a highly recurrent mutation (p.Gly17Val) in the RHOA small GTPase. Yet, the specific role of RHOA G17V in AITL remains unknown. Expression of Rhoa G17V in CD4+ T cells induces Tfh cell specification; increased proliferation associated with inducible co-stimulator (ICOS) upregulation and increased phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase signaling. Moreover, RHOA G17V expression together with Tet2 loss resulted in development of AITL in mice. Importantly, Tet2-/-RHOA G17V tumor proliferation in vivo can be inhibited by ICOS/PI3K-specific blockade, supporting a driving role for ICOS signaling in Tfh cell transformation.
Collapse
Affiliation(s)
- Jose R Cortes
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Lucile Couronné
- Department of Adult Hematology, Necker Hospital, Paris 75993, France; INSERM U 1163, CNRS ERL 8254, Institut Imagine, Paris 75015, France; Paris Descartes University, Paris 75006, France
| | - S Aidan Quinn
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Christine S Kim
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Zachary West
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | - Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA
| | | | - Laurianne Scourzic
- Gustave Roussy, Villejuif 94805, France; INSERM U1170, Villejuif 94805, France; Université Paris-Sud, Orsay 91400, France
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA
| | - Olivier A Bernard
- Gustave Roussy, Villejuif 94805, France; INSERM U1170, Villejuif 94805, France; Université Paris-Sud, Orsay 91400, France
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA; Department of Pediatrics, Columbia University Medical Center, New York, NY 10032, USA
| | - Teresa Palomero
- Institute for Cancer Genetics, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, 1130 St Nicholas Avenue, ICRC-401B, New York, NY 10032, USA.
| |
Collapse
|
302
|
Ma Z, Xin Z, Hu W, Jiang S, Yang Z, Yan X, Li X, Yang Y, Chen F. Forkhead box O proteins: Crucial regulators of cancer EMT. Semin Cancer Biol 2018; 50:21-31. [PMID: 29427645 DOI: 10.1016/j.semcancer.2018.02.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 12/02/2017] [Accepted: 02/05/2018] [Indexed: 12/12/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is an acknowledged cellular transition process in which epithelial cells acquire mesenchymal-like properties that endow cancer cells with increased migratory and invasive behavior. Forkhead box O (FOXO) proteins have been shown to orchestrate multiple EMT-associated pathways and EMT-related transcription factors (EMT-TFs), thereby modulating the EMT process. The focus of the current review is to evaluate the latest research progress regarding the roles of FOXO proteins in cancer EMT. First, a brief overview of the EMT process in cancer and a general background on the FOXO family are provided. Next, we present the interactions between FOXO proteins and multiple EMT-associated pathways during malignancy development. Finally, we propose several novel potential directions for future research. Collectively, the information compiled herein should serve as a comprehensive repository of information on this topic and should aid in the design of additional studies and the future development of FOXO proteins as therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Zhenlong Xin
- Department of Occupational and Environmental Health and The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Wei Hu
- Department of Immunology, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an 710038, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China; Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China.
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069 China.
| |
Collapse
|
303
|
Margolskee E, Jobanputra V, Jain P, Chen J, Ganapathi K, Nahum O, Levy B, Morscio J, Murty V, Tousseyn T, Alobeid B, Mansukhani M, Bhagat G. Genetic landscape of T- and NK-cell post-transplant lymphoproliferative disorders. Oncotarget 2018; 7:37636-37648. [PMID: 27203213 PMCID: PMC5122338 DOI: 10.18632/oncotarget.9400] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Post-transplant lymphoproliferative disorders of T- or NK-cell origin (T/NK-PTLD) are rare entities and their genetic basis is unclear. We performed targeted sequencing of 465 cancer-related genes and high-resolution copy number analysis in 17 T-PTLD and 2 NK-PTLD cases. Overall, 377 variants were detected, with an average of 20 variants per case. Mutations of epigenetic modifier genes (TET2, KMT2C, KMT2D, DNMT3A, ARID1B, ARID2, KDM6B, n=11). and inactivation of TP53 by mutation and/or deletion(n=6) were the most frequent alterations, seen across disease subtypes, followed by mutations of JAK/STAT pathway genes (n=5). Novel variants, including mutations in TBX3 (n=3), MED12 (n=3) and MTOR (n=1), were observed as well. High-level microsatellite instability was seen in 1 of 14 (7%) cases, which had a heterozygous PMS2 mutation. Complex copy number changes were detected in 8 of 16 (50%) cases and disease subtype-specific aberrations were also identified. In contrast to B-cell PTLDs, the molecular and genomic alterations observed in T/NK-PTLD appear similar to those reported for peripheral T-cell lymphomas occurring in immunocompetent hosts, which may suggest common genetic mechanisms of lymphoma development.
Collapse
Affiliation(s)
- Elizabeth Margolskee
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Vaidehi Jobanputra
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Preti Jain
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Jinli Chen
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Karthik Ganapathi
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Odelia Nahum
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Brynn Levy
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Julie Morscio
- Department of Pathology, Translational Cell and Tissue Research Laboratory, UZ Leuven/KU Leuven, Leuven, Belgium
| | - Vundavalli Murty
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Thomas Tousseyn
- Department of Pathology, Translational Cell and Tissue Research Laboratory, UZ Leuven/KU Leuven, Leuven, Belgium
| | - Bachir Alobeid
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Mahesh Mansukhani
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Govind Bhagat
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
304
|
Ladikou E, Ottolini B, Nawaz N, Allchin RL, Payne D, Ali H, Marafioti T, Shaw J, Ahearne MJ, Wagner SD. Clonal evolution in the transition from cutaneous disease to acute leukemia suggested by liquid biopsy in blastic plasmacytoid dendritic cell neoplasm. Haematologica 2018; 103:e196-e199. [PMID: 29419438 DOI: 10.3324/haematol.2017.171876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eleni Ladikou
- Leicester Cancer Research Centre, University of Leicester, UK.,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| | - Barbara Ottolini
- Leicester Cancer Research Centre, University of Leicester, UK.,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| | - Nadia Nawaz
- Leicester Cancer Research Centre, University of Leicester, UK.,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| | - Rebecca L Allchin
- Leicester Cancer Research Centre, University of Leicester, UK.,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| | - Daniel Payne
- Department of Haematology, Leicester Royal Infirmary, UK
| | - Hebah Ali
- Department of Cellular Pathology, University College London Hospitals, UK
| | - Teresa Marafioti
- Department of Cellular Pathology, University College London Hospitals, UK
| | - Jacqui Shaw
- Leicester Cancer Research Centre, University of Leicester, UK
| | - Matthew J Ahearne
- Leicester Cancer Research Centre, University of Leicester, UK .,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| | - Simon D Wagner
- Leicester Cancer Research Centre, University of Leicester, UK .,Ernest and Helen Scott Haematology Research Institute, University of Leicester, UK
| |
Collapse
|
305
|
Pizzi M, Margolskee E, Inghirami G. Pathogenesis of Peripheral T Cell Lymphoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2018; 13:293-320. [DOI: 10.1146/annurev-pathol-020117-043821] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marco Pizzi
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Surgical Pathology and Cytopathology Unit, Department of Medicine-DIMED, University of Padova, 35121 Padova, Italy
| | - Elizabeth Margolskee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
- Department of Molecular Biotechnology and Health Science and Center for Experimental Research and Medical Studies (CeRMS), University of Torino, 10126 Torino, Italy
- Department of Pathology and NYU Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
306
|
Willemsen M, Abdul Hamid M, Winkens B, Zur Hausen A. Mutational heterogeneity of angioimmunoblastic T-cell lymphoma indicates distinct lymphomagenic pathways. Blood Cancer J 2018; 8:6. [PMID: 29339730 PMCID: PMC5802554 DOI: 10.1038/s41408-017-0047-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mathijs Willemsen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | - Myrurgia Abdul Hamid
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bjorn Winkens
- Department of Methodology and Statistics, CAPHRI-Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Axel Zur Hausen
- Department of Pathology, GROW-School for Oncology & Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
307
|
Dopeso H, Rodrigues P, Bilic J, Bazzocco S, Cartón-García F, Macaya I, de Marcondes PG, Anguita E, Masanas M, Jiménez-Flores LM, Martínez-Barriocanal Á, Nieto R, Segura MF, Schwartz Jr S, Mariadason JM, Arango D. Mechanisms of inactivation of the tumour suppressor gene RHOA in colorectal cancer. Br J Cancer 2018; 118:106-116. [PMID: 29206819 PMCID: PMC5765235 DOI: 10.1038/bjc.2017.420] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 10/25/2017] [Accepted: 10/26/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Reduced RHOA signalling has been shown to increase the growth/metastatic potential of colorectal tumours. However, the mechanisms of inactivation of RHOA signalling in colon cancer have not been characterised. METHODS A panel of colorectal cancer cell lines and large cohorts of primary tumours were used to investigate the expression and activity of RHOA, as well as the presence of RHOA mutations/deletions and promoter methylation affecting RHOA. Changes in RHOA expression were assessed by western blotting and qPCR after modulation of microRNAs, SMAD4 and c-MYC. RESULTS We show here that RHOA point mutations and promoter hypermethylation do not significantly contribute to the large variability of RHOA expression observed among colorectal tumours. However, RHOA copy number loss was observed in 16% of colorectal tumours and this was associated with reduced RHOA expression. Moreover, we show that miR-200a/b/429 downregulates RHOA in colorectal cancer cells. In addition, we found that TGF-β/SMAD4 upregulates the RHOA promoter. Conversely, RHOA expression is transcriptionally downregulated by canonical Wnt signalling through the Wnt target gene c-MYC that interferes with the binding of SP1 to the RHOA promoter in colon cancer cells. CONCLUSIONS We demonstrate a complex pattern of inactivation of the tumour suppressor gene RHOA in colon cancer cells through genetic, transcriptional and post-transcriptional mechanisms.
Collapse
Affiliation(s)
- Higinio Dopeso
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Paulo Rodrigues
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Josipa Bilic
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Sarah Bazzocco
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Fernando Cartón-García
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Irati Macaya
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Priscila Guimarães de Marcondes
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Estefanía Anguita
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Marc Masanas
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-UAB, Barcelona 08035, Spain
| | - Lizbeth M Jiménez-Flores
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Águeda Martínez-Barriocanal
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Rocío Nieto
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| | - Miguel F Segura
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute (VHIR)-UAB, Barcelona 08035, Spain
| | - Simo Schwartz Jr
- Drug Delivery and Targeting Group, CIBBIM Nanomedicine, Vall d’Hebron Research Institute (VHIR), Barcelona 08035, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Zaragoza 50018, Spain
| | - John M Mariadason
- La Trobe University School of Cancer Medicine, Olivia Newton-John Cancer Research Institute, Melbourne 3084, VIC, Australia
| | - Diego Arango
- Group of Biomedical Research in Digestive Tract Tumors, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona 08035, Spain
| |
Collapse
|
308
|
Aberrant alternative splicing of RHOA is associated with loss of its expression and activity in diffuse-type gastric carcinoma cells. Biochem Biophys Res Commun 2017; 495:1942-1947. [PMID: 29247652 DOI: 10.1016/j.bbrc.2017.12.067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 02/06/2023]
Abstract
RhoA is a member of Rho family small GTPases that regulates diverse cellular functions. Recent large-scale sequencing studies have identified recurrent somatic mutations of RHOA in diffuse-type gastric carcinoma (DGC), indicating that RHOA is a driver of DGC. In this study, we investigated the possible abnormalities of RHOA in a panel of gastric carcinoma (GC) cell lines. Pulldown assay and immunoblot analysis showed that the activity and expression of RhoA were detectable in all GC cell lines tested, except for two DGC cell lines, HSC-59 and GSU. RHOA coding region sequencing revealed that aberrant alternative splicing of RHOA occurred in these cell lines. Quantitative real-time PCR analysis showed that the expression of wild-type RHOA was nearly undetectable, whereas splicing variants were almost exclusively expressed in HSC-59 and GSU cell lines. However, the expression levels of RHOA splicing variants were very low and the corresponding proteins were not detected by immunoblotting. Moreover, the splicing isoforms of RhoA protein were neither efficiently expressed nor activated even if ectopically expressed in cells. These results indicate that aberrant alternative splicing of RHOA results in the loss of its activity and expression in DGC cells.
Collapse
|
309
|
Abstract
Owing to the rarity of peripheral T-cell lymphoma (PTCL) and the heterogeneity of subtypes, there are no compelling data to guide the therapeutic approaches for such patients. Over the years, there have been remarkable advances in molecular subtyping and treatment of PTCL, although there are still many areas to be explored. In this review, we summarize recent updates on the evolution of understanding and treatment for PTCL.
Collapse
Affiliation(s)
- Jun Ho Yi
- Division of Hematology-Oncology, Department of Medicine, Chung-Ang University , Seoul, Korea, South
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea, South
| | - Won Seog Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, Korea, South
| |
Collapse
|
310
|
Fukumoto K, Nguyen TB, Chiba S, Sakata-Yanagimoto M. Review of the biologic and clinical significance of genetic mutations in angioimmunoblastic T-cell lymphoma. Cancer Sci 2017; 109:490-496. [PMID: 28889481 PMCID: PMC5834775 DOI: 10.1111/cas.13393] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is an age-related malignant lymphoma, characterized by immune system-dysregulated symptoms. Recent sequencing studies have clarified the recurrent mutations in ras homology family member A (RHOA) and in genes encoding epigenetic regulators, tet methyl cytosine dioxygenase 2 (TET2), DNA methyl transferase 3 alpha (DNMT3A) and isocitrate dehydrogenase 2, mitochondrial (IDH2), as well as those related to the T-cell receptor signaling pathway in AITL. In this review, we focus on how this genetic information has changed the understanding of the developmental process of AITL and will in future lead to individualized therapies for AITL patients.
Collapse
Affiliation(s)
- Kota Fukumoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Tran B Nguyen
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Shigeru Chiba
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| | - Mamiko Sakata-Yanagimoto
- Department of Hematology, Graduate School of Comprehensive Human Sciences, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan.,Department of Hematology, Faculty of Medicine, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan.,Department of Hematology, University of Tsukuba Hospital, Tsukuba, Ibaraki, Japan
| |
Collapse
|
311
|
Orlova A, Wingelhofer B, Neubauer HA, Maurer B, Berger-Becvar A, Keserű GM, Gunning PT, Valent P, Moriggl R. Emerging therapeutic targets in myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas. Expert Opin Ther Targets 2017; 22:45-57. [PMID: 29148847 PMCID: PMC5743003 DOI: 10.1080/14728222.2018.1406924] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Introduction: Hematopoietic neoplasms are often driven by gain-of-function mutations of the JAK-STAT pathway together with mutations in chromatin remodeling and DNA damage control pathways. The interconnection between the JAK-STAT pathway, epigenetic regulation or DNA damage control is still poorly understood in cancer cell biology. Areas covered: Here, we focus on a broader description of mutational insights into myeloproliferative neoplasms and peripheral T-cell leukemia and lymphomas, since sequencing efforts have identified similar combinations of driver mutations in these diseases covering different lineages. We summarize how these pathways might be interconnected in normal or cancer cells, which have lost differentiation capacity and drive oncogene transcription. Expert opinion: Due to similarities in driver mutations including epigenetic enzymes, JAK-STAT pathway activation and mutated checkpoint control through TP53, we hypothesize that similar therapeutic approaches could be of benefit in these diseases. We give an overview of how driver mutations in these malignancies contribute to hematopoietic cancer initiation or progression, and how these pathways can be targeted with currently available tools.
Collapse
Affiliation(s)
- Anna Orlova
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Bettina Wingelhofer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Heidi A Neubauer
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria
| | - Barbara Maurer
- c Institute of Pharmacology and Toxicology , University of Veterinary Medicine Vienna , Vienna , Austria
| | - Angelika Berger-Becvar
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - György Miklós Keserű
- d Medicinal Chemistry Research Group, Research Centre for Natural Sciences , Hungarian Academy of Sciences , Budapest , Hungary
| | - Patrick T Gunning
- g Department of Chemical & Physical Sciences , University of Toronto Mississauga , Mississauga , Canada.,h Department of Chemistry , University of Toronto , Toronto , Canada
| | - Peter Valent
- e Department of Internal Medicine I, Division of Hematology and Hemostaseology , Medical University of Vienna , Vienna , Austria.,f Ludwig Boltzmann-Cluster Oncology , Medical University of Vienna , Vienna , Austria
| | - Richard Moriggl
- a Institute of Animal Breeding and Genetics , University of Veterinary Medicine Vienna , Vienna , Austria.,b Ludwig Boltzmann Institute for Cancer Research , Vienna , Austria.,i Medical University Vienna , Vienna , Austria
| |
Collapse
|
312
|
Expression of TFH Markers and Detection of RHOA p.G17V and IDH2 p.R172K/S Mutations in Cutaneous Localizations of Angioimmunoblastic T-Cell Lymphomas. Am J Surg Pathol 2017; 41:1581-1592. [PMID: 28945625 DOI: 10.1097/pas.0000000000000956] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Skin biopsies of 41 angioimmunoblastic T-cell lymphoma patients were retrospectively analyzed for the expression of follicular helper T-cell (TFH) markers, Epstein-Barr virus (EBV), and the presence of RHOA (p.G17V) and IDH2 (p.R172K/S) mutations using allele-specific polymerase chain reaction. We categorized cases into 4 distinctive patterns: (1) low-density lymphocytic perivascular infiltrates (n=11), (2) dense perivascular infiltrates with atypical cells and occasional inflammatory cells (n=13), (3) diffuse infiltrates reminiscent of angioimmunoblastic T-cell lymphoma (n=4), or (4) other aspects (n=13). Two EBV and 2 plasmacytoid lymphoproliferative disorders were seen. We observed variable expression of TFH markers (CD10 [50%], BCLB6 [84%], PD1 [94%], CXCL13 [84%], and ICOS [97.5%]), and EBV B-blasts (26%). A TFH phenotype was identified in 82% and 73%, respectively, of cases with the most challenging patterns 1 and 2. TFH markers and EBV can thus help for diagnosis and are detected in samples with low-density infiltrates. We found RHOA G17V and IDH2 R172K/S mutations in the skin in 14/18 (78%) and 3/16 (19%) cases, respectively. The RHOA G17V mutation was identified in a proportion of biopsies with patterns 1 and 2, which represent a diagnostic challenge. The RHOA G17V mutation was detected both in the skin and lymph node (LN) biopsies in 7/9 (64%) cases, and in only the skin or the LN of 1 sample each. The frequency of RHOA G17V mutation was similar to that reported in LNs. It may represent a sensitive diagnostic marker in the skin, helpful in cases with low-density infiltrates.
Collapse
|
313
|
Elenitoba-Johnson KSJ, Lim MS. New Insights into Lymphoma Pathogenesis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2017; 13:193-217. [PMID: 29140757 DOI: 10.1146/annurev-pathol-020117-043803] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lymphomas represent clonal proliferations of lymphocytes that are broadly classified based upon their maturity (peripheral or mature versus precursor) and lineage (B cell, T cell, and natural killer cell). Insights into the pathogenetic mechanisms involved in lymphoma impact the classification of lymphoma and have significant implications for the diagnosis and clinical management of patients. Serial scientific and technologic advances over the last 30 years in immunology, cytogenetics, molecular biology, gene expression profiling, mass spectrometry-based proteomics, and, more recently, next-generation sequencing have contributed to greatly enhance our understanding of the pathogenetic mechanisms in lymphoma. Novel and emerging concepts that challenge our previously accepted paradigms about lymphoma biology and how these impact diagnosis, molecular testing, disease monitoring, drug development, and personalized and precision medicine for lymphoma are discussed.
Collapse
Affiliation(s)
- Kojo S J Elenitoba-Johnson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , .,Center for Personalized Diagnostics and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Megan S Lim
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; , .,Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
314
|
Maciocia PM, Wawrzyniecka PA, Philip B, Ricciardelli I, Akarca AU, Onuoha SC, Legut M, Cole DK, Sewell AK, Gritti G, Somja J, Piris MA, Peggs KS, Linch DC, Marafioti T, Pule MA. Targeting the T cell receptor β-chain constant region for immunotherapy of T cell malignancies. Nat Med 2017; 23:1416-1423. [PMID: 29131157 DOI: 10.1038/nm.4444] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/18/2017] [Indexed: 12/19/2022]
Abstract
Mature T cell cancers are typically aggressive, treatment resistant and associated with poor prognosis. Clinical application of immunotherapeutic approaches has been limited by a lack of target antigens that discriminate malignant from healthy (normal) T cells. Unlike B cell depletion, pan-T cell aplasia is prohibitively toxic. We report a new targeting strategy based on the mutually exclusive expression of T cell receptor β-chain constant domains 1 and 2 (TRBC1 and TRBC2). We identify an antibody with unique TRBC1 specificity and use it to demonstrate that normal and virus-specific T cell populations contain both TRBC1+ and TRBC2+ compartments, whereas malignancies are restricted to only one. As proof of concept for anti-TRBC immunotherapy, we developed anti-TRBC1 chimeric antigen receptor (CAR) T cells, which recognized and killed normal and malignant TRBC1+, but not TRBC2+, T cells in vitro and in a disseminated mouse model of leukemia. Unlike nonselective approaches targeting the entire T cell population, TRBC-targeted immunotherapy could eradicate a T cell malignancy while preserving sufficient normal T cells to maintain cellular immunity.
Collapse
Affiliation(s)
| | | | - Brian Philip
- Cancer Institute, University College London, London, UK
| | - Ida Ricciardelli
- Institute of Child Health, University College London, London, UK
| | - Ayse U Akarca
- Cancer Institute, University College London, London, UK
| | | | - Mateusz Legut
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - David K Cole
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Andrew K Sewell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Giuseppe Gritti
- Hematology and Bone Marrow Transplant Units, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | - Joan Somja
- Department of Anatomy and Cellular Pathology, University of Liège, Liège, Belgium
| | - Miguel A Piris
- Department of Pathology, Fundación Jiménez Díaz, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Karl S Peggs
- Cancer Institute, University College London, London, UK
| | - David C Linch
- Cancer Institute, University College London, London, UK
| | | | - Martin A Pule
- Cancer Institute, University College London, London, UK.,Autolus, Ltd., London, UK
| |
Collapse
|
315
|
Meng Y, Quan L, Liu A. Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions. Gene 2017; 642:205-211. [PMID: 29128636 DOI: 10.1016/j.gene.2017.11.022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE This study aimed to investigate the molecular mechanism underlying diffuse large B-cell lymphoma (DLBCL). METHODS Serum miRNA expression analysis for the serum samples of patients with DLBCL and those of controls was performed using the Illumina sequencing technology. Differentially expressed miRNAs (DEMs) were identified on the basis of the sequencing data. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and protein-protein interaction (PPI) network construction for the target genes of DEMs were also conducted. Moreover, the selected DEMs were verified using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS Fifty-one DEMs were identified between DLBCL disease and control groups, of which two were upregulated and 49 were downregulated. In total, 3631 target genes of DEMs were obtained, and hsa-miR-34a-5p had the most target genes. Among the 51 DEMs, 19 were significantly enriched in 41 KEGG pathways. hsa-miR-34a-5p was enriched in 15 pathways such as the p53 signaling pathway. hsa-miR-323b-3p was enriched in four pathways such as pathways in cancer. The PPI network revealed that hsa-miR-34a-5p had the most target genes such as tumor protein p53 (TP53), and hsa-miR-431-5p regulated tyrosine protein kinase Fyn (FYN). Furthermore, qRT-PCR results showed that hsa-miR-34a-5p was upregulated, whereas hsa-miR-323b-3p and hsa-miR-431-5p were downregulated. CONCLUSION hsa-miR-34a-5p may be directly regulated by TP53 and may be involved in DLBCL development via the p53 signaling pathway. Furthermore, hsa-miR-323b-3p may be related to DLBCL by participating in pathways in cancer. hsa-miR-431-5p may also play a role in DLBCL by regulating FYN.
Collapse
Affiliation(s)
- Yuanyuan Meng
- Department of Gynecology Tumor, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, Heilongjiang 150080, China
| | - Lina Quan
- Department of Hematology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, Heilongjiang 150080, China
| | - Aichun Liu
- Department of Hematology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Harbin, Heilongjiang 150080, China.
| |
Collapse
|
316
|
Lamers IJC, Reijnders MRF, Venselaar H, Kraus A, Jansen S, de Vries BBA, Houge G, Gradek GA, Seo J, Choi M, Chae JH, van der Burgt I, Pfundt R, Letteboer SJF, van Beersum SEC, Dusseljee S, Brunner HG, Doherty D, Kleefstra T, Roepman R. Recurrent De Novo Mutations Disturbing the GTP/GDP Binding Pocket of RAB11B Cause Intellectual Disability and a Distinctive Brain Phenotype. Am J Hum Genet 2017; 101:824-832. [PMID: 29106825 DOI: 10.1016/j.ajhg.2017.09.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 09/19/2017] [Indexed: 12/20/2022] Open
Abstract
The Rab GTPase family comprises ∼70 GTP-binding proteins, functioning in vesicle formation, transport and fusion. They are activated by a conformational change induced by GTP-binding, allowing interactions with downstream effectors. Here, we report five individuals with two recurrent de novo missense mutations in RAB11B; c.64G>A; p.Val22Met in three individuals and c.202G>A; p.Ala68Thr in two individuals. An overlapping neurodevelopmental phenotype, including severe intellectual disability with absent speech, epilepsy, and hypotonia was observed in all affected individuals. Additionally, visual problems, musculoskeletal abnormalities, and microcephaly were present in the majority of cases. Re-evaluation of brain MRI images of four individuals showed a shared distinct brain phenotype, consisting of abnormal white matter (severely decreased volume and abnormal signal), thin corpus callosum, cerebellar vermis hypoplasia, optic nerve hypoplasia and mild ventriculomegaly. To compare the effects of both variants with known inactive GDP- and active GTP-bound RAB11B mutants, we modeled the variants on the three-dimensional protein structure and performed subcellular localization studies. We predicted that both variants alter the GTP/GDP binding pocket and show that they both have localization patterns similar to inactive RAB11B. Evaluation of their influence on the affinity of RAB11B to a series of binary interactors, both effectors and guanine nucleotide exchange factors (GEFs), showed induction of RAB11B binding to the GEF SH3BP5, again similar to inactive RAB11B. In conclusion, we report two recurrent dominant mutations in RAB11B leading to a neurodevelopmental syndrome, likely caused by altered GDP/GTP binding that inactivate the protein and induce GEF binding and protein mislocalization.
Collapse
Affiliation(s)
- Ideke J C Lamers
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Margot R F Reijnders
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| | - Hanka Venselaar
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Alison Kraus
- Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Sandra Jansen
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Gyri Aasland Gradek
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Jieun Seo
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ineke van der Burgt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Stef J F Letteboer
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Sylvia E C van Beersum
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Simone Dusseljee
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Han G Brunner
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, Maastricht, 6229 ER, the Netherlands
| | - Dan Doherty
- Department of Pediatrics, University of Washington and Seattle Children's Research Institute, Seattle, WA 98195, USA
| | - Tjitske Kleefstra
- Department of Human Genetics, and Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands
| | - Ronald Roepman
- Department of Human Genetics, and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, 6500 HB, the Netherlands.
| |
Collapse
|
317
|
Manso R, Sánchez-Beato M, González-Rincón J, Gómez S, Rojo F, Mollejo M, García-Cosio M, Menárguez J, Piris MA, Rodríguez-Pinilla SM. Mutations in the JAK/STAT pathway genes and activation of the pathway, a relevant finding in nodal Peripheral T-cell lymphoma. Br J Haematol 2017; 183:497-501. [PMID: 29076126 DOI: 10.1111/bjh.14984] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rebeca Manso
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, Spain
| | | | - Julia González-Rincón
- Instituto Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Sagrario Gómez
- Instituto Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| | - Federico Rojo
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Manuela Mollejo
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Virgen de la Salud, Toledo, Spain
| | - Mónica García-Cosio
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Javier Menárguez
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain.,Pathology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Miguel A Piris
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Socorro M Rodríguez-Pinilla
- Pathology Department, Fundación Jiménez Díaz, UAM, Madrid, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
318
|
Abstract
PURPOSE OF REVIEW Once an obscure disease, recent studies have transformed our understanding of angioimmunoblastic T-cell lymphoma (AITL). In this review, we summarize new major advances in the genetics and biology of AITL. RECENT FINDINGS Genome wide sequencing studies have dissected the repertoire of the genetic alterations driving AITL uncovering a highly recurrent Gly17Val somatic mutation in the small GTPase RHOA and major role for mutations in epigenetic regulators, such as TET2, DNMT3A and IDH2, and signaling factors (e.g., FYN and CD28). These findings support a multistep model of follicular T helper cell transformation in AITL and pinpoint novel candidates for the development of targeted therapies in this disease. SUMMARY AITL originates from follicular T helper cells and is characterized by the presence of RHOA G17V mutation together with genetic alterations in TET2, DNMT3A, and IDH2. Research efforts now focus on the elucidation of the specific roles and interplay of these genetic alterations in the pathogenesis of AITL.
Collapse
|
319
|
Madubata CJ, Roshan-Ghias A, Chu T, Resnick S, Zhao J, Arnes L, Wang J, Rabadan R. Identification of potentially oncogenic alterations from tumor-only samples reveals Fanconi anemia pathway mutations in bladder carcinomas. NPJ Genom Med 2017; 2:29. [PMID: 29263839 PMCID: PMC5677944 DOI: 10.1038/s41525-017-0032-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 01/02/2023] Open
Abstract
Cancer is caused by germline and somatic mutations, which can share biological features such as amino acid change. However, integrated germline and somatic analysis remains uncommon. We present a framework that uses machine learning to learn features of recurrent somatic mutations to (1) predict somatic variants from tumor-only samples and (2) identify somatic-like germline variants for integrated analysis of tumor-normal DNA. Using data from 1769 patients from seven cancer types (bladder, glioblastoma, low-grade glioma, lung, melanoma, stomach, and pediatric glioma), we show that "somatic-like" germline variants are enriched for autosomal-dominant cancer-predisposition genes (p < 4.35 × 10-15), including TP53. Our framework identifies germline and somatic nonsense variants in BRCA2 and other Fanconi anemia genes in 11% (11/100) of bladder cancer cases, suggesting a potential genetic predisposition in these patients. The bladder carcinoma patients with Fanconi anemia nonsense variants display a BRCA-deficiency somatic mutation signature, suggesting treatment targeted to DNA repair.
Collapse
Affiliation(s)
- Chioma J Madubata
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Alireza Roshan-Ghias
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Timothy Chu
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Samuel Resnick
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Junfei Zhao
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Luis Arnes
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| | - Jiguang Wang
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
- Division of Life Science and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Raul Rabadan
- Department of Systems Biology, Columbia University, New York, NY 10032 USA
- Department of Biomedical Informatics, Columbia University, New York, NY 10032 USA
| |
Collapse
|
320
|
Impact of DNA methylation programming on normal and pre-leukemic hematopoiesis. Semin Cancer Biol 2017; 51:89-100. [PMID: 28964938 DOI: 10.1016/j.semcancer.2017.09.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/30/2022]
Abstract
Epigenome regulation is a critical mechanism that governs cell identity, lineage specification and developmental cell fates. With the advent of low-input and single-cell technologies as well as sophisticated cell labeling techniques, our understanding of transcriptional and epigenetic regulation of hematopoiesis is currently undergoing dramatic changes. Increasingly, evidence suggests that the epigenome conformation acts as a critical decision-making mechanism that instructs self-renewal, differentiation and developmental fates of hematopoietic progenitor cells. When dysregulated, this leads to the evolution of disease states such as leukemia. Indeed, aberrations in DNA methylation, histone modifications and genome architecture are characteristic features of many hematopoietic neoplasms in which epigenetic enzymes are frequently mutated. Sequencing studies and characterization of the epigenetic landscape in lymphomas, leukemias and in aged healthy individuals with clonal hematopoiesis have been indispensible to identify epigenetic regulators that play a role in transformation or pre-disposition to hematopoietic malignancies. In this review, we outline the current view of the hematopoietic system and the epigenetic mechanisms regulating hematopoiesis under homeostatic conditions, with a particular focus on the role of DNA methylation in this process. We will also summarize the current knowledge on the mechanisms underlying dysregulated DNA methylation in hematologic malignancies and how this contributes to our understanding of the physiological functions of epigenetic regulators in hematopoiesis.
Collapse
|
321
|
Gong Q, Wang C, Zhang W, Iqbal J, Hu Y, Greiner TC, Cornish A, Kim JH, Rabadan R, Abate F, Wang X, Inghirami GG, McKeithan TW, Chan WC. Assessment of T-cell receptor repertoire and clonal expansion in peripheral T-cell lymphoma using RNA-seq data. Sci Rep 2017; 7:11301. [PMID: 28900149 PMCID: PMC5595876 DOI: 10.1038/s41598-017-11310-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 08/22/2017] [Indexed: 12/11/2022] Open
Abstract
T-cell clonality of peripheral T-cell lymphoma (PTCL) is routinely evaluated with a PCR-based method using genomic DNA. However, there are limitations with this approach. The purpose of this study was to determine the utility of RNA-seq for assessing T-cell clonality and T-cell antigen receptor (TCR) repertoire of the neoplastic T-cells in 108 PTCL samples. TCR transcripts, including complementarity-determining region 3 (CDR3) sequences, were assessed. In normal T cells, the CDR3 sequences were extremely diverse, without any clonotype representing more than 2% of the overall TCR population. Dominant clones could be identified in 65 out of 76 PTCL cases (86%) with adequate TCR transcript expression. In monoclonal cases, the dominant clone varied between 11% and 99% of TCRβ transcripts. No unique Vα or Vβ usage was observed. Small T-cell clones were often observed in T- and NK-cell tumors in a percentage higher than observed in reactive conditions. γ chain expression was very low in tumors expressing TCRαβ, but its expression level was high and clonality was detected in a TCRγδ expressing tumor. NK cell lymphoma (NKCL) did not express significant levels of TCR Vβ or Vγ genes. RNA-seq is a useful tool for detecting and characterizing clonal TCR rearrangements in PTCL.
Collapse
Affiliation(s)
- Qiang Gong
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States
| | - Chao Wang
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.,Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States.,Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Weiwei Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Javeed Iqbal
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yang Hu
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Timothy C Greiner
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Adam Cornish
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Jo-Heon Kim
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.,Department of Pathology, Chonnam National University Medical School and Research Institute of Medical Sciences, Gwangju, South Korea
| | - Raul Rabadan
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Francesco Abate
- Department of Biomedical Informatics, Columbia University, New York, NY, United States
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, P.R. China
| | - Giorgio G Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, 91010, CA, United States.
| |
Collapse
|
322
|
Angioimmunoblastic T cell lymphoma: novel molecular insights by mutation profiling. Oncotarget 2017; 8:17763-17770. [PMID: 28148900 PMCID: PMC5392284 DOI: 10.18632/oncotarget.14846] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Angioimmunoblastic T cell lymphoma (AITL) originates from follicular helper T-cells and is characterised by a polymorphic infiltrate with the neoplastic T-cells forming small clusters around the follicle and high endothelial venules. Despite the recent advances in its phenotypic characterisation, the genetics and molecular mechanisms underlying AITL are not fully understood. In the present study, we performed whole exome sequencing in 9 cases of AITL from Taiwan (n = 6) and U.K. (n = 3). We confirmed frequent mutations in TET2 (9/9), DNMT3A (3/9), IDH2 (3/9), RHOA (3/9) and PLCG1 (2/9) as recently reported by others. More importantly, we identified mutations in TNFRSF21 (1/9), CCND3 (1/9) and SAMSN1 (1/9), which are not yet seen or strongly implicated in the pathogenesis of AITL. Among the pathogenic mutations identified in AITL, mutations in DNA methylation regulators TET2 and DNMT3A occur early in hematopoietic stem cells as shown by previous studies, and these genetic events enhance the self-renewal of hematopoietic stem cells, but are unlikely to have any major impact on T-cell differentiation. Mutations in RHOA, PLCG1 and TNFRSF21 (DR6), which encode proteins critical for T-cell biology, most likely promote T-cell differentiation and malignant transformation, consequently generating the malignant phenotype. Our findings extend the molecular insights into the multistage development of AITL.
Collapse
|
323
|
Abstract
PURPOSE OF REVIEW Peripheral T cell lymphomas (PTCLs) are markedly heterogeneous at the clinical, pathological, and molecular levels. This review will discuss genetic findings in PTCL with special emphasis on how they impact lymphoma classification. RECENT FINDINGS Sequencing studies have identified recurrent genetic alterations in nearly every PTCL subtype. In anaplastic large cell lymphoma, these studies have revealed novel chromosomal rearrangements and mutations that have prognostic significance and may suggest new therapeutic approaches. Angioimmunoblastic T cell lymphoma has been found to have mutations overlapping some cases of PTCL, not otherwise specified with a T follicular helper cell phenotype. Across various subtypes, recurrent mutations and structural alterations affecting genes involved in epigenetic regulation, T cell receptor signaling, and immune response may represent targets for precision therapy approaches. New genetic findings are refining the classification of PTCLs and are beginning to be used clinically for diagnosis, risk stratification, and individualized therapy.
Collapse
|
324
|
Activation of RHOA-VAV1 signaling in angioimmunoblastic T-cell lymphoma. Leukemia 2017; 32:694-702. [PMID: 28832024 PMCID: PMC5843900 DOI: 10.1038/leu.2017.273] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 06/20/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Abstract
Somatic G17V RHOA mutations were found in 50–70% of angioimmunoblastic T-cell lymphoma (AITL). The mutant RHOA lacks GTP binding capacity, suggesting defects in the classical RHOA signaling. Here, we discovered the novel function of the G17V RHOA: VAV1 was identified as a G17V RHOA-specific binding partner via high-throughput screening. We found that binding of G17V RHOA to VAV1 augmented its adaptor function through phosphorylation of 174Tyr, resulting in acceleration of T-cell receptor (TCR) signaling. Enrichment of cytokine and chemokine-related pathways was also evident by the expression of G17V RHOA. We further identified VAV1 mutations and a new translocation, VAV1–STAP2, in seven of the 85 RHOA mutation-negative samples (8.2%), whereas none of the 41 RHOA mutation-positive samples exhibited VAV1 mutations. Augmentation of 174Tyr phosphorylation was also demonstrated in VAV1–STAP2. Dasatinib, a multikinase inhibitor, efficiently blocked the accelerated VAV1 phosphorylation and the associating TCR signaling by both G17V RHOA and VAV1–STAP2 expression. Phospho-VAV1 staining was demonstrated in the clinical specimens harboring G17V RHOA and VAV1 mutations at a higher frequency than those without. Our findings indicate that the G17V RHOA–VAV1 axis may provide a new therapeutic target in AITL.
Collapse
|
325
|
Immune Dysfunction in Non-Hodgkin Lymphoma: Avenues for New Immunotherapy-Based Strategies. Curr Hematol Malig Rep 2017; 12:484-494. [DOI: 10.1007/s11899-017-0410-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
326
|
Genomic analysis of 220 CTCLs identifies a novel recurrent gain-of-function alteration in RLTPR (p.Q575E). Blood 2017; 130:1430-1440. [PMID: 28694326 PMCID: PMC5609333 DOI: 10.1182/blood-2017-02-768234] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/26/2017] [Indexed: 12/26/2022] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is an incurable non-Hodgkin lymphoma of the skin-homing T cell. In early-stage disease, lesions are limited to the skin, but in later-stage disease, the tumor cells can escape into the blood, the lymph nodes, and at times the visceral organs. To clarify the genomic basis of CTCL, we performed genomic analysis of 220 CTCLs. Our analyses identify 55 putative driver genes, including 17 genes not previously implicated in CTCL. These novel mutations are predicted to affect chromatin (BCOR, KDM6A, SMARCB1, TRRAP), immune surveillance (CD58, RFXAP), MAPK signaling (MAP2K1, NF1), NF-κB signaling (PRKCB, CSNK1A1), PI-3-kinase signaling (PIK3R1, VAV1), RHOA/cytoskeleton remodeling (ARHGEF3), RNA splicing (U2AF1), T-cell receptor signaling (PTPRN2, RLTPR), and T-cell differentiation (RARA). Our analyses identify recurrent mutations in 4 genes not previously identified in cancer. These include CK1α (encoded by CSNK1A1) (p.S27F; p.S27C), PTPRN2 (p.G526E), RARA (p.G303S), and RLTPR (p.Q575E). Last, we functionally validate CSNK1A1 and RLTPR as putative oncogenes. RLTPR encodes a recently described scaffolding protein in the T-cell receptor signaling pathway. We show that RLTPR (p.Q575E) increases binding of RLTPR to downstream components of the NF-κB signaling pathway, selectively upregulates the NF-κB pathway in activated T cells, and ultimately augments T-cell-receptor-dependent production of interleukin 2 by 34-fold. Collectively, our analysis provides novel insights into CTCL pathogenesis and elucidates the landscape of potentially targetable gene mutations.
Collapse
|
327
|
Zang S, Li J, Yang H, Zeng H, Han W, Zhang J, Lee M, Moczygemba M, Isgandarova S, Yang Y, Zhou Y, Rao A, You MJ, Sun D, Huang Y. Mutations in 5-methylcytosine oxidase TET2 and RhoA cooperatively disrupt T cell homeostasis. J Clin Invest 2017; 127:2998-3012. [PMID: 28691928 DOI: 10.1172/jci92026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/16/2017] [Indexed: 12/13/2022] Open
Abstract
Angioimmunoblastic T cell lymphoma (AITL) represents a distinct, aggressive form of peripheral T cell lymphoma with a dismal prognosis. Recent exome sequencing in patients with AITL has revealed the frequent coexistence of somatic mutations in the Rho GTPase RhoA (RhoAG17V) and loss-of-function mutations in the 5-methylcytosine oxidase TET2. Here, we have demonstrated that TET2 loss and RhoAG17V expression in mature murine T cells cooperatively cause abnormal CD4+ T cell proliferation and differentiation by perturbing FoxO1 gene expression, phosphorylation, and subcellular localization, an abnormality that is also detected in human primary AITL tumor samples. Reexpression of FoxO1 attenuated aberrant immune responses induced in mouse models adoptively transferred with T cells and bearing genetic lesions in both TET2 and RhoA. Our findings suggest a mutational cooperativity between epigenetic factors and GTPases in adult CD4+ T cells that may account for immunoinflammatory responses associated with AITL patients.
Collapse
Affiliation(s)
- Shengbing Zang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jia Li
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Haiyan Yang
- Department of Lymphoma, Zhejiang Cancer Hospital, Hangzhou, China
| | - Hongxiang Zeng
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Wei Han
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Jixiang Zhang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA.,Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Minjung Lee
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Margie Moczygemba
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Sevinj Isgandarova
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Yaling Yang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, and.,Department of Medical Physiology, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine and the Department of Pharmacology, and.,Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Deqiang Sun
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology and.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
328
|
Rosenquist R, Rosenwald A, Du MQ, Gaidano G, Groenen P, Wotherspoon A, Ghia P, Gaulard P, Campo E, Stamatopoulos K. Clinical impact of recurrently mutated genes on lymphoma diagnostics: state-of-the-art and beyond. Haematologica 2017; 101:1002-9. [PMID: 27582569 DOI: 10.3324/haematol.2015.134510] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/03/2016] [Indexed: 12/14/2022] Open
Abstract
Similar to the inherent clinical heterogeneity of most, if not all, lymphoma entities, the genetic landscape of these tumors is markedly complex in the majority of cases, with a rapidly growing list of recurrently mutated genes discovered in recent years by next-generation sequencing technology. Whilst a few genes have been implied to have diagnostic, prognostic and even predictive impact, most gene mutations still require rigorous validation in larger, preferably prospective patient series, to scrutinize their potential role in lymphoma diagnostics and patient management. In selected entities, a predominantly mutated gene is identified in almost all cases (e.g. Waldenström's macroglobulinemia/lymphoplasmacytic lymphoma and hairy-cell leukemia), while for the vast majority of lymphomas a quite diverse mutation pattern is observed, with a limited number of frequently mutated genes followed by a seemingly endless tail of genes with mutations at a low frequency. Herein, the European Expert Group on NGS-based Diagnostics in Lymphomas (EGNL) summarizes the current status of this ever-evolving field, and, based on the present evidence level, segregates mutations into the following categories: i) immediate impact on treatment decisions, ii) diagnostic impact, iii) prognostic impact, iv) potential clinical impact in the near future, or v) should only be considered for research purposes. In the coming years, coordinated efforts aiming to apply targeted next-generation sequencing in large patient series will be needed in order to elucidate if a particular gene mutation will have an immediate impact on the lymphoma classification, and ultimately aid clinical decision making.
Collapse
Affiliation(s)
- Richard Rosenquist
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Sweden
| | - Andreas Rosenwald
- Institute of Pathology, University of Würzburg, Germany and Comprehensive Cancer Center Mainfranken (CCC MF), Germany
| | - Ming-Qing Du
- Division of Molecular Histopathology, Department of Pathology, University of Cambridge, UK
| | - Gianluca Gaidano
- Division of Haematology, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Patricia Groenen
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andrew Wotherspoon
- Department of Histopathology, Royal Marsden Hopsital, Fulham Road, London, UK
| | - Paolo Ghia
- Division of Experimental Oncology and Department of Onco-Hematology, Università Vita-Salute San Raffaele and IRCCS Instituto Scientifico San Raffaele, Milan, Italy
| | - Philippe Gaulard
- Department of Pathology, AP-HP, Groupe hospitalier Henri Mondor-Albert Chenevier, Créteil INSERM U955, Université Paris-Est, Créteil, France
| | - Elias Campo
- Hemathopatology Section, Department of Pathology, Hospital Clinic and Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Spain
| | | | | |
Collapse
|
329
|
Angioimmunoblastic T-cell lymphoma: more than a disease of T follicular helper cells. J Pathol 2017; 242:387-390. [DOI: 10.1002/path.4920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 04/25/2017] [Accepted: 05/16/2017] [Indexed: 01/24/2023]
|
330
|
Sakata-Yanagimoto M, Nakamoto-Matsubara R, Komori D, Nguyen TB, Hattori K, Nanmoku T, Kato T, Kurita N, Yokoyama Y, Obara N, Hasegawa Y, Shinagawa A, Chiba S. Detection of the circulating tumor DNAs in angioimmunoblastic T- cell lymphoma. Ann Hematol 2017. [PMID: 28634614 DOI: 10.1007/s00277-017-3038-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent genetic studies identified that the disease-specific G17V RHOA mutation, together with mutations in TET2, DNMT3A, and IDH2, is a hallmark of angioimmunoblastic T cell lymphomas (AITL). The diagnostic value of these mutations is now being investigated. Circulating tumor DNAs (ctDNAs) may offer a non-invasive testing for diagnosis and disease monitoring of cancers. To investigate whether these mutations are useful markers for ctDNAs in AITL and its related lymphomas, we performed targeted sequencing for TET2, RHOA, DNMT3A, and IDH2 in paired tumors and cell-free DNAs from 14 patients at diagnosis. Eighty-three percent of mutations detected in tumors were also observed in cell-free DNAs. During the disease course, mutations were detectable in cell-free DNAs in a refractory case, while they disappeared in a chemosensitive case. These data suggest that the disease-specific gene mutations serve as sensitive indicators for ctDNAs and may also be applicable for non-invasive monitoring of minimal residual diseases in AITL.
Collapse
Affiliation(s)
- Mamiko Sakata-Yanagimoto
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Rie Nakamoto-Matsubara
- Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Daisuke Komori
- Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Tran B Nguyen
- Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Keiichiro Hattori
- Department of Hematology, Comprehensive Human Biosciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Toru Nanmoku
- Department of Clinical Laboratory, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Takayasu Kato
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Naoki Kurita
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yasuhisa Yokoyama
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Naoshi Obara
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Yuichi Hasegawa
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan
| | - Atsushi Shinagawa
- Department of Internal Medicine, Hitachi General Hospital, 2-1-1 Jonancho, Hitachi, Ibaraki, 317-0777, Japan
| | - Shigeru Chiba
- Department of Hematology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan. .,Department of Hematology, University of Tsukuba Hospital, 2-1-1 Amakubo, Tsukuba, Ibaraki, 305-8576, Japan.
| |
Collapse
|
331
|
Amengual JE, Prabhu SA, Lombardo M, Zullo K, Johannet PM, Gonzalez Y, Scotto L, Serrano XJ, Wei Y, Duong J, Nandakumar R, Cremers S, Verma A, Elemento O, O'Connor OA. Mechanisms of Acquired Drug Resistance to the HDAC6 Selective Inhibitor Ricolinostat Reveals Rational Drug-Drug Combination with Ibrutinib. Clin Cancer Res 2017; 23:3084-3096. [PMID: 27993968 PMCID: PMC5474138 DOI: 10.1158/1078-0432.ccr-16-2022] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/31/2022]
Abstract
Purpose: Pan-class I/II histone deacetylase (HDAC) inhibitors are effective treatments for select lymphomas. Isoform-selective HDAC inhibitors are emerging as potentially more targeted agents. ACY-1215 (ricolinostat) is a first-in-class selective HDAC6 inhibitor. To better understand the discrete function of HDAC6 and its role in lymphoma, we developed a lymphoma cell line resistant to ACY-1215.Experimental Design: The diffuse large B-cell lymphoma cell line OCI-Ly10 was exposed to increasing concentrations of ACY-1215 over an extended period of time, leading to the development of a resistant cell line. Gene expression profiling (GEP) was performed to investigate differentially expressed genes. Combination studies of ACY-1215 and ibrutinib were performed in cell lines, primary human lymphoma tissue, and a xenograft mouse model.Results: Systematic incremental increases in drug exposure led to the development of distinct resistant cell lines with IC50 values 10- to 20-fold greater than that for parental lines. GEP revealed upregulation of MAPK10, HELIOS, HDAC9, and FYN, as well as downregulation of SH3BP5 and LCK. Gene-set enrichment analysis (GSEA) revealed modulation of the BTK pathway. Ibrutinib was found to be synergistic with ACY-1215 in cell lines as well as in 3 primary patient samples of lymphoma. In vivo confirmation of antitumor synergy was demonstrated with a xenograft of DLBCL.Conclusions: The development of this ACY-1215-resistant cell line has provided valuable insights into the mechanistic role of HDAC6 in lymphoma and offered a novel method to identify rational synergistic drug combinations. Translation of these findings to the clinic is underway. Clin Cancer Res; 23(12); 3084-96. ©2016 AACR.
Collapse
Affiliation(s)
- Jennifer E Amengual
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York.
| | - Sathyen A Prabhu
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Maximilian Lombardo
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Kelly Zullo
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Paul M Johannet
- Stanford University School of Medicine, Stanford, California
| | - Yulissa Gonzalez
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Luigi Scotto
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Xavier Jirau Serrano
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| | - Ying Wei
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Jimmy Duong
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, New York
| | - Renu Nandakumar
- Division of Clinical Pathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Serge Cremers
- Division of Clinical Pathology, Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York
| | - Akanksha Verma
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Olivier Elemento
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, New York
| | - Owen A O'Connor
- Center for Lymphoid Malignancies, Columbia University Medical Center, New York, New York
| |
Collapse
|
332
|
Humphries B, Wang Z, Li Y, Jhan JR, Jiang Y, Yang C. ARHGAP18 Downregulation by miR-200b Suppresses Metastasis of Triple-Negative Breast Cancer by Enhancing Activation of RhoA. Cancer Res 2017; 77:4051-4064. [PMID: 28619708 DOI: 10.1158/0008-5472.can-16-3141] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 02/13/2017] [Accepted: 06/05/2017] [Indexed: 11/16/2022]
Abstract
Rho GTPases activated in cancer cells drive proliferation, migration, and metastasis. Thus, RhoGAP proteins, which negatively regulate Rho GTPases, are generally thought to function as tumor suppressors. Here this expectation was challenged by characterization of ARHGAP18, a RhoGAP family member that is selectively overexpressed in highly migratory triple-negative breast cancer (TNBC) cells. In human breast tumors, higher ARHGAP18 levels associated with worse overall survival, recurrence-free survival, and metastasis-free survival. In TNBC cells, ARHGAP18 deletion increased RhoA activation but reduced growth, migration, and metastatic capacity. Mechanistic investigations revealed that ARHGAP18 levels were controlled by miR-200b, the enforced expression of which was sufficient to activate RhoA, enhanced formation of focal adhesions and actin stress fibers, and reduced migration and metastasis. Enforced elevation of ARHGAP18 where miR-200b was stably expressed reduced RhoA activity but increased cell migration. Pharmacologic inhibition of the Rho effector kinase ROCK blocked RhoA signaling and reversed the inhibitory effect of miR-200b on cell migration. Finally, ARHGAP18 overexpression or ROCK inhibition was sufficient to overcome metastatic blockade by miR-200b. Taken together, these results define opposing roles for oncogenic ARHGAP18 and tumor suppressive miR-200b in determining TNBC cell migration and metastatic prowess. Cancer Res; 77(15); 4051-64. ©2017 AACR.
Collapse
Affiliation(s)
- Brock Humphries
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Zhishan Wang
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Yunfei Li
- Department of Physiology, Michigan State University, East Lansing, Michigan
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, Kentucky
| | - Jing-Ru Jhan
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Chengfeng Yang
- Department of Physiology, Michigan State University, East Lansing, Michigan.
- Department of Toxicology and Cancer Biology, Center for Research on Environmental Diseases, College of Medicine, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
333
|
The relative utilities of genome-wide, gene panel, and individual gene sequencing in clinical practice. Blood 2017; 130:433-439. [PMID: 28600338 DOI: 10.1182/blood-2017-03-734533] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/09/2017] [Indexed: 12/12/2022] Open
Abstract
Advances in technology that have transpired over the past 2 decades have enabled the analysis of cancer samples for genomic alterations to understand their biologic function and to translate that knowledge into clinical practice. With the power to analyze entire genomes in a clinically relevant time frame and with manageable costs comes the question of whether we ought to and when. This review focuses on the relative merits of 3 approaches to molecular diagnostics in hematologic malignancies: indication-specific single gene assays, gene panel assays that test for genes selected for their roles in cancer, and genome-wide assays that broadly analyze the tumor exomes or genomes. After addressing these in general terms, we review specific use cases in myeloid and lymphoid malignancies to highlight the utility of single gene testing and/or larger panels.
Collapse
|
334
|
Piccaluga PP. Updated classification and novel treatment prospective for nodal peripheral T-cell lymphomas. Int J Hematol Oncol 2017; 6:1-4. [PMID: 30302216 PMCID: PMC6171976 DOI: 10.2217/ijh-2017-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 03/28/2017] [Indexed: 11/21/2022] Open
Affiliation(s)
- Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, & Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine; Bologna, Italy.,Euro-Mediterranean Institute of Science & Technology (IEMEST), Palermo, Italy.,Department of Experimental, Diagnostic, & Experimental Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine; Bologna, Italy.,Euro-Mediterranean Institute of Science & Technology (IEMEST), Palermo, Italy
| |
Collapse
|
335
|
Mondejar R, Pérez C, Onaindia A, Martinez N, González-Rincón J, Pisonero H, Vaqué JP, Cereceda L, Santibañez M, Sánchez-Beato M, Piris MA. Molecular basis of targeted therapy in T/NK-cell lymphoma/leukemia: A comprehensive genomic and immunohistochemical analysis of a panel of 33 cell lines. PLoS One 2017; 12:e0177524. [PMID: 28505169 PMCID: PMC5432176 DOI: 10.1371/journal.pone.0177524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/29/2017] [Indexed: 12/13/2022] Open
Abstract
T and NK-cell lymphoma is a collection of aggressive disorders with unfavorable outcome, in which targeted treatments are still at a preliminary phase. To gain deeper insights into the deregulated mechanisms promoting this disease, we searched a panel of 31 representative T-cell and 2 NK-cell lymphoma/leukemia cell lines for predictive markers of response to targeted therapy. To this end, targeted sequencing was performed alongside the expression of specific biomarkers corresponding to potentially activated survival pathways. The study identified TP53, NOTCH1 and DNMT3A as the most frequently mutated genes. We also found common alterations in JAK/STAT and epigenetic pathways. Immunohistochemical analysis showed nuclear accumulation of MYC (in 85% of the cases), NFKB (62%), p-STAT (44%) and p-MAPK (30%). This panel of cell lines captures the complexity of T/NK-cell lymphoproliferative processes samples, with the partial exception of AITL cases. Integrated mutational and immunohistochemical analysis shows that mutational changes cannot fully explain the activation of key survival pathways and the resulting phenotypes. The combined integration of mutational/expression changes forms a useful tool with which new compounds may be assayed.
Collapse
Affiliation(s)
- Rufino Mondejar
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Cristina Pérez
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Arantza Onaindia
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Nerea Martinez
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Julia González-Rincón
- Lymphoma Research Group (Medical Oncology Service) Oncohematology Area, Instituto Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| | - Helena Pisonero
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | - Jose Pedro Vaqué
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | - Laura Cereceda
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
| | | | - Margarita Sánchez-Beato
- Lymphoma Research Group (Medical Oncology Service) Oncohematology Area, Instituto Investigación Sanitaria Puerta de Hierro-Majadahonda (IDIPHIM), Madrid, Spain
| | - Miguel Angel Piris
- Cancer Genomics Laboratory, Instituto de Investigación Marqués de Valdecilla, IDIVAL, Santander, Spain
- Pathology Department, Hospital Universitario Marqués de Valdecilla, Santander, Spain
- * E-mail:
| |
Collapse
|
336
|
Schwartz FH, Cai Q, Fellmann E, Hartmann S, Mäyränpää MI, Karjalainen-Lindsberg ML, Sundström C, Scholtysik R, Hansmann ML, Küppers R. TET2
mutations in B cells of patients affected by angioimmunoblastic T-cell lymphoma. J Pathol 2017; 242:129-133. [DOI: 10.1002/path.4898] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Friederike H Schwartz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Medical School; Essen Germany
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt; Medical School; Frankfurt Germany
| | - Qian Cai
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Medical School; Essen Germany
| | - Eva Fellmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt; Medical School; Frankfurt Germany
| | - Sylvia Hartmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt; Medical School; Frankfurt Germany
| | - Mikko I Mäyränpää
- Department of Pathology; University of Helsinki; Helsinki Finland
- HUSLAB, Division of Pathology, Meilahti Laboratories of Pathology; Helsinki University Central Hospital; Helsinki Finland
| | - Marja-Liisa Karjalainen-Lindsberg
- Department of Pathology; University of Helsinki; Helsinki Finland
- HUSLAB, Division of Pathology, Meilahti Laboratories of Pathology; Helsinki University Central Hospital; Helsinki Finland
| | - Christer Sundström
- Department of Immunology, Genetics and Pathology; Uppsala University Hospital; Uppsala Sweden
| | - René Scholtysik
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Medical School; Essen Germany
| | - Martin-Leo Hansmann
- Dr Senckenberg Institute of Pathology, Goethe-University of Frankfurt; Medical School; Frankfurt Germany
- German Cancer Consortium (DKTK); Germany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen; Medical School; Essen Germany
- German Cancer Consortium (DKTK); Germany
| |
Collapse
|
337
|
Jeon YK, Yoon SO, Paik JH, Kim YA, Shin BK, Kim HJ, Cha HJ, Kim JE, Huh J, Ko YH. Molecular Testing of Lymphoproliferative Disorders: Current Status and Perspectives. J Pathol Transl Med 2017; 51:224-241. [PMID: 28535584 PMCID: PMC5445208 DOI: 10.4132/jptm.2017.04.09] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/09/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular pathologic testing plays an important role for the diagnosis, prognostication and decision of treatment strategy in lymphoproliferative disease. Here, we briefly review the molecular tests currently used for lymphoproliferative disease and those which will be implicated in clinical practice in the near future. Specifically, this guideline addresses the clonality test for B- and T-cell proliferative lesions, molecular cytogenetic tests for malignant lymphoma, determination of cell-of-origin in diffuse large B-cell lymphoma, and molecular genetic alterations incorporated in the 2016 revision of the World Health Organization classification of lymphoid neoplasms. Finally, a new perspective on the next-generation sequencing for diagnostic, prognostic, and therapeutic purpose in malignant lymphoma will be summarized.
Collapse
Affiliation(s)
- Yoon Kyung Jeon
- Corresponding Author Yoon Kyung Jeon, MD, PhD Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul 03080, Korea Tel: +82-2-2072-1347 Fax: +82-2-743-5530 E-mail:
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Jin Ho Paik
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Young A Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Bong Kyung Shin
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
| | - Hyun-Jung Kim
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Hee Jeong Cha
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Ji Eun Kim
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
| | - Jooryung Huh
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Hyeh Ko
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - The Hematopathology Study Group of the Korean Society of Pathologists
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - The Molecular Pathology Study Group of Korean Society of Pathologists
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
- Department of Pathology, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Korea University Guro Hospital, Korea University School of Medicine, Seoul, Korea
- Department of Pathology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
338
|
Hsi ED. 2016 WHO Classification update-What's new in lymphoid neoplasms. Int J Lab Hematol 2017; 39 Suppl 1:14-22. [DOI: 10.1111/ijlh.12650] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/18/2022]
Affiliation(s)
- E. D. Hsi
- Department of Laboratory Medicine; Cleveland Clinic; Cleveland OH USA
| |
Collapse
|
339
|
Hildyard C, Shiekh S, Browning J, Collins GP. Toward a Biology-Driven Treatment Strategy for Peripheral T-cell Lymphoma. Clin Med Insights Blood Disord 2017; 10:1179545X17705863. [PMID: 28579857 PMCID: PMC5428136 DOI: 10.1177/1179545x17705863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
T-cell and natural killer–cell lymphomas are a relatively rare and heterogeneous group of diseases that are difficult to treat and usually have poor outcomes. To date, therapeutic interventions are of limited efficacy and there is a pressing need to find better treatments. In recent years, advances in molecular biology have helped to elucidate the underlying genetic complexity of this group of diseases and to identify mutations and signaling pathways involved in lymphomagenesis. In this review, we highlight the unique biological characteristics of some of the different subtypes and discuss how these may be targeted to provide more individualized and effective treatment approaches.
Collapse
Affiliation(s)
- Cat Hildyard
- Department of Clinical Haematology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - S Shiekh
- Department of Clinical Haematology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals, Oxford, UK.,Laboratory of Cancer Biology, Department of Oncology, University of Oxford, Oxford, UK
| | - Jab Browning
- Department of Clinical Haematology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - G P Collins
- Department of Clinical Haematology, Oxford Cancer and Haematology Centre, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| |
Collapse
|
340
|
|
341
|
Novel Agents in the Treatment of Relapsed or Refractory Peripheral T-Cell Lymphoma. Hematol Oncol Clin North Am 2017; 31:359-375. [DOI: 10.1016/j.hoc.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
342
|
Al-Zahrani M, Savage KJ. Peripheral T-Cell Lymphoma, Not Otherwise Specified. Hematol Oncol Clin North Am 2017; 31:189-207. [DOI: 10.1016/j.hoc.2016.11.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
343
|
Goldberg L, Gough SM, Lee F, Dang C, Walker RL, Zhu YJ, Bilke S, Pineda M, Onozawa M, Jo Chung Y, Meltzer PS, Aplan PD. Somatic mutations in murine models of leukemia and lymphoma: Disease specificity and clinical relevance. Genes Chromosomes Cancer 2017; 56:472-483. [PMID: 28196408 DOI: 10.1002/gcc.22451] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/06/2017] [Accepted: 02/06/2017] [Indexed: 12/17/2022] Open
Abstract
Malignant transformation is a multistep process that is dictated by the acquisition of multiple genomic aberrations that provide growth and survival advantage. During the post genomic era, high throughput genomic sequencing has advanced exponentially, leading to identification of countless cancer associated mutations with potential for targeted therapy. Mouse models of cancer serve as excellent tools to examine the functionality of gene mutations and their contribution to the malignant process. However, it remains unclear whether the genetic events that occur during transformation are similar in mice and humans. To address that, we chose several transgenic mouse models of hematopoietic malignancies and identified acquired mutations in these mice by means of targeted re-sequencing of known cancer-associated genes as well as whole exome sequencing. We found that mutations that are typically found in acute myeloid leukemia or T cell acute lymphoblastic leukemia patients are also common in mouse models of the respective disease. Moreover, we found that the most frequent mutations found in a mouse model of lymphoma occur in a set of epigenetic modifier genes, implicating this pathway in the generation of lymphoma. These results demonstrate that genetically engineered mouse models (GEMM) mimic the genetic evolution of human cancer and serve as excellent platforms for target discovery and validation.
Collapse
Affiliation(s)
- Liat Goldberg
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sheryl M Gough
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Fan Lee
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Christine Dang
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robert L Walker
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Yuelin J Zhu
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sven Bilke
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Marbin Pineda
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Masahiro Onozawa
- Center for Medical Education/Department of hematology, Hokkaido University Graduate School of Medicine Hokkaido, Japan
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Paul S Meltzer
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
344
|
Tsagaratou A, Lio CWJ, Yue X, Rao A. TET Methylcytosine Oxidases in T Cell and B Cell Development and Function. Front Immunol 2017; 8:220. [PMID: 28408905 PMCID: PMC5374156 DOI: 10.3389/fimmu.2017.00220] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/13/2022] Open
Abstract
DNA methylation is established by DNA methyltransferases and is a key epigenetic mark. Ten-eleven translocation (TET) proteins are enzymes that oxidize 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further oxidization products (oxi-mCs), which indirectly promote DNA demethylation. Here, we provide an overview of the effect of TET proteins and altered DNA modification status in T and B cell development and function. We summarize current advances in our understanding of the role of TET proteins and 5hmC in T and B cells in both physiological and pathological contexts. We describe how TET proteins and 5hmC regulate DNA modification, chromatin accessibility, gene expression, and transcriptional networks and discuss potential underlying mechanisms and open questions in the field.
Collapse
Affiliation(s)
- Ageliki Tsagaratou
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Chan-Wang J Lio
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Xiaojing Yue
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Anjana Rao
- Department of Signaling and Gene Expression, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| |
Collapse
|
345
|
Pereira C, Gimenez-Xavier P, Pros E, Pajares MJ, Moro M, Gomez A, Navarro A, Condom E, Moran S, Gomez-Lopez G, Graña O, Rubio-Camarillo M, Martinez-Martí A, Yokota J, Carretero J, Galbis JM, Nadal E, Pisano D, Sozzi G, Felip E, Montuenga LM, Roz L, Villanueva A, Sanchez-Cespedes M. Genomic Profiling of Patient-Derived Xenografts for Lung Cancer Identifies B2M Inactivation Impairing Immunorecognition. Clin Cancer Res 2017; 23:3203-3213. [PMID: 28302866 DOI: 10.1158/1078-0432.ccr-16-1946] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/16/2022]
Abstract
Purpose: We aimed to maximize the performance of detecting genetic alterations in lung cancer using high-throughput sequencing for patient-derived xenografts (PDXs).Experimental Design: We undertook an integrated RNA and whole-exome sequencing of 14 PDXs. We focused on the genetic and functional analysis of β2-microglobulin (B2M), a component of the HLA class-I complex.Results: We identified alterations in genes involved in various functions, such as B2M involved in immunosurveillance. We extended the mutational analysis of B2M to about 230 lung cancers. Five percent of the lung cancers carried somatic mutations, most of which impaired the correct formation of the HLA-I complex. We also report that genes such as CALR, PDIA3, and TAP1, which are involved in the maturation of the HLA-I complex, are altered in lung cancer. By gene expression microarrays, we observed that restitution of B2M in lung cancer cells upregulated targets of IFNα/IFNγ. Furthermore, one third of the lung cancers lacked the HLA-I complex, which was associated with lower cytotoxic CD8+ lymphocyte infiltration. The levels of B2M and HLA-I proteins correlated with those of PD-L1. Finally, a deficiency in HLA-I complex and CD8+ infiltration tended to correlate with reduced survival of patients with lung cancer treated with anti-PD-1/anti-PD-L1.Conclusions: Here, we report recurrent inactivation of B2M in lung cancer. These observations, coupled with the mutations found at CALR, PDIA3, and TAP1, and the downregulation of the HLA-I complex, indicate that an abnormal immunosurveillance axis contributes to lung cancer development. Finally, our observations suggest that an impaired HLA-I complex affects the response to anti-PD-1/anti-PD-L1 therapies. Clin Cancer Res; 23(12); 3203-13. ©2016 AACR.
Collapse
Affiliation(s)
- Carolina Pereira
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Pol Gimenez-Xavier
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Eva Pros
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Maria J Pajares
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA) and Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Massimo Moro
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Antonio Gomez
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Navarro
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Enric Condom
- Pathology Department, Bellvitge University Hospital, Hospitalet de Llobregat, Spain
| | - Sebastian Moran
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Gonzalo Gomez-Lopez
- Bioinformatics Unit, Structural Biology and BioComputing Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and BioComputing Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Miriam Rubio-Camarillo
- Bioinformatics Unit, Structural Biology and BioComputing Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Alex Martinez-Martí
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Jun Yokota
- Genomics and Epigenomics of Cancer Prediction Program, Institute of Predictive and Personalized Medicine of Cancer (IMPPC), Campus Can Ruti, Badalona, Barcelona, Spain
| | - Julian Carretero
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Jose M Galbis
- Thoracic Oncology, Hospital Universitario de La Ribera, Alzira, Valencia, Spain
| | - Ernest Nadal
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - David Pisano
- Bioinformatics Unit, Structural Biology and BioComputing Programme, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Gabriella Sozzi
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Enriqueta Felip
- Oncology Department, Vall d'Hebron University Hospital and Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Luis M Montuenga
- Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,Program in Solid Tumors and Biomarkers, Center for Applied Medical Research (CIMA) and Navarra's Health Research Institute (IDISNA), Pamplona, Spain
| | - Luca Roz
- Tumor Genomics Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Alberto Villanueva
- Translational Research Laboratory, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.,Xenopat S.L. Business Bioincubator Bellvitge Health Science Campus, Hospitalet de Llobregat, Barcelona, Spain
| | - Montse Sanchez-Cespedes
- Genes and Cancer Group, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
346
|
Willemsen M, Schouten HC. Inappropriate costimulation and aberrant DNA methylation as therapeutic targets in angioimmunoblastic T-cell lymphoma. Biomark Res 2017; 5:6. [PMID: 28194275 PMCID: PMC5299773 DOI: 10.1186/s40364-017-0085-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/03/2017] [Indexed: 12/22/2022] Open
Abstract
Angioimmunoblastic T-cell lymphoma (AITL) is one of the most common subtypes of peripheral T-cell lymphoma. Advances in understanding the mutational landscape of AITL have not resulted in improved prognosis nor consensus regarding optimal first-line and second-line treatment. The recently proposed multistep tumorigenesis model for AITL provides a theoretical framework of AITL oncogenesis. In this model, early mutations in epigenetic modifiers interact with late cooperative mutations to enable malignant transformation. Frequent mutations in epigenetic modifiers suggest that aberrant DNA methylation contributes to AITL oncogenesis. Several research groups have reported findings suggesting that inappropriate costimulation acts as a late cooperative mutation. Drugs targeting inappropriate costimulation have already been approved for the treatment of several malignancies or autoimmune diseases. Additionally, aberrant DNA methylation was recently shown to potentiate inappropriate costimulation in a subset of AITL cases. Therefore, drugs targeting inappropriate costimulation and hypomethylating agents might have synergistic effects. Both offer promising new therapeutic options in AITL treatment. This commentary summarizes the main findings on aberrant DNA methylation and inappropriate costimulation in AITL and proposes several already approved drugs for AITL treatment. Hopefully, these will contribute to improving the still dismal prognosis of AITL patients.
Collapse
Affiliation(s)
- Mathijs Willemsen
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Harry C Schouten
- Department of Internal Medicine, Division of Hematology, Maastricht University Medical Centre, PO Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
347
|
Moffitt AB, Dave SS. Clinical Applications of the Genomic Landscape of Aggressive Non-Hodgkin Lymphoma. J Clin Oncol 2017; 35:955-962. [PMID: 28297626 DOI: 10.1200/jco.2016.71.7603] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this review, we examine the genomic landscapes of lymphomas that arise from B, T, and natural killer cells. Lymphomas represent a striking spectrum of clinical behaviors. Although some lymphomas are curable with standard therapy, the majority of the affected patients succumb to their disease. Here, the genetic underpinnings of these heterogeneous entities are reviewed. We consider B-cell lymphomas, including Burkitt lymphoma, diffuse large B-cell lymphoma, Hodgkin lymphoma, and primary mediastinal B-cell lymphoma. We also examine T-cell lymphomas, including anaplastic large-cell lymphoma, angioimmunoblastic T-cell lymphoma, cutaneous T-cell lymphoma, adult T-cell leukemia/lymphoma, and other peripheral T-cell lymphomas. Together, these malignancies make up most lymphomas diagnosed around the world. Genomic technologies, including microarrays and next-generation sequencing, have enabled a better understanding of the molecular underpinnings of these cancers. We describe the broad genomics findings that characterize these lymphoma types and discuss new therapeutic opportunities that arise from these findings.
Collapse
Affiliation(s)
- Andrea B Moffitt
- Andrea B. Moffitt and Sandeep S. Dave, Duke University, Durham, NC
| | - Sandeep S Dave
- Andrea B. Moffitt and Sandeep S. Dave, Duke University, Durham, NC
| |
Collapse
|
348
|
Navarro J, Gozalbo-López B, Méndez AC, Dantzer F, Schreiber V, Martínez C, Arana DM, Farrés J, Revilla-Nuin B, Bueno MF, Ampurdanés C, Galindo-Campos MA, Knobel PA, Segura-Bayona S, Martin-Caballero J, Stracker TH, Aparicio P, Del Val M, Yélamos J. PARP-1/PARP-2 double deficiency in mouse T cells results in faulty immune responses and T lymphomas. Sci Rep 2017; 7:41962. [PMID: 28181505 PMCID: PMC5299517 DOI: 10.1038/srep41962] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
The maintenance of T-cell homeostasis must be tightly regulated. Here, we have identified a coordinated role of Poly(ADP-ribose) polymerase-1 (PARP-1) and PARP-2 in maintaining T-lymphocyte number and function. Mice bearing a T-cell specific deficiency of PARP-2 in a PARP-1-deficient background showed defective thymocyte maturation and diminished numbers of peripheral CD4+ and CD8+ T-cells. Meanwhile, peripheral T-cell number was not affected in single PARP-1 or PARP-2-deficient mice. T-cell lymphopenia was associated with dampened in vivo immune responses to synthetic T-dependent antigens and virus, increased DNA damage and T-cell death. Moreover, double-deficiency in PARP-1/PARP-2 in T-cells led to highly aggressive T-cell lymphomas with long latency. Our findings establish a coordinated role of PARP-1 and PARP-2 in T-cell homeostasis that might impact on the development of PARP-centred therapies.
Collapse
Affiliation(s)
- Judith Navarro
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Gozalbo-López
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Andrea C Méndez
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Françoise Dantzer
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Valérie Schreiber
- Biotechnology and Cell Signaling, UMR7242-CNRS, Laboratory of Excellence Medalis, ESBS, Illkirch, France
| | - Carlos Martínez
- Experimental Pathology Unit, IMIB-LAIB-Arrixaca, Murcia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - David M Arana
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jordi Farrés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Beatriz Revilla-Nuin
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Genomic Unit. IMIB-LAIB-Arrixaca, Murcia, Spain
| | - María F Bueno
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Coral Ampurdanés
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Miguel A Galindo-Campos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
| | - Philip A Knobel
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sandra Segura-Bayona
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | | | - Travis H Stracker
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pedro Aparicio
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, Murcia, Spain
| | - Margarita Del Val
- Inmunología Viral, Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - José Yélamos
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Department of Immunology, Hospital del Mar, Barcelona, Spain
| |
Collapse
|
349
|
Jiang M, Bennani NN, Feldman AL. Lymphoma classification update: T-cell lymphomas, Hodgkin lymphomas, and histiocytic/dendritic cell neoplasms. Expert Rev Hematol 2017; 10:239-249. [PMID: 28133975 DOI: 10.1080/17474086.2017.1281122] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Lymphomas are classified based on the normal counterpart, or cell of origin, from which they arise. Because lymphocytes have physiologic immune functions that vary both by lineage and by stage of differentiation, the classification of lymphomas arising from these normal lymphoid populations is complex. Recent genomic data have contributed additional depth to this complexity. Areas covered: Lymphoma classification follows the World Health Organization (WHO) system, which reflects international consensus and is based on pathological, genetic, and clinical factors. The present review focuses on the classification of T-cell lymphomas, Hodgkin lymphomas, and histiocytic and dendritic cell neoplasms, summarizing changes reflected in the 2016 revision to the WHO classification. These changes are critical to hematologists and other clinicians who care for patients with these disorders. Expert commentary: Lymphoma classification is a continually evolving field that needs to be responsive to new clinical, pathological, and molecular understanding of lymphoid neoplasia. Among the entities covered in this review, the 2016 revisions in the WHO classification particularly impact T-cell lymphomas, including a new umbrella category of T-follicular helper cell-derived lymphomas and evolving recognition of indolent T-cell lymphomas and lymphoproliferative disorders.
Collapse
Affiliation(s)
- Manli Jiang
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| | - N Nora Bennani
- b Division of Hematology , Mayo Clinic , Rochester , MN , USA
| | - Andrew L Feldman
- a Department of Laboratory Medicine and Pathology , Mayo Clinic , Rochester , MN , USA
| |
Collapse
|
350
|
McKinney M, Moffitt AB, Gaulard P, Travert M, De Leval L, Nicolae A, Raffeld M, Jaffe ES, Pittaluga S, Xi L, Heavican T, Iqbal J, Belhadj K, Delfau-Larue MH, Fataccioli V, Czader MB, Lossos IS, Chapman-Fredricks JR, Richards KL, Fedoriw Y, Ondrejka SL, Hsi ED, Low L, Weisenburger D, Chan WC, Mehta-Shah N, Horwitz S, Bernal-Mizrachi L, Flowers CR, Beaven AW, Parihar M, Baseggio L, Parrens M, Moreau A, Sujobert P, Pilichowska M, Evens AM, Chadburn A, Au-Yeung RKH, Srivastava G, Choi WWL, Goodlad JR, Aurer I, Basic-Kinda S, Gascoyne RD, Davis NS, Li G, Zhang J, Rajagopalan D, Reddy A, Love C, Levy S, Zhuang Y, Datta J, Dunson DB, Davé SS. The Genetic Basis of Hepatosplenic T-cell Lymphoma. Cancer Discov 2017; 7:369-379. [PMID: 28122867 DOI: 10.1158/2159-8290.cd-16-0330] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 12/18/2022]
Abstract
Hepatosplenic T-cell lymphoma (HSTL) is a rare and lethal lymphoma; the genetic drivers of this disease are unknown. Through whole-exome sequencing of 68 HSTLs, we define recurrently mutated driver genes and copy-number alterations in the disease. Chromatin-modifying genes, including SETD2, INO80, and ARID1B, were commonly mutated in HSTL, affecting 62% of cases. HSTLs manifest frequent mutations in STAT5B (31%), STAT3 (9%), and PIK3CD (9%), for which there currently exist potential targeted therapies. In addition, we noted less frequent events in EZH2, KRAS, and TP53SETD2 was the most frequently silenced gene in HSTL. We experimentally demonstrated that SETD2 acts as a tumor suppressor gene. In addition, we found that mutations in STAT5B and PIK3CD activate critical signaling pathways important to cell survival in HSTL. Our work thus defines the genetic landscape of HSTL and implicates gene mutations linked to HSTL pathogenesis and potential treatment targets.Significance: We report the first systematic application of whole-exome sequencing to define the genetic basis of HSTL, a rare but lethal disease. Our work defines SETD2 as a tumor suppressor gene in HSTL and implicates genes including INO80 and PIK3CD in the disease. Cancer Discov; 7(4); 369-79. ©2017 AACR.See related commentary by Yoshida and Weinstock, p. 352This article is highlighted in the In This Issue feature, p. 339.
Collapse
Affiliation(s)
- Matthew McKinney
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Andrea B Moffitt
- Duke Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| | - Philippe Gaulard
- Hôpital Henri Mondor, Department of Pathology, AP-HP, Créteil, France, INSERM U955, Créteil, France, and University Paris-Est, Créteil, France
| | - Marion Travert
- Hôpital Henri Mondor, Department of Pathology, AP-HP, Créteil, France, INSERM U955, Créteil, France, and University Paris-Est, Créteil, France
| | | | - Alina Nicolae
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mark Raffeld
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elaine S Jaffe
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Liqiang Xi
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | | | - Karim Belhadj
- Hôpital Henri Mondor, Department of Pathology, AP-HP, Créteil, France, INSERM U955, Créteil, France, and University Paris-Est, Créteil, France
| | - Marie Helene Delfau-Larue
- Hôpital Henri Mondor, Department of Pathology, AP-HP, Créteil, France, INSERM U955, Créteil, France, and University Paris-Est, Créteil, France
| | - Virginie Fataccioli
- Hôpital Henri Mondor, Department of Pathology, AP-HP, Créteil, France, INSERM U955, Créteil, France, and University Paris-Est, Créteil, France
| | | | | | | | | | - Yuri Fedoriw
- University of North Carolina, Chapel Hill, North Carolina
| | | | | | | | | | - Wing C Chan
- City of Hope Medical Center, Duarte, California
| | | | - Steven Horwitz
- Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | - Anne W Beaven
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | | | | | | | - Anne Moreau
- Pathology, Hôpital Hôtel-Dieu, Nantes, France
| | - Pierre Sujobert
- Faculté de Médecine Lyon-Sud Charles Mérieux, Université Claude Bernard, Lyon, France
| | | | | | - Amy Chadburn
- Presbyterian Hospital, Pathology and Cell Biology, Cornell University, New York, New York
| | | | | | | | - John R Goodlad
- Department of Pathology, Western General Hospital, Edinburgh, UK
| | - Igor Aurer
- University Hospital Centre Zagreb, Zagreb, Croatia
| | | | - Randy D Gascoyne
- British Columbia Cancer Agency, University of British Columbia, Vancouver, Canada
| | - Nicholas S Davis
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Guojie Li
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Jenny Zhang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Deepthi Rajagopalan
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Anupama Reddy
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Cassandra Love
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Shawn Levy
- Hudson Alpha Institute for Biotechnology, Huntsville, Alabama
| | - Yuan Zhuang
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Jyotishka Datta
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - David B Dunson
- Department of Statistical Science, Duke University, Durham, North Carolina
| | - Sandeep S Davé
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina. .,Duke Center for Genomics and Computational Biology, Duke University, Durham, North Carolina
| |
Collapse
|