301
|
mTOR signaling mediates effects of common gamma-chain cytokines on T cell proliferation and exhaustion: implications for HIV-1 persistence and cure research. AIDS 2018; 32:2847-2851. [PMID: 30234610 DOI: 10.1097/qad.0000000000001997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
: Chronic elevation of plasma cytokines is a key feature of HIV infection. The physiological consequences of this response to infection and its role in HIV persistence are not fully understood. Here, we show that common gamma chain (γc)-cytokines induce both proliferation and expression of T cell exhaustion markers in a mammalian target of rapamycin (mTOR)-dependent fashion, suggesting a possible therapeutic target that, if inhibited, could diminish HIV reservoir expansion, persistence, and resistance to immune surveillance.
Collapse
|
302
|
Pahl JHW, Cerwenka A, Ni J. Memory-Like NK Cells: Remembering a Previous Activation by Cytokines and NK Cell Receptors. Front Immunol 2018; 9:2796. [PMID: 30546366 PMCID: PMC6279934 DOI: 10.3389/fimmu.2018.02796] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/13/2018] [Indexed: 12/24/2022] Open
Abstract
Natural Killer (NK) cells are cytotoxic innate lymphoid cells serving at the front line against infection and cancer. In inflammatory microenvironments, multiple soluble and contact-dependent signals modulate NK cell responsiveness. Besides their innate cytotoxic and immunostimulatory activity, it has been uncovered in recent years that NK cells constitute a heterogeneous and versatile cell subset. Persistent memory-like NK populations that mount a robust recall response were reported during viral infection, contact hypersensitivity reactions, and after stimulation by pro-inflammatory cytokines or activating receptor pathways. In this review, we highlight recent findings on the generation, functionality, and clinical applicability of memory-like NK cells and describe common features in comparison to other recent concepts of memory NK cells. Understanding of these features will facilitate the conception and design of novel NK cell-based immunotherapies.
Collapse
Affiliation(s)
- Jens H W Pahl
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany
| | - Jing Ni
- Department for Immunobiochemistry, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Germany.,Innate Immunity, German Cancer Consortium, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
303
|
Wang F, Meng M, Mo B, Yang Y, Ji Y, Huang P, Lai W, Pan X, You T, Luo H, Guan X, Deng Y, Yuan S, Chu J, Namaka M, Hughes T, Ye L, Yu J, Li X, Deng Y. Crosstalks between mTORC1 and mTORC2 variagate cytokine signaling to control NK maturation and effector function. Nat Commun 2018; 9:4874. [PMID: 30451838 PMCID: PMC6242843 DOI: 10.1038/s41467-018-07277-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/23/2018] [Indexed: 01/06/2023] Open
Abstract
The metabolic checkpoint kinase mechanistic/mammalian target of rapamycin (mTOR) regulates natural killer (NK) cell development and function, but the exact underlying mechanisms remain unclear. Here, we show, via conditional deletion of Raptor (mTORC1) or Rictor (mTORC2), that mTORC1 and mTORC2 promote NK cell maturation in a cooperative and non-redundant manner, mainly by controlling the expression of Tbx21 and Eomes. Intriguingly, mTORC1 and mTORC2 regulate cytolytic function in an opposing way, exhibiting promoting and inhibitory effects on the anti-tumor ability and metabolism, respectively. mTORC1 sustains mTORC2 activity by maintaining CD122-mediated IL-15 signaling, whereas mTORC2 represses mTORC1-modulated NK cell effector functions by restraining STAT5-mediated SLC7A5 expression. These positive and negative crosstalks between mTORC1 and mTORC2 signaling thus variegate the magnitudes and kinetics of NK cell activation, and help define a paradigm for the modulation of NK maturation and effector functions. The metabolic regulator protein family, mTOR, regulate natural killer (NK) cell development and function, but the underlying mechanism is unclear. Here, the authors show that Raptor/mTORC1 and Rictor/mTORC2 form a feedback crosstalk network to variegate cytokine and cellular signaling and modulate NK maturation and effector functions.
Collapse
Affiliation(s)
- Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Meng Meng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Banghui Mo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Pei Huang
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Tingting You
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Yafei Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Shunzong Yuan
- Department of Laboratory Medicine, PLA 307 Hospital, Dongdajie 8, Fengtai District, Beijing, 100071, China
| | - Jianhong Chu
- Institute of Blood and Marrow Transplantation, Soochow University, No. 199 Renai Road, Suzhou, 215123, China
| | - Michael Namaka
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.,Colleges of Pharmacy and Medicine, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Tiffany Hughes
- The Ohio State University Comprehensive Cancer Center and the James Cancer Hospital, 460 West 12th Ave, BRT 816, Columbus, 43210, OH, USA
| | - Lilin Ye
- Institute of Immunology, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China
| | - Jianhua Yu
- The Ohio State University Comprehensive Cancer Center and the James Cancer Hospital, 460 West 12th Ave, BRT 816, Columbus, 43210, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, 460 West 12th Ave, BRT 816, Columbus, OH, 43210, USA
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Army Medical University (Third Military Medical University), 30# Gaotanyan Road, Shapingba District, Chongqing, 400038, China.
| |
Collapse
|
304
|
Metabolic reprogramming of natural killer cells in obesity limits antitumor responses. Nat Immunol 2018; 19:1330-1340. [PMID: 30420624 DOI: 10.1038/s41590-018-0251-7] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Up to 49% of certain types of cancer are attributed to obesity, and potential mechanisms include overproduction of hormones, adipokines, and insulin. Cytotoxic immune cells, including natural killer (NK) cells and CD8+ T cells, are important in tumor surveillance, but little is known about the impact of obesity on immunosurveillance. Here, we show that obesity induces robust peroxisome proliferator-activated receptor (PPAR)-driven lipid accumulation in NK cells, causing complete 'paralysis' of their cellular metabolism and trafficking. Fatty acid administration, and PPARα and PPARδ (PPARα/δ) agonists, mimicked obesity and inhibited mechanistic target of rapamycin (mTOR)-mediated glycolysis. This prevented trafficking of the cytotoxic machinery to the NK cell-tumor synapse. Inhibiting PPARα/δ or blocking the transport of lipids into mitochondria reversed NK cell metabolic paralysis and restored cytotoxicity. In vivo, NK cells had blunted antitumor responses and failed to reduce tumor growth in obesity. Our results demonstrate that the lipotoxic obese environment impairs immunosurveillance and suggest that metabolic reprogramming of NK cells may improve cancer outcomes in obesity.
Collapse
|
305
|
Chambers AM, Lupo KB, Matosevic S. Tumor Microenvironment-Induced Immunometabolic Reprogramming of Natural Killer Cells. Front Immunol 2018; 9:2517. [PMID: 30467503 PMCID: PMC6235907 DOI: 10.3389/fimmu.2018.02517] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/12/2018] [Indexed: 12/21/2022] Open
Abstract
Energy metabolism is key to the promotion of tumor growth, development, and metastasis. At the same time, cellular metabolism also mediates immune cell survival, proliferation and cytotoxic responses within the tumor microenvironment. The ability of natural killer cells to eradicate tumors relies on their ability to functionally persist for the duration of their anti-tumor effector activity. However, a tumor's altered metabolic requirements lead to compromised functional responses of cytokine-activated natural killer cells, which result in decreased effectiveness of adoptive cell-based immunotherapies. Tumors exert these immunosuppressive effects through a number of mechanisms, a key driver of which is hypoxia. Hypoxia also fuels the generation of adenosine from the cancer-associated ectoenzymes CD39 and CD73. Adenosine's immunosuppression manifests in decreased proliferation and impaired anti-tumor function, with adenosinergic signaling emerging as an immunometabolic checkpoint blockade target. Understanding such immunometabolic suppression is critical in directing the engineering of a new generation of natural killer cell-based immunotherapies that have the ability to more effectively target difficult-to-treat solid tumors.
Collapse
Affiliation(s)
- Andrea M. Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Kyle B. Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
306
|
Rajabi F, Drake LA, Senna MM, Rezaei N. Alopecia areata: a review of disease pathogenesis. Br J Dermatol 2018; 179:1033-1048. [PMID: 29791718 DOI: 10.1111/bjd.16808] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Alopecia areata is a disorder that results in nonscarring hair loss. The psychological impact can be significant, leading to feelings of depression and social isolation. Objectives In this article, we seek to review the pathophysiological mechanisms proposed in recent years in a narrative fashion. METHODS We searched MEDLINE and Scopus for articles related to alopecia areata, with a particular emphasis on its pathogenesis. RESULTS The main theory of alopecia areata pathogenesis is that it is an autoimmune phenomenon resulting from a disruption in hair follicle immune privilege. What causes this breakdown is an issue of debate. Some believe that a stressed hair follicle environment triggers antigen presentation, while others blame a dysregulation in the central immune system entangling the follicles. Evidence for the latter theory is provided by animal studies, as well investigations around the AIRE gene. Different immune-cell lines including plasmacytoid dendritic cells, natural killer cells and T cells, along with key molecules such as interferon-γ, interleukin-15, MICA and NKG2D, have been identified as contributing to the autoimmune process. CONCLUSIONS Alopecia areata remains incurable, although it has been studied for years. Available treatment options at best are beneficial for milder cases, and the rate of relapse is high. Understanding the exact mechanisms of hair loss in alopecia areata is therefore of utmost importance to help identify potential therapeutic targets.
Collapse
Affiliation(s)
- F Rajabi
- Department of Dermatology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - L A Drake
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - M M Senna
- Massachusetts General Hospital, Harvard Medical School, MA, U.S.A
| | - N Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Sheffield, U.K
| |
Collapse
|
307
|
Joseph AM, Monticelli LA, Sonnenberg GF. Metabolic regulation of innate and adaptive lymphocyte effector responses. Immunol Rev 2018; 286:137-147. [PMID: 30294971 PMCID: PMC6195227 DOI: 10.1111/imr.12703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022]
Abstract
Innate and adaptive lymphocytes employ diverse effector programs that provide optimal immunity to pathogens and orchestrate tissue homeostasis, or conversely can become dysregulated to drive progression of chronic inflammatory diseases. Emerging evidence suggests that CD4+ T helper cell subsets and their innate counterparts, the innate lymphoid cell family, accomplish these complex biological roles by selectively programming their cellular metabolism in order to instruct distinct modules of lymphocyte differentiation, proliferation, and cytokine production. Further, these metabolic pathways are significantly influenced by tissue microenvironments and disease states. Here, we summarize our current knowledge on how cell-intrinsic metabolic factors modulate the context-dependent bioenergetic pathways that govern innate and adaptive lymphocytes. Further, we propose that a greater understanding of these pathways may lead to the identification of unique features in each population and provoke the development of novel therapeutic strategies to modulate lymphocytes in health and disease.
Collapse
Affiliation(s)
- Ann M Joseph
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| | - Laurel A Monticelli
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
- Joan and Sanford I. Weill Department of Medicine, Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, New York
| | - Gregory F Sonnenberg
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology, Weill Cornell Medicine, New York, New York
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, New York
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, New York
| |
Collapse
|
308
|
Chambers AM, Wang J, Lupo KB, Yu H, Atallah Lanman NM, Matosevic S. Adenosinergic Signaling Alters Natural Killer Cell Functional Responses. Front Immunol 2018; 9:2533. [PMID: 30425720 PMCID: PMC6218627 DOI: 10.3389/fimmu.2018.02533] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023] Open
Abstract
Adenosine is a potent immunosuppressive purine metabolite contributing to the pathogenesis of solid tumors. Extracellular adenosine signals on tumor-infiltrating NK cells to inhibit their proliferation, maturation, and cytotoxic function. Cytokine priming imparts upon NK cells distinct activation statuses, which modulate NK anti-tumor immunity and responses to purinergic metabolism. Here, for the first time, we investigated human NK cell responses to adenosinergic signaling in the context of distinct cytokine priming programs. NK cells were shown to be hyper-responsive to adenosine when primed with IL-12 and IL-15 compared to IL-2, exhibiting enhanced IFN-γ expression from CD56bright and CD56dim subsets while modulating the expression of activation marker NKG2D. These responses resulted in signaling that was dependent on mTOR. Adenosine induced upregulation of transcriptional signatures for genes involved in immune responses while downregulating cellular metabolism and other protein synthesis functions that correlate to inhibited oxidative phosphorylation and glycolysis. Overall, our findings show that adenosine acts on specific cellular pathways rather than inducing a broad inhibition of NK cell functions. These responses are dependent on cytokine priming signatures and are important in designing therapeutic interventions that can reprogram NK cell immunometabolism for improved immunotherapies of solid tumors.
Collapse
Affiliation(s)
- Andrea M Chambers
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Jiao Wang
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Kyle B Lupo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States
| | - Hao Yu
- Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| | | | - Sandro Matosevic
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN, United States.,Center for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
309
|
Zhu L, Kalimuthu S, Oh JM, Gangadaran P, Baek SH, Jeong SY, Lee SW, Lee J, Ahn BC. Enhancement of antitumor potency of extracellular vesicles derived from natural killer cells by IL-15 priming. Biomaterials 2018; 190-191:38-50. [PMID: 30391801 DOI: 10.1016/j.biomaterials.2018.10.034] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022]
Abstract
PURPOSE Natural killer (NK) cells are the key subset of innate-immunity lymphocytes; they possess antitumor activities and are used for cancer immunotherapy. In a previous study, extracellular vehicles (EVs) from NK-92MI cells were isolated and exploited for their ability to kill human cancer cells in vitro and in vivo (multiple injection methods). Here, the potential of NK-cell-derived EVs (NK-EVs) for immunotherapy was improved by priming with interleukin (IL)-15. METHODS NK-EVs were isolated from the culture medium without or with IL-15 (NK-EVsIL-15) by ultracentrifugation and were purified via density gradient ultracentrifugation. In addition, NK-EVs and NK-EVsIL-15 were characterized by transmission electron microscopy, nanoparticle-tracking analysis, and western blotting. Flow cytometry, bioluminescence imaging, and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay were performed for apoptosis, protein expression, cell proliferation, and cytotoxicity analyses. Furthermore, xenograft tumor-bearing mice were injected with PBS, NK-EVs, or NK-EVsIL-15 intravenously five times. Tumor growth was monitored using calipers and bioluminescence imaging. Toxicity of the nanoparticles was evaluated by measuring the body weight of the mice. RESULTS NK-EVsIL-15 showed significantly higher cytolytic activity toward human cancer cell lines (glioblastoma, breast cancer, and thyroid cancer) and simultaneously increased the expression of molecules associated with NK-cell cytotoxicity. When compared with NK-EVs, NK-EVsIL-15 significantly inhibited the growth of glioblastoma xenograft cells in mice. In addition, both NK-EVs and NK-EVsIL-15 were not significantly toxic to either normal cells or mice. CONCLUSION IL-15 may improve the immunotherapeutic effects of NK-EVs, thus improving the applications of NK-EVs in the future.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Ji Min Oh
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, South Korea.
| |
Collapse
|
310
|
Liu S, Xu M, Zhu C, Zhao Q, Zhou F. Taste receptor T1R1/T1R3 promotes the tumoricidal activity of hepatic CD49a + CD49b - natural killer cells. Eur J Immunol 2018; 48:2031-2041. [PMID: 30259960 DOI: 10.1002/eji.201847688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/05/2018] [Accepted: 09/27/2018] [Indexed: 12/15/2022]
Abstract
Natural Killer (NK) cell-based immunotherapy is a promising approach to treat hepatocellular carcinoma (HCC). The mechanisms underlying the regulation of NK cell activity are not completely understood. In this research, we identified the expression of taste receptor type 1 member 1 (T1R1) and taste receptor type 1 member 3 (T1R3) in a subset of hepatic NK cells in a mouse HCC model. T1R1 and T1R3 were selectively expressed in CD49a+ CD49b- NK cells in livers with HCC. In the in vitro cytotoxicity assay, amino acids promoted the tumoricidal effect of CD49a+ CD49b- NK cells through increasing the production of perforin, granzyme B and IFN-γ. Furthermore, using a lentivirus to induce the expression of exogenous T1R1 and T1R3 in normal hepatic NK cells, we found that amino acids enhanced NK cell-mediated cytotoxicity on tumor cells through the T1R1/T1R3 receptor, as demonstrated by more tumor cell lysis, up-regulation of perforin and granzyme B in comparison with control NK cells. In addition, amino acids activated Akt and mechanistic target of rapamycin complex 1 (mTORC1) signaling in NK cells through T1R1/T1R3 receptor. T-bet expression in NK cells was also increased by amino acid treatment. Therefore, T1R1/T1R3 receptor promotes the tumoricidal activity of hepatic CD49a+ CD49b- NK cells.
Collapse
Affiliation(s)
- Shaoping Liu
- Medical Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Min Xu
- Department of Hematology and Oncology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhu
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| | - Feng Zhou
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Hubei Clinical Center and Key Laboratory for Intestinal and Colorectal Diseases, Wuhan, China
| |
Collapse
|
311
|
Hayek S, Bekaddour N, Besson L, Alves de Sousa R, Pietrancosta N, Viel S, Smith N, Jacob Y, Nisole S, Mandal R, Wishart DS, Walzer T, Herbeuval JP, Vidalain PO. Identification of Primary Natural Killer Cell Modulators by Chemical Library Screening with a Luciferase-Based Functional Assay. SLAS DISCOVERY 2018; 24:25-37. [PMID: 30184441 DOI: 10.1177/2472555218797078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are essential players of the innate immune response that secrete cytolytic factors and cytokines such as IFN-γ when contacting virus-infected or tumor cells. They represent prime targets in immunotherapy as defects in NK cell functions are hallmarks of many pathological conditions, such as cancer and chronic infections. The functional screening of chemical libraries or biologics would greatly help identify new modulators of NK cell activity, but commonly used methods such as flow cytometry are not easily scalable to high-throughput settings. Here we describe an efficient assay to measure the natural cytotoxicity of primary NK cells where the bioluminescent enzyme NanoLuc is constitutively expressed in the cytoplasm of target cells and is released in co-culture supernatants when lysis occurs. We fully characterized this assay using either purified NK cells or total peripheral blood mononuclear cells (PBMCs), including some patient samples, as effector cells. A pilot screen was also performed on a library of 782 metabolites, xenobiotics, and common drugs, which identified dextrometorphan and diphenhydramine as novel NK cell inhibitors. Finally, this assay was further improved by developing a dual-reporter cell line to simultaneously measure NK cell cytotoxicity and IFN-γ secretion in a single well, extending the potential of this system.
Collapse
Affiliation(s)
- Simon Hayek
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nassima Bekaddour
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Laurie Besson
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Rodolphe Alves de Sousa
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Nicolas Pietrancosta
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Sébastien Viel
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France.,3 Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Nikaia Smith
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Yves Jacob
- 4 CNRS, UMR3569, Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Sébastien Nisole
- 5 Institut de Recherche en Infectiologie de Montpellier, CNRS, UMR9004, Université de Montpellier, Montpellier, France
| | - Rupasri Mandal
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - David S Wishart
- 6 Departments of Biological Sciences and Computing Science, University of Alberta, Edmonton, Alberta, Canada
| | - Thierry Walzer
- 2 Centre International de Recherche en Infectiologie, CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, École Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Jean-Philippe Herbeuval
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| | - Pierre-Olivier Vidalain
- 1 Chimie & Biologie, Modélisation et Immunologie pour la Thérapie (CBMIT), Université Paris Descartes, CNRS, UMR8601, Paris, France
| |
Collapse
|
312
|
Schafer JR, Salzillo TC, Chakravarti N, Kararoudi MN, Trikha P, Foltz JA, Wang R, Li S, Lee DA. Education-dependent activation of glycolysis promotes the cytolytic potency of licensed human natural killer cells. J Allergy Clin Immunol 2018; 143:346-358.e6. [PMID: 30096390 DOI: 10.1016/j.jaci.2018.06.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND The mechanism by which natural killer (NK) cell education results in licensed NK cells with heightened effector function against missing self-targets is not known. OBJECTIVE We sought to identify potential mechanisms of enhanced function in licensed human NK cells. METHODS We used expanded human NK cells from killer immunoglobulin-like receptor (KIR)/HLA-genotyped donors sorted for single-KIR+ cells to generate pure populations of licensed and unlicensed NK cells. We performed proteomic and gene expression analysis of these cells before and after receptor cross-linking and performed functional and metabolic analysis before and after interference with selected metabolic pathways. We verified key findings using freshly isolated and sorted NK cells from peripheral blood. RESULTS We confirmed that licensed human NK cells are greater in number in peripheral blood and proliferate more in vitro than unlicensed NK cells. Using high-throughput protein analysis, we found that unstimulated licensed NK cells have increased expression of the glycolytic enzyme pyruvate kinase muscle isozyme M2 and after KIR cross-linking have increased phosphorylation of the metabolic modulators p38-α and 5' adenosine monophosphate-activated protein kinase α. After cytokine expansion and activation, unlicensed NK cells depended solely on mitochondrial respiration for cytolytic function, whereas licensed NK cells demonstrated metabolic reprogramming toward glycolysis and mitochondrial-dependent glutaminolysis, leading to accumulation of glycolytic metabolites and depletion of glutamate. As such, blocking both glycolysis and mitochondrial-dependent respiration was required to suppress the cytotoxicity of licensed NK cells. CONCLUSIONS Collectively, our data support an arming model of education in which enhanced glycolysis in licensed NK cells supports proliferative and cytotoxic capacity.
Collapse
Affiliation(s)
- Jolie R Schafer
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center-UT Health, Houston, Tex; Departments of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Travis C Salzillo
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center-UT Health, Houston, Tex; Cancer Systems Imaging Houston, University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Nitin Chakravarti
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Prashant Trikha
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Jennifer A Foltz
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Ohio State University, Columbus, Ohio
| | - Shulin Li
- Graduate School of Biomedical Sciences, University of Texas MD Anderson Cancer Center-UT Health, Houston, Tex; Departments of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Tex
| | - Dean A Lee
- Center for Childhood Cancer and Blood Diseases, Nationwide Children's Hospital, Columbus, Ohio; Department of Pediatrics, Ohio State University, Columbus, Ohio.
| |
Collapse
|
313
|
Dysfunction of Natural Killer Cells by FBP1-Induced Inhibition of Glycolysis during Lung Cancer Progression. Cell Metab 2018; 28:243-255.e5. [PMID: 30033198 DOI: 10.1016/j.cmet.2018.06.021] [Citation(s) in RCA: 224] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/08/2018] [Accepted: 06/25/2018] [Indexed: 12/27/2022]
Abstract
Natural killer (NK) cells are effector lymphocytes with pivotal roles in the resistance against various tumors; dysfunction of NK cells often results in advanced tumor progression. Tumors develop in three stages comprising initiation, promotion, and progression, but little is known about the interrelationships between NK cells and tumor cells at different stages of tumor development. Here, we demonstrated that NK cells prevented tumor initiation potently but did not prevent tumor promotion or tumor progression in Kras-driven lung cancer. Moreover, loss of the antitumor effect in NK cells was closely associated with their dysfunctional state during tumor promotion and progression. Mechanistically, aberrant fructose-1,6-bisphosphatase (FBP1) expression in NK cells elicited their dysfunction by inhibiting glycolysis and impairing viability. Thus, our results show dynamic alterations of NK cells during tumor development and uncover a novel mechanism involved in NK cell dysfunction, suggesting potential directions for NK cell-based cancer immunotherapy involving FBP1 targeting.
Collapse
|
314
|
Singer K, Cheng WC, Kreutz M, Ho PC, Siska PJ. Immunometabolism in cancer at a glance. Dis Model Mech 2018; 11:11/8/dmm034272. [PMID: 30076128 PMCID: PMC6124550 DOI: 10.1242/dmm.034272] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The scientific knowledge about tumor metabolism has grown at a fascinating rate in recent decades. We now know that tumors are highly active both in their metabolism of available nutrients and in the secretion of metabolic by-products. However, cancer cells can modulate metabolic pathways and thus adapt to specific nutrients. Unlike tumor cells, immune cells are not subject to a ‘micro-evolution’ that would allow them to adapt to progressing tumors that continuously develop new mechanisms of immune escape. Consequently, immune cells are often irreversibly affected and may allow or even support cancer progression. The mechanisms of how tumors change immune cell function are not sufficiently explored. It is, however, clear that commonly shared features of tumor metabolism, such as local nutrient depletion or production of metabolic ‘waste’ can broadly affect immune cells and contribute to immune evasion. Moreover, immune cells utilize different metabolic programs based on their subtype and function, and these immunometabolic pathways can be modified in the tumor microenvironment. In this review and accompanying poster, we identify and describe the common mechanisms by which tumors metabolically affect the tumor-infiltrating cells of native and adaptive immunity, and discuss how these mechanisms may lead to novel therapeutic opportunities. Summary: This ‘At a Glance’ review and accompanying poster address how tumors can negatively affect immune cells through depletion of critical nutrients or through production of toxic metabolic products.
Collapse
Affiliation(s)
- Katrin Singer
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Wan-Chen Cheng
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, CH-1066 Epalinges, Vaud, Switzerland.,Ludwig Lausanne Branch, CH-1066 Epalinges, Vaud, Switzerland
| | - Marina Kreutz
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Ping-Chih Ho
- Department of Fundamental Oncology, Faculty of Biology and Medicine, University of Lausanne, CH-1066 Epalinges, Vaud, Switzerland.,Ludwig Lausanne Branch, CH-1066 Epalinges, Vaud, Switzerland
| | - Peter J Siska
- Department of Internal Medicine III, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
315
|
Ruiz-García R, Vargas-Hernández A, Chinn IK, Angelo LS, Cao TN, Coban-Akdemir Z, Jhangiani SN, Meng Q, Forbes LR, Muzny DM, Allende LM, Ehlayel MS, Gibbs RA, Lupski JR, Uzel G, Orange JS, Mace EM. Mutations in PI3K110δ cause impaired natural killer cell function partially rescued by rapamycin treatment. J Allergy Clin Immunol 2018; 142:605-617.e7. [PMID: 29330011 PMCID: PMC6109967 DOI: 10.1016/j.jaci.2017.11.042] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/20/2017] [Accepted: 11/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Heterozygous gain-of-function mutations in PI3K110δ lead to lymphadenopathy, lymphoid hyperplasia, EBV and cytomegalovirus viremia, and sinopulmonary infections. OBJECTIVE The known role of natural killer (NK) cell function in the control of EBV and cytomegalovirus prompted us to investigate the functional and phenotypic effects of PI3K110δ mutations on NK cell subsets and cytotoxic function. METHODS Mutations in patients were identified by using whole-exome or targeted sequencing. We performed NK cell phenotyping and functional analysis of patients' cells using flow cytometry, standard Cr51 cytotoxicity assays, and quantitative confocal microscopy. RESULTS PI3K110δ mutations led to an altered NK cell developmental phenotype and cytotoxic dysfunction. Impaired NK cell cytotoxicity was due to decreased conjugate formation with susceptible target cells and abrogated activation of cell machinery required for target cell killing. These defects were restored partially after initiation of treatment with rapamycin in 3 patients. CONCLUSION We describe novel NK cell functional deficiency caused by PI3K110δ mutation, which is a likely contributor to the severe viremia observed in these patients. Rapamycin treatment partially restores NK cell function, providing a further rationale for its use in patients with this disease.
Collapse
Affiliation(s)
- Raquel Ruiz-García
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Servicio de Immunología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alexander Vargas-Hernández
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Ivan K Chinn
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Laura S Angelo
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Tram N Cao
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Zeynep Coban-Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Shalini N Jhangiani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Qingchang Meng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Lisa R Forbes
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Donna M Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex
| | - Luis M Allende
- Servicio de Immunología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Mohammed S Ehlayel
- Department of Pediatrics, Section of Pediatric Allergy and Immunology, Hamad Medical Corporation, Doha, and Department of Pediatrics, Weill Cornell Medical College, Ar-Rayyan, Qatar
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, Tex; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Tex; Human Genome Sequencing Center, Baylor College of Medicine, Houston, Tex
| | - Gulbu Uzel
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Jordan S Orange
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex; Department of Pediatrics, Baylor College of Medicine, Houston, Tex.
| |
Collapse
|
316
|
Immunometabolism of T cells and NK cells: metabolic control of effector and regulatory function. Inflamm Res 2018; 67:813-828. [PMID: 30066126 DOI: 10.1007/s00011-018-1174-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 01/10/2023] Open
Abstract
Metabolic flux can dictate cell fate, including immune cell effector and regulatory function. The metabolic regulation of cell function is well characterized with respect to effector, memory, and regulatory T cells. This knowledge may allow for manipulation of T cell metabolic pathways that set the stage for more effective T cell therapy. Natural Killer (NK) and T-lymphocytes have complementary roles in the defense against pathogens. However, studies of NK cell metabolism are only beginning to emerge and there is comparatively little knowledge on the metabolic regulation of NK-cell activation and effector function. Given their common lymphoid lineage, effector functions and cellular memory potential our current knowledge on T cell metabolism could inform investigation of metabolic reprogramming in NK cells. In this review, we compare the current knowledge of metabolic regulation in T cell and NK cell development, activation, effector and memory function. Commonalties in glucose transport, hypoxia-inducible factors and mTOR highlight metabolic control points in both cells types. Contrasting the glycolytic and oxidative nodes of metabolic regulation in T cells versus NK cells may provide insight into the contribution of specific immune responses to disease and promote the development of immunotherapeutic approaches targeting both innate and adaptive immune responses.
Collapse
|
317
|
Cichocki F, Wu CY, Zhang B, Felices M, Tesi B, Tuininga K, Dougherty P, Taras E, Hinderlie P, Blazar BR, Bryceson YT, Miller JS. ARID5B regulates metabolic programming in human adaptive NK cells. J Exp Med 2018; 215:2379-2395. [PMID: 30061358 PMCID: PMC6122973 DOI: 10.1084/jem.20172168] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/08/2018] [Accepted: 06/14/2018] [Indexed: 12/31/2022] Open
Abstract
“Adaptive” NK cells expressing the activating receptor NKG2C expand and persist in HCMV-seropositive individuals. Cichocki et al. demonstrate enhanced oxidative and glycolytic metabolism for adaptive NK cells and implicate ARID5B as an important regulator of mitochondrial metabolism, IFN-γ production, and survival. Natural killer (NK) cells with adaptive immunological properties expand and persist in response to human cytomegalovirus. Here, we explored the metabolic processes unique to these cells. Adaptive CD3−CD56dimCD57+NKG2C+ NK cells exhibited metabolic hallmarks of lymphocyte memory, including increased oxidative mitochondrial respiration, mitochondrial membrane potential, and spare respiratory capacity. Mechanistically, we found that a short isoform of the chromatin-modifying transcriptional regulator, AT-rich interaction domain 5B (ARID5B), was selectively induced through DNA hypomethylation in adaptive NK cells. Knockdown and overexpression studies demonstrated that ARID5B played a direct role in promoting mitochondrial membrane potential, expression of genes encoding electron transport chain components, oxidative metabolism, survival, and IFN-γ production. Collectively, our data demonstrate that ARID5B is a key regulator of metabolism in human adaptive NK cells, which, if targeted, may be of therapeutic value.
Collapse
Affiliation(s)
- Frank Cichocki
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Cheng-Ying Wu
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Bin Zhang
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Martin Felices
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Bianca Tesi
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.,Clinical Genetics Unit, Department of Molecular Medicine and Surgery, and Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Katie Tuininga
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | | | - Emily Taras
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Peter Hinderlie
- Department of Medicine, University of Minnesota, Minneapolis, MN
| | - Bruce R Blazar
- Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Yenan T Bryceson
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.,Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jeffrey S Miller
- Department of Medicine, University of Minnesota, Minneapolis, MN
| |
Collapse
|
318
|
Dominguez-Andres J, Netea MG. Long-term reprogramming of the innate immune system. J Leukoc Biol 2018; 105:329-338. [PMID: 29999546 DOI: 10.1002/jlb.mr0318-104r] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/09/2018] [Accepted: 06/18/2018] [Indexed: 12/19/2022] Open
Abstract
During the last few years, a growing body of evidence has shown that immunological memory is not an exclusive trait of lymphocytes, as many inflammatory insults can alter the functionality and the responsiveness of the innate immune system in the long term. Innate immune cells, such as monocytes, macrophages, dendritic cells, and NK cells can be influenced by the encounters with inflammatory stimuli, undergoing functional reprogramming and developing changed responses to subsequent chellenges. The long-term reprogramming depends on the rewiring of cell metabolism and epigenetic processes, and they stay at the basis of induction of both innate immune memory (also termed trained immunity) and innate immune tolerance. Here, we review the central role that the effects of this long-term reprogramming of innate immune cells plays in a number of clinically relevant conditions such as vaccination, atherosclerosis, sepsis, and cancer.
Collapse
Affiliation(s)
- Jorge Dominguez-Andres
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.,Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany.,Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| |
Collapse
|
319
|
Castro W, Chelbi ST, Niogret C, Ramon-Barros C, Welten SPM, Osterheld K, Wang H, Rota G, Morgado L, Vivier E, Raeber ME, Boyman O, Delorenzi M, Barras D, Ho PC, Oxenius A, Guarda G. The transcription factor Rfx7 limits metabolism of NK cells and promotes their maintenance and immunity. Nat Immunol 2018; 19:809-820. [PMID: 29967452 DOI: 10.1038/s41590-018-0144-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 04/20/2018] [Indexed: 02/06/2023]
Abstract
Regulatory factor X 7 (Rfx7) is an uncharacterized transcription factor belonging to a family involved in ciliogenesis and immunity. Here, we found that deletion of Rfx7 leads to a decrease in natural killer (NK) cell maintenance and immunity in vivo. Genomic approaches showed that Rfx7 coordinated a transcriptional network controlling cell metabolism. Rfx7-/- NK lymphocytes presented increased size, granularity, proliferation, and energetic state, whereas genetic reduction of mTOR activity mitigated those defects. Notably, Rfx7-deficient NK lymphocytes were rescued by interleukin 15 through engagement of the Janus kinase (Jak) pathway, thus revealing the importance of this signaling for maintenance of such spontaneously activated NK cells. Rfx7 therefore emerges as a novel transcriptional regulator of NK cell homeostasis and metabolic quiescence.
Collapse
Affiliation(s)
- Wilson Castro
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Sonia T Chelbi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | | | | | - Kevin Osterheld
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Haiping Wang
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Leonor Morgado
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, Inserm, CNRS, Marseille, France.,Service d'Immunologie, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France.,Innate Pharma Research Labs., Innate Pharma, Marseille, France
| | - Miro E Raeber
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Mauro Delorenzi
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - David Barras
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Ping-Chih Ho
- Ludwig Center for Cancer Research of the University of Lausanne, Epalinges, Switzerland.,Department of Fundamental Oncology, University of Lausanne, Epalinges, Switzerland
| | | | - Greta Guarda
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland. .,Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland.
| |
Collapse
|
320
|
Hu MD, Ethridge AD, Lipstein R, Kumar S, Wang Y, Jabri B, Turner JR, Edelblum KL. Epithelial IL-15 Is a Critical Regulator of γδ Intraepithelial Lymphocyte Motility within the Intestinal Mucosa. THE JOURNAL OF IMMUNOLOGY 2018; 201:747-756. [PMID: 29884699 DOI: 10.4049/jimmunol.1701603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 05/17/2018] [Indexed: 12/17/2022]
Abstract
Intraepithelial lymphocytes (IELs) expressing the γδ TCR (γδ IELs) provide continuous surveillance of the intestinal epithelium. However, the mechanisms regulating the basal motility of these cells within the epithelial compartment have not been well defined. We investigated whether IL-15 contributes to γδ IEL localization and migratory behavior in addition to its role in IEL differentiation and survival. Using advanced live cell imaging techniques in mice, we find that compartmentalized overexpression of IL-15 in the lamina propria shifts the distribution of γδ T cells from the epithelial compartment to the lamina propria. This mislocalization could be rescued by epithelial IL-15 overexpression, indicating that epithelial IL-15 is essential for γδ IEL migration into the epithelium. Furthermore, in vitro analyses demonstrated that exogenous IL-15 stimulates γδ IEL migration into cultured epithelial monolayers, and inhibition of IL-2Rβ significantly attenuates the basal motility of these cells. Intravital microscopy showed that impaired IL-2Rβ signaling induced γδ IEL idling within the lateral intercellular space, which resulted in increased early pathogen invasion. Similarly, the redistribution of γδ T cells to the lamina propria due to local IL-15 overproduction also enhanced bacterial translocation. These findings thus reveal a novel role for IL-15 in mediating γδ T cell localization within the intestinal mucosa and regulating γδ IEL motility and patrolling behavior as a critical component of host defense.
Collapse
Affiliation(s)
- Madeleine D Hu
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alexander D Ethridge
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Rebecca Lipstein
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Sushil Kumar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yitang Wang
- Department of Pathology, University of Chicago, Chicago, IL 60637
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Jerrold R Turner
- Department of Pathology, University of Chicago, Chicago, IL 60637.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115; and.,Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Karen L Edelblum
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103; .,Department of Pathology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
321
|
Yang C, Tsaih SW, Lemke A, Flister MJ, Thakar MS, Malarkannan S. mTORC1 and mTORC2 differentially promote natural killer cell development. eLife 2018; 7:35619. [PMID: 29809146 PMCID: PMC5976438 DOI: 10.7554/elife.35619] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/13/2018] [Indexed: 01/02/2023] Open
Abstract
Natural killer (NK) cells are innate lymphoid cells that are essential for innate and adaptive immunity. Mechanistic target of rapamycin (mTOR) is critical for NK cell development; however, the independent roles of mTORC1 or mTORC2 in regulating this process remain unknown. Ncr1iCre-mediated deletion of Rptor or Rictor in mice results in altered homeostatic NK cellularity and impaired development at distinct stages. The transition from the CD27+CD11b− to the CD27+CD11b+ stage is impaired in Rptor cKO mice, while, the terminal maturation from the CD27+CD11b+ to the CD27−CD11b+ stage is compromised in Rictor cKO mice. Mechanistically, Raptor-deficiency renders substantial alteration of the gene expression profile including transcription factors governing early NK cell development. Comparatively, loss of Rictor causes more restricted transcriptome changes. The reduced expression of T-bet correlates with the terminal maturation defects and results from impaired mTORC2-AktS473-FoxO1 signaling. Collectively, our results reveal the divergent roles of mTORC1 and mTORC2 in NK cell development.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States
| | - Shirng-Wern Tsaih
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Angela Lemke
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Michael J Flister
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, United States.,Departments of Physiology, Medical College of Wisconsin, Milwaukee, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Blood Center of Wisconsin, Milwaukee, United States.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, United States.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, United States.,Departments of Medicine, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
322
|
Abel AM, Tiwari AA, Gerbec ZJ, Siebert JR, Yang C, Schloemer NJ, Dixon KJ, Thakar MS, Malarkannan S. IQ Domain-Containing GTPase-Activating Protein 1 Regulates Cytoskeletal Reorganization and Facilitates NKG2D-Mediated Mechanistic Target of Rapamycin Complex 1 Activation and Cytokine Gene Translation in Natural Killer Cells. Front Immunol 2018; 9:1168. [PMID: 29892299 PMCID: PMC5985319 DOI: 10.3389/fimmu.2018.01168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play essential roles in mediating antitumor immunity. NK cells respond to various inflammatory stimuli including cytokines and stress-induced cellular ligands which activate germline-encoded activation receptors (NKRs), such as NKG2D. The signaling molecules activated downstream of NKRs are well defined; however, the mechanisms that regulate these pathways are not fully understood. IQ domain-containing GTPase-activating protein 1 (IQGAP1) is a ubiquitously expressed scaffold protein. It regulates diverse cellular signaling programs in various physiological contexts, including immune cell activation and function. Therefore, we sought to investigate the role of IQGAP1 in NK cells. Development and maturation of NK cells from mice lacking IQGAP1 (Iqgap1-/- ) were mostly intact; however, the absolute number of splenic NK cells was significantly reduced. Phenotypic and functional characterization revealed a significant reduction in the egression of NK cells from the bone marrow of Iqagp1-/- mice altering their peripheral homeostasis. Lack of IQGAP1 resulted in reduced NK cell motility and their ability to mediate antitumor immunity in vivo. Activation of Iqgap1-/- NK cells via NKRs, including NKG2D, resulted in significantly reduced levels of inflammatory cytokines compared with wild-type (WT). This reduction in Iqgap1-/- NK cells is neither due to an impaired membrane proximal signaling nor a defect in gene transcription. The levels of Ifng transcripts were comparable between WT and Iqgap1-/- , suggesting that IQGAP1-dependent regulation of cytokine production is regulated by a post-transcriptional mechanism. To this end, Iqgap1-/- NK cells failed to fully induce S6 phosphorylation and showed significantly reduced protein translation following NKG2D-mediated activation, revealing a previously undefined regulatory function of IQGAP1 via the mechanistic target of rapamycin complex 1. Together, these results implicate IQGAP1 as an essential scaffold for NK cell homeostasis and function and provide novel mechanistic insights to the post-transcriptional regulation of inflammatory cytokine production.
Collapse
Affiliation(s)
- Alex M Abel
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Aradhana A Tiwari
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Zachary J Gerbec
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Jason R Siebert
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Chao Yang
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Nathan J Schloemer
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kate J Dixon
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
323
|
Krzywinska E, Stockmann C. Hypoxia, Metabolism and Immune Cell Function. Biomedicines 2018; 6:E56. [PMID: 29762526 PMCID: PMC6027519 DOI: 10.3390/biomedicines6020056] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a hallmark of inflamed, infected or damaged tissue, and the adaptation to inadequate tissue oxygenation is regulated by hypoxia-inducible factors (HIFs). HIFs are key mediators of the cellular response to hypoxia, but they are also associated with pathological stress such as inflammation, bacteriological infection or cancer. In addition, HIFs are central regulators of many innate and adaptive immunological functions, including migration, antigen presentation, production of cytokines and antimicrobial peptides, phagocytosis as well as cellular metabolic reprogramming. A characteristic feature of immune cells is their ability to infiltrate and operate in tissues with low level of nutrients and oxygen. The objective of this article is to discuss the role of HIFs in the function of innate and adaptive immune cells in hypoxia, with a focus on how hypoxia modulates immunometabolism.
Collapse
Affiliation(s)
- Ewelina Krzywinska
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
| | - Christian Stockmann
- Institut National de la Santé et de la Recherche Médicale (INSERM), Paris Cardiovascular Research Center, Unit 970, 56 Rue Leblanc, 75015 Paris, France.
- Institute of Anatomy, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
324
|
Strutt TM, Dhume K, Finn CM, Hwang JH, Castonguay C, Swain SL, McKinstry KK. IL-15 supports the generation of protective lung-resident memory CD4 T cells. Mucosal Immunol 2018; 11:668-680. [PMID: 29186108 PMCID: PMC5975122 DOI: 10.1038/mi.2017.101] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 02/04/2023]
Abstract
Tissue-resident memory T cells (TRM) provide optimal defense at the sites of infection, but signals regulating their development are unclear, especially for CD4 T cells. Here we identify two distinct pathways that lead to the generation of CD4 TRM in the lungs following influenza infection. The TRM are transcriptionally distinct from conventional memory CD4 T cells and share a gene signature with CD8 TRM. The CD4 TRM are superior cytokine producers compared with conventional memory cells, can protect otherwise naive mice against a lethal influenza challenge, and display functional specialization by inducing enhanced inflammatory responses from dendritic cells compared with conventional memory cells. Finally, we demonstrate than an interleukin (IL)-2-dependent and a novel IL-2-independent but IL-15-dependent pathway support the generation of cohorts of lung TRM.
Collapse
Affiliation(s)
- Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kunal Dhume
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Caroline M. Finn
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ji Hae Hwang
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - K. Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
325
|
Besson L, Charrier E, Karlin L, Allatif O, Marçais A, Rouzaire P, Belmont L, Attal M, Lombard C, Salles G, Walzer T, Viel S. One-Year Follow-Up of Natural Killer Cell Activity in Multiple Myeloma Patients Treated With Adjuvant Lenalidomide Therapy. Front Immunol 2018; 9:704. [PMID: 29706958 PMCID: PMC5908898 DOI: 10.3389/fimmu.2018.00704] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Multiple myeloma (MM) is a proliferation of tumoral plasma B cells that is still incurable. Natural killer (NK) cells can recognize and kill MM cells in vitro and can limit MM growth in vivo. Previous reports have shown that NK cell function is impaired during MM progression and suggested that treatment with immunomodulatory drugs (IMIDs) such as lenalidomide (LEN) could enhance it. However, the effects of IMIDs on NK cells have been tested mostly in vitro or in preclinical models and supporting evidence of their effect in vivo in patients is lacking. Here, we monitored NK cell activity in blood samples from 10 MM patients starting after frontline induction chemotherapy (CTX) consisting either of association of bortezomib–lenalidomide–dexamethasone (Velcade Revlimid Dexamethasone) or autologous stem-cell transplantation (SCT). We also monitored NK cell activity longitudinally each month during 1 year, after maintenance therapy with LEN. Following frontline chemotherapy, peripheral NK cells displayed a very immature phenotype and retained poor reactivity toward target cells ex vivo. Upon maintenance treatment with LEN, we observed a progressive normalization of NK cell maturation, likely caused by discontinuation of chemotherapy. However, LEN treatment neither activated NK cells nor improved their capacity to degranulate or to secrete IFN-γ or MIP1-β following stimulation with MHC-I-deficient or antibody-coated target cells. Upon LEN discontinuation, there was no reduction of NK cell effector function either. These results caution against the use of LEN as single therapy to improve NK cell activity in patients with cancer and call for more preclinical assessments of the potential of IMIDs in NK cell activation.
Collapse
Affiliation(s)
- Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Emily Charrier
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Lionel Karlin
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Paul Rouzaire
- Service d'Immunologie, CHU de Clermont-Ferrand, équipe ERTICa EA4677, Université d'Auvergne, Clermont-Ferrand, France
| | - Lucie Belmont
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Michel Attal
- Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Christine Lombard
- Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| | - Gilles Salles
- Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Service d'Hematologie, Pierre-Benite, Universite Claude Bernard Lyon 1, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie-International Center for Infectiology Research, Lyon, France.,INSERM, U1111, Lyon, France.,Ecole Normale Supérieure de Lyon, Lyon, France.,Université Lyon 1, Lyon, France.,CNRS, UMR5308, Lyon, France.,Laboratoire d'Immunologie, Hospices Civils de Lyon, Centre Hospitalier Lyon Sud, Pierre-Bénite, France
| |
Collapse
|
326
|
El-Darawish Y, Li W, Yamanishi K, Pencheva M, Oka N, Yamanishi H, Matsuyama T, Tanaka Y, Minato N, Okamura H. Frontline Science: IL-18 primes murine NK cells for proliferation by promoting protein synthesis, survival, and autophagy. J Leukoc Biol 2018; 104:253-264. [PMID: 29603367 DOI: 10.1002/jlb.1hi1017-396rr] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/29/2018] [Accepted: 02/02/2018] [Indexed: 12/12/2022] Open
Abstract
Combined stimulation by IL-2 and IL-18 effectively promotes proliferation of NK cells, whereas singular stimulation does not. In this study, synergistic effects of these cytokines on NK cells proliferation was analyzed, focusing on the roles of IL-18. In splenic resting NK cells from IL-18KO mice, IL-18 rapidly activated NF-κB independently of IL-2, and activated or up-regulated various molecules downstream of PI3K/AKT and mTOR, including S6, Bcl-XL, ATG5, and LC3II, accompanying increases in cell growth and survival. Thus, IL-18 alone was revealed to augment various cellular processes (gene transcription, protein synthesis, survival) in the absence or presence of IL-2. Notably, combined IL-18 and IL-2 promoted autophagosome formation. In addition, priming NK cells with IL-18 augmented IL-2R, especially CD25, and enabled cells to respond to IL-2, resulting in activation of STAT3 and STAT5, followed by increase of cyclin B1 leading to proliferation. However, IL-2 alone failed to activate STAT3 or STAT5 in resting IL18KO NK cells. These results clarify the distinct roles of IL-2 and IL-18 in NK cell proliferation, and the intrinsic roles of IL-18 in various cellular processes, suggesting a range of functions of IL-18 expressed in an array of nonhematopoietic cells.
Collapse
Affiliation(s)
- Yosif El-Darawish
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Wen Li
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Magdalena Pencheva
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan.,Department of Medical Biology, Medical Faculty, Medical University of Sofia, Sofia, Bulgaria
| | - Naoto Oka
- Department of Otorhinolaryngology-Head and Neck Surgery, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Hiromichi Yamanishi
- Hirakata General Hospital for Developmental Disorders, Hirakata, Osaka, Japan
| | - Tomohiro Matsuyama
- Institute for Advanced Medical Sciences, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruki Okamura
- Laboratory of Tumor Immunology and Cell Therapy, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| |
Collapse
|
327
|
Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. mSphere 2018; 3:mSphere00120-18. [PMID: 29600283 PMCID: PMC5874443 DOI: 10.1128/mspheredirect.00120-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV) has reemerged in the population and caused unprecedented global outbreaks. Here, the transcriptomic consequences of ZIKV infection were studied systematically first in human peripheral blood CD14+ monocytes and monocyte-derived macrophages with high-density RNA sequencing. Analyses of the ZIKV genome revealed that the virus underwent genetic diversification, and differential mRNA abundance was found in host cells during infection. Notably, there was a significant change in the cellular response, with cross talk between monocytes and natural killer (NK) cells as one of the highly identified pathways. Immunophenotyping of peripheral blood from ZIKV-infected patients further confirmed the activation of NK cells during acute infection. ZIKV infection in peripheral blood cells isolated from healthy donors led to the induction of gamma interferon (IFN-γ) and CD107a-two key markers of NK cell function. Depletion of CD14+ monocytes from peripheral blood resulted in a reduction of these markers and reduced priming of NK cells during infection. This was complemented by the immunoproteomic changes observed. Mechanistically, ZIKV infection preferentially counterbalances monocyte and/or NK cell activity, with implications for targeted cytokine immunotherapies. IMPORTANCE ZIKV reemerged in recent years, causing outbreaks in many parts of the world. Alarmingly, ZIKV infection has been associated with neurological complications such as Guillain-Barré syndrome (GBS) in adults and congenital fetal growth-associated anomalies in newborns. Host peripheral immune cells are one of the first to interact with the virus upon successful transmission from an infected female Aedes mosquito. However, little is known about the role of these immune cells during infection. In this work, the immune responses of monocytes, known target cells of ZIKV infection, were investigated by high-density transcriptomics. The analysis saw a robust immune response being elicited. Importantly, it also divulged that monocytes prime NK cell activities during virus infection. Removal of monocytes during the infection changed the immune milieu, which in turn reduced NK cell stimulation. This study provides valuable insights into the pathobiology of the virus and allows for the possibility of designing novel targeted therapeutics.
Collapse
|
328
|
Stabile H, Fionda C, Santoni A, Gismondi A. Impact of bone marrow-derived signals on NK cell development and functional maturation. Cytokine Growth Factor Rev 2018; 42:13-19. [PMID: 29622473 DOI: 10.1016/j.cytogfr.2018.03.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 12/28/2022]
Abstract
Natural killer (NK) cells are cytotoxic members of type I innate lymphocytes (ILC1) with a prominent role in anti-tumor and anti-viral immune responses. Despite the increasing insight into NK cell biology, the steps and stages leading to mature circulating NK cells require further investigation. Natural killer cell development and functional maturation are complex and multi-stage processes that occur predominantly in the bone marrow (BM) and originate from haematopoietic stem cells CD34+ (HSC). Within the BM, NK cell precursor (NKP) and NK cell development intermediates reside in specialized niches that are characterized by particular cellular components that provide signals required for their maturation. These signals consist of soluble factors or direct cellular-contact interactions mediated by cytokines and growth factors with complementary, as well as overlapping roles in distinct developmental steps. Emerging evidence highlights the plasticity of the early phase of NK cell development, and the capacity of different signal combinations to redirect precursor lineage commitment through other innate cell populations. Here, we summarize the role of signals known to guide NK cell differentiation with a particular focus on the cytokines and the receptor/ligand pairs playing a critical role in these processes. A comprehensive understanding of the mechanisms underlying NK cell development will elucidate their roles in pathological conditions and will improve protocols for NK cell therapeutic application.
Collapse
Affiliation(s)
- Helena Stabile
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| | - Cinzia Fionda
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur -Italia, 00161 Rome, Italy; IRCCS, Neuromed, Pozzilli, 86077 IS, Italy
| | - Angela Gismondi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy; Eleonora Lorillard Spencer Cenci Foundation, Italy
| |
Collapse
|
329
|
Guri Y, Nordmann TM, Roszik J. mTOR at the Transmitting and Receiving Ends in Tumor Immunity. Front Immunol 2018; 9:578. [PMID: 29662490 PMCID: PMC5890199 DOI: 10.3389/fimmu.2018.00578] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cancer is a complex disease and a leading cause of death worldwide. Immunity is critical for cancer control. Cancer cells exhibit high mutational rates and therefore altered self or neo-antigens, eliciting an immune response to promote tumor eradication. Failure to mount a proper immune response leads to cancer progression. mTOR signaling controls cellular metabolism, immune cell differentiation, and effector function. Deregulated mTOR signaling in cancer cells modulates the tumor microenvironment, thereby affecting tumor immunity and possibly promoting carcinogenesis.
Collapse
Affiliation(s)
- Yakir Guri
- Biozentrum, University of Basel, Basel, Switzerland
| | - Thierry M Nordmann
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.,Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
330
|
Adotevi O, Godet Y, Galaine J, Lakkis Z, Idirene I, Certoux JM, Jary M, Loyon R, Laheurte C, Kim S, Dormoy A, Pouthier F, Barisien C, Fein F, Tiberghien P, Pivot X, Valmary-Degano S, Ferrand C, Morel P, Delabrousse E, Borg C. In situ delivery of allogeneic natural killer cell (NK) combined with Cetuximab in liver metastases of gastrointestinal carcinoma: A phase I clinical trial. Oncoimmunology 2018; 7:e1424673. [PMID: 29721386 DOI: 10.1080/2162402x.2018.1424673] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/16/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
Despite successful introduction of NK-based cellular therapy in the treatment of myeloid leukemia, the potential use of NK alloreactivity in solid malignancies is still elusive. We performed a phase I clinical trial to assess the safety and efficacy of in situ delivery of allogeneic NK cells combined with cetuximab in liver metastasis of gastrointestinal origin. The conditioning chemotherapy was administrated before the allogeneic NK cells injection via hepatic artery. Three escalating doses were tested (3.106, 8.106 and 12.106 NK cells/kg) following by a high-dose interleukin-2 (IL-2). Cetuximab was administered intravenously every week for 7 weeks. Nine patients with liver metastases of colorectal or pancreatic cancers were included, three per dose level. Hepatic artery injection was successfully performed in all patients with no report of dose-limiting toxicity. Two patients had febrile aplasia requiring a short-term antibiotherapy. Grade 3/4 anemia and thrombopenia were also observed related to the chemotherapy. Objective clinical responses were documented in 3 patients and among them 2 occurred in patients injected with cell products harboring two KIR ligand mismatches and one in a patient with one KIR ligand mismatch. Immune monitoring revealed that most patients presented an increase but transient of IL-15 and IL-7 cytokines levels one week after chemotherapy. Furthermore, a high expansion of FoxP3+regulatory T cells and PD-1+ T cells was observed in all patients, related to IL-2 administration. Our results demonstrated that combining allogeneic NK cells transfer via intra-hepatic artery, cetuximab and a high-dose IL-2 is feasible, well tolerated and may result in clinical responses.
Collapse
Affiliation(s)
- O Adotevi
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - Y Godet
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - J Galaine
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - Z Lakkis
- University Hospital of Besançon, Department of Gastrointestinal and liver surgery, F-25000 Besançon, France
| | - I Idirene
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - J M Certoux
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - M Jary
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - R Loyon
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - C Laheurte
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,Etablissement Français du Sang Bourgogne Franche-Comté, plateforme de BioMonitoring, F-25000 Besançon, France.,INSERM CIC-1431, University Hospital of Besançon, Clinical Investigation Center in Biotherapy, F-25000, Besançon, France
| | - S Kim
- University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - A Dormoy
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - F Pouthier
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - C Barisien
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - F Fein
- University Hospital of Besançon, Department of Gastroenterology, F-25000 Besançon, France
| | - P Tiberghien
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - X Pivot
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| | - S Valmary-Degano
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Pathology, F-25000 Besançon, France
| | - C Ferrand
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France
| | - P Morel
- Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France
| | - E Delabrousse
- University Hospital of Besançon, Department of Radiology, F-25000, Besançon, France
| | - C Borg
- University Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, F-25000 Besançon, France.,University Hospital of Besançon, Department of Medical Oncology, F-25000 Besançon, France
| |
Collapse
|
331
|
Cooley S, Parham P, Miller JS. Strategies to activate NK cells to prevent relapse and induce remission following hematopoietic stem cell transplantation. Blood 2018; 131:1053-1062. [PMID: 29358179 PMCID: PMC5863700 DOI: 10.1182/blood-2017-08-752170] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/12/2017] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are lymphocytes of innate immunity that respond to virus infected and tumor cells. After allogeneic transplantation, NK cells are the first reconstituting lymphocytes, but are dysfunctional. Manipulating this first wave of lymphocytes could be instrumental in reducing the 40% relapse rate following transplantation with reduced-intensity conditioning. NK cells express numerous activating and inhibitory receptors. Some recognize classical or nonclassical HLA class I ligands, others recognize class I-like ligands or unrelated ligands. Dominant in the NK-cell transplant literature are killer cell immunoglobulin-like receptors (KIRs), encoded on chromosome 19q. Inhibitory KIR recognition of the cognate HLA class I ligand is responsible for NK-cell education, which makes them tolerant of healthy cells, but responsive to unhealthy cells having reduced expression of HLA class I. KIR A and KIR B are functionally distinctive KIR haplotype groups that differ in KIR gene content. Allogeneic transplant donors having a KIR B haplotype and lacking a recipient HLA-C epitope provide protection against relapse from acute myeloid leukemia. Cytomegalovirus infection stimulates and expands a distinctive NK-cell population that expresses the NKG2C receptor and exhibits enhanced effector functions. These adaptive NK cells display immune memory and methylation signatures like CD8 T cells. As potential therapy, NK cells, including adaptive NK cells, can be adoptively transferred with, or without, agents such as interleukin-15 that promote NK-cell survival. Strategies combining NK-cell infusions with CD16-binding antibodies or immune engagers could make NK cells antigen specific. Together with checkpoint inhibitors, these approaches have considerable potential as anticancer therapies.
Collapse
MESH Headings
- Adoptive Transfer
- Allografts
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/pathology
- Chromosomes, Human, Pair 19/genetics
- Chromosomes, Human, Pair 19/immunology
- Cytomegalovirus Infections/genetics
- Cytomegalovirus Infections/immunology
- Cytomegalovirus Infections/pathology
- Cytomegalovirus Infections/therapy
- HLA Antigens/genetics
- HLA Antigens/immunology
- Haplotypes/immunology
- Hematopoietic Stem Cell Transplantation
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Killer Cells, Natural/transplantation
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Lymphocyte Activation
- NK Cell Lectin-Like Receptor Subfamily C/genetics
- NK Cell Lectin-Like Receptor Subfamily C/immunology
- Receptors, KIR/genetics
- Receptors, KIR/immunology
- Recurrence
- Tissue Donors
Collapse
Affiliation(s)
- Sarah Cooley
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, and
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| | - Peter Parham
- Department of Structural Biology and
- Department of Microbiology and Immunology, Stanford University, Stanford, CA
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, and
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN; and
| |
Collapse
|
332
|
Amer J, Salhab A, Noureddin M, Doron S, Abu-Tair L, Ghantous R, Mahamid M, Safadi R. Insulin signaling as a potential natural killer cell checkpoint in fatty liver disease. Hepatol Commun 2018; 2:285-298. [PMID: 29507903 PMCID: PMC5831020 DOI: 10.1002/hep4.1146] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 08/11/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023] Open
Abstract
Insulin resistance is a key risk factor in the progression of nonalcoholic fatty liver disease (NAFLD) and may lead to liver fibrosis. Natural killer (NK) cells are thought to exert an antifibrotic effect through their killing of activated hepatic stellate cells (HSCs). Here, we investigated how the interplay between NK cells and HSCs are modified by insulin resistance in NAFLD. Fresh peripheral blood NK cells (clusters of differentiation [CD]56dim, CD16+) were collected from 22 healthy adults and 72 patients with NAFLD not currently taking any medications and without signs of metabolic syndrome. NK cells were assessed for insulin receptor expressions and cytotoxic activity when cultured in medium with HSCs. Fibrosis severities in patients with NAFLD were correlated linearly with elevated serum proinflammatory cytokine expression and insulin resistance severity. At the same time, fibrosis severities inversely correlated with insulin receptor expressions on NK cells as well as with their cytotoxic activities determined by CD107a by flow cytometry. NK cells from donors exhibiting severe fibrosis and insulin resistance exhibited significant mammalian target of rapamycin and extracellular signal‐regulated kinase depletion (through NK cell western blot quantitation), increased apoptosis, and failure to attenuate HSC activation in vitro. While exposure to insulin stimulated the cytotoxic activity of healthy NK cells, rapamycin prevented this effect and reduced NK insulin receptor expressions. Conclusion: Elevated insulin levels in F1 and F2 fibrosis enhances NK cell cytotoxic activity toward HSCs and prevents fibrosis progression by insulin receptors and downstream mammalian target of rapamycin and extracellular signal‐regulated kinase pathways. At more advanced stages of insulin resistance (F3 and F4 fibrosis), impaired NK cell activity rooted in low insulin receptor expression and or low serum insulin levels could further deteriorate fibrosis and may likely lead to cirrhosis development. (Hepatology Communications 2018;2:285‐298)
Collapse
Affiliation(s)
- Johnny Amer
- Liver & Gastroenterology Units Hadassah Hebrew University Medical Center Jerusalem Israel
| | - Ahmad Salhab
- Liver & Gastroenterology Units Hadassah Hebrew University Medical Center Jerusalem Israel
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases Comprehensive Transplant Center, Cedars Sinai Medical Center Los Angeles CA
| | - Sarit Doron
- Liver & Gastroenterology Units Hadassah Hebrew University Medical Center Jerusalem Israel
| | - Lina Abu-Tair
- Liver & Gastroenterology Units Hadassah Hebrew University Medical Center Jerusalem Israel
| | - Rami Ghantous
- Liver Unit, Holy Family Hospital, Nazareth, Safed Medical School Bar Ilan University Israel
| | - Mahmud Mahamid
- Liver Unit, Holy Family Hospital, Nazareth, Safed Medical School Bar Ilan University Israel
| | - Rifaat Safadi
- Liver & Gastroenterology Units Hadassah Hebrew University Medical Center Jerusalem Israel
| |
Collapse
|
333
|
Chiu J, Ernst DM, Keating A. Acquired Natural Killer Cell Dysfunction in the Tumor Microenvironment of Classic Hodgkin Lymphoma. Front Immunol 2018; 9:267. [PMID: 29491867 PMCID: PMC5817071 DOI: 10.3389/fimmu.2018.00267] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022] Open
Abstract
An understanding of interactions within the tumor microenvironment (TME) of classic Hodgkin lymphoma (cHL) has helped pave the way to novel immunotherapies that have enabled dormant and tumor-tolerant immune cells to be reactivated. The immunosuppressive nature of the TME in cHL specifically inhibits the proliferation and activity of natural killer (NK) cells, which contributes to tumor immune-escape mechanisms. This deficiency of NK cells begins at the tumor site and progresses systemically in patients with advanced disease or adverse prognostic factors. Several facets of cHL account for this effect on NK cells. Locally, malignant Reed-Sternberg cells and cells from the TME express ligands for inhibitory receptors on NK cells, including HLA-E, HLA-G, and programmed death-ligand 1. The secretion of chemokines and cytokines, including soluble IL-2 receptor (sCD25), Transforming Growth Factor-β, IL-10, CXCL9, and CXCL10, mediates the systemic immunosuppression. This review also discusses the potential reversibility of quantitative and functional NK cell deficiencies in cHL that are likely to lead to novel treatments.
Collapse
Affiliation(s)
- Jodi Chiu
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Daniel M Ernst
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| | - Armand Keating
- Cell Therapy Program, Princess Margaret Cancer Centre, Toronto, ON, Canada
| |
Collapse
|
334
|
Felices M, Lenvik AJ, McElmurry R, Chu S, Hinderlie P, Bendzick L, Geller MA, Tolar J, Blazar BR, Miller JS. Continuous treatment with IL-15 exhausts human NK cells via a metabolic defect. JCI Insight 2018; 3:96219. [PMID: 29415897 PMCID: PMC5821201 DOI: 10.1172/jci.insight.96219] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 01/04/2018] [Indexed: 12/17/2022] Open
Abstract
NK cell-based immunotherapies have been gaining traction in the clinic for treatment of cancer. IL-15 is currently being used in number of clinical trials to improve NK cell expansion and function. The objective of this study is to evaluate the effect of repetitive IL-15 exposure on NK cells. An in vitro model in which human NK cells are continuously (on on on) or intermittently (on off on) treated with IL-15 was used to explore this question. After treatment, cells were evaluated for proliferation, survival, cell cycle gene expression, function, and metabolic processes. Our data indicate that continuous treatment of NK cells with IL-15 resulted in decreased viability and a cell cycle arrest gene expression pattern. This was associated with diminished signaling, decreased function both in vitro and in vivo, and reduced tumor control. NK cells continuously treated with IL-15 also displayed a reduced mitochondrial respiration profile when compared with NK cells treated intermittently with IL-15. This profile was characterized by a decrease in the spare respiratory capacity that was dependent on fatty acid oxidation (FAO). Limiting the strength of IL-15 signaling via utilization of an mTOR inhibitor rescued NK cell functionality in the group continuously treated with IL-15. The findings presented here show that human NK cells continuously treated with IL-15 undergo a process consistent with exhaustion that is accompanied by a reduction in FAO. These findings should inform IL-15-dosing strategies in NK cell cancer immunotherapeutic settings.
Collapse
Affiliation(s)
- Martin Felices
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Alexander J. Lenvik
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | | | - Sami Chu
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Peter Hinderlie
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| | - Laura Bendzick
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melissa A. Geller
- Department of Obstetrics, Gynecology and Women’s Health, Division of Gynecologic Oncology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Jeffrey S. Miller
- Department of Medicine, Division of Hematology, Oncology, and Transplantation
| |
Collapse
|
335
|
Dai K, Huang Y, Chen Z, Sun X, Yang L, Jiang Y. Kbtbd2 inhibits the cytotoxic activity of immortalized NK cells through down-regulating mTOR signaling in a mouse hepatocellular carcinoma model. Eur J Immunol 2018; 48:683-695. [PMID: 29331106 DOI: 10.1002/eji.201747281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/05/2017] [Accepted: 01/04/2018] [Indexed: 12/18/2022]
Abstract
Natural killer cell (NK cell)-based immunotherapy is a promising therapeutic strategy for hepatocellular carcinoma (HCC). However, the molecular mechanisms underlying the regulation of NK cell function in the tumor sites are not completely elucidated. In this study, we identified the enhanced expression of kelch repeat and BTB (POZ) domain containing 2 (Kbtbd2) in intratumoral NK cells in a mouse HCC implantation model as a negative regulator of NK cells. To investigate this interaction, we used a Tet-on inducible expression system to control Kbtbd2 expression in an immortalized mouse NK cell line KIL C.2. With this approach, we found that overexpression of Kbtbd2 reduced KIL C.2 cell proliferation, decreased expression certain of Ly49 receptor family members, and substantially impaired cytotoxic activity of KIL C.2 cells in vitro. Moreover, phosphorylation of mTOR and its target 4E-binding protein 1 was reduced in Kbtbd2-expressing KIL C.2 cells, along with down-regulated phosphorylation of Erk1/2. Adoptively transferred Kbtbd2-expressing KIL C.2 cells exhibited weaker tumoricidal effect on hepatocellular carcinoma cells in the HCC implantation model, in comparison with transferred control KIL C.2 cells. Taken together, our investigation indicates that Kbtbd2 is an inhibitory molecule for the tumoricidal activity of KIL C.2 cells and perhaps intratumoral NK cells.
Collapse
Affiliation(s)
- Kai Dai
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yabing Huang
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zubing Chen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaomei Sun
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihua Yang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yingan Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
336
|
Yoon BR, Oh YJ, Kang SW, Lee EB, Lee WW. Role of SLC7A5 in Metabolic Reprogramming of Human Monocyte/Macrophage Immune Responses. Front Immunol 2018; 9:53. [PMID: 29422900 PMCID: PMC5788887 DOI: 10.3389/fimmu.2018.00053] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/20/2022] Open
Abstract
Amino acids (AAs) are necessary nutrients which act not only as building blocks in protein synthesis but also in crucial anabolic cellular signaling pathways. It has been demonstrated that SLC7A5 is a critical transporter that mediates uptake of several essential amino acids in highly proliferative tumors and activated T cells. However, the dynamics and relevance of SLC7A5 activity in monocytes/macrophages is still poorly understood. We provide evidence that SLC7A5-mediated leucine influx contributes to pro-inflammatory cytokine production via mTOR complex 1 (mTORC1)-induced glycolytic reprograming in activated human monocytes/macrophages. Moreover, expression of SLC7A5 is significantly elevated in monocytes derived from patients with rheumatoid arthritis (RA), a chronic inflammatory disease, and was also markedly induced by LPS stimulation of both monocytes and macrophages from healthy individuals. Further, pharmacological blockade or silencing of SLC7A5 led to a significant reduction of IL-1β downstream of leucine-mediated mTORC1 activation. Inhibition of SLC7A5-mediated leucine influx was linked to downregulation of glycolytic metabolism as evidenced by the decreased extracellular acidification rate, suggesting a regulatory role for this molecule in glycolytic reprograming. Furthermore, the expression of SLC7A5 on circulating monocytes from RA patients positively correlated with clinical parameters, suggesting that SLC7A5-mediated AA influx is related to inflammatory conditions.
Collapse
Affiliation(s)
- Bo Ruem Yoon
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Jeong Oh
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Seong Wook Kang
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun Bong Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea.,Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, South Korea.,Institute of Infectious Diseases, Seoul National University College of Medicine, Seoul, South Korea.,Seoul National University Hospital Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
337
|
Molecular Mechanisms Linking Exercise to Cancer Prevention and Treatment. Cell Metab 2018; 27:10-21. [PMID: 29056514 DOI: 10.1016/j.cmet.2017.09.015] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
The benefits of exercise training for cancer patients are becoming increasingly evident. Physical exercise has been shown to reduce cancer incidence and inhibit tumor growth. Here we provide the status of the current molecular understanding of the effect of exercise on cancer. We propose that exercise has a role in controlling cancer progression through a direct effect on tumor-intrinsic factors, interplay with whole-body exercise effects, alleviation of cancer-related adverse events, and improvement of anti-cancer treatment efficacy. These findings have wide-ranging societal implications, as this understanding may lead to changes in cancer treatment strategies.
Collapse
|
338
|
Kostrzewski T, Borg AJ, Meng Y, Filipovic I, Male V, Wack A, DiMaggio PA, Brady HJM. Multiple Levels of Control Determine How E4bp4/Nfil3 Regulates NK Cell Development. THE JOURNAL OF IMMUNOLOGY 2018; 200:1370-1381. [PMID: 29311361 DOI: 10.4049/jimmunol.1700981] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/25/2017] [Indexed: 01/24/2023]
Abstract
The transcription factor E4bp4/Nfil3 has been shown to have a critical role in the development of all innate lymphoid cell types including NK cells. In this study, we show that posttranslational modifications of E4bp4 by either SUMOylation or phosphorylation have profound effects on both E4bp4 function and NK cell development. We examined the activity of E4bp4 mutants lacking posttranslational modifications and found that Notch1 was a novel E4bp4 target gene. We observed that abrogation of Notch signaling impeded NK cell production and the total lack of NK cell development from E4bp4-/- progenitors was completely rescued by short exposure to Notch peptide ligands. This work reveals both novel mechanisms in NK cell development by a transcriptional network including E4bp4 with Notch, and that E4bp4 is a central hub to process extrinsic stimuli.
Collapse
Affiliation(s)
- Tomasz Kostrzewski
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Aaron J Borg
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Yiran Meng
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Iva Filipovic
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Victoria Male
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Andreas Wack
- Francis Crick Institute, London NW7 1AA, United Kingdom
| | - Peter A DiMaggio
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom; and
| | - Hugh J M Brady
- Department of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
339
|
Cribbs A, Hookway ES, Wells G, Lindow M, Obad S, Oerum H, Prinjha RK, Athanasou N, Sowman A, Philpott M, Penn H, Soderstrom K, Feldmann M, Oppermann U. Inhibition of histone H3K27 demethylases selectively modulates inflammatory phenotypes of natural killer cells. J Biol Chem 2018; 293:2422-2437. [PMID: 29301935 PMCID: PMC5818173 DOI: 10.1074/jbc.ra117.000698] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/21/2017] [Indexed: 01/12/2023] Open
Abstract
Natural killer (NK) cells are innate lymphocytes, important in immune surveillance and elimination of stressed, transformed, or virus-infected cells. They critically shape the inflammatory cytokine environment to orchestrate interactions of cells of the innate and adaptive immune systems. Some studies have reported that NK cell activation and cytokine secretion are controlled epigenetically but have yielded only limited insight into the mechanisms. Using chemical screening with small-molecule inhibitors of chromatin methylation and acetylation, further validated by knockdown approaches, we here identified Jumonji-type histone H3K27 demethylases as key regulators of cytokine production in human NK cell subsets. The prototypic JMJD3/UTX (Jumonji domain–containing protein 3) H3K27 demethylase inhibitor GSK-J4 increased global levels of the repressive H3K27me3 mark around transcription start sites of effector cytokine genes. Moreover, GSK-J4 reduced IFN-γ, TNFα, granulocyte–macrophage colony-stimulating factor (GM-CSF), and interleukin-10 levels in cytokine-stimulated NK cells while sparing their cytotoxic killing activity against cancer cells. The anti-inflammatory effect of GSK-J4 in NK cell subsets, isolated from peripheral blood or tissue from individuals with rheumatoid arthritis (RA), coupled with an inhibitory effect on formation of bone-resorbing osteoclasts, suggested that histone demethylase inhibition has broad utility for modulating immune and inflammatory responses. Overall, our results indicate that H3K27me3 is a dynamic and important epigenetic modification during NK cell activation and that JMJD3/UTX-driven H3K27 demethylation is critical for NK cell function.
Collapse
Affiliation(s)
- Adam Cribbs
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom, .,the Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford BRU and
| | - Edward S Hookway
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Graham Wells
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Morten Lindow
- the Roche Innovation Center Copenhagen A/S, DK 2970 Hørsholm, Denmark
| | - Susanna Obad
- the Roche Innovation Center Copenhagen A/S, DK 2970 Hørsholm, Denmark
| | - Henrik Oerum
- the Roche Innovation Center Copenhagen A/S, DK 2970 Hørsholm, Denmark
| | - Rab K Prinjha
- the Epinova Discovery Performance Unit, Medicines Research Centre, GlaxoSmithKline R&D, Stevenage SG1 2NY, United Kingdom
| | - Nick Athanasou
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Aneka Sowman
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Martin Philpott
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Henry Penn
- the Arthritis Centre, Northwick Park Hospital, Harrow, HA13UJ, United Kingdom
| | - Kalle Soderstrom
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Marc Feldmann
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom.,the Kennedy Institute of Rheumatology Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford BRU and
| | - Udo Oppermann
- From the Botnar Research Center, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, National Institute of Health Research Oxford Biomedical Research Unit (BRU), University of Oxford, Oxford OX3 7DQ, United Kingdom, .,the Structural Genomics Consortium, University of Oxford, Oxford OX3 7LD, United Kingdom.,the Freiburg Institute of Advanced Studies, 79104 Freiburg, Germany, and.,the Oxford Centre for Translational Myeloma Research Oxford, Oxford OX3 7DQ, United Kingdom
| |
Collapse
|
340
|
Soltani A, Bahreyni A, Boroumand N, Roshan MK, Khazaei M, Ryzhikov M, Soleimanpour S, Avan A, Hassanian SM. Therapeutic potency of mTOR signaling pharmacological inhibitors in the treatment of proinflammatory diseases, current status, and perspectives. J Cell Physiol 2017; 233:4783-4790. [PMID: 29165795 DOI: 10.1002/jcp.26276] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/14/2017] [Accepted: 11/14/2017] [Indexed: 12/26/2022]
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway controls cell energy metabolism. There is an interplay between mTOR and proinflammatory signaling pathways, supporting the role of the pathway in the pathogenesis of inflammatory diseases. Inhibition of mTOR signaling using specific pharmacological inhibitors could offer therapeutic promise in several inflammatory-associated diseases. In this review, we summarize recent findings on the regulatory effects of mTOR signaling on inflammation and the therapeutic potency of mTOR pharmacological inhibitors in the treatment of inflammatory diseases including cancer, neurodegenerative diseases, atherosclerosis, sepsis, and rheumatoid arthritis for a better understanding and hence a better management of these diseases.
Collapse
Affiliation(s)
- Arash Soltani
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Bahreyni
- Department of Clinical Biochemistry and Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Mazandaran, Iran
| | - Nadia Boroumand
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Karimi Roshan
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Faculty of Medicine, Department of Medical Physiology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University, School of Medicine, Saint Louis, Missouri
| | - Saman Soleimanpour
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Faculty of Medicine, Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Faculty of Medicine, Department of Modern Sciences and Technologies, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
341
|
Abstract
There has been increasing recognition of the importance of metabolism on immune cell differentiation, homeostasis, and function. Recently, our lab and others have begun to investigate the metabolic requirements for NK cell differentiation and activation. Here, we describe approaches for the in vitro assessment of NK cell metabolism. We present methods for using inhibitors to alter cellular metabolism, measurement of intracellular ATP in NK cells, assessment of real-time glycolysis and oxidative phosphorylation by an extracellular flux assay from Seahorse Biosciences, and some basic protocols for stimulation of NK cells via cytokines and receptors.
Collapse
Affiliation(s)
- Molly P Keppel
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO, 63110, USA
| | - Megan A Cooper
- Division of Rheumatology, Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, Box 8208, St. Louis, MO, 63110, USA.
| |
Collapse
|
342
|
Dyck L, Lynch L. Cancer, obesity and immunometabolism - Connecting the dots. Cancer Lett 2017; 417:11-20. [PMID: 29253522 DOI: 10.1016/j.canlet.2017.12.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/09/2023]
Affiliation(s)
- Lydia Dyck
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland; Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
343
|
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ. Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium. eLife 2017; 6. [PMID: 29227245 PMCID: PMC5724991 DOI: 10.7554/elife.31274] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/02/2017] [Indexed: 12/22/2022] Open
Abstract
In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.
Collapse
Affiliation(s)
- Paul J Brighton
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yojiro Maruyama
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Katherine Fishwick
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Pavle Vrljicak
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Shreeya Tewary
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Risa Fujihara
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Joanne Muter
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emma S Lucas
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom.,Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Taihei Yamada
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Laura Woods
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Raffaella Lucciola
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Yie Hou Lee
- Obstetrics & Gynaecology Academic Clinical Program, Duke-NUS Medical School, Singapore, Singapore.,KK Research Centre, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Sascha Ott
- Tommy's National Centre for Miscarriage Research, University Hospitals Coventry and Warwickshire, Coventry, United Kingdom
| | - Myriam Hemberger
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom.,Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Siobhan Quenby
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Jan Joris Brosens
- Division of Biomedical Sciences, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
344
|
Wilhelm C, Kharabi Masouleh S, Kazakov A. Metabolic Regulation of Innate Lymphoid Cell-Mediated Tissue Protection-Linking the Nutritional State to Barrier Immunity. Front Immunol 2017; 8:1742. [PMID: 29375541 PMCID: PMC5770634 DOI: 10.3389/fimmu.2017.01742] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/23/2017] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILC) are a recently described group of tissue-resident immune cells that play essential roles in maintaining and protecting the tissue barrier against invading pathogens. Extensive research has revealed that ILC-mediated immune responses are controlled by dietary components and metabolites. An additional role of ILC as important direct regulators of host metabolism and glucose tolerance is emerging. This suggests that ILC may act as key dietary sensors integrating nutritional and metabolic stress to facilitate both maintenance of barrier sites and a coordinated immune response protecting these tissues. In this respect, investigations have begun to determine how different ILC responses are metabolically fueled and the impact of nutrient availability on the regulation of ILC function. Here, we discuss the current literature concerning dietary and metabolic control of ILC. In particular, we address whether the dietary and metabolic control of ILC and their simultaneous influence on host metabolism may function as a coordinated program of barrier defense.
Collapse
Affiliation(s)
- Christoph Wilhelm
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Schekufe Kharabi Masouleh
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Kazakov
- Unit for Immunopathology, Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
345
|
Mah AY, Rashidi A, Keppel MP, Saucier N, Moore EK, Alinger JB, Tripathy SK, Agarwal SK, Jeng EK, Wong HC, Miller JS, Fehniger TA, Mace EM, French AR, Cooper MA. Glycolytic requirement for NK cell cytotoxicity and cytomegalovirus control. JCI Insight 2017; 2:95128. [PMID: 29212951 DOI: 10.1172/jci.insight.95128] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 01/19/2023] Open
Abstract
NK cell activation has been shown to be metabolically regulated in vitro; however, the role of metabolism during in vivo NK cell responses to infection is unknown. We examined the role of glycolysis in NK cell function during murine cytomegalovirus (MCMV) infection and the ability of IL-15 to prime NK cells during CMV infection. The glucose metabolism inhibitor 2-deoxy-ᴅ-glucose (2DG) impaired both mouse and human NK cell cytotoxicity following priming in vitro. Similarly, MCMV-infected mice treated with 2DG had impaired clearance of NK-specific targets in vivo, which was associated with higher viral burden and susceptibility to infection on the C57BL/6 background. IL-15 priming is known to alter NK cell metabolism and metabolic requirements for activation. Treatment with the IL-15 superagonist ALT-803 rescued mice from otherwise lethal infection in an NK-dependent manner. Consistent with this, treatment of a patient with ALT-803 for recurrent CMV reactivation after hematopoietic cell transplant was associated with clearance of viremia. These studies demonstrate that NK cell-mediated control of viral infection requires glucose metabolism and that IL-15 treatment in vivo can reduce this requirement and may be effective as an antiviral therapy.
Collapse
Affiliation(s)
- Annelise Y Mah
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Armin Rashidi
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Molly P Keppel
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nermina Saucier
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily K Moore
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua B Alinger
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sandeep K Tripathy
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sandeep K Agarwal
- Department of Medicine, Division of Immunology, Allergy, and Rheumatology, Baylor College of Medicine, Houston, Texas, USA
| | | | | | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota, USA
| | - Todd A Fehniger
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Emily M Mace
- Center for Human Immunobiology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Anthony R French
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
346
|
Abstract
Metabolism is critical for a host of cellular functions and provides a source of intracellular energy. It has been recognized recently that metabolism also regulates differentiation and effector functions of immune cells. Although initial work in this field has focused largely on T lymphocytes, recent studies have demonstrated metabolic control of innate immune cells, including natural killer (NK) cells. Here, we review what is known regarding the metabolic requirements for NK cell activation, focusing on NK cell production of interferon-gamma (IFN-γ). NK cells are innate immune lymphocytes that are poised for rapid activation during the early immune response. Although their basal metabolic rates do not change with short-term activation, they exhibit specific metabolic requirements for activation depending upon the stimulus received. These metabolic requirements for NK cell activation are altered by culturing NK cells with interleukin-15, which increases NK cell metabolic rates at baseline and shifts them toward aerobic glycolysis. We discuss the metabolic pathways important for NK cell production of IFN-γ protein and potential mechanisms whereby metabolism regulates NK cell function.
Collapse
Affiliation(s)
- Annelise Y Mah
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| | - Megan A Cooper
- Department of Pediatrics, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
347
|
Mahr B, Pilat N, Maschke S, Granofszky N, Schwarz C, Unger L, Hock K, Farkas AM, Klaus C, Regele H, Wekerle T. Regulatory T Cells Promote Natural Killer Cell Education in Mixed Chimeras. Am J Transplant 2017; 17:3049-3059. [PMID: 28489338 DOI: 10.1111/ajt.14342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/24/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Therapeutic administration of regulatory T cells (Tregs) leads to engraftment of conventional doses of allogeneic bone marrow (BM) in nonirradiated recipient mice conditioned with costimulation blockade and mammalian target of rapamycin inhibition. The mode of action responsible for this Treg effect is poorly understood but may encompass the control of costimulation blockade-resistant natural killer (NK) cells. We show that transient NK cell depletion at the time of BM transplantation led to BM engraftment and persistent chimerism without Treg transfer but failed to induce skin graft tolerance. In contrast, the permanent absence of anti-donor NK reactivity in mice grafted with F1 BM was associated with both chimerism and tolerance comparable to Treg therapy, implying that NK cell tolerization is a critical mechanism of Treg therapy. Indeed, NK cells of Treg-treated BM recipients reshaped their receptor repertoire in the presence of donor MHC in a manner suggesting attenuated donor reactivity. These results indicate that adoptively transferred Tregs prevent BM rejection, at least in part, by suppressing NK cells and promote tolerance by regulating the appearance of NK cells expressing activating receptors to donor class I MHC.
Collapse
Affiliation(s)
- B Mahr
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Pilat
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - S Maschke
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - N Granofszky
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Schwarz
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - L Unger
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - K Hock
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - A M Farkas
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - C Klaus
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - H Regele
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - T Wekerle
- Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
348
|
O'Sullivan TE, Sun JC. Innate Lymphoid Cell Immunometabolism. J Mol Biol 2017; 429:3577-3586. [PMID: 28867535 PMCID: PMC5719889 DOI: 10.1016/j.jmb.2017.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/01/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
Innate lymphoid cells (ILCs) are tissue-resident "first responders" of the immune system that function to protect epithelial barriers against pathogens and maintain tissue homeostasis. However, because ILCs are finely tuned to perturbations within tissue microenvironments, they can also contribute to host pathology when upstream activating signals are dysregulated. Recent work has demonstrated that the crosstalk between ILCs and their environment has a significant impact on host metabolism in health and disease. In this brief review, we summarize recent studies that demonstrate the ability of ILCs to influence tissue and systemic metabolism, as well as how ILC biology can be regulated by environmental changes in host metabolism. We also highlight studies showing how ILC-intrinsic metabolism influences their activation, proliferation, and homeostasis. Finally, this review discusses the challenges and open questions in the rapidly expanding field of immunometabolism.
Collapse
Affiliation(s)
- Timothy E O'Sullivan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, United States; Department of Immunology and Microbial Pathogenesis, Weill Cornell Medical College, New York, NY 10065, United States.
| |
Collapse
|
349
|
Kobayashi T, Mattarollo SR. Natural killer cell metabolism. Mol Immunol 2017; 115:3-11. [PMID: 29179986 DOI: 10.1016/j.molimm.2017.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 12/24/2022]
Abstract
Natural killer (NK) cells are a critical component in the innate immune response against disease. NK cell function is tightly regulated by specific cytokine and activation/inhibitory receptor signalling, leading to diverse effector responses. Like all living cells, energy metabolism is a fundamental requirement for NK cell activation and survival. There is growing evidence that distinct functional profiles of NK cells are determined by alterations to cellular metabolic pathways. In this review, we summarise current literature that has explored NK cell metabolism to provide insight into how metabolic regulation controls NK cell function. We focus on metabolism pathways induced by different NK cell stimuli, metabolic regulatory proteins, and nutrient and hormonal levels in health and disease which impact on NK cell metabolic and functional activity.
Collapse
Affiliation(s)
- Takumi Kobayashi
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia
| | - Stephen R Mattarollo
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane 4102, Queensland, Australia.
| |
Collapse
|
350
|
Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, Jaillon S, Popović B, Bernardini G, Magrini E, Gianni F, Zelenay S, Jonjić S, Santoni A, Garlanda C, Mantovani A. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature 2017; 551:110-114. [PMID: 29072292 PMCID: PMC5768243 DOI: 10.1038/nature24293] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/19/2017] [Indexed: 02/07/2023]
Abstract
Interleukin-1 receptor 8 (IL-1R8, also known as single immunoglobulin IL-1R-related receptor, SIGIRR, or TIR8) is a member of the IL-1 receptor (ILR) family with distinct structural and functional characteristics, acting as a negative regulator of ILR and Toll-like receptor (TLR) downstream signalling pathways and inflammation. Natural killer (NK) cells are innate lymphoid cells which mediate resistance against pathogens and contribute to the activation and orientation of adaptive immune responses. NK cells mediate resistance against haematopoietic neoplasms but are generally considered to play a minor role in solid tumour carcinogenesis. Here we report that IL-1R8 serves as a checkpoint for NK cell maturation and effector function. Its genetic blockade unleashes NK-cell-mediated resistance to hepatic carcinogenesis, haematogenous liver and lung metastasis, and cytomegalovirus infection.
Collapse
Affiliation(s)
| | | | | | - Federica Riva
- Department of Animal Pathology, Faculty of Veterinary Medicine, University of Milan, Italy
| | | | - Sébastien Jaillon
- Humanitas Clinical and Research Center, Rozzano, Italy
- Humanitas University, 20089 Rozzano, Italy
| | - Branka Popović
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Giovanni Bernardini
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma "La Sapienza" 00161 Rome, Italy
| | - Elena Magrini
- Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Santiago Zelenay
- Cancer Research UK Manchester Institute, The University of Manchester, Manchester, M20 4QL, United Kingdom
| | - Stipan Jonjić
- Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Angela Santoni
- Dipartimento di Medicina Molecolare Istituto Pasteur-Fondazione Cenci Bolognetti, Università di Roma "La Sapienza" 00161 Rome, Italy
| | | | - Alberto Mantovani
- Humanitas Clinical and Research Center, Rozzano, Italy
- Humanitas University, 20089 Rozzano, Italy
- The William Harvey Research Institute, Queen Mary University of London, London, EC1M 6BQ, United Kingdom
| |
Collapse
|