301
|
Souilhol C, Cormier S, Monet M, Vandormael-Pournin S, Joutel A, Babinet C, Cohen-Tannoudji M. Nas transgenic mouse line allows visualization of Notch pathway activity in vivo. Genesis 2006; 44:277-86. [PMID: 16708386 PMCID: PMC2734965 DOI: 10.1002/dvg.20208] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Notch signaling pathway plays multiple and important roles in mammals. However, several aspects of its action, in particular, the precise mapping of its sites of activity, remain unclear. To address this issue, we generated a transgenic line carrying a construct consisting of a nls-lacZ reporter gene under the control of a minimal promoter and multiple RBP-Jkappa binding sites. Here we show that this transgenic line, which we termed NAS (for Notch Activity Sensor), displays an expression profile that is consistent with current knowledge on Notch activity sites in mice, even though it may not report on all these sites. Moreover, we observe that NAS transgene expression is abolished in a RBP-Jkappa-deficient background, indicating that it indeed requires Notch/RBP-Jkappa signaling pathway activity. Thus, the NAS transgenic line constitutes a valuable and versatile tool to gain further insights into the complex and various functions of the Notch signaling pathway.
Collapse
Affiliation(s)
- Céline Souilhol
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Sarah Cormier
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Marie Monet
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Sandrine Vandormael-Pournin
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Anne Joutel
- Genetique des Maladies Vasculaires
INSERM : U740Université Denis Diderot - Paris VIIFac de Medecine Lariboisiere-St Louis PARIS VII 10, Avenue de Verdun 75010 PARIS ,FR
| | - Charles Babinet
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
| | - Michel Cohen-Tannoudji
- Biologie du Développement
CNRS : URA2578Institut Pasteur de Paris28, rue du Docteur Roux F-75724 Paris Cedex 15,FR
- * Correspondence should be adressed to: Michel Cohen-Tannoudji
| |
Collapse
|
302
|
Zakrzewski JL, Kochman AA, Lu SX, Terwey TH, Kim TD, Hubbard VM, Muriglan SJ, Suh D, Smith OM, Grubin J, Patel N, Chow A, Cabrera-Perez J, Radhakrishnan R, Diab A, Perales MA, Rizzuto G, Menet E, Pamer EG, Heller G, Zúñiga-Pflücker JC, Alpdogan O, van den Brink MRM. Adoptive transfer of T-cell precursors enhances T-cell reconstitution after allogeneic hematopoietic stem cell transplantation. Nat Med 2006; 12:1039-47. [PMID: 16936725 DOI: 10.1038/nm1463] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/18/2006] [Indexed: 12/27/2022]
Abstract
Immunoincompetence after allogeneic hematopoietic stem cell transplantation (HSCT) affects in particular the T-cell lineage and is associated with an increased risk for infections, graft failure and malignant relapse. To generate large numbers of T-cell precursors for adoptive therapy, we cultured mouse hematopoietic stem cells (HSCs) in vitro on OP9 mouse stromal cells expressing the Notch-1 ligand Delta-like-1 (OP9-DL1). We infused these cells, together with T-cell-depleted mouse bone marrow or purified HSCs, into lethally irradiated allogeneic recipients and determined their effect on T-cell reconstitution after transplantation. Recipients of OP9-DL1-derived T-cell precursors showed increased thymic cellularity and substantially improved donor T-cell chimerism (versus recipients of bone marrow or HSCs only). OP9-DL1-derived T-cell precursors gave rise to host-tolerant CD4+ and CD8+ populations with normal T-cell antigen receptor repertoires, cytokine secretion and proliferative responses to antigen. Administration of OP9-DL1-derived T-cell precursors increased resistance to infection with Listeria monocytogenes and mediated significant graft-versus-tumor (GVT) activity but not graft-versus-host disease (GVHD). We conclude that the adoptive transfer of OP9-DL1-derived T-cell precursors markedly enhances T-cell reconstitution after transplantation, resulting in GVT activity without GVHD.
Collapse
Affiliation(s)
- Johannes L Zakrzewski
- Department of Medicine, Zuckerman Research Center 1404, Mailbox 111, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Deltex1, Deltex2, and Deltex4 form a family of related proteins that are the mammalian homologues of Drosophila Deltex, a known regulator of Notch signals. Deltex1 is highly induced by Notch signaling in thymocytes, and overexpression of Deltex1 in T-cell progenitors can block Notch signals, suggesting that Deltex1 may play an important role in regulating Notch signals during T-cell development. A recent report found that T cells develop normally in mice carrying a targeted deletion in the Deltex1 gene (S. Storck, F. Delbos, N. Stadler, C. Thirion-Delalande, F. Bernex, C. Verthuy, P. Ferrier, J. C. Weill, and C. A. Reynaud, Mol. Cell. Biol. 25: 1437-1445, 2005), suggesting that other Deltex homologues may compensate in Deltex1-deficient T cells. We generated mice that lack expression of both Deltex1 and Deltex2 by gene targeting and further reduced expression of Deltex4 in Deltex1/Deltex2 double-deficient T-cell progenitors using RNA interference. Using a sensitive in vitro assay, we found that Notch signaling is more potent in cells expressing lower levels of Deltex proteins. Nevertheless, we were unable to detect any significant defects in thymocyte maturation in Deltex1/Deltex2 double-knockout mice. Together these data suggest that Deltex can act as a negative regulator of Notch signals in T cells but that endogenous levels of Deltex1 and Deltex2 are not important for regulating Notch signals during thymocyte development.
Collapse
Affiliation(s)
- Sophie M Lehar
- Department of Immunology and Howard Hughes Medical Institute, University of Washington, I-604D Health Science Center, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | | |
Collapse
|
304
|
Ceredig R, Rauch M, Balciunaite G, Rolink AG. Increasing Flt3L availability alters composition of a novel bone marrow lymphoid progenitor compartment. Blood 2006; 108:1216-22. [PMID: 16675711 DOI: 10.1182/blood-2005-10-006643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
We have recently described a CD19– B220+CD117low bone marrow subpopulation with B, T, and myeloid developmental potential, which we have called “early progenitors with lymphoid and myeloid potential” or EPLM. These cells also expressed Fms-like tyrosine kinase 3, Flt3, or CD135. Treatment of mice with the corresponding ligand, Flt3L, showed a 50-fold increase in EPLM. In addition to the expected increase in dendritic cell numbers, Flt3L treatment had a reversible inhibitory effect on B lymphopoiesis. Limiting dilution analysis of sorted EPLM from Flt3L-treated mice showed that B-lymphocyte progenitor activity was reduced 20-fold, but that myeloid and T-cell progenitor activity was largely preserved. EPLM from treated mice transiently reconstituted the thymus and bone marrow of recipient mice, generating cohorts of functional T and B cells in peripheral lymphoid organs. Thus, Flt3L treatment results in a dramatic increase in a novel bone marrow cell with lymphoid and myeloid progenitor activity.
Collapse
Affiliation(s)
- Rhodri Ceredig
- Department of Clinical and Biological Sciences, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
305
|
Rolink AG, Balciunaite G, Demolière C, Ceredig R. The potential involvement of Notch signaling in NK cell development. Immunol Lett 2006; 107:50-7. [PMID: 16930724 DOI: 10.1016/j.imlet.2006.07.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 07/15/2006] [Accepted: 07/15/2006] [Indexed: 10/24/2022]
Abstract
NK cells constitute an essential element of the innate immune system; however, the cellular and molecular mechanisms that guide their early development are still poorly understood. Here, we demonstrate that in addition to its known crucial role in T cell development, Notch signaling can also be involved in NK cell development. Thus, upon co-culture on OP9 stroma expressing the Notch ligand Delta-like 1 (OP9-DL1), Pax5-deficient pro-B cells, which have multi-lineage potential, efficiently differentiate into T and NK cells. Upon DL-1 signaling, Pax5-deficient pro-B cells down-regulate both surface CD93 expression and transcripts for B cell-specific genes and concomitantly up-regulate T lineage gene transcripts. Subsequent transfer of DL-1-signaled Pax5-deficient pro-B cells onto OP9 stroma in the presence of IL-2 leads to their efficient differentiation into NK1.1(+), functional NK cells. Moreover, bone marrow early progenitor with lymphoid and myeloid differentiation potential (EPLM), which we have previously described as the normal in vivo-equivalent of Pax5-deficient pro-B cells, also gain the ability to differentiate into effector NK cells following transient DL1 Notch-mediated signaling. The potential involvement of Notch signaling in the generation of the NK cell repertoire in vivo is discussed.
Collapse
Affiliation(s)
- Antonius G Rolink
- Department of Clinical and Biological Sciences, Division of Molecular Immunology, Center for Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland.
| | | | | | | |
Collapse
|
306
|
Abstract
The Notch signaling pathway is among the most commonly used communication channels in animal cells. Recent studies have demonstrated that this pathway is indispensable for cells in various stages of maturation, including terminal differentiation. One main focus in mammalian studies is the role of Notch in embryonic and postembryonic stem cell systems. In this review, the roles of Notch signaling in various mammalian stem and early progenitor cells are summarized.
Collapse
Affiliation(s)
- Shigeru Chiba
- Department of Cell Therapy and Transplantation Medicine, University of Tokyo, 7-3-1 Hongo, Tokyo 113-8655, Japan.
| |
Collapse
|
307
|
Weng AP, Millholland JM, Yashiro-Ohtani Y, Arcangeli ML, Lau A, Wai C, Del Bianco C, Rodriguez CG, Sai H, Tobias J, Li Y, Wolfe MS, Shachaf C, Felsher D, Blacklow SC, Pear WS, Aster JC. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev 2006; 20:2096-109. [PMID: 16847353 PMCID: PMC1536060 DOI: 10.1101/gad.1450406] [Citation(s) in RCA: 671] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 06/06/2006] [Indexed: 02/06/2023]
Abstract
Human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) are commonly associated with gain-of-function mutations in Notch1 that contribute to T-ALL induction and maintenance. Starting from an expression-profiling screen, we identified c-myc as a direct target of Notch1 in Notch-dependent T-ALL cell lines, in which Notch accounts for the majority of c-myc expression. In functional assays, inhibitors of c-myc interfere with the progrowth effects of activated Notch1, and enforced expression of c-myc rescues multiple Notch1-dependent T-ALL cell lines from Notch withdrawal. The existence of a Notch1-c-myc signaling axis was bolstered further by experiments using c-myc-dependent murine T-ALL cells, which are rescued from withdrawal of c-myc by retroviral transduction of activated Notch1. This Notch1-mediated rescue is associated with the up-regulation of endogenous murine c-myc and its downstream transcriptional targets, and the acquisition of sensitivity to Notch pathway inhibitors. Additionally, we show that primary murine thymocytes at the DN3 stage of development depend on ligand-induced Notch signaling to maintain c-myc expression. Together, these data implicate c-myc as a developmentally regulated direct downstream target of Notch1 that contributes to the growth of T-ALL cells.
Collapse
Affiliation(s)
- Andrew P Weng
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Prinz I, Sansoni A, Kissenpfennig A, Ardouin L, Malissen M, Malissen B. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat Immunol 2006; 7:995-1003. [PMID: 16878135 DOI: 10.1038/ni1371] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 07/06/2006] [Indexed: 01/15/2023]
Abstract
The checkpoint in gammadelta cell development that controls successful T cell receptor (TCR) gene rearrangements remains poorly characterized. Using mice expressing a reporter gene 'knocked into' the Tcrd constant region gene, we have characterized many of the events that mark the life of early gammadelta cells in the adult thymus. We identify the developmental stage during which the Tcrd locus 'opens' in early T cell progenitors and show that a single checkpoint controls gammadelta cell development during the penultimate CD4- CD8- stage. Passage through this checkpoint required the assembly of gammadelta TCR heterodimers on the cell surface and signaling via the Lat adaptor protein. In addition, we show that gammadelta selection triggered a phase of sustained proliferation similar to that induced by the pre-TCR.
Collapse
Affiliation(s)
- Immo Prinz
- Centre d'Immunologie de Marseille-Luminy, Université de la Méditerranée, Case 906, Institut National de la Santé et de la Recherche Médicale, U631, Marseille, France
| | | | | | | | | | | |
Collapse
|
309
|
Zhu YM, Zhao WL, Fu JF, Shi JY, Pan Q, Hu J, Gao XD, Chen B, Li JM, Xiong SM, Gu LJ, Tang JY, Liang H, Jiang H, Xue YQ, Shen ZX, Chen Z, Chen SJ. NOTCH1 mutations in T-cell acute lymphoblastic leukemia: prognostic significance and implication in multifactorial leukemogenesis. Clin Cancer Res 2006; 12:3043-9. [PMID: 16707600 DOI: 10.1158/1078-0432.ccr-05-2832] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE NOTCH signaling pathway is essential in T-cell development and NOTCH1 mutations are frequently present in T-cell acute lymphoblastic leukemia (T-ALL). To gain insight into its clinical significance, NOTCH1 mutation was investigated in 77 patients with T-ALL. EXPERIMENTAL DESIGN Detection of NOTCH1 mutation was done using reverse transcription-PCR amplification and direct sequencing, and thereby compared according to the clinical/biological data of the patients. RESULTS Thirty-two mutations were identified in 29 patients (with dual mutations in 3 cases), involving not only the heterodimerization and proline/glutamic acid/serine/threonine domains as previously reported but also the transcription activation and ankyrin repeat domains revealed for the first time. These mutations were significantly associated with elevated WBC count at diagnosis and independently linked to short survival time. Interestingly, the statistically significant difference of survival according to NOTCH1 mutations was only observed in adult patients (>18 years) but not in pediatric patients (< or = 18 years), possibly due to the relatively good overall response of childhood T-ALL to the current chemotherapy. NOTCH1 mutations could coexist with HOX11, HOX11L2, or SIL-TAL1 expression. The negative effect of NOTCH1 mutation on prognosis was potentiated by HOX11L2 but was attenuated by HOX11. CONCLUSION NOTCH1 mutation is an important prognostic marker in T-ALL and its predictive value could be even further increased if coevaluated with other T-cell-related regulatory genes. NOTCH pathway thus acts combinatorially with oncogenic transcriptional factors on T-ALL pathogenesis.
Collapse
Affiliation(s)
- Yong-Mei Zhu
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Shanghai Rui Jin Hospital, Medical School of Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Ichimiya S, Kojima T. Cellular Networks of Human Thymic Medullary Stromas Coordinated by p53-Related Transcription Factors. J Histochem Cytochem 2006; 54:1277-89. [PMID: 16924121 DOI: 10.1369/jhc.6a7028.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The final elimination step of self-reactive T cells occurs in the medulla of the thymus where a complex framework provided by stromal cells supports an optimal milieu for their selection. Here we present evidence that tight junctions (TJs) widely join medullary stromal cells of the human thymus. Occludin (OCLN) and claudin-1 (CLDN-1) of TJ-associated molecules were dominantly expressed in medullary thymic epithelial cells (mTECs), and CLDN-4 and CLDN-7 were also localized in some mTECs near Hassall's corpuscles. Interestingly, p53-like transcription factors were found to upregulate OCLN and CLDN-1 in human TEC lines, as recently suggested in the regulation of mTEC function. Furthermore, dendritic cells (DCs) of the medulla, with a major role for selection of thymocytes, expressed CLDN-1 and OCLN as well, implying that the interposition of DCs within the mTEC scaffold is also helped by TJs. Analysis of freeze-fracture replicas of the thymus revealed TJ strand structures in the vicinity of gap junction plaques through which small molecules might move, as implied by dye-transfer analysis of a medullary cell line. Thus, it is thought that p53-like molecules regulate TJ-associated interactions of medullary stromal cells and that this mechanism might be associated with an intercellular communication network, probably for preserving the medullary niches.
Collapse
Affiliation(s)
- Shingo Ichimiya
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | | |
Collapse
|
311
|
Ciofani M, Zúñiga-Pflücker JC. A survival guide to early T cell development. Immunol Res 2006; 34:117-32. [PMID: 16760572 DOI: 10.1385/ir:34:2:117] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/15/2022]
Abstract
The survival of immature T cell precursors is dependent on both thymus-derived extrinsic signals and self-autonomous pre-TCR-mediated signals. While the role of cytokines and the pre-TCR in promoting thymocyte survival has been well established, the relationship between pro- and anti-apoptotic signaling cascades remains poorly defined. Recent studies have established a link between cell survival and growth factor-mediated maintenance of cellular metabolism. In this regard, the Notch signaling pathway has emerged as more than an inducer of T lineage commitment and differentiation, but also as a potent trophic factor, promoting the survival and metabolic state of pre-T cells. In this review, we describe current concepts of the intracellular signaling pathways downstream of cell intrinsic and extrinsic factors that dictate survival versus death outcomes during early T cell development.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, and Sunnybrook and Women's Research Institute, 2075 Bayview Ave., Toronto, Ontario, M4N 3M5 Canada
| | | |
Collapse
|
312
|
Akbari O, Umetsu DT. Role of regulatory dendritic cells in allergy and asthma. Curr Opin Allergy Clin Immunol 2006; 4:533-8. [PMID: 15640695 DOI: 10.1097/00130832-200412000-00010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Dendritic cells are the most efficient inducers of all immune responses, and are capable of inducing either productive immunity or maintaining the state of tolerance to self-antigens and allergens. The present review summarizes the emerging literature on dendritic cells, with the emphasis on regulatory function of dendritic cells in allergy and asthma. In particular we summarize recent data regarding the relationship between dendritic cell subsets and Th1, Th2 and regulatory T (TReg) cells. RECENT FINDINGS The diverse functions of dendritic cells have been attributed to distinct lineages of dendritic cells, which arise from common immature precursor cells that differentiate in response to specific maturation-inducing or local microenvironment conditions. These subsets induce different lineages of T cells such as Th1, Th2 and TReg cells, including Th1Reg and Th2Reg cells, which regulate allergic diseases and asthma. SUMMARY Subsets of dendritic cells regulate the induction of a variety of T-cell subtypes, which suppress the development of allergy and asthma, thus providing antiinflammatory responses and protective immunity.
Collapse
Affiliation(s)
- Omid Akbari
- Division of Immunology and Allergy, Department of Pediatrics, Stanford University, Stanford, California 94305-5208, USA
| | | |
Collapse
|
313
|
Lu T, Newton C, Perkins I, Friedman H, Klein TW. Cannabinoid Treatment Suppresses the T-Helper Cell-Polarizing Function of Mouse Dendritic Cells Stimulated withLegionella pneumophilaInfection. J Pharmacol Exp Ther 2006; 319:269-76. [PMID: 16837556 DOI: 10.1124/jpet.106.108381] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Marijuana cannabinoids, such as delta-9-tetrahydrocannabinoid (THC), suppress type 1 T-helper 1 (Th1) immunity in a variety of models, including infection with the intracellular pathogen Legionella pneumophila (Lp). To examine the cellular mechanism of this effect, bone marrow-derived dendritic cells (DCs) were purified from BALB/c mice and studied following infection and drug treatment. DCs infected in vitro with Lp were able to protect mice when injected prior to a lethal Lp infection; however, the immunization potential of the Lp-loaded cells along with Th1 cytokine production was attenuated by THC treatment at the time of in vitro infection. In addition, THC-treated and Lp-loaded DCs were poorly stimulated in culture-primed splenic CD4(+) T cells to produce interferon-gamma; however, this stimulating deficiency was reversed by adding recombinant interleukin (IL)-12p40 protein to the cultures. Moreover, THC treatment inhibited the expression of DC maturation markers, such as major histocompatibility complex class II and costimulatory molecules CD86 and CD40 as determined by flow cytometry and suppressed the Notch ligand, Del-ta4, as determined by reverse transcription-polymerase chain reaction. However, THC treatment did not affect other DC functions, such as intracellular killing of Lp, determined by colony-forming unit counts of bacteria, and Lp-induced apoptosis, determined by annexin V staining. In conclusion, the data suggest that THC inhibits Th1 activation by targeting essential DC functions, such as IL-12p40 secretion, maturation, and expression of costimulatory and polarizing molecules.
Collapse
Affiliation(s)
- Tangying Lu
- Department of Medical Microbiology and Immunology, MDC 10 University of South Florida College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
314
|
Barten DM, Meredith JE, Zaczek R, Houston JG, Albright CF. Gamma-secretase inhibitors for Alzheimer's disease: balancing efficacy and toxicity. Drugs R D 2006; 7:87-97. [PMID: 16542055 DOI: 10.2165/00126839-200607020-00003] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The amyloid hypothesis, which states that beta-amyloid (Abeta) aggregates cause the onset and progression of Alzheimer's disease (AD), is a leading proposal to explain AD aetiology. Based on this hypothesis, compounds that inhibit gamma-secretase, one of the enzymes responsible for forming Abeta, are potential therapeutics for AD. Preclinical studies clearly establish that gamma-secretase inhibitors can reduce brain Abeta in rodent models. The initial investigation of the effects of a gamma-secretase inhibitor on Abeta-induced cognitive deficits in transgenic mice showed that modest Abeta reductions (15-30%) are sufficient to reverse Abeta-induced cognitive deficits in Tg2576 mice. Extending these studies to other gamma-secretase inhibitors and other models with Abeta-induced cognitive deficits will be important. Unfortunately, gamma-secretase inhibitors also cause abnormalities in the gastrointestinal tract, thymus and spleen in rodents. These changes likely result from inhibition of Notch cleavage, a transmembrane receptor involved in regulating cell-fate decisions. Two recent studies in rodents suggest that Abeta reduction using gamma-secretase inhibitors can be partially separated from Notch inhibition. Given the uncertain Abeta reduction target and the potential for mechanism-based toxicity, biomarkers for efficacy and toxicity would be helpful in clinical trials. The first report of gamma-secretase inhibitors in clinical trials was recently published. In this study, LY-450139 reduced plasma Abeta, but not cerebrospinal fluid Abeta. Taken together, the results of studies to date suggest that gamma-secretase inhibitors have the potential to address a large unmet medical need if the technical challenges can be overcome.
Collapse
Affiliation(s)
- Donna M Barten
- Bristol-Myers Squibb, Pharmaceutical Research Institute, Neuroscience Drug Discovery, Wallingford, Connecticut 06492, USA.
| | | | | | | | | |
Collapse
|
315
|
Ciofani M, Knowles GC, Wiest DL, von Boehmer H, Zúñiga-Pflücker JC. Stage-specific and differential notch dependency at the alphabeta and gammadelta T lineage bifurcation. Immunity 2006; 25:105-16. [PMID: 16814577 DOI: 10.1016/j.immuni.2006.05.010] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 04/03/2006] [Accepted: 05/09/2006] [Indexed: 10/24/2022]
Abstract
Signals transduced by Notch receptors are indispensable for T cell specification and differentiation of alphabeta T lineage cells. However, the role of Notch signals during alphabeta versus gammadelta T lineage decision remains controversial. Here, we addressed this question by employing a clonal analysis of CD4(-)CD8(-) (DN) progenitor potential to position the divergence of alphabeta and gammadelta T cell lineages to the late DN2 to DN3 developmental stages. Accordingly, alphabeta and gammadelta precursor frequencies within these T cell progenitor subsets were determined, both in the presence and absence of Notch signaling through Delta-like 1. Notch signals were found to be critical for the DN to CD4(+)CD8(+) (DP) transition, irrespective of the identity (pTalphabeta or gammadelta) of the inducing T cell receptor complex, whereas gammadelta T cells developed from gammadeltaTCR-expressing T cell progenitors in the absence of further Notch ligand interaction. Collectively, our findings demonstrate a differential, stage-specific requirement for Notch receptor-ligand interactions in the differentiation of alphabeta and gammadelta T cells from T cell progenitors.
Collapse
Affiliation(s)
- Maria Ciofani
- Department of Immunology, University of Toronto, Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | |
Collapse
|
316
|
Abstract
The lymphocytes, T, B, and NK cells, and a proportion of dendritic cells (DCs) have a common developmental origin. Lymphocytes develop from hematopoietic stem cells via common lymphocyte and various lineage-restricted precursors. This review discusses the current knowledge of human lymphocyte development and the phenotypes and functions of the rare intermediate populations that together form the pathways of development into T, B, and NK cells and DCs. Clearly, development of hematopoietic cells is supported by cytokines. The studies of patients with genetic deficiencies in cytokine receptors that are discussed here have illuminated the importance of cytokines in lymphoid development. Lineage decisions are under control of transcription factors, and studies performed in the past decade have provided insight into transcriptional control of human lymphoid development, the results of which are summarized and discussed in this review.
Collapse
Affiliation(s)
- Bianca Blom
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| | | |
Collapse
|
317
|
Keller PC, Tomita T, Hayashi I, Chandu D, Weber JD, Cistola DP, Kopan R. A faster migrating variant masquerades as NICD when performing in vitro gamma-secretase assays with bacterially expressed Notch substrates. Biochemistry 2006; 45:5351-8. [PMID: 16618124 PMCID: PMC2546868 DOI: 10.1021/bi052228a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intramembrane proteolysis is a new and rapidly growing field. In vitro assays utilizing recombinant substrates for gamma-secretase, an intramembrane-cleaving enzyme, are critically important in order to characterize the biochemical properties of this unusual enzyme. Several recombinant Notch proteins of varying length are commonly used as in vitro substrates for CHAPSO-solubilized gamma-secretase. Here we report that several recombinant Notch constructs undergo limited or no proteolysis in vitro. Instead, upon incubation with or without gamma-secretase, variants of the intact protein migrate during SDS-PAGE at the location expected for the gamma-secretase specific cleavage products. In addition, we show that addition of aspartyl- and gamma-secretase specific protease inhibitors are able to retard the formation of these variants independent of gamma-secretase, which could lead to the erroneous conclusion that Notch cleavage by solubilized gamma-secretase was achieved in vitro even when no proteolysis occurred. In contrast, substrates produced in mammalian or insect cells are cleaved efficiently in vitro. These observations suggest that in vitro studies reliant on recombinant, bacterially produced Notch TMD should be performed with the inclusion of additional controls able to differentiate between actual cleavage and this potential artifact.
Collapse
Affiliation(s)
- Preston C. Keller
- Department of Molecular Biology and Pharmacology and Department of Medicine, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
- Department of Biochemistry & Molecular Biophysics, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
- Neuroscience Program, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
| | - Taisuke Tomita
- Department of Molecular Biology and Pharmacology and Department of Medicine, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Ikuo Hayashi
- Department of Neuropathology and Neuroscience, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo 113-0033, Japan
| | - Dilip Chandu
- Department of Molecular Biology and Pharmacology and Department of Medicine, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
| | - Jason D. Weber
- Department of Cell Biology and physiology, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
| | - David P. Cistola
- Department of Biochemistry & Molecular Biophysics, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
| | - Raphael Kopan
- Department of Molecular Biology and Pharmacology and Department of Medicine, Division of Biology and Biomedical Sciences at Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8231, St. Louis, MO 63110
- Author for correspondence: , phone: 314-747-5520, fax: 314-362-7058
| |
Collapse
|
318
|
Ikawa T, Kawamoto H, Goldrath AW, Murre C. E proteins and Notch signaling cooperate to promote T cell lineage specification and commitment. J Exp Med 2006; 203:1329-42. [PMID: 16682500 PMCID: PMC2121213 DOI: 10.1084/jem.20060268] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 04/06/2006] [Indexed: 01/19/2023] Open
Abstract
The helix-loop-helix protein, E47, is essential for both B- and T-lineage development. Here we demonstrate that in vitro E47 and Notch signaling act in concert to promote T cell development from fetal hematopoietic progenitors and to restrain development into the natural killer and myeloid cell lineages. The expression of an ensemble of genes associated with Notch signaling is activated by E47, and additionally, Notch signaling and E47 act in parallel pathways to induce a T lineage-specific program of gene expression. Enforced expression of the intracellular domain of Notch rescues the developmental arrest at the T cell commitment stage in E2A-deficient fetal thymocytes. Finally, we demonstrate that regulation of Hes1 expression by Notch signaling and E47 is strikingly similar to that observed during Drosophila melanogaster sensory development. Based on these observations, we propose that in developing fetal thymocytes E47 acts to induce the expression of an ensemble of genes involved in Notch signaling, and that subsequently E47 acts in parallel with Notch signaling to promote T-lineage maturation.
Collapse
Affiliation(s)
- Tomokatsu Ikawa
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
319
|
Lan K, Murakami M, Choudhuri T, Kuppers DA, Robertson ES. Intracellular-activated Notch1 can reactivate Kaposi's sarcoma-associated herpesvirus from latency. Virology 2006; 351:393-403. [PMID: 16701788 DOI: 10.1016/j.virol.2006.03.047] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2006] [Revised: 03/08/2006] [Accepted: 03/24/2006] [Indexed: 11/15/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes a predominantly latent infection in the infected host. Importantly, during latency, only a small number of viral encoded genes are expressed. This viral gene expression pattern contributes to the establishment of long-term infection as well as the ability of the virus to evade the immune system. Previous studies have been shown that the replication and transcription activator (RTA) encoded by ORF50 activates it downstream genes and initiates viral lytic reactivation through functional interaction with RBP-Jkappa, the major downstream effector of the Notch signaling pathway. This indicates that RTA can usurp the conserved Notch signaling pathway and mimic the activities of intracellular Notch1 to modulate gene expression. In this report, we show that the activated intracellular domain of Notch1 (ICN) is aberrantly accumulated in KSHV latently infected pleural effusion lymphoma (PEL) cells. ICN activated the RTA promoter in a dose-dependent manner, and forced expression of ICN in latently infected KSHV-positive cells initiated full blown lytic replication with the production of infectious viral progeny. However, latency-associated nuclear antigen (LANA) which is predominantly expressed during latency can specifically down-modulate ICN-mediated transactivation of RTA and so control KSHV for lytic reactivation. These results demonstrate that LANA can inhibit viral lytic replication by antagonizing ICN function and suggest that LANA is a critical component of the regulatory control mechanism for switching between viral latent and lytic replication by directly interacting with effectors of the conserved cellular Notch1 pathway.
Collapse
Affiliation(s)
- Ke Lan
- Department of Microbiology and the Tumor Virology Program, Abramson Comprehensive Cancer Center, University of Pennsylvania Medical School, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
320
|
Visan I, Tan JB, Yuan JS, Harper JA, Koch U, Guidos CJ. Regulation of T lymphopoiesis by Notch1 and Lunatic fringe-mediated competition for intrathymic niches. Nat Immunol 2006; 7:634-43. [PMID: 16699526 DOI: 10.1038/ni1345] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 04/04/2006] [Indexed: 01/19/2023]
Abstract
Notch1 activation regulates T lineage commitment and early T cell development. Fringe glycosyltransferases alter the sensitivity of Notch receptors to Delta-like versus Jagged Notch ligands, but their functions in T lymphopoiesis have not been defined. Here we show that developmental stage-specific expression of the glycosyltransferase lunatic fringe (Lfng) is required for coordination of the access of T cell progenitors to intrathymic niches that support Notch1-dependent phases of T cell development. Lfng-null progenitors generated few thymocytes in competitive assays, whereas Lfng overexpression converted thymocytes into 'supercompetitors' with enhanced binding of Delta-like ligands and blocked T lymphopoiesis from normal progenitors. We suggest that the ability of Lfng and Notch1 to control progenitor competition for limiting cortical niches is an important mechanism for the homeostatic regulation of thymus size.
Collapse
Affiliation(s)
- Ioana Visan
- Program in Developmental Biology, Hospital for Sick Children Research Institute, and Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | | | | | | | | | | |
Collapse
|
321
|
Weerkamp F, van Dongen JJM, Staal FJT. Notch and Wnt signaling in T-lymphocyte development and acute lymphoblastic leukemia. Leukemia 2006; 20:1197-205. [PMID: 16688226 DOI: 10.1038/sj.leu.2404255] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many acute lymphoblastic leukemias can be considered as malignant counterparts of cells in the various stages of normal lymphoid development in bone marrow and thymus. T-cell development in the thymus is an ordered and tightly controlled process. Two evolutionary conserved signaling pathways, which were first discovered in Drosophila, control the earliest steps of T-cell development. These are the Notch and Wnt-signaling routes, which both are deregulated in several types of leukemias. In this review we discuss both pathways, with respect to their signaling mechanisms, functions during T-cell development and their roles in development of leukemias, especially T-cell acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- F Weerkamp
- Department of Immunology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
322
|
van Vlierberghe P, Meijerink JPP, Lee C, Ferrando AA, Look AT, van Wering ER, Beverloo HB, Aster JC, Pieters R. A new recurrent 9q34 duplication in pediatric T-cell acute lymphoblastic leukemia. Leukemia 2006; 20:1245-53. [PMID: 16673019 DOI: 10.1038/sj.leu.2404247] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Over the last decade, genetic characterization of T-cell acute lymphoblastic leukemia (T-ALL) has led to the identification of a variety of chromosomal abnormalities. In this study, we used array-comparative genome hybridization (array-CGH) and identified a novel recurrent 9q34 amplification in 33% (12/36) of pediatric T-ALL samples, which is therefore one of the most frequent cytogenetic abnormalities observed in T-ALL thus far. The exact size of the amplified region differed among patients, but the critical region encloses approximately 4 Mb and includes NOTCH1. The 9q34 amplification may lead to elevated expression of various genes, and MRLP41, SSNA1 and PHPT1 were found significantly expressed at higher levels. Fluorescence in situ hybridization (FISH) analysis revealed that this 9q34 amplification was in fact a 9q34 duplication on one chromosome and could be identified in 17-39 percent of leukemic cells at diagnosis. Although this leukemic subclone did not predict for poor outcome, leukemic cells carrying this duplication were still present at relapse, indicating that these cells survived chemotherapeutic treatment. Episomal NUP214-ABL1 amplification and activating mutations in NOTCH1, two other recently identified 9q34 abnormalities in T-ALL, were also detected in our patient cohort. We showed that both of these genetic abnormalities occur independently from this newly identified 9q34 duplication.
Collapse
Affiliation(s)
- P van Vlierberghe
- Erasmus MC/Sophia Children's Hospital, Department of Pediatric Oncology/Hematology, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
323
|
Grabher C, von Boehmer H, Look AT. Notch 1 activation in the molecular pathogenesis of T-cell acute lymphoblastic leukaemia. Nat Rev Cancer 2006; 6:347-59. [PMID: 16612405 DOI: 10.1038/nrc1880] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The chromosomal translocation t(7;9) in human T-cell acute lymphoblastic leukaemia (T-ALL) results in deregulated expression of a truncated, activated form of Notch 1 (TAN1) under the control of the T-cell receptor-beta (TCRB) locus. Although TAN1 efficiently induces T-ALL in mouse models, t(7;9) is present in less than 1% of human T-ALL cases. The recent discovery of novel activating mutations in NOTCH1 in more than 50% of human T-ALL samples has made it clear that Notch 1 is far more important in human T-ALL pathogenesis than previously suspected.
Collapse
Affiliation(s)
- Clemens Grabher
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
324
|
Hoffman BG, Williams KL, Tien AH, Lu V, de Algara TR, Ting JPY, Helgason CD. Identification of novel genes and transcription factors involved in spleen, thymus and immunological development and function. Genes Immun 2006; 7:101-12. [PMID: 16355110 DOI: 10.1038/sj.gene.6364270] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We constructed and analyzed six serial analysis of gene expression (SAGE) libraries to identify genes with previously uncharacterized roles in spleen or thymus development. A total of 625 070 tags were sequenced from the three spleen (embryonic day (E)15.5, E16.5 and adult) and three thymus (E15.5, E18.5 and adult) libraries. These tags corresponded to 83 182 tag types, which mapped unambiguously to 36 133 different genes. Genes over-represented in these libraries, compared to 115 mouse SAGE libraries (www.mouseatlas.org), included genes of known and unknown immunological or developmental relevance. The expression profiles of 11 genes with unknown roles in spleen and thymus development were validated using reverse transcription-qPCR. We further characterized the expression of one of these candidates, RIKEN cDNA 9230105E10 that encodes a murine homolog of Trim5alpha, in numerous adult tissues and immune cell types. In addition, we demonstrate that transcript levels are upregulated in response to TLR stimulation of plasmacytoid dendritic cells and macrophages. This work provides the first evidence of regulated and cell type-specific expression of this gene. In addition, these observations suggest that the SAGE libraries provide an important resource for further investigations into the molecular mechanisms regulating spleen and thymus organogenesis, as well as the development of immunological competence.
Collapse
|
325
|
Bräuninger A, Schmitz R, Bechtel D, Renné C, Hansmann ML, Küppers R. Molecular biology of Hodgkin's and Reed/Sternberg cells in Hodgkin's lymphoma. Int J Cancer 2006; 118:1853-61. [PMID: 16385563 DOI: 10.1002/ijc.21716] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hodgkin's and Reed/Sternberg (HRS) cells, the tumour cells in classical Hodgkin's lymphoma (HL), represent transformed B cells in nearly all cases. The detection of destructive somatic mutations in the rearranged immunoglobulin (Ig) genes of HRS cells in classical HL indicated that they originate from preapoptotic germinal centre (GC) B cells that lost the capacity to express a high-affinity B-cell receptor (BCR). Several aberrantly activated signalling pathways and transcription factors have been identified that contribute to the rescue of HRS cells from apoptosis. Among the deregulated signalling pathways, activation of multiple receptor tyrosine kinases in HRS cells appears to be a specific feature of HL. In about 40% of cases of classical HL the HRS cells are infected by Epstein-Barr virus (EBV), indicating an important role of EBV in HL pathogenesis. Interestingly, nearly all cases of HL with destructive Ig gene mutations eliminating BCR expression (e.g. nonsense mutations) are EBV-positive, suggesting that EBV-encoded genes have a particular function to prevent apoptosis of HRS-cell precursors that acquired such crippling mutations. This idea is further supported by the recent demonstration that isolated human GC B cells harbouring crippled Ig genes can be rescued by EBV from cell death, giving rise to lymphoblastoid cell lines. The molecular analysis of composite Hodgkin's and non-Hodgkin's lymphomas indicated that many cases develop from a common GC B-cell precursor in a multistep transformation process with both shared and distinct oncogenic events.
Collapse
Affiliation(s)
- Andreas Bräuninger
- Senckenberg Institute of Pathology, University of Frankfurt, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
326
|
Breit S, Stanulla M, Flohr T, Schrappe M, Ludwig WD, Tolle G, Happich M, Muckenthaler MU, Kulozik AE. Activating NOTCH1 mutations predict favorable early treatment response and long-term outcome in childhood precursor T-cell lymphoblastic leukemia. Blood 2006; 108:1151-7. [PMID: 16614245 DOI: 10.1182/blood-2005-12-4956] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Activating mutations of the transmembrane receptor NOTCH1 are common in precursor T-cell lymphoblastic leukemia (T-ALL). We systematically analyzed the impact of activating NOTCH1 mutations on early treatment response and long-term outcome in 157 patients with T-ALL of the pediatric ALL-Berlin-Frankfurt-Munster (BFM) 2000 study. We confirm previous results that NOTCH1 mutations occur in more than 50% of T-ALL in children. In 82 patients (82/157; 52.2%), activating NOTCH1 mutations were identified either in the heterodimerization (55/82; 67.1%), in the PEST (13/82; 15.9%), or in both domains (14/82; 17.0%). The presence of NOTCH1 mutations was significantly correlated with a good prednisone response and favorable minimal residual disease (MRD) kinetics, which was independent from sex, age, white blood cell count, and T-cell immunophenotype at the time of diagnosis. Furthermore, activating NOTCH1 mutations specified a large subgroup of patients with an excellent prognosis. These findings indicate that in the context of the ALL-BFM 2000 treatment strategy, NOTCH1 mutations predict a more rapid early treatment response and a favorable long-term outcome in children with T-ALL.
Collapse
Affiliation(s)
- Stephen Breit
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Sugimoto A, Yamamoto M, Suzuki M, Inoue T, Nakamura S, Motoda R, Yamasaki F, Orita K. Delta-4 Notch ligand promotes erythroid differentiation of human umbilical cord blood CD34+ cells. Exp Hematol 2006; 34:424-32. [PMID: 16569589 DOI: 10.1016/j.exphem.2005.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 12/20/2005] [Accepted: 12/22/2005] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Important roles of Notch signaling have been demonstrated in hematopoiesis. In many cases, activation of the Notch pathway leads to the inhibition of differentiation of immature precursors, suggesting a potential role in self-renewal promotion. However, the function of Notch and Notch ligands is not so straightforward because it is considerably dependent on cytokine context. In this study, we analyzed effects of one Notch ligand, Delta-4, whose function is less clear than others, such as Delta-1 and Jagged-1 and -2. METHODS CD34(+) cells isolated from human umbilical cord blood were cocultured with a Delta-4-expressing murine stromal cell line, SC9-19, and induced to erythroid differentiation by adding stem cell factor and erythropoietin. To examine the involvement of Delta-4, we utilized stromal cell subclones expressing Delta-4 protein at higher or lower level than parental SC9-19 by plasmid transfection. Erythroid maturation was examined by surface phenotype (CD34 and glycophorin A) and cytospin morphology. Recombinant human Delta-4 protein was prepared to analyze direct effects of Delta-4. RESULTS Under erythroid lineage-inducing conditions, we found that the increase in Delta-4 expression of SC9-19 promoted erythroid differentiation whereas the decrease in Delta-4 expression inhibited it. Morphologic examination as well as colony formation analysis supported this observation. Moreover, the experiment using recombinant Delta-4 provided direct evidence of the Delta-4 activity found in coculture system. CONCLUSIONS By modifying Delta-4 expression of the stromal cells and using the recombinant protein, we demonstrated that Delta-4 had a differentiation promoting activity for human primitive hematopoietic cells into erythroid lineage.
Collapse
Affiliation(s)
- Akira Sugimoto
- Hayashibara Biochemical Laboratories, Inc. Okayama, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Dumortier A, Jeannet R, Kirstetter P, Kleinmann E, Sellars M, dos Santos NR, Thibault C, Barths J, Ghysdael J, Punt JA, Kastner P, Chan S. Notch activation is an early and critical event during T-Cell leukemogenesis in Ikaros-deficient mice. Mol Cell Biol 2006; 26:209-20. [PMID: 16354692 PMCID: PMC1317628 DOI: 10.1128/mcb.26.1.209-220.2006] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ikaros transcription factor is both a key regulator of lymphocyte differentiation and a tumor suppressor in T lymphocytes. Mice carrying a hypomorphic mutation (Ik(L/L)) in the Ikaros gene all develop thymic lymphomas. Ik(L/L) tumors always exhibit strong activation of the Notch pathway, which is required for tumor cell proliferation in vitro. Notch activation occurs early in tumorigenesis and may precede transformation, as ectopic expression of the Notch targets Hes-1 and Deltex-1 is detected in thymocytes from young Ik(L/L) mice with no overt signs of transformation. Notch activation is further amplified by secondary mutations that lead to C-terminal truncations of Notch 1. Strikingly, restoration of Ikaros activity in tumor cells leads to a rapid and specific downregulation of Notch target gene expression and proliferation arrest. Furthermore, Ikaros binds to the Notch-responsive element in the Hes-1 promoter and represses Notch-dependent transcription from this promoter. Thus, Ikaros-mediated repression of Notch target gene expression may play a critical role in defining the tumor suppressor function of this factor.
Collapse
Affiliation(s)
- Alexis Dumortier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM-ULP, BP 10142, 67404 Illkirch, CU Strasbourg, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Aster JC. Deregulated NOTCH signaling in acute T-cell lymphoblastic leukemia/lymphoma: new insights, questions, and opportunities. Int J Hematol 2006; 82:295-301. [PMID: 16298817 DOI: 10.1532/ijh97.05096] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent work has shown that the majority of human acute T-cell lymphoblastic leukemias and lymphomas (T-ALL) have gain-of-function mutations in NOTCH1, a type I transmembrane receptor that normally signals through a gamma-secretase-dependent mechanism that relies on ligand-induced regulated intramembranous proteolysis. Cleavage by gamma-secretase releases the intracellular domain of NOTCH1 (ICN1), permitting it to translocate to the nucleus and form a short-lived transcriptional activation complex that is essential for normal T-cell development. Two types of mutations are prevalent in human T-ALL: extracellular domain mutations that increase ICN1 production and C-terminal mutations that sustain ICN1 action. Inhibitors of ICN1 production and activity abrogate the growth of established T-ALL cell lines, and a clinical trial of a NOTCH pathway inhibitor in patients with refractory T-ALL has opened recently. These insights raise a number of new questions relevant to T-ALL pathogenesis and offer exciting opportunities for rational targeted therapy.
Collapse
Affiliation(s)
- Jon C Aster
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
330
|
Wilson A, Radtke F. Multiple functions of Notch signaling in self-renewing organs and cancer. FEBS Lett 2006; 580:2860-8. [PMID: 16574107 DOI: 10.1016/j.febslet.2006.03.024] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Accepted: 03/03/2006] [Indexed: 12/25/2022]
Abstract
In recent years a substantial body of evidence has accumulated to support the notion that signaling pathways known to be important during embryonic development play important roles in regulating self-renewing tissues. Moreover, the same pathways are often deregulated during tumorigenesis due to mutations of key elements of these pathways. The Notch signaling cascade meets all of the above-mentioned criteria. We discuss here the pleiotropic roles of the Notch signaling pathway in three different self-renewing organs (intestine, hematopoietic system and skin) and how its deregulation is involved in tumorigenesis.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | |
Collapse
|
331
|
Abstract
Adult stem cells hold many promises for future clinical applications and regenerative medicine. The haematopoietic stem cell (HSC) is the best-characterized somatic stem cell so far, but in vitro expansion has been unsuccessful, limiting the future therapeutic potential of these cells. Here we review recent progress in characterizing the composition of the HSC bone-marrow microenvironment, known as the HSC niche. During homeostasis, HSCs, and therefore putative bone-marrow HSC niches, are located near bone surfaces or are associated with the sinusoidal endothelium. The molecular crosstalk between HSCs and the cellular constituents of these niches is thought to control the balance between HSC self-renewal and differentiation, indicating that future successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem-cell-niche unit.
Collapse
Affiliation(s)
- Anne Wilson
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Chemin des Boveresses 155, 1066 Epalinges, Switzerland
| | | |
Collapse
|
332
|
Weerkamp F, Pike-Overzet K, Staal FJT. T-sing progenitors to commit. Trends Immunol 2006; 27:125-31. [PMID: 16473042 DOI: 10.1016/j.it.2006.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 12/22/2005] [Accepted: 01/19/2006] [Indexed: 01/04/2023]
Abstract
T-cell development in the thymus is a complex and highly regulated process. During the process of differentiation from multipotent progenitor cells to mature T cells, proliferation, restriction of lineage potential, TCR gene rearrangements and selection events occur, all accompanied by changes in gene expression. A comprehensive understanding of thymocyte differentiation remains to be established. Two related, key issues have received much attention recently: the nature of the thymus seeding cell and the regulation of T-cell lineage commitment. Here we review the perspectives of different researchers working both on murine and human T-cell development and argue that a true T-cell commitment factor might not be required because of the unique properties of the thymus.
Collapse
Affiliation(s)
- Floor Weerkamp
- Department of Immunology, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | | | | |
Collapse
|
333
|
Abstract
An improved understanding of stem cell differentiation is critical for progress in regenerative medicine. It is an emerging view that a relatively small number of intracellular signaling mechanisms play particularly important roles in differentiation control. As one may expect, these pathways are highly evolutionarily conserved, used in many tissues and iteratively during differentiation of a particular tissue. The Notch signaling system is one pathway meeting these criteria. In many cases, Notch signaling keeps stem/progenitor cells undifferentiated, although it can in some cellular contexts be instructive for differentiation toward a particular fate. Here, we review our current understanding of how Notch controls cellular differentiation in various organs and how Notch integrates with other major signaling pathways, primarily focusing on Notch signaling in mammals. Given the importance of Notch in many stem cell fate decisions, the possibility of experimentally manipulating Notch signaling opens up new avenues to control stem cell differentiation.
Collapse
Affiliation(s)
- Cecilia Sahlgren
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
334
|
Abstract
The lymph nodes (LNs) harbor a cryptic T-lymphopoietic pathway that is dramatically amplified by oncostatin M (OM). OM-transgenic mice generate massive amounts of T lymphocytes in the absence of Lin(-)c-Kit(hi)IL-7Ralpha- lymphoid progenitors and of reticular epithelial cells. Extrathymic T cells that develop along the OM-dependent LN pathway originate from Lin(-)c-Kit(lo)IL-7Ralpha+ lymphoid progenitors and are different from classic T cells in terms of turnover kinetics and function. Positive selection does not obey the same rules in the thymus and the LNs, where positive selection of developing T cells is supported primarily by epithelial and hematopoietic cells, respectively. Extrathymic T cells undergo enhanced homeostatic proliferation and thereby acquire some properties of memory T cells. Following antigen encounter, extrathymic T-cells initiate proliferation and cytokine secretion more readily than classic T cells, but their accumulation is limited by an exquisite susceptibility to apoptosis. Studies on in vitro and in vivo extrathymic T-cell development have yielded novel insights into the essence of a primary T-lymphoid organ. Furthermore, comparison of the thymic and OM-dependent extrathymic pathways shows how the division of labor between primary and secondary lymphoid organs influences the repertoire and homeostasis of T lymphocytes.
Collapse
Affiliation(s)
- Marie-Eve Blais
- Institute of Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, Canada
| | | | | |
Collapse
|
335
|
Chang H, Dittmer DP, Shin YC, Chul SY, Hong Y, Jung JU. Role of Notch signal transduction in Kaposi's sarcoma-associated herpesvirus gene expression. J Virol 2006; 79:14371-82. [PMID: 16254371 PMCID: PMC1280196 DOI: 10.1128/jvi.79.22.14371-14382.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) RTA transcription factor is recruited to its responsive elements through interaction with a Notch-mediated transcription factor, RBP-Jkappa, indicating that RTA mimics cellular Notch signal transduction to activate viral lytic gene expression. To test whether cellular Notch signal transduction and RTA are functionally exchangeable for viral gene expression, human Notch intracellular (hNIC) domain that constitutively activates RBP-Jkappa transcription factor activity was expressed in KSHV-infected primary effusion lymphoma BCBL1 cells (TRExBCBL1-hNIC) in a tetracycline-inducible manner. Gene expression profiling showed that like RTA, hNIC robustly induced expression of a number of viral genes, including viral interleukin 6 (vIL-6), K3, and K5. Unlike RTA, however, hNIC was not capable of evoking the full repertoire of lytic viral gene expression and thereby lytic replication. To further understand the role of Notch signal transduction in KSHV gene expression, vIL-6 growth factor and K5 immune modulator genes were selected for detailed analysis. Despite the presence of multiple RBP-Jkappa binding sites, hNIC targeted the specific RBP-Jkappa binding sites of vIL-6 and K5 promoter regions to regulate their gene expression. These results indicate that cellular Notch signal transduction not only is partially exchangeable with RTA in regard to activation of viral lytic gene expression but also provides a novel expression profile of KSHV growth and immune deregulatory genes that is likely different from that of RTA-independent standard latency program as well as RTA-dependent lytic reproduction program.
Collapse
Affiliation(s)
- Heesoon Chang
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772, USA
| | | | | | | | | | | |
Collapse
|
336
|
Roessler S, Grosschedl R. Role of transcription factors in commitment and differentiation of early B lymphoid cells. Semin Immunol 2006; 18:12-9. [PMID: 16431127 DOI: 10.1016/j.smim.2005.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
B lymphopoiesis is a differentiation process in which hematopoietic stem cells are converted into antibody-producing plasma cells. B cell differentiation involves multiple steps, including cell specification, commitment to the B cell lineage, immunoglobulin rearrangements, maturation of B cells and terminal differentiation into plasma cells. Each of these steps is controlled by signaling pathways and transcription factors that act in synergy, feedback-loops or cross-antagonism to generate complex regulatory networks that allow for plasticity and stability of B cell differentiation.
Collapse
Affiliation(s)
- Stephanie Roessler
- Max-Planck Institute of Immunobiology, Department of Cellular and Molecular Immunology, Stubeweg 51, 79108 Freiburg, Germany
| | | |
Collapse
|
337
|
Cai Y, Wu P, Ozen M, Yu Y, Wang J, Ittmann M, Liu M. Gene expression profiling and analysis of signaling pathways involved in priming and differentiation of human neural stem cells. Neuroscience 2006; 138:133-48. [PMID: 16414199 DOI: 10.1016/j.neuroscience.2005.11.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 11/08/2005] [Accepted: 11/08/2005] [Indexed: 01/02/2023]
Abstract
Human neural stem cells have the ability to differentiate into all three major cell types in the CNS including neurons, astrocytes and oligodendrocytes. The multipotency of human neural stem cells shed a light on the possibility of using stem cells as a therapeutic tool for various neurological disorders including neurodegenerative diseases and neurotrauma that involve a loss of functional neurons. We have discovered previously a priming procedure to direct primarily cultured human neural stem cells to differentiate into almost pure neurons when grafted into adult CNS. However, the molecular mechanism underlying this phenomenon is still unknown. To unravel transcriptional changes of human neural stem cells upon priming, cDNA microarray was used to study temporal changes in human neural stem cell gene expression profile during priming and differentiation. As a result, transcriptional levels of 520 annotated genes were detected changed in at least at two time points during the priming process. In addition, transcription levels of more than 3000 hypothetical protein encoding genes and EST genes were modulated during the priming and differentiation processes of human neural stem cells. We further analyzed the named genes and grouped them into 14 functional categories. Of particular interest, key cell signal transduction pathways, including the G-protein-mediated signaling pathways (heterotrimeric and small monomeric GTPase pathways), the Wnt signaling pathway and the TGF-beta pathway, are modulated by the neural stem cell priming, suggesting important roles of these key signaling pathways in priming and differentiation of human neural stem cells.
Collapse
Affiliation(s)
- Y Cai
- Alkek Institute of Biosciences and Technology, Department of Medical Biochemistry and Genetics, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
338
|
Maillard I, Schwarz BA, Sambandam A, Fang T, Shestova O, Xu L, Bhandoola A, Pear WS. Notch-dependent T-lineage commitment occurs at extrathymic sites following bone marrow transplantation. Blood 2006; 107:3511-9. [PMID: 16397133 PMCID: PMC1895767 DOI: 10.1182/blood-2005-08-3454] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Early T-lineage progenitors (ETPs) arise after colonization of the thymus by multipotent bone marrow progenitors. ETPs likely serve as physiologic progenitors of T-cell development in adult mice, although alternative T-cell differentiation pathways may exist. While we were investigating mechanisms of T-cell reconstitution after bone marrow transplantation (BMT), we found that efficient donor-derived thymopoiesis occurred before the pool of ETPs had been replenished. Simultaneously, T lineage-restricted progenitors were generated at extrathymic sites, both in the spleen and in peripheral lymph nodes, but not in the bone marrow or liver. The generation of these T lineage-committed cells occurred through a Notch-dependent differentiation process. Multipotent bone marrow progenitors efficiently gave rise to extrathymic T lineage-committed cells, whereas common lymphoid progenitors did not. Our data show plasticity of T-lineage commitment sites in the post-BMT environment and indicate that Notch-driven extrathymic Tlineage commitment from multipotent progenitors may contribute to early T-lineage reconstitution after BMT.
Collapse
Affiliation(s)
- Ivan Maillard
- 611 BRB II/III, 421 Curie Blvd, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Abstract
Mammals contend with a universe of evolving pathogens by generating an enormous diversity of antigen receptors during lymphocyte development. Precursor B and T cells assemble functional immunoglobulin (Ig) and T cell receptor (TCR) genes via recombination of numerous variable (V), diversity (D), and joining (J) gene segments. Although this combinatorial process generates significant diversity, genetic reorganization is inherently dangerous. Thus, V(D)J recombination must be tightly regulated to ensure proper lymphocyte development and avoid chromosomal translocations that cause lymphoid tumors. Each genomic rearrangement is mediated by a common V(D)J recombinase that recognizes sequences flanking all antigen receptor gene segments. The specificity of V(D)J recombination is due, in large part, to changes in the accessibility of chromatin at target gene segments, which either permits or restricts access to recombinase. The chromatin configuration of antigen receptor loci is governed by the concerted action of enhancers and promoters, which function as accessibility control elements (ACEs). In general, ACEs act as conduits for transcription factors, which in turn recruit enzymes that covalently modify or remodel nucleosomes. These ACE-mediated alterations are critical for activation of gene segment transcription and for opening chromatin associated with recombinase target sequences. In this chapter, we describe advances in understanding the mechanisms that control V(D)J recombination at the level of chromatin accessibility. The discussion will focus on cis-acting regulation by ACEs, the nuclear factors that control ACE function, and the epigenetic modifications that establish recombinase accessibility.
Collapse
Affiliation(s)
- Robin Milley Cobb
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA
| | | | | | | |
Collapse
|
340
|
Kurella S, Yaciuk JC, Dozmorov I, Frank MB, Centola M, Farris AD. Transcriptional modulation of TCR, Notch and Wnt signaling pathways in SEB-anergized CD4+ T cells. Genes Immun 2005; 6:596-608. [PMID: 16034473 PMCID: PMC2593626 DOI: 10.1038/sj.gene.6364245] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gene expression changes in CD4 + Vbeta8+ T cells energized by in vivo exposure to staphylococcal enterotoxin B (SEB) bacterial superantigen compared to CD4 + Vbeta8+ non-energic T cells were assessed using DNA microarrays containing 5184 murine complementary DNAs. Anergy in splenic T cells of SEB-immunized BALB/c mice was verified by dramatically reduced proliferative capacity and an 8 x overexpression of GRAIL mRNA in CD4 + Vbeta8+ T cells taken from mice 7 days after injection. At an Associative t-test threshold of P<0.0005, 96 genes were overexpressed or detected only in anergic T cells, while 256 genes were suppressed or not detected in anergic T cells. Six of eight differential expressions tested using real-time quantitative PCR were validated. Message for B-Raf was detected only in non-anergic cells, while expression of the TCR signaling modulator Slap (Src-like adapter protein) and the TCR zeta-chain specific phosphatase Ptpn3 was enhanced. Modulation of multiple genes suggests downregulation of Wnt/beta-catenin signaling and enhanced Notch signaling in the anergic cells. Consistent with previous reports in a non-superantigen in vivo anergy model, mRNA for CD18 and the transcription factor Satb1 (special AT-rich-binding protein 1) was increased in SEB-energized T cells. This is the first report of global transcriptional changes in CD4+ T cells made anergic by superantigen exposure.
Collapse
Affiliation(s)
- S Kurella
- Arthritis and Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
341
|
Olivier A, Lauret E, Gonin P, Galy A. The Notch ligand delta-1 is a hematopoietic development cofactor for plasmacytoid dendritic cells. Blood 2005; 107:2694-701. [PMID: 16357328 DOI: 10.1182/blood-2005-03-0970] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) play an important role in innate and adaptive immunity, prompting interest in mechanisms controlling the production of this lineage of cells. Notch signaling via one of the Notch ligands, delta-like 1 (delta-1), influences the hematopoietic development of several lymphoid and myeloid lineages, but whether or not delta-1 affects the formation of pDCs is unknown and was tested here. Human CD34+ progenitor cells were cultured onto delta-1-expressing OP9 stroma in the presence of flt-3 ligand and IL-7, and this efficiently generated BDCA-2+ CD123+ CD4+ CD11c- cells with the characteristic morphology of pDCs, expressing toll-like receptor-9 (TLR9), pre-Talpha mRNAs, and secreting CpG-induced IFN-alpha. Delta-1 augmented the numbers of BDCA-2+ cells produced without affecting their proliferation, and the effect was blocked by gamma-secretase inhibition. The development of pDCs was stroma-, delta-1-, and cytokine-dependent and could be induced from committed lymphoid progenitor cells, which responded to delta-1 by opposite changes in pDC- and B-cell production. Our results identify delta-1 as a novel factor enhancing pDC hematopoiesis and delineate a new role for Notch signaling in lymphopoiesis by showing its opposite effect on pDC and B lineage determination.
Collapse
Affiliation(s)
- Aurélie Olivier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U362, Villejuif, France
| | | | | | | |
Collapse
|
342
|
Ishikawa HO, Higashi S, Ayukawa T, Sasamura T, Kitagawa M, Harigaya K, Aoki K, Ishida N, Sanai Y, Matsuno K. Notch deficiency implicated in the pathogenesis of congenital disorder of glycosylation IIc. Proc Natl Acad Sci U S A 2005; 102:18532-7. [PMID: 16344471 PMCID: PMC1317902 DOI: 10.1073/pnas.0504115102] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Congenital disorder of glycosylation IIc (CDG IIc), also termed leukocyte adhesion deficiency II, is a recessive syndrome characterized by slowed growth, mental retardation, and severe immunodeficiency. Recently, the gene responsible for CDG IIc was found to encode a GDP-fucose transporter. Here, we investigated the possible cause of the developmental defects in CDG IIc patients by using a Drosophila model. Biochemically, we demonstrated that a Drosophila homolog of the GDP-fucose transporter, the Golgi GDP-fucose transporter (Gfr), specifically transports GDP-fucose in vitro. To understand the function of the Gfr gene, we generated null mutants of Gfr in Drosophila. The phenotypes of the Drosophila Gfr mutants were rescued by the human GDP-fucose transporter transgene. Our phenotype analyses revealed that Notch (N) signaling was deficient in these Gfr mutants. GDP-fucose is known to be essential for the fucosylation of N-linked glycans and for O-fucosylation, and both fucose modifications are present on N. Our results suggest that Gfr is involved in the fucosylation of N-linked glycans on N and its O-fucosylation, as well as those of bulk proteins. However, despite the essential role of N O-fucosylation during development, the Gfr homozygote was viable. Thus, our results also indicate that the Drosophila genome encodes at least another GDP-fucose transporter that is involved in the O-fucosylation of N. Finally, we found that mammalian Gfr is required for N signaling in mammalian cultured cells. Therefore, our results implicate reduced N signaling in the pathology of CDG IIc.
Collapse
Affiliation(s)
- Hiroyuki O Ishikawa
- Genome and Drug Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
343
|
Jang J, Choi YI, Choi J, Lee KY, Chung H, Jeon SH, Seong RH. Notch1 confers thymocytes a resistance to GC-induced apoptosis through Deltex1 by blocking the recruitment of p300 to the SRG3 promoter. Cell Death Differ 2005; 13:1495-505. [PMID: 16341126 DOI: 10.1038/sj.cdd.4401827] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
One notable phenotypic change during the differentiation of immature thymocytes into either mature CD4 or CD8 single-positive lineages is the acquisition of a resistance to glucocorticoid (GC)-induced apoptosis. We have previously reported that SRG3 is critical in determining the sensitivity for the GC-induced apoptosis in developing thymocytes. We report here that Notch signaling downregulates the transcriptional activation of SRG3 through N-box and/or E-box elements on its promoter. RBP-J represses SRG3 transcription through the N-box motif. On the other hand, Deltex1 competitively inhibits the binding of p300 to E2A/HEB protein bound to the E-box elements and represses the SRG3 promoter activity. Moreover, enforced expression of Deltex1 restored double-positive (DP) thymocyte survival from the GC-induced apoptosis. Our results suggest that Notch signaling confers differentiating DP thymocytes resistance to GCs by regulating the SRG3 expression through Deltex1, and that Deltex1 and SRG3 may play a significant role during DP thymocyte maturation.
Collapse
Affiliation(s)
- J Jang
- Department of Biological Sciences, Institute of Molecular Biology of Genetics, and Center for Functional Cellulomics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | |
Collapse
|
344
|
Uren AG, Kool J, Berns A, van Lohuizen M. Retroviral insertional mutagenesis: past, present and future. Oncogene 2005; 24:7656-72. [PMID: 16299527 DOI: 10.1038/sj.onc.1209043] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Retroviral insertion mutagenesis screens in mice are powerful tools for efficient identification of oncogenic mutations in an in vivo setting. Many oncogenes identified in these screens have also been shown to play a causal role in the development of human cancers. Sequencing and annotation of the mouse genome, along with recent improvements in insertion site cloning has greatly facilitated identification of oncogenic events in retrovirus-induced tumours. In this review, we discuss the features of retroviral insertion mutagenesis screens, covering the mechanisms by which retroviral insertions mutate cellular genes, the practical aspects of insertion site cloning, the identification and analysis of common insertion sites, and finally we address the potential for use of somatic insertional mutagens in the study of nonhaematopoietic and nonmammary tumour types.
Collapse
Affiliation(s)
- A G Uren
- Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam
| | | | | | | |
Collapse
|
345
|
Das AV, Edakkot S, Thoreson WB, James J, Bhattacharya S, Ahmad I. Membrane properties of retinal stem cells/progenitors. Prog Retin Eye Res 2005; 24:663-81. [PMID: 15939659 DOI: 10.1016/j.preteyeres.2005.04.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The membrane properties of cells help integrate extrinsic information relayed through growth factors, chemokines, extracellular matrix, gap junctions and neurotransmitters towards modulating cell-intrinsic properties, which in turn determine whether cells remain quiescent, proliferate, differentiate, establish contact with other cells or remove themselves by activating programmed cell death. This review highlights some of the membrane properties of early and late retinal stem cells/progenitors, which are likely to be helpful in the identification and enrichment of these cells and in understanding mechanisms underlying their maintenance and differentiation. Understanding of membrane properties of retinal stem cells/progenitors is essential for the successful formulation of approaches to treat retinal degeneration and diseases by cell therapy.
Collapse
Affiliation(s)
- Ani V Das
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68198-7691, USA
| | | | | | | | | | | |
Collapse
|
346
|
Lin YW, Nichols RA, Letterio JJ, Aplan PD. Notch1 mutations are important for leukemic transformation in murine models of precursor-T leukemia/lymphoma. Blood 2005; 107:2540-3. [PMID: 16282337 PMCID: PMC1414627 DOI: 10.1182/blood-2005-07-3013] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOTCH1 is frequently mutated in human precursor T-cell lymphoblastic leukemia/lymphoma (pre-T LBL). In the current study, we found that 13 of 19 cell lines and 29 of 49 primary tumors from SCL/LMO1, OLIG2/LMO1, OLIG2, LMO1, NUP98/HOXD13, and p27(-/-)/SMAD3(+/-) mice had Notch1 mutations in either the heterodimerization (HD) or the glutamic acid/serine/threonine (PEST) domain but not both. Thymocytes from clinically healthy SCL/LMO1 mice aged 5 weeks did not have Notch1 mutations, whereas thymocytes from clinically healthy SCL/LMO1 mice aged 8 to 12 weeks did have Notch1 mutations and formed tumors upon transplantation into nude mice. Remarkably, all of the HD domain mutations that we identified were single-base substitutions, whereas all of the PEST domain mutations were insertions or deletions, half of which mapped to 1 of 2 mutational "hot spots." Taken together, these findings indicate that Notch1 mutations are very frequent events that are acquired relatively early in the process of leukemic transformation and are important for leukemic cell growth.
Collapse
MESH Headings
- Age Factors
- Animals
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Leukemia, T-Cell/etiology
- Leukemia, T-Cell/genetics
- Leukemia, T-Cell/pathology
- Lymphoma, T-Cell/etiology
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Transgenic
- Mutation
- Receptor, Notch1/genetics
- Thymus Gland/cytology
Collapse
Affiliation(s)
- Ying-Wei Lin
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 8901 Wisconsin Ave, Bethesda, MD 20889-5105, USA
| | | | | | | |
Collapse
|
347
|
Abstract
T- and B-cells are generated from hematopoietic stem cells through lymphoid intermediates. The interplay of intrinsic and extrinsic signals determines cell fate at the branch point for T- and B-cell lineages and at the post-commitment stage of lymphogenesis. The mature lymphocytes differentiate into effector/memory cells by antigen recognition, and those differentiation steps are also governed by a series of cell fate choices and survival signals, which allows cells to acquire distinct effector functions. The identification of the molecular details that dictate lymphocyte development and differentiation will improve understanding of acquired immune responses. Recent studies have revealed that Notch molecules, evolutionarily conserved transmembrane receptors, play key roles in lymphocyte development and differentiation. In this article, we review recent knowledge regarding the roles of Notch signaling in controlling both lymphocyte development and acquisition of effector functions.
Collapse
Affiliation(s)
- Yoshiaki Minato
- Department of Immunology & Parasitology, Institute of Health Biosciences, The University of Tokushima Graduate School, Japan
| | | |
Collapse
|
348
|
Beher D, Graham SL. Protease inhibitors as potential disease-modifying therapeutics for Alzheimer’s disease. Expert Opin Investig Drugs 2005; 14:1385-409. [PMID: 16255678 DOI: 10.1517/13543784.14.11.1385] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The current lack of an effective treatment for Alzheimer's disease (AD) has fuelled an intense search for novel therapies for this neurodegenerative condition. Aberrant production or decreased clearance of amyloid-beta peptides is widely accepted to be causative for AD. Amyloid-beta peptides are produced by sequential processing of the beta-amyloid precursor protein by the two aspartyl-type proteases beta-secretase and gamma-secretase. Because proteases are generally classified as druggable, these secretases are a centre of attraction for various drug discovery efforts. Although a large number of specific drug-like gamma-secretase inhibitors have been discovered, progress towards the clinic has been slowed by the broad substrate specificity of this unusual intramembrane-cleaving enzyme. In particular, the Notch receptor depends on gamma-secretase for its signalling function and, thus, gamma-secretase inhibition produces distinct phenotypes related to a disturbance of this pathway in preclinical animal models. The main task now is to define the therapeutic window in man between desired central efficacy and Notch-related side effects. In contrast, most studies with knockout animals have indicated that beta-secretase inhibition may have minimal adverse effects; however, the properties of the active site of this enzyme make it difficult to find small-molecule inhibitors that bind with high affinity. In most instances, inhibitors are large and peptidic in nature and, therefore, unsuitable as drug candidates. Thus, there are many issues associated with the development of protease inhibitors for AD that must be addressed before they can be used to test the 'amyloid cascade hypothesis' in the clinic. The outcomes of such trials will provide new directions to the scientific community and hopefully new treatment options for AD patients.
Collapse
Affiliation(s)
- Dirk Beher
- Department of Molecular & Cellular Neuroscience, Merck Sharp & Dohme Research Laboratories, The Neuroscience Research Centre, Terlings Park, Harlow, Essex CM20 2QR, UK.
| | | |
Collapse
|
349
|
Bonnevier JL, Zhang R, Mueller DL. E3 ubiquitin ligases and their control of T cell autoreactivity. Arthritis Res Ther 2005; 7:233-42. [PMID: 16277698 PMCID: PMC1297590 DOI: 10.1186/ar1842] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A loss of T cell tolerance underlies the development of most autoimmune diseases. The design of therapeutic strategies to reinstitute immune tolerance, however, is hampered by uncertainty regarding the molecular mechanisms involved in the inactivation of potentially autoreactive T cells. Recently, E3 ubiquitin ligases have been shown to mediate the development of a durable state of unresponsiveness in T cells called clonal anergy. In this review, we will discuss the mechanisms used by E3 ligases to control the activation of T cells and prevent the development of autoimmunity.
Collapse
Affiliation(s)
- Jody L Bonnevier
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Ruan Zhang
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Daniel L Mueller
- Rheumatic and Autoimmune Diseases Division, and Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
350
|
Rutz S, Mordmüller B, Sakano S, Scheffold A. Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially regulate activation of peripheral T helper cells. Eur J Immunol 2005; 35:2443-51. [PMID: 16047342 DOI: 10.1002/eji.200526294] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The Notch pathway is involved in cell differentiation processes in various organs and at several developmental stages. The importance of Notch for early T lymphocyte development is well established. Recently, Notch has been implicated in directing naive T helper cell differentiation towards the Th1, Th2 or regulatory T cell lineages. However, the molecular events underlying these processes are poorly understood. We show that the Notch ligands Delta-like1, Delta-like4 and Jagged1 differentially affect early T cell activation and proliferation following T cell receptor cross-linking. Delta-like1 and Jagged1 induce a dose-dependent inhibition of early activation markers CD69 and CD25, as well as inhibition of proliferation after anti-CD3 stimulation of purified CD4+ T cells. Similarly, the rapid activation of transcription factors NF-AT, AP-1 and NF-kappaB is suppressed. In contrast, triggering of Notch by Delta-like4 enhances T cell activation and proliferation. The observed effects are dependent on simultaneous cross-linking of TCR and Notch but independent of gamma-secretase-mediated cleavage of Notch. These data suggest direct interference between Notch and early TCR signal transduction events, independent of the classical Notch pathway via release of the Notch intracellular domain. A Notch-mediated alteration of TCR signaling strength may contribute to the recently described modulation of naïve T cell differentiation by Notch ligands.
Collapse
Affiliation(s)
- Sascha Rutz
- Deutsches Rheuma-Forschungszentrum Berlin, Berlin, Germany
| | | | | | | |
Collapse
|