301
|
Wirsdörfer F, Jendrossek V. The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Front Immunol 2016; 7:591. [PMID: 28018357 PMCID: PMC5155013 DOI: 10.3389/fimmu.2016.00591] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/29/2016] [Indexed: 12/31/2022] Open
Abstract
Radiation-induced pneumonitis and fibrosis are dose-limiting side effects of thoracic irradiation. Thoracic irradiation triggers acute and chronic environmental lung changes that are shaped by the damage response of resident cells, by the resulting reaction of the immune system, and by repair processes. Although considerable progress has been made during the last decade in defining involved effector cells and soluble mediators, the network of pathophysiological events and the cellular cross talk linking acute tissue damage to chronic inflammation and fibrosis still require further definition. Infiltration of cells from the innate and adaptive immune systems is a common response of normal tissues to ionizing radiation. Herein, lymphocytes represent a versatile and wide-ranged group of cells of the immune system that can react under specific conditions in various ways and participate in modulating the lung environment by adopting pro-inflammatory, anti-inflammatory, or even pro- or anti-fibrotic phenotypes. The present review provides an overview on published data about the role of lymphocytes in radiation-induced lung disease and related damage-associated pulmonary diseases with a focus on T lymphocytes and B lymphocytes. We also discuss the suspected dual role of specific lymphocyte subsets during the pneumonitic phase and fibrotic phase that is shaped by the environmental conditions as well as the interaction and the intercellular cross talk between cells from the innate and adaptive immune systems and (damaged) resident epithelial cells and stromal cells (e.g., endothelial cells, mesenchymal stem cells, and fibroblasts). Finally, we highlight potential therapeutic targets suited to counteract pathological lymphocyte responses to prevent or treat radiation-induced lung disease.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen , Essen , Germany
| |
Collapse
|
302
|
Smith E, Croca S, Waddington KE, Sofat R, Griffin M, Nicolaides A, Isenberg DA, Torra IP, Rahman A, Jury EC. Cross-talk between iNKT cells and monocytes triggers an atheroprotective immune response in SLE patients with asymptomatic plaque. Sci Immunol 2016; 1:1/6/eaah4081. [PMID: 28783690 DOI: 10.1126/sciimmunol.aah4081] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/19/2016] [Indexed: 11/02/2022]
Abstract
Accelerated atherosclerosis is a complication of the autoimmune rheumatic disease systemic lupus erythematosus (SLE). We questioned the role played by invariant natural killer T (iNKT) cells in this process because they not only are defective in autoimmunity but also promote atherosclerosis in response to CD1d-mediated lipid antigen presentation. iNKT cells from SLE patients with asymptomatic plaque (SLE-P) had increased proliferation and interleukin-4 production compared with those from SLE patients with no plaque. The anti-inflammatory iNKT cell phenotype was associated with dyslipidemia and was driven by altered monocyte phospholipid expression and CD1d-mediated cross-talk between iNKT cells and monocytes but not B cells. Healthy iNKT cells differentiated in the presence of healthy monocytes and SLE-P serum polarized macrophages toward an anti-inflammatory M2 phenotype. Conversely, patients with clinical cardiovascular disease had unresponsive iNKT cells and increased proinflammatory monocytes. iNKT cell function could link immune responses, lipids, and cardiovascular disease in SLE patients and, together with serum lipid taxonomy, help predict preclinical atherosclerosis in SLE patients.
Collapse
Affiliation(s)
- Edward Smith
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Sara Croca
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Kirsty E Waddington
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.,Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Reecha Sofat
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | | | - Andrew Nicolaides
- Vascular Noninvasive Diagnostic Centre, London, U.K.,Department of Vascular Surgery, Imperial College, London, U.K.,Department of Vascular Surgery, Nicosia Medical School, University of Nicosia, Nicosia, Cyprus
| | - David A Isenberg
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Ines Pineda Torra
- Centre for Clinical Pharmacology, Department of Medicine, University College London, London W1CE 6JF, U.K
| | - Anisur Rahman
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K
| | - Elizabeth C Jury
- Centre for Rheumatology Research, Department of Medicine, University College London, Rayne Building, London W1CE 6JF, U.K.
| |
Collapse
|
303
|
Schjaerff M, Keller SM, Affolter VK, Kristensen AT, Moore PF. Cellular endocytic compartment localization of expressed canine CD1 molecules. Vet Immunol Immunopathol 2016; 182:11-21. [PMID: 27863541 DOI: 10.1016/j.vetimm.2016.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/03/2016] [Accepted: 08/31/2016] [Indexed: 11/27/2022]
Abstract
CD1 molecules are glycoproteins present primarily on dendritic cells (DCs), which recognize and present a variety of foreign- and self-lipid antigens to T-cells. Humans have five different CD1 isoforms that survey distinct cellular compartments allowing for recognition of a large repertoire of lipids. The canine CD1 family consists of seven functional CD1 molecules (canine CD1a2, CD1a6, CD1a8, CD1a9, CD1b, CD1c and CD1e) and one presumed non-functional isoform (canine CD1d) due to a disrupted gene structure. The aim of this study was to describe in vitro steady-state localization ptterns of canine CD1 isoforms and their correlation with endocytic organelles. GFP-fused canine CD1 293T cell transfectants were stained with markers for early endocytic compartments (EEA-1) and late endocytic/lysosomal compartments (LAMP-1), respectively, and analyzed by confocal microscopy. Canine CD1a molecules localized to the plasma membrane and partially to the early endocytic compartment, but not to late endosomes or lysosomes. In contrast, canine CD1b was highly associated with late endosomal/lysosomal compartments and showed a predominant intracellular expression pattern. Canine CD1c protein expression localized more promiscuously to both the early endosomal compartments and the late endosomal/lysosomal compartments. The canine CD1e molecule showed a strictly intracellular expression with a partial overlap with late endosomal/lysosomal compartments. Lastly, canine CD1d was expressed abnormally showing only a diminished GFP expression. In conclusion, canine CD1 transfectants show distinct localization patterns that are similar to human CD1 proteins with the exception of the canine CD1d isoform, which most likely is non-functional. These findings imply that canine CD1 localization overall resembles human CD1 trafficking patterns. This knowledge is important for the understanding of lipid antigen-receptor immunity in the dog.
Collapse
Affiliation(s)
- Mette Schjaerff
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA; Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Stefan M Keller
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Verena K Affolter
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA
| | - Annemarie T Kristensen
- Department of Veterinary Clinical and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Dyrlaegevej 16, 1870 Frederiksberg, Denmark
| | - Peter F Moore
- Department of Veterinary Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, One Shields Avenue, Davis, 95616 CA, USA.
| |
Collapse
|
304
|
Nishioka Y, Yamaguchi M, Kawakami A, Munehiro M, Masuda S, Tomaru U, Ishizu A. Type II Natural Killer T Cells that Recognize Sterol Carrier Protein 2 Are Implicated in Vascular Inflammation in the Rat Model of Systemic Connective Tissue Diseases. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 187:176-186. [PMID: 27863214 DOI: 10.1016/j.ajpath.2016.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 11/15/2022]
Abstract
We previously generated a rat model that developed systemic connective tissue diseases, including synovitis, myositis, and small-vessel vasculitis (SVV), and established a vascular endothelial cell-reactive T-cell clone, VASC-1, from the model. VASC-1 was determined to be a type II natural killer T-cell clone. In this study, we attempted to identify the antigen recognized by VASC-1. The monkey-derived cell line COS-7 was used because VASC-1 does not bind naturally to COS-7, although the amino acid sequences are well conserved between monkey CD1d and rat CD1d. We generated 98 COS-7 clones transfected with miscellaneous rat cDNA and screened them for VASC-1 binding. Consequently, we found one clone, 4D2, which could bind to VASC-1. Sequencing identified the rat cDNA introduced into 4D2 as sterol carrier protein 2 (SCP2). When VASC-1 was co-cultured with SCP2 knockdown rat vascular endothelial cells, VASC-1 binding was reduced significantly. Moreover, we designed a series of rat SCP2 peptides and introduced them into COS-7 cells. On the basis of VASC-1 binding and proliferation, we revealed that the peptide rSCP2518-532 included the epitope recognized by VASC-1. Furthermore, immunization with rSCP2518-532 accelerated the development of SVV in the rat model. The collective findings suggest that type II natural killer T cells reactive with autologous SCP2 are implicated in vascular inflammation in the rat model.
Collapse
Affiliation(s)
- Yusuke Nishioka
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Madoka Yamaguchi
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ai Kawakami
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Maya Munehiro
- Undergraduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Sakiko Masuda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Utano Tomaru
- Department of Pathology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Akihiro Ishizu
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
305
|
Fan X, Zhu L, Liang H, Xie Z, Huang X, Wang S, Shen T. Antibody-dependent CD56+ T cell responses are functionally impaired in long-term HIV-1 infection. Retrovirology 2016; 13:76. [PMID: 27814766 PMCID: PMC5097383 DOI: 10.1186/s12977-016-0313-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/30/2016] [Indexed: 11/30/2022] Open
Abstract
Background Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in slowing human immunodeficiency virus type-1 (HIV-1) disease progression and protecting from HIV-1 infection. Besides classic NK cells, CD56+ T cells also have some NK cell-like properties, such as the large granular lymphocyte morphology and the capacity to destroy NK-sensitive target cells. However, little is known about the potentials of antibody-dependent CD56+ T cell responses and the association between antibody-dependent CD56+ T cell responses and HIV-1 disease progression. Results In the present study, we showed evidences that, in addition to NK cells, CD56+ T cells could generate degranulation upon CD16 cross-linking. Ex vivo study showed that FcγRIII (CD16)-mediated CD56+ T cell responses were distinctly induced by IgG antibody-bound P815 cells. Comparatively, CD56− T cells and invariant NKT (CD3+ 6B11+) failed to induce antibody-dependent activation. Antibody-dependent CD56+ T cell responses were mainly ascribed to CD4/CD8 double negative subset and were functionally impaired in long-term HIV-1-infected former plasma donors, regardless of hepatitis C virus (HCV) coinfection status. Also, CD56+ T cell-mediated HIV-1-specific antibody-dependent responses were declined in men who have sex with men with HIV-1 infection over 3 years. Finally, we showed that matrix metalloprotease (MMP) inhibitor GM6001 could partially restored antibody-dependent CD56+ T cell responses of chronic HIV-1-infected subjects. Conclusions Our results suggested that CD56+ T cells could mediate ADCC responses and the responses were impaired in chronic HIV-1 infection. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0313-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xueying Fan
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Liyan Zhu
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Zhe Xie
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Xiangbo Huang
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China
| | - Shuo Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, China CDC, Beijing, China
| | - Tao Shen
- Department of Microbiology and Center of Infectious Diseases, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
306
|
Effect of Interleukin-15 on CD11b, CD54, and CD62L Expression on Natural Killer Cell and Natural Killer T-Like Cells in Systemic Lupus Erythematosus. Mediators Inflamm 2016; 2016:9675861. [PMID: 27847409 PMCID: PMC5101392 DOI: 10.1155/2016/9675861] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/04/2016] [Indexed: 01/07/2023] Open
Abstract
Adhesion molecules may play an important role in systemic lupus erythematosus (SLE) pathogenesis. We investigated the effect of interleukin- (IL-) 15 on CD11b, CD54, and CD62L expression on natural killer (NK) cells, T cells, and CD56+CD3+ NKT-like cells from SLE subjects and healthy controls. SLE patients had decreased circulating NK cells and NKT-like cells compared to controls. NK cells from SLE patients showed higher CD11b and CD62L expression compared to controls. IL-15 enhanced CD11b and CD54 but downregulated CD62L expression on NK cells from SLE patients. Similar observations were found for T cells and NKT-like cells. NK cells from SLE patients expressed higher CD56 than controls; both could be further enhanced by IL-15. IL-15 also enhanced CD56 expression of NKT-like cells from SLE patients. A greater degree of IL-15 induced downregulation of CD62L on NKT-like cells noted in SLE patients compared to controls. The percentage of CD11b expressing NK cells and the % inhibition of CD62L expression on NKT-like cells by IL-15 correlated with serum anti-dsDNA levels in SLE patients, respectively. Taken together, we demonstrated the dysfunctional NK and NKT-like cells in SLE patients with regard to CD11b and CD62L expression and their response to IL-15.
Collapse
|
307
|
Soh SY, Faveeuw C, Thiam CH, Khoo LHB, Yeo KP, Lim SY, Lim HY, Ng JX, Angeli V. NKT Cell Hyporesponsiveness Leads to Unrestrained Accumulation of Marginal Zone B Cells in Hypercholesterolemic Apolipoprotein E–Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2016; 197:3894-3904. [DOI: 10.4049/jimmunol.1500999] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/09/2016] [Indexed: 01/22/2023]
|
308
|
Kitaura K, Shini T, Matsutani T, Suzuki R. A new high-throughput sequencing method for determining diversity and similarity of T cell receptor (TCR) α and β repertoires and identifying potential new invariant TCR α chains. BMC Immunol 2016; 17:38. [PMID: 27729009 PMCID: PMC5059964 DOI: 10.1186/s12865-016-0177-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-throughput sequencing of T cell receptor (TCR) genes is a powerful tool for analyses of antigen specificity, clonality and diversity of T lymphocytes. Here, we developed a new TCR repertoire analysis method using 454 DNA sequencing technology in combination with an adaptor-ligation mediated polymerase chain reaction (PCR). This method allows the amplification of all TCR genes without PCR bias. To compare gene usage, diversity and similarity of expressed TCR repertoires among individuals, we conducted next-generation sequencing (NGS) of TRA and TRB genes in peripheral blood mononuclear cells from 20 healthy human individuals. RESULTS From a total of 267,037 sequence reads from 20 individuals, 149,216 unique sequence reads were identified. Preferential usage of several V and J genes were observed while some recombinations of TRAV with TRAJ appeared to be restricted. The extent of TCR diversity was not significantly different between TRA and TRB, while TRA repertoires were more similar between individuals than TRB repertoires were. The interindividual similarity of TRA depended largely on the frequent presence of shared TCRs among two or more individuals. A publicly available TRA had a near-germline TCR with a shorter CDR3. Notably, shared TRA sequences, especially those shared among a large number of individuals', often contained TCRα related with invariant TCRα derived from invariant natural killer T cells and mucosal-associated invariant T cells. CONCLUSION These results suggest that retrieval of shared TCRs by NGS would be useful for the identification of potential new invariant TCRα chains. This NGS method will enable the comprehensive quantitative analysis of TCR repertoires at a clonal level.
Collapse
Affiliation(s)
- Kazutaka Kitaura
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Tadasu Shini
- Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan.,BITS. Co., Ltd, Tokyo, Japan
| | - Takaji Matsutani
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.
| | - Ryuji Suzuki
- Repertoire Genesis Incorporation, 104 Saito-Bioincubator, 7-7-15, Saito-asagi, Ibaraki, Osaka, 567-0085, Japan.,Department of Rheumatology and Clinical Immunology, Clinical Research Center for Rheumatology and Allergy, Sagamihara National Hospital, National Hospital Organization, Sagamihara, Japan
| |
Collapse
|
309
|
Ando T, Ito H, Ohtaki H, Kanbe A, Hirata A, Hara A, Seishima M. Role of invariant NKT cells in lipopolysaccharide-induced lethal shock during encephalomyocarditis virus infection. Immunobiology 2016; 222:350-357. [PMID: 27665995 DOI: 10.1016/j.imbio.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/12/2016] [Accepted: 09/17/2016] [Indexed: 12/19/2022]
Abstract
Viral infections can give rise to secondary bacterial infections. In the present study, we examined the role of invariant natural killer T (iNKT) cells in lipopolysaccharide (LPS)-induced lethal shock during encephalomyocarditis virus (EMCV) infection. Wild-type (WT) mice and Jα18 gene knockout (Jα18 KO) mice were inoculated with EMCV, 5days prior to challenging with LPS. The survival rate of Jα18 KO mice subjected to EMCV and LPS was significantly higher than that of WT mice. TNF-α and nitric oxide (NO) production were increased in WT mice, than that in Jα18 KO mice, after the administration of EMCV and LPS. EMCV infection increased the number of iNKT cells and IFN-γ production by iNKT cells in WT mice. Moreover, EMCV infection enhanced the expression of Toll-like receptor 4 (TLR4) in the lung and spleen. IFN-γ also increased the expression of TLR4 in splenocytes. These findings indicated that EMCV infection activated iNKT cells, and IFN-γ secreted from the iNKT cells up-regulated the expression of TLR4 in various tissues. As a result, EMCV-infected mice were susceptible to LPS and easily developed the lethal shock. In conclusion, iNKT cells were involved in the development of LPS-induced lethal shock during EMCV infection.
Collapse
Affiliation(s)
- Tatsuya Ando
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Hiroyasu Ito
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Hirofumi Ohtaki
- Department of Medical Technology, Kansai University of Health Sciences, 2-11-1 Wakaba, Kumatori, Osaka 590-0482, Japan
| | - Ayumu Kanbe
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akihiro Hirata
- Division of Animal Experiment, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Akira Hara
- Department of Tumor Pathology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | - Mitsuru Seishima
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| |
Collapse
|
310
|
Van Kaer L, Wu L, Joyce S. Mechanisms and Consequences of Antigen Presentation by CD1. Trends Immunol 2016; 37:738-754. [PMID: 27623113 DOI: 10.1016/j.it.2016.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The CD1 proteins are a family of non-polymorphic and MHC class I-related molecules that present lipid antigens to subsets of T lymphocytes with innate- or adaptive-like immune functions. Recent studies have provided new insight into the identity of immunogenic CD1 antigens and the mechanisms that control the generation and loading of these antigens onto CD1 molecules. Furthermore, substantial progress has been made in identifying CD1-restricted T cells and decoding the diverse immunological functions of distinct CD1-restricted T cell subsets. These findings shed new light on the contributions of the CD1 antigen-presentation pathway to normal health and to a diverse array of pathologies, and provide a new impetus for exploiting this fascinating recognition system for the development of vaccines and immunotherapies.
Collapse
Affiliation(s)
- Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Lan Wu
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
311
|
Abstract
Many rheumatic diseases are characterized by having an autoimmune background. Determining the mechanisms underlying autoimmunity is, therefore, important to further understand these diseases and to inform future lines of research aimed at developing new treatments and cures. As fast responders, innate lymphocytes have protective or pathogenic roles in the initiation as well as the maintenance of immune responses in general, and they contribute to tissue homeostasis, among other functions. Innate lymphocytes also seem to be involved in autoimmunity in particular. Since 2010, accumulating evidence clearly shows that different populations of innate lymphocytes have roles in responding to antigen-specific autoantibody and autoreactive T cells, thereby amplifying or attenuating disease processes. Cytotoxicity is a cardinal feature of many innate lymphocytes and can contribute to inflammatory tissue damage. Finally, innate lymphocytes can respond to biologic therapies for autoimmune diseases. Consequently, like TNF and other effector molecules, certain innate lymphocyte subsets might be appropriate therapeutic targets to ameliorate various autoimmune diseases. In this Review, we summarize the main characteristics and functions of innate lymphocyte subsets, and describe their roles in autoimmune disease. We also discuss how biologic therapies influence innate lymphocyte function and consider the potential for these cell subsets to act as future therapeutic targets.
Collapse
|
312
|
Effects of Invariant NKT Cells on Parasite Infections and Hygiene Hypothesis. J Immunol Res 2016; 2016:2395645. [PMID: 27563682 PMCID: PMC4987483 DOI: 10.1155/2016/2395645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/20/2016] [Indexed: 01/08/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are unique subset of innate-like T cells recognizing glycolipids. iNKT cells can rapidly produce copious amounts of cytokines upon antigen stimulation and exert potent immunomodulatory activities for a wide variety of immune responses and diseases. We have revealed the regulatory effect of iNKT cells on autoimmunity with a serial of publications. On the other hand, the role of iNKT cells in parasitic infections, especially in recently attractive topic “hygiene hypothesis,” has not been clearly defined yet. Bacterial and parasitic cell wall is a cellular structure highly enriched in a variety of glycolipids and lipoproteins, some of which may serve as natural ligands of iNKT cells. In this review, we mainly summarized the recent findings on the roles and underlying mechanisms of iNKT cells in parasite infections and their cross-talk with Th1, Th2, Th17, Treg, and innate lymphoid cells. In most cases, iNKT cells exert regulatory or direct cytotoxic roles to protect hosts against parasite infections. We put particular emphasis as well on the identification of the natural ligands from parasites and the involvement of iNKT cells in the hygiene hypothesis.
Collapse
|
313
|
Wu C, Li Z, Fu X, Yu S, Lao S, Yang B. Antigen-specific human NKT cells from tuberculosis patients produce IL-21 to help B cells for the production of immunoglobulins. Oncotarget 2016; 6:28633-45. [PMID: 26416419 PMCID: PMC4745682 DOI: 10.18632/oncotarget.5764] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/05/2015] [Indexed: 12/25/2022] Open
Abstract
Natural killer T (NKT) cells from mouse and human play an important role in the immune responses against Mycobacterium tuberculosis. However, the function of CD3(+)TCRvβ11(+) NKT cells at the local site of M. tuberculosis infection remains poorly defined. In the present study, we found that after stimulation with M. tuberculosis antigens, NKT cells isolated from tuberculosis (TB) pleural fluid mononuclear cells (PFMCs) produced IL-21 and other cytokines including IFN-γ, TNF-α, IL-2 and IL-17. IL-21-expressing NKT cells in PFMCs displayed effector memory phenotype, expressing CD45RO(high)CD62L(low)CCR7(low). Moreover, NKT cells expressed high levels of CXCR5 and all of IL-21-expressing NKT cells co-expressed CXCR5. The frequency of BCL-6-expression was higher in IL-21-expressing but not in non-IL-21-expressing CD3(+)TCRvβ11(+) NKT cells. Sorted CD3(+)TCRvβ11(+) NKT cells from PFMCs produced IFN-γ and IL-21 after stimulation, which expressed CD40L. Importantly, CD3(+)TCRvβ11(+) NKT cells provided help to B cells for the production of IgG and IgA. Taken together, our data demonstrate that CD3(+)TCRvβ11(+) NKT cells from a local site of M. tuberculosis infection produce IL-21, express CXCR5 and CD40L, help B cells to secrete IgG and IgA, and may participate in local immune responses against M. tuberculosis infection.
Collapse
Affiliation(s)
- Changyou Wu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Zitao Li
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoying Fu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Sifei Yu
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| | - Suihua Lao
- Chest Hospital of Guangzhou, Guangzhou, China
| | - Binyan Yang
- Institute of Immunology, Zhongshan School of Medicine, Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
314
|
Kharkwal SS, Arora P, Porcelli SA. Glycolipid activators of invariant NKT cells as vaccine adjuvants. Immunogenetics 2016; 68:597-610. [PMID: 27377623 DOI: 10.1007/s00251-016-0925-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022]
Abstract
Natural Killer T cells (NKT cells) are a subpopulation of T lymphocytes with unique phenotypic properties and a remarkably broad range of immune effector and regulatory functions. One subset of these cells, known as invariant NKT cells (iNKT cells), has become a significant focus in the search for new and better ways to enhance immunotherapies and vaccination. These unconventional T cells are characterized by their ability to be specifically activated by a range of foreign and self-derived glycolipid antigens presented by CD1d, an MHC class I-related antigen presenting molecule that has evolved to bind and present lipid antigens. The development of synthetic α-galactosylceramides as a family of powerful glycolipid agonists for iNKT cells has led to approaches for augmenting a wide variety of immune responses, including those involved in vaccination against infections and cancers. Here we review the basic background biology of iNKT cells that is relevant to their potential for improving immune responses, and summarize recent work supporting the further development of glycolipid activators of iNKT cells as a new class of vaccine adjuvants.
Collapse
Affiliation(s)
- Shalu Sharma Kharkwal
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Pooja Arora
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| | - Steven A Porcelli
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
315
|
Okuno H, Satoh M, Takeuchi E, Eshima K, Terashima M, Komotori J, Habu S, Tamauchi H, Iwabuchi K. Inhibitory function of NKT cells during early induction phase of nickel allergy. Immunobiology 2016; 221:833-8. [DOI: 10.1016/j.imbio.2016.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/25/2016] [Accepted: 01/26/2016] [Indexed: 10/22/2022]
|
316
|
Neyt K, GeurtsvanKessel CH, Lambrecht BN. Double-negative T resident memory cells of the lung react to influenza virus infection via CD11c(hi) dendritic cells. Mucosal Immunol 2016; 9:999-1014. [PMID: 26376363 DOI: 10.1038/mi.2015.91] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 07/22/2015] [Indexed: 02/04/2023]
Abstract
Immunity to Influenza A virus (IAV) is controlled by conventional TCRαβ(+) CD4(+) and CD8(+) T lymphocytes, which mediate protection or cause immunopathology. Here, we addressed the kinetics, differentiation, and antigen specificity of CD4(-)CD8(-) double-negative (DN) T cells. DNT cells expressed intermediate levels of TCR/CD3 and could be further divided in γδ T cells, CD1d-reactive type I NKT cells, NK1.1(+) NKT-like cells, and NK1.1(-) DNT cells. NK1.1(-) DNT cells had a separate antigen-specific repertoire in the steady-state lung, and expanded rapidly in response to IAV infection, irrespectively of the severity of infection. Up to 10% of DNT cells reacted to viral nucleoprotein. Reinfection experiments with heterosubtypic IAV revealed that viral replication was a major trigger for recruitment. Unlike conventional T cells, the NK1.1(-) DNT cells were in a preactivated state, expressing memory markers CD44, CD11a, CD103, and the cytotoxic effector molecule FasL. DNT cells resided in the lung parenchyma, protected from intravascular labeling with CD45 antibody. The recruitment and maintenance of CCR2(+) CCR5(+) CXCR3(+) NK1.1(-) DNT cells depended on CD11c(hi) dendritic cells (DCs). Functionally, DNT cells controlled the lung DC subset balance, suggesting they might act as immunoregulatory cells. In conclusion, we identify activation of resident memory NK1.1(-) DNT cells as an integral component of the mucosal immune response to IAV infection.
Collapse
Affiliation(s)
- K Neyt
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium
| | | | - B N Lambrecht
- VIB Inflammation Research Center, Laboratory of Immunoregulation, Ghent, Belgium.,Department of Respiratory Medicine, Ghent University, Ghent, Belgium.,Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
317
|
Shaltout AS, Sayed D, Badary MS, Nafee AM, El Zohri MH, Bakry R, Ahmed SH. Effect of IL6 and IL23 on double negative T cells and anti ds-DNA in systemic lupus erythematosus patients. Hum Immunol 2016; 77:937-943. [PMID: 27343994 DOI: 10.1016/j.humimm.2016.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/27/2016] [Accepted: 06/07/2016] [Indexed: 12/17/2022]
Abstract
Several evidences suggest that DN T cells, IL23 and IL6 play a role in the pathogenesis of SLE. This study aimed to evaluate the frequency of DN T cells in SLE patients and the relation to their activity also to assess the possible role of IL6 and IL23 on DN T cells. Thirty patients with SLE and sixteen healthy blood donor females were enrolled. There was a significant increase in DN T cells in patients than controls (P=0.001). These cells had a significant positive correlation with SLEDAI (r=0.486, P=0.006). DN T cells from SLE patient samples were expanded when stimulated in vitro with RhIL6 or RhIL23 in patients than controls. Furthermore, anti ds-DNA level was found to be increased in supernatant of PBMCs when stimulated by these cytokines in different concentrations. Our findings suggest that IL6 and IL23 may play role in SLE pathogenesis through their effect on DN T cells and anti ds-DNA.
Collapse
Affiliation(s)
- Asmaa S Shaltout
- Medical Microbiology & Immunology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Douaa Sayed
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt.
| | - Mohamed S Badary
- Medical Microbiology & Immunology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Amany M Nafee
- Medical Microbiology & Immunology, Faculty of Medicine Assiut University, Assiut, Egypt
| | - Mona H El Zohri
- Internal Medicine, Rheumatology Unit, Assiut University, Assiut, Egypt
| | - Rania Bakry
- Department of Clinical Pathology, South Egypt Cancer Institute, Assiut University, Egypt
| | - Shabaan H Ahmed
- Medical Microbiology & Immunology, Faculty of Medicine Assiut University, Assiut, Egypt
| |
Collapse
|
318
|
Liu J, Gallo RM, Duffy C, Brutkiewicz RR. A VP22-Null HSV-1 Is Impaired in Inhibiting CD1d-Mediated Antigen Presentation. Viral Immunol 2016; 29:409-16. [PMID: 27327902 DOI: 10.1089/vim.2015.0145] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD1d-restricted T (natural killer T [NKT]) cells are important for controlling a herpes simplex virus (HSV) infection. One of the mechanisms of immune evasion by HSV is to downregulate CD1d-mediated activation of NKT cells. VP22 is an HSV-1-encoded protein responsible for reorganizing the host cell's cytoskeletal network and viral spreading. We have previously shown that modification of the cytoskeleton can alter CD1d-mediated antigen presentation. In this study, we found that an HSV-1 lacking VP22 (ΔUL49) was impaired in its ability to inhibit CD1d-mediated antigen presentation compared with the wild-type (WT) virus; this was reversed by a repair virus (UL49R) in CD1d-expressing cells. We further demonstrated that CD1d recycling was inhibited by infection with WT and UL49R, but not the ΔUL49 virus. Ectopic expression of VP22 in CD1d-expressing cells complemented the VP22-deficient virus in inhibiting antigen presentation. Moreover, inhibiting viral protein synthesis rescued VP22-dependent inhibition of CD1d antigen presentation. In conclusion, our findings suggest that VP22 is required (but not sufficient) for the inhibition of CD1d-mediated antigen presentation by an HSV-1 infection.
Collapse
Affiliation(s)
- Jianyun Liu
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Richard M Gallo
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| | - Carol Duffy
- 2 Department of Biological Sciences, University of Alabama , Tuscaloosa, Alabama
| | - Randy R Brutkiewicz
- 1 Department of Microbiology and Immunology, Indiana University School of Medicine , Indianapolis, Indiana
| |
Collapse
|
319
|
Zhang J, Bedel R, Krovi SH, Tuttle KD, Zhang B, Gross J, Gapin L, Matsuda JL. Mutation of the Traj18 gene segment using TALENs to generate Natural Killer T cell deficient mice. Sci Rep 2016; 6:27375. [PMID: 27256918 PMCID: PMC4891675 DOI: 10.1038/srep27375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Invariant Natural Killer T (iNKT) cells are a unique subset of T lymphocytes that have been implicated in both promoting and suppressing a multitude of immune responses. In mice, iNKT cells express T cell antigen receptors (TCRs) comprising a unique TCRα rearrangement between the Trav11 and Traj18 gene segments. When paired with certain Trbv TCRβ chains, these TCRs recognize lipid antigens presented by the major histocompatibility complex (MHC) class I-like molecule, CD1d. Until recently, the sole model of iNKT deficiency targeted the Jα18, which is absolutely required to form the TCR with the appropriate antigenic specificity. However, these mice were demonstrated to have a large reduction in TCR repertoire diversity, which could confound results arising from studies using these mice. Here, we have created a new NKT-deficient mouse strain using transcription activator-like effector nuclease (TALEN) technology to only disrupt the expression of Jα18, leaving the remaining Jα repertoire unperturbed. We confirm that these mice lack iNKT cells and do not respond to lipid antigen stimulation while the development of conventional T cells, regulatory T cells, and type Ib NKT cells is normal. This new mouse strain will serve as a new model of iNKT cell deficiency to facilitate our understanding of iNKT biology.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Romain Bedel
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - S Harsha Krovi
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Kathryn D Tuttle
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA
| | - Bicheng Zhang
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - James Gross
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine and National Jewish Health, Aurora, CO 80206, USA.,Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| | - Jennifer L Matsuda
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206, USA
| |
Collapse
|
320
|
Gao M, Zhu X, Wu L, Qiu L. Cationic Polyphosphazene Vesicles for Cancer Immunotherapy by Efficient in Vivo Cytokine IL-12 Plasmid Delivery. Biomacromolecules 2016; 17:2199-209. [DOI: 10.1021/acs.biomac.6b00433] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Menghua Gao
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Xiumei Zhu
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liping Wu
- College
of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, China
| | - Liyan Qiu
- Ministry
of Education (MOE) Key Laboratory of Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, China
| |
Collapse
|
321
|
Long-Term Stable Mixed Chimerism after Hematopoietic Stem Cell Transplantation in Patients with Non-Malignant Disease, Shall We Be Tolerant? PLoS One 2016; 11:e0154737. [PMID: 27152621 PMCID: PMC4859543 DOI: 10.1371/journal.pone.0154737] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/18/2016] [Indexed: 11/19/2022] Open
Abstract
Long-term stable mixed chimerism is a rare and poorly understood phenomenon post hematopoietic stem cell transplantation. This study aims to shed light on whether the two hematopoietic systems in patients with mixed chimerism remain functional. Additionally, we investigate possible immunologic differences in these individuals compared to patients with only donor derived immune cells. Patients with donor and mixed chimerism, at median 10 (5–16) years post-HSCT for non-malignant diseases, were assessed regarding clinical situation and immune system (phenotypical and functional). No difference in long-term outcome was seen in terms of general wellbeing, central phenotypic immune system features (e.g., differentiation status, CD4/CD8 ratio, B and NK-cell frequency) and antibody responses to immunizations. At a median of 10 years post transplantation, patients with mixed chimerism had significantly higher IgG3 and platelet levels. Additionally, these patients had higher NKT-cell levels (CD94+CD8+ and CD56+CD8+) than patients with donor chimerism. In depth phenotypic analysis of patients with mixed chimerism demonstrated recipient-derived fractions in most immune cell lineages (e.g., T-cell, B-cell and NK-cell subsets). Recipient cells were also capable of responding to mitogenic stimulation with production of several cytokines. In conclusion, long-term mixed chimerism did not negatively affect patient wellbeing and long-term outcome. Moreover, recipient-derived immunity may still be functional in these patients, suggesting an active state of tolerance and immunologic dependence on both hematopoietic systems.
Collapse
|
322
|
Abstract
The liver is an organ that has the largest amount of natural killer T(NKT) cells, which play critical roles in the pathogenesis of liver diseases. In this article, the authors summarize recent findings about the roles of NKT cells in liver injury, inflammation, fibrosis, regeneration and cancer. In brief, NKT cells accelerate liver injury by producing pro-inflammatory cytokines and directly killing hepatocytes. NKT cells are involved in complex roles in liver fibrogenesis. For instance, NKT cells inhibit liver fibrosis via suppressing hepatic stellate cell activation and can also promote liver fibrosis via enhancing liver inflammation and injury. Inactivated or weakly activated NKT cells play a minimal role in controlling liver regeneration, whilst activated NKT cells have an inhibitory effect on liver regeneration. In liver cancer, NKT cells play both pro-tumor and anti-tumor roles in controlling tumor progress.
Collapse
Affiliation(s)
- Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | | |
Collapse
|
323
|
Coelho-Dos-Reis JG, Huang J, Tsao T, Pereira FV, Funakoshi R, Nakajima H, Sugiyama H, Tsuji M. Co-administration of α-GalCer analog and TLR4 agonist induces robust CD8(+) T-cell responses to PyCS protein and WT-1 antigen and activates memory-like effector NKT cells. Clin Immunol 2016; 168:6-15. [PMID: 27132023 DOI: 10.1016/j.clim.2016.04.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/18/2016] [Accepted: 04/26/2016] [Indexed: 12/28/2022]
Abstract
In the present study, the combined adjuvant effect of 7DW8-5, a potent α-GalCer-analog, and monophosphoryl lipid A (MPLA), a TLR4 agonist, on the induction of vaccine-induced CD8(+) T-cell responses and protective immunity was evaluated. Mice were immunized with peptides corresponding to the CD8(+) T-cell epitopes of a malaria antigen, a circumsporozoite protein of Plasmodium yoelii, and a tumor antigen, a Wilms Tumor antigen-1 (WT-1), together with 7DW8-5 and MPLA, as an adjuvant. These immunization regimens were able to induce higher levels of CD8(+) T-cell responses and, ultimately, enhanced levels of protection against malaria and tumor challenges compared to the levels induced by immunization with peptides mixed with 7DW8-5 or MPLA alone. Co-administration of 7DW8-5 and MPLA induces activation of memory-like effector natural killer T (NKT) cells, i.e. CD44(+)CD62L(-)NKT cells. Our study indicates that 7DW8-5 greatly enhances important synergistic pathways associated to memory immune responses when co-administered with MPLA, thus rendering this combination of adjuvants a novel vaccine adjuvant formulation.
Collapse
Affiliation(s)
- Jordana G Coelho-Dos-Reis
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Minas Gerais 30192, Brazil.
| | - Jing Huang
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Tiffany Tsao
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Felipe V Pereira
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA; Federal University of Sao Paulo, Sao Paulo 04021, Brazil
| | - Ryota Funakoshi
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA
| | - Hiroko Nakajima
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Haruo Sugiyama
- Department of Functional Diagnostic Science, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Moriya Tsuji
- Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, NY 10016, USA.
| |
Collapse
|
324
|
Expression of CD11c Is Associated with Unconventional Activated T Cell Subsets with High Migratory Potential. PLoS One 2016; 11:e0154253. [PMID: 27119555 PMCID: PMC4847787 DOI: 10.1371/journal.pone.0154253] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/11/2016] [Indexed: 11/19/2022] Open
Abstract
CD11c is an α integrin classically employed to define myeloid dendritic cells. Although there is little information about CD11c expression on human T cells, mouse models have shown an association of CD11c expression with functionally relevant T cell subsets. In the context of genital tract infection, we have previously observed increased expression of CD11c in circulating T cells from mice and women. Microarray analyses of activated effector T cells expressing CD11c derived from naïve mice demonstrated enrichment for natural killer (NK) associated genes. Here we find that murine CD11c+ T cells analyzed by flow cytometry display markers associated with non-conventional T cell subsets, including γδ T cells and invariant natural killer T (iNKT) cells. However, in women, only γδ T cells and CD8+ T cells were enriched within the CD11c fraction of blood and cervical tissue. These CD11c+ cells were highly activated and had greater interferon (IFN)-γ secretory capacity than CD11c- T cells. Furthermore, circulating CD11c+ T cells were associated with the expression of multiple adhesion molecules in women, suggesting that these cells have high tissue homing potential. These data suggest that CD11c expression distinguishes a population of circulating T cells during bacterial infection with innate capacity and mucosal homing potential.
Collapse
|
325
|
Favreau M, Vanderkerken K, Elewaut D, Venken K, Menu E. Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma? Oncotarget 2016; 7:23128-40. [PMID: 26895468 PMCID: PMC5029615 DOI: 10.18632/oncotarget.7440] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/05/2016] [Indexed: 12/21/2022] Open
Abstract
Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress.
Collapse
Affiliation(s)
- Mérédis Favreau
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Karin Vanderkerken
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Dirk Elewaut
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Koen Venken
- Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, Faculty of Medicine and Health Sciences, VIB Inflammation Research Center and Ghent University, Ghent, Belgium
| | - Eline Menu
- Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
326
|
Godfrey DI, Uldrich AP, McCluskey J, Rossjohn J, Moody DB. The burgeoning family of unconventional T cells. Nat Immunol 2016; 16:1114-23. [PMID: 26482978 DOI: 10.1038/ni.3298] [Citation(s) in RCA: 583] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
While most studies of T lymphocytes have focused on T cells reactive to complexes of peptide and major histocompatibility complex (MHC) proteins, many other types of T cells do not fit this paradigm. These include CD1-restricted T cells, MR1-restricted mucosal associated invariant T cells (MAIT cells), MHC class Ib-reactive T cells, and γδ T cells. Collectively, these T cells are considered 'unconventional', in part because they can recognize lipids, small-molecule metabolites and specially modified peptides. Unlike MHC-reactive T cells, these apparently disparate T cell types generally show simplified patterns of T cell antigen receptor (TCR) expression, rapid effector responses and 'public' antigen specificities. Here we review evidence showing that unconventional T cells are an abundant component of the human immune system and discuss the immunotherapeutic potential of these cells and their antigenic targets.
Collapse
Affiliation(s)
- Dale I Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - Adam P Uldrich
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia.,Australian Research Council Centre of Excellence for Advanced Molecular Imaging, University of Melbourne, Parkville, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Australia
| | - D Branch Moody
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
327
|
Bachy E, Urb M, Chandra S, Robinot R, Bricard G, de Bernard S, Traverse-Glehen A, Gazzo S, Blond O, Khurana A, Baseggio L, Heavican T, Ffrench M, Crispatzu G, Mondière P, Schrader A, Taillardet M, Thaunat O, Martin N, Dalle S, Le Garff-Tavernier M, Salles G, Lachuer J, Hermine O, Asnafi V, Roussel M, Lamy T, Herling M, Iqbal J, Buffat L, Marche PN, Gaulard P, Kronenberg M, Defrance T, Genestier L. CD1d-restricted peripheral T cell lymphoma in mice and humans. J Exp Med 2016; 213:841-57. [PMID: 27069116 PMCID: PMC4854725 DOI: 10.1084/jem.20150794] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/25/2016] [Indexed: 12/18/2022] Open
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous entity of neoplasms with poor prognosis, lack of effective therapies, and a largely unknown pathophysiology. Identifying the mechanism of lymphomagenesis and cell-of-origin from which PTCLs arise is crucial for the development of efficient treatment strategies. In addition to the well-described thymic lymphomas, we found that p53-deficient mice also developed mature PTCLs that did not originate from conventional T cells but from CD1d-restricted NKT cells. PTCLs showed phenotypic features of activated NKT cells, such as PD-1 up-regulation and loss of NK1.1 expression. Injections of heat-killed Streptococcus pneumonia, known to express glycolipid antigens activating NKT cells, increased the incidence of these PTCLs, whereas Escherichia coli injection did not. Gene expression profile analyses indicated a significant down-regulation of genes in the TCR signaling pathway in PTCL, a common feature of chronically activated T cells. Targeting TCR signaling pathway in lymphoma cells, either with cyclosporine A or anti-CD1d blocking antibody, prolonged mice survival. Importantly, we identified human CD1d-restricted lymphoma cells within Vδ1 TCR-expressing PTCL. These results define a new subtype of PTCL and pave the way for the development of blocking anti-CD1d antibody for therapeutic purposes in humans.
Collapse
Affiliation(s)
- Emmanuel Bachy
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France Department of Hematology, Hospices Civils de Lyon, 69004 Lyon, France Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France
| | - Mirjam Urb
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Shilpi Chandra
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Rémy Robinot
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Gabriel Bricard
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | | | - Alexandra Traverse-Glehen
- Department of Pathology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Sophie Gazzo
- Department of Cytogenetics, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Olivier Blond
- Institut Albert Bonniot, INSERM U823, Université J. Fourier, 38041 Grenoble, France
| | - Archana Khurana
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Lucile Baseggio
- Department of Cytology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Tayla Heavican
- Department of Pathology and Microbiology, Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, NE 68198
| | - Martine Ffrench
- Department of Cytology, Hospices Civils de Lyon, 69004 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Giuliano Crispatzu
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Paul Mondière
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Alexandra Schrader
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Morgan Taillardet
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Olivier Thaunat
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Nadine Martin
- INSERM U955, Créteil 94000, France Université Paris-Est, Créteil 94000, France Department of Pathology, AP-HP, Groupe Henri-Mondor Albert-Chenevier, 94000 Créteil, France
| | - Stéphane Dalle
- Department of Dermatology, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, 69004 Lyon, France University Claude Bernard Lyon 1, 69100 Lyon, France INSERM UMR-S1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69003 Lyon, France
| | - Magali Le Garff-Tavernier
- Service d'Hématologie Biologique, Groupe Hospitalier Pitié-Salpêtrière, Sorbonne Universités, UPMC, Université Paris 06 et Assistance Publique-Hôpitaux de Paris, 75004 Paris, France INSERM U1138, Programmed cell death and physiopathology of tumor cells, Centre de Recherche des Cordeliers, 75006 Paris, France
| | - Gilles Salles
- Department of Hematology, Hospices Civils de Lyon, 69004 Lyon, France Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France CNRS, UMR 5239, 69342 Lyon, France
| | - Joel Lachuer
- Université de Lyon, Université Claude Bernard Lyon1, 69007 Lyon, France INSERM UMR-S1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, 69003 Lyon, France ProfileXpert, SFR Santé Lyon-Est, UCBL UMS 3453 CNRS-US7 INSERM, 69372 Lyon, France
| | - Olivier Hermine
- Institut Imagine, Laboratoire INSERM, Unité Mixte de Recherche 1163, CNRS Équipe de Recherche Laboratoryéllisée 8254, Cellular and Molecular Basis of Hematological Disorders and Therapeutic Implications, 75015 Paris, France Service d'Hématologie, Faculté de Médecine Paris Descartes, Sorbonne Paris-Cité et Assistance Publique-Hôpitaux de Paris Hôpital Necker, 75015 Paris, France
| | - Vahid Asnafi
- Université Paris Descartes Sorbonne Cité, Institut Necker-Enfants Malades, INSERM U1151, and Laboratory of Onco-Hematology, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants-Malades, 75015 Paris, France
| | - Mikael Roussel
- Rennes University Hospital, Rennes INSERM UMR 917 Faculté de Médecine Université Rennes 1, 35000 Rennes, France
| | - Thierry Lamy
- Rennes University Hospital, Rennes INSERM UMR 917 Faculté de Médecine Université Rennes 1, 35000 Rennes, France
| | - Marco Herling
- Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, Center for Integrated Oncology Köln-Bonn, and Excellence Cluster for Cellular Stress Response and Aging-Associated Diseases, University of Cologne, 50923 Cologne, Germany
| | - Javeed Iqbal
- Department of Pathology and Microbiology, Center for Lymphoma and Leukemia Research, University of Nebraska Medical Center, Omaha, NE 68198
| | | | - Patrice N Marche
- Institut Albert Bonniot, INSERM U823, Université J. Fourier, 38041 Grenoble, France
| | - Philippe Gaulard
- INSERM U955, Créteil 94000, France Université Paris-Est, Créteil 94000, France Department of Pathology, AP-HP, Groupe Henri-Mondor Albert-Chenevier, 94000 Créteil, France
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037
| | - Thierry Defrance
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| | - Laurent Genestier
- CIRI, International Center for Infectiology Research, Université de Lyon, 69007 Lyon, France Institut National de la Santé et de la Recherche Médicale (INSERM), U1111, 69007 Lyon, France Ecole Normale Supérieure de Lyon, 69007 Lyon, France Université Lyon 1, Centre International de Recherche en Infectiologie, 69007 Lyon, France Centre National de la Recherche Scientifique (CNRS), UMR 5308, 69365 Lyon, France
| |
Collapse
|
328
|
Synthetic glycolipid activators of natural killer T cells as immunotherapeutic agents. Clin Transl Immunology 2016; 5:e69. [PMID: 27195112 PMCID: PMC4855264 DOI: 10.1038/cti.2016.14] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/11/2016] [Accepted: 03/13/2016] [Indexed: 12/23/2022] Open
Abstract
Certain types of glycolipids have been found to have remarkable immunomodulatory properties as a result of their ability to activate specific T lymphocyte populations with an extremely wide range of immune effector properties. The most extensively studied glycolipid reactive T cells are known as invariant natural killer T (iNKT) cells. The antigen receptors of these cells specifically recognize certain glycolipids, most notably glycosphingolipids with α-anomeric monosaccharides, presented by the major histocompatibility complex class I-like molecule CD1d. Once activated, iNKT cells can secrete a very diverse array of pro- and anti-inflammatory cytokines to modulate innate and adaptive immune responses. Thus, glycolipid-mediated activation of iNKT cells has been explored for immunotherapy in a variety of disease states, including cancer and a range of infections. In this review, we discuss the design of synthetic glycolipid activators for iNKT cells, their impact on adaptive immune responses and their use to modulate iNKT cell responses to improve immunity against infections and cancer. Current challenges in translating results from preclinical animal studies to humans are also discussed.
Collapse
|
329
|
Tagliamonte M, Petrizzo A, Tornesello ML, Ciliberto G, Buonaguro FM, Buonaguro L. Combinatorial immunotherapy strategies for hepatocellular carcinoma. Curr Opin Immunol 2016; 39:103-113. [PMID: 26851637 DOI: 10.1016/j.coi.2016.01.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common liver malignancy. The prognosis for HCC patients greatly varies according to the stage at diagnosis. Overall it is poor, with a 5-year survival rate of approximately 5-6%. Immunotherapeutic interventions represent a novel and effective therapeutic tool. However, only few immunotherapy trials for HCC have been conducted so far with contrasting results, suggesting that significant improvements are needed. Indeed, the liver is characterized by a strong intrinsic immune suppressive microenvironment which needs to be counterbalanced with immune stimulatory approaches. Therefore, the implementation of combinatorial protocols combining immune stimulatory strategies with specific immunotherapy approaches could result in a dramatic improvement of efficacy and clinical outcome in HCC patients. The present review aims at describing the state of the art in immunotherapy strategies for HCC and future perspectives.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Lab of Molecular Biology & Viral Oncology, Dept Experimental Oncology
| | | | | | - Gennaro Ciliberto
- Scientific Direction, Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione Pascale" - IRCCS, Naples, Italy
| | | | - Luigi Buonaguro
- Lab of Molecular Biology & Viral Oncology, Dept Experimental Oncology.
| |
Collapse
|
330
|
Mohr A, Renaudineau Y, Bagacean C, Pers JO, Jamin C, Bordron A. Regulatory B lymphocyte functions should be considered in chronic lymphocytic leukemia. Oncoimmunology 2016; 5:e1132977. [PMID: 27467951 DOI: 10.1080/2162402x.2015.1132977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by an abnormal expansion of mature B cells in the bone marrow and their accumulation in blood and secondary lymphoid organs. Tumor CLL cells share expression of various surface molecules with many subsets of B cells and have several common characteristics with regulatory B cells (B regs). However, the identification of B regs and their role in CLL remain elusive. The aim of this review is to summarize recent works regarding the regulatory and phenotypic characteristic of B regs and their associated effects on the immune system. It is also meant to highlight their potential importance with regards to the immunotherapeutic response.
Collapse
Affiliation(s)
- Audrey Mohr
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Yves Renaudineau
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Cristina Bagacean
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Jacques-Olivier Pers
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| | - Christophe Jamin
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest, Brest, France; Laboratory of Immunology and Immunotherapy, CHRU Morvan, Brest, France
| | - Anne Bordron
- INSERM ESPRI ERI29/EA2216 Laboratory of Immunotherapies and Pathologies of B Lymphocytes, Université de Brest, Labex IGO "Immunotherapy Graft, Oncology," Reseau Epigenetique et Reseau Canaux Ioniques du Cancéropole Grand Ouest , Brest, France
| |
Collapse
|
331
|
Birkholz AM, Kronenberg M. Antigen specificity of invariant natural killer T-cells. Biomed J 2016; 38:470-83. [PMID: 27013447 PMCID: PMC6138764 DOI: 10.1016/j.bj.2016.01.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/16/2015] [Indexed: 12/16/2022] Open
Abstract
Natural killer T-cells, with an invariant T-cell antigen receptor α-chain (iNKT cells), are unique and conserved subset of lymphocytes capable of altering the immune system through their rapid and potent cytokine responses. They are reactive to lipid antigens presented by the CD1d molecule, an antigen-presenting molecule that is not highly polymorphic. iNKT cell responses frequently involve mixtures of cytokines that work against each other, and therefore attempts are underway to develop synthetic antigens that elicit only strong interferon-gamma (IFNγ) or only strong interleukin-4 responses but not both. Strong IFNγ responses may correlate with tighter binding to CD1d and prolonged stimulation of iNKT cells, and this may be useful for vaccine adjuvants and for stimulating anti-tumor responses. iNKT cells are self-reactive although the structure of the endogenous antigen is controversial. By contrast, bacterial and fungal lipids that engage the T-cell receptor and activate IFNγ from iNKT cells have been identified from both pathogenic and commensal organisms and the responses are in some cases highly protective from pathogens in mice. It is possible that the expanding knowledge of iNKT cell antigens and iNKT cell activation will provide the basis for therapies for patients suffering from infectious and immune diseases and cancer.
Collapse
Affiliation(s)
- Alysia M Birkholz
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, USA.
| |
Collapse
|
332
|
The cytokine profile of human NKT cells and PBMCs is dependent on donor sex and stimulus. Med Microbiol Immunol 2016; 205:321-32. [PMID: 26895635 PMCID: PMC4939169 DOI: 10.1007/s00430-016-0449-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 01/24/2016] [Indexed: 11/03/2022]
Abstract
Sex-related variations in natural killer T (NKT) cells may influence immunoregulation and outcome of infectious and autoimmune diseases. We analyzed sex-specific differences in peripheral blood NKTs and peripheral blood mononuclear cells (PBMCs) from men and women and determined the frequencies of NKT cells and their subpopulations [CD4(+); CD8(+); double negative (DN)] and the levels of cytokine production following stimulation with the NKT cell ligands α-Galactosylceramide (αGalCer) and Entamoeba histolytica lipopeptidephosphoglycan (Lotter et al. in PLoS Pathog 5(5):e1000434, 2009). Total and DN NKT cells were more abundant in women than in men. In women, αGalCer induced higher production of intracellular IFNγ, IL-4, IL-17 and TNF by CD4(+) and DN(+)NKT cells. Both ligands induced expression of multiple cytokines in PBMCs and influenced the ratio of NKT cell subpopulations during long-term culture. Although the sex-specific differences in frequencies of NKT cells and their subpopulations were marginal, the significant sex-specific differences in cytokine production might influence disease outcomes.
Collapse
|
333
|
Jin HM, Kee SJ, Cho YN, Kang JH, Kim MJ, Jung HJ, Park KJ, Kim TJ, Lee SI, Choi H, Koh JT, Kim N, Park YW. Dysregulated osteoclastogenesis is related to natural killer T cell dysfunction in rheumatoid arthritis. Arthritis Rheumatol 2016; 67:2639-50. [PMID: 26097058 DOI: 10.1002/art.39244] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 06/09/2015] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the role played by natural killer T (NKT) cells in osteoclastogenesis and their effects on inflammatory bone destruction. METHODS Patients with rheumatoid arthritis (RA) (n = 25) and healthy controls (n = 12) were enrolled in this study. In vitro osteoclastogenesis experiments were performed using peripheral blood mononuclear cells (PBMCs) in the presence of macrophage colony-stimulating factor and RANKL. PBMCs were cultured in vitro with α-galactosylceramide (αGalCer), and proliferation indices of NKT cells were estimated by flow cytometry. In vivo effects of αGalCer-stimulated NKT cells on inflammation and bone destruction were determined in mice with collagen-induced arthritis. RESULTS In vitro osteoclastogenesis was found to be significantly inhibited by αGalCer in healthy controls but not in RA patients. Proliferative responses of NKT cells and STAT-1 phosphorylation in monocytes in response to αGalCer were impaired in RA patients. Notably, αGalCer-stimulated NKT cells inhibited osteoclastogenesis mainly via interferon-γ production in a cytokine-dependent manner (not by cell-cell contact) and down-regulated osteoclast-associated genes. Mice treated with αGalCer showed less severe arthritis and reduced bone destruction. Moreover, proinflammatory cytokine expression in arthritic joints was found to be reduced by αGalCer treatment. CONCLUSION This study primarily demonstrates that αGalCer-stimulated NKT cells have a regulatory effect on osteoclastogenesis and a protective effect against inflammatory bone destruction. However, it also shows that these effects of αGalCer are diminished in RA patients and that this is related to NKT cell dysfunction. These findings provide important information for those searching for novel therapeutic strategies to prevent bone destruction in RA.
Collapse
Affiliation(s)
- Hye-Mi Jin
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Seung-Jung Kee
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Young-Nan Cho
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Jeong-Hwa Kang
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Moon-Ju Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Hyun-Ju Jung
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Ki-Jeong Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Tae-Jong Kim
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| | - Sang-Il Lee
- Gyeongsang National University School of Medicine, Gyeongnam, Republic of Korea
| | - Hyuck Choi
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Chonnam National University School of Dentistry, Gwangju, Republic of Korea
| | - Nacksung Kim
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yong-Wook Park
- Chonnam National University Medical School and Hospital, Gwangju, Republic of Korea
| |
Collapse
|
334
|
Atypical natural killer T-cell receptor recognition of CD1d-lipid antigens. Nat Commun 2016; 7:10570. [PMID: 26875526 PMCID: PMC4756352 DOI: 10.1038/ncomms10570] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/29/2015] [Indexed: 11/25/2022] Open
Abstract
Crucial to Natural Killer T (NKT) cell function is the interaction between their T-cell receptor (TCR) and CD1d-antigen complex. However, the diversity of the NKT cell repertoire and the ensuing interactions with CD1d-antigen remain unclear. We describe an atypical population of CD1d–α-galactosylceramide (α-GalCer)-reactive human NKT cells that differ markedly from the prototypical TRAV10-TRAJ18-TRBV25-1+ type I NKT cell repertoire. These cells express a range of TCR α- and β-chains that show differential recognition of glycolipid antigens. Two atypical NKT TCRs (TRAV21-TRAJ8-TRBV7–8 and TRAV12-3-TRAJ27-TRBV6-5) bind orthogonally over the A′-pocket of CD1d, adopting distinct docking modes that contrast with the docking mode of all type I NKT TCR-CD1d-antigen complexes. Moreover, the interactions with α-GalCer differ between the type I and these atypical NKT TCRs. Accordingly, diverse NKT TCR repertoire usage manifests in varied docking strategies and specificities towards CD1d–α-GalCer and related antigens, thus providing far greater scope for diverse glycolipid antigen recognition. The invariant αβTCR of type I NKT cells recognizes a lipid α-GalCer presented by CD1d. Here the authors describe atypical α-GalCer-reactive NKT cells with diverse TCRs, which bind to CD1d-α-GalCer in a manner distinct from type I NKT cells, thus unveiling greater diversity in lipid antigen recognition.
Collapse
|
335
|
Invariant natural killer T cells in hematopoietic stem cell transplantation: killer choice for natural suppression. Bone Marrow Transplant 2016; 51:629-37. [DOI: 10.1038/bmt.2015.335] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 11/24/2015] [Accepted: 11/27/2015] [Indexed: 11/08/2022]
|
336
|
Verma YK, Reddy BS, Pawar MS, Bhunia D, Sampath Kumar HM. Design, Synthesis, and Immunological Evaluation of Benzyloxyalkyl-Substituted 1,2,3-Triazolyl α-GalCer Analogues. ACS Med Chem Lett 2016; 7:172-6. [PMID: 26985293 DOI: 10.1021/acsmedchemlett.5b00340] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022] Open
Abstract
Replacement of the amide moiety in the structure of α-GalCer with a 1,2,3-triazole linker is known to elicit a response skewed toward Th2 immunity, and glycolipids containing an aromatic ring in the terminus of their acyl or phytosphingosine structural component exhibit an enhanced Th1 immune response. In the current study, synthesis and immunological screening of a focused library of benzyloxyalkyl-substituted 1,2,3-triazolyl α-GalCer analogues are reported. The novel α-GalCer analogues activate invariant natural killer T (iNKT) cells via CD1d mediated presentation, which was confirmed by in vitro tests performed on iNKT hybridomas incubated with CD1d proteins. When tested on isolated murine splenocytes, the T1204B and T1206B compounds stimulated higher levels of both IFN-γ and IL-4 cytokine expression in vitro compared to that of α-GalCer.
Collapse
Affiliation(s)
- Yogesh Kumar Verma
- Vaccine
Immunology Laboratory, Natural Products Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Bonam Srinivasa Reddy
- Vaccine
Immunology Laboratory, Natural Products Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mithun S. Pawar
- Vaccine
Immunology Laboratory, Natural Products Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Debabrata Bhunia
- Vaccine
Immunology Laboratory, Natural Products Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Halmuthur M. Sampath Kumar
- Vaccine
Immunology Laboratory, Natural Products Chemistry Division, Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy
of Scientific and Innovative Research, CSIR−Indian Institute of Chemical Technology, Hyderabad 500007, India
| |
Collapse
|
337
|
Smith DG, Williams SJ. Immune sensing of microbial glycolipids and related conjugates by T cells and the pattern recognition receptors MCL and Mincle. Carbohydr Res 2016; 420:32-45. [DOI: 10.1016/j.carres.2015.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/24/2015] [Accepted: 11/28/2015] [Indexed: 10/22/2022]
|
338
|
Roy S, Zhuang Y. Orchestration of invariant natural killer T cell development by E and Id proteins. Crit Rev Immunol 2016; 35:33-48. [PMID: 25746046 DOI: 10.1615/critrevimmunol.2015012207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Natural killer T (NKT) cells are αβ T cells that express a semi-invariant T-cell receptor (TCR) along with natural killer (NK) cell markers and have an innate cell-like ability to produce a myriad of cytokines very quickly upon antigen exposure and subsequent activation. These cells are diverted from conventional single positive (SP) T-cell fate at the double positive (DP) stage, where TCR-mediated recognition of a lipid antigen presented on a CD1d molecule promotes their selection into the NKT lineage. Although many key regulatory molecules have been shown to play important roles in the development of NKT cells, the mechanism of lineage specification and acquisition of effector functions in these cells still remain to be fully addressed. In this review, we specifically discuss the role of a family of class-I helix-loop-helix proteins known as E proteins, and their antagonists Id proteins in NKT celldevelopment. Recent work has shown that these proteins play key roles in invariant NKT (iNKT) development, from the invariant TCR rearrangement to terminal differentiation and maturation. Elucidating these roles provides an opportunity to uncover the transcriptional network that separates NKT cells from concurrently developed conventional αβ T cells.
Collapse
Affiliation(s)
- Sumedha Roy
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| | - Yuan Zhuang
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
339
|
Repeated Activation of Lung Invariant NKT Cells Results in Chronic Obstructive Pulmonary Disease-Like Symptoms. PLoS One 2016; 11:e0147710. [PMID: 26811900 PMCID: PMC4727802 DOI: 10.1371/journal.pone.0147710] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/07/2016] [Indexed: 12/02/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation, mucus hypersecretion, and emphysema, which lead to reduced lung function and breathlessness. The pathologies of COPD are due to an abnormal immune response. Invariant natural killer T (iNKT) cells are an important population of innate lymphocytes and have been implicated in the regulation of immune responses associated with a broad range of diseases including COPD. We have here analyzed the role of iNKT cells in a model of COPD induced by repeated intranasal administration of iNKT cell agonist α-galactosylceramide (α-GalCer). Our results demonstrated that mice that received repeated intranasal administration of α-GalCer had molecular and inflammatory features of COPD including airway inflammation with significant increases in infiltration of macrophages and lymphocytes, CD8+ T cells, as well as proinflammatory cytokines IL-6 and TNF-α. In particular, these mice also showed the presence of pulmonary emphysema, mucus production, and pulmonary fibrosis. Furthermore, neutralization of IL-4 reduced α-GalCer induced emphysema. This study indicates the importance of iNKT cells in the pathogenesis of COPD by an IL-4 dependent mechanism.
Collapse
|
340
|
Björkbacka H, Berg KE, Manjer J, Engelbertsen D, Wigren M, Ljungcrantz I, Andersson L, Hedblad B, Fredrikson GN, Nilsson J. CD4+ CD56+ natural killer T-like cells secreting interferon-γ are associated with incident coronary events. J Intern Med 2016; 279:78-88. [PMID: 26147463 DOI: 10.1111/joim.12392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND CD3(+) CD56(+) natural killer T (NKT)-like cells are a subset of T cells characterized by expression of NK receptors and potent antitumour activity. It has also been suggested that they have a role in autoimmune disease, and levels of NKT-like cells are elevated in patients with coronary disease. OBJECTIVES To investigate whether high levels of CD3(+) CD56(+) NKT-like cells are associated with an increased incidence of cardiovascular disease and a lower incidence of cancer. METHODS This was a prospective study including 700 subjects participating in the baseline investigation of the Malmö Diet and Cancer study between 1991 and 1994. Leucocytes obtained at the baseline investigation and stored at -140 °C were thawed and CD3(+) CD56(+) cells analysed by flow cytometry. The incidence rates of cancer and coronary events during a mean follow-up of 15 years were determined through national registers. RESULTS Subjects in the lowest tertile of interferon (IFN)-γ-expressing CD4(+) CD56(+) cells were found to have an increased risk of incidence of coronary events (log-rank test: P < 0.05). This association remained significant after controlling for age, sex, smoking, body mass index, hypertension, diabetes and the Th1/Th2 and Th1/Treg cell ratios in a Cox proportional hazards regression model (hazard ratio 1.98, 95% confidence interval 1.24-3.16), but not when the LDL/HDL ratio was included in the model. There were no associations between CD3(+) CD56(+) NKT-like cells and incident cancer. CONCLUSIONS The present results could not confirm the hypothesis that low levels of CD3(+) CD56(+) NKT-like cells are associated with a higher incidence of cancer and a lower incidence of cardiovascular disease. However, we found that low levels of IFN-γ-expressing CD3(+) CD4(+) CD56(+) NKT-like cells were associated with an increased incidence of coronary events and that this association may be dependent on lipoproteins.
Collapse
Affiliation(s)
- H Björkbacka
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - K E Berg
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Manjer
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - D Engelbertsen
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - M Wigren
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - I Ljungcrantz
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - L Andersson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - B Hedblad
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - G N Fredrikson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - J Nilsson
- Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| |
Collapse
|
341
|
Immunoregulation of NKT Cells in Systemic Lupus Erythematosus. J Immunol Res 2015; 2015:206731. [PMID: 26819956 PMCID: PMC4706917 DOI: 10.1155/2015/206731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/02/2015] [Indexed: 01/17/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease with different variety of clinical manifestations. Natural killer T (NKT) cells are innate lymphocytes that play a regulatory role during broad range of immune responses. A number of studies demonstrated that the quantity and quality of invariant NKT (iNKT) cells showed marked defects in SLE patients in comparison to healthy controls. This finding suggests that iNKT cells may play a regulatory role in the occurrence and development of this disease. In this review, we mainly summarized the most recent findings about the behavior of NKT cells in SLE patients and mouse models, as well as how NKT cells affect the proportion of T helper cells and the production of autoreactive antibodies in the progress of SLE. This will help people better understand the role of NKT cells in the development of SLE and improve the therapy strategy.
Collapse
|
342
|
Liu D, Staveley-O’Carroll KF, Li G. Immune-based Therapy Clinical Trials in Hepatocellular Carcinoma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2015; 6:376. [PMID: 26877890 PMCID: PMC4750497 DOI: 10.4172/2155-9899.1000376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality and continues to increase. Current standard of care for patients with HCC only provides limited therapeutic benefit. Development of innovative strategies is urgently needed. Experience with immunotherapy in HCC is quite early, but rapidly rise in the recent 15 years. Multifaceted immune-based approaches have shown efficacy in achieving disease regression, representing the most promising new treatment approach. Here, we classify the ongoing or completed clinical trials in HCC in terms of the immune strategies to be used and assess their clinical outcomes. The generated information may be helpful in the design of future immune-based therapies for achieving ideal tumor control and maximizing anti-tumor immunity.
Collapse
Affiliation(s)
- Dai Liu
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO 65212, USA
| | - Guangfu Li
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
343
|
Beitzen-Heineke A, Bouzani M, Schmitt AL, Kurzai O, Hünniger K, Einsele H, Loeffler J. Human Invariant Natural Killer T cells possess immune-modulating functions during Aspergillus infection. Med Mycol 2015; 54:169-76. [PMID: 26483428 DOI: 10.1093/mmy/myv074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Accepted: 07/12/2015] [Indexed: 01/25/2023] Open
Abstract
Aspergillus fumigatus is the most common cause for invasive fungal infections, a disease associated with high mortality in immune-compromised patients. CD1d-restricted invariant natural killer T (iNKT) cells compose a small subset of T cells known to impact the immune response toward various infectious pathogens. To investigate the role of human iNKT cells during A. fumigatus infection, we studied their activation as determined by CD69 expression and cytokine production in response to distinct fungal morphotypes in the presence of different CD1d(+) antigen presenting cells using flow cytometry and multiplex enzyme-linked immunosorbent assay (ELISA). Among CD1d(+) subpopulations, CD1d(+)CD1c(+) mDCs showed the highest potential to activate iNKT cells on a per cell basis. The presence of A. fumigatus decreased this effect of CD1d(+)CD1c(+) mDCs on iNKT cells and led to reduced secretion of TNF-α, G-CSF and RANTES. Production of other Th1 and Th2 cytokines was not affected by the fungus, suggesting an immune-modulating function for human iNKT cells during A. fumigatus infection.
Collapse
Affiliation(s)
| | - Maria Bouzani
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Anna-Lena Schmitt
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Oliver Kurzai
- Septomics Research Centre, Friedrich-Schiller-University Jena and Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Kerstin Hünniger
- Septomics Research Centre, Friedrich-Schiller-University Jena and Leibniz-Institute for Natural Products Research and Infection Biology - Hans Knoell Institute, Jena, Germany
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Juergen Loeffler
- Medizinische Klinik und Poliklinik II, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
344
|
|
345
|
Cameron G, Pellicci DG, Uldrich AP, Besra GS, Illarionov P, Williams SJ, La Gruta NL, Rossjohn J, Godfrey DI. Antigen Specificity of Type I NKT Cells Is Governed by TCR β-Chain Diversity. THE JOURNAL OF IMMUNOLOGY 2015; 195:4604-14. [DOI: 10.4049/jimmunol.1501222] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/03/2015] [Indexed: 01/09/2023]
|
346
|
Tc17 cells are a proinflammatory, plastic lineage of pathogenic CD8+ T cells that induce GVHD without antileukemic effects. Blood 2015. [DOI: 10.1182/blood-2015-01-622662] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Key Points
Donor-derived Tc17 cells differentiate early after allogeneic transplant in response to IL-6 and alloantigen presentation by host DCs. Tc17 are highly proinflammatory and pathogenic posttransplant, but exert limited or no GVL activity.
Collapse
|
347
|
CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs. Sci Rep 2015; 5:14124. [PMID: 26369936 PMCID: PMC4569892 DOI: 10.1038/srep14124] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/13/2015] [Indexed: 01/31/2023] Open
Abstract
CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.
Collapse
|
348
|
Park BG, Park CJ, Jang S, Chi HS, Kim DY, Lee JH, Lee JH, Lee KH. Reconstitution of lymphocyte subpopulations after hematopoietic stem cell transplantation: comparison of hematologic malignancies and donor types in event-free patients. Leuk Res 2015; 39:1334-41. [PMID: 26422556 DOI: 10.1016/j.leukres.2015.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/09/2015] [Accepted: 09/07/2015] [Indexed: 11/28/2022]
Abstract
The reconstitution of different immunocyte subsets after hematopoietic stem cell transplantation (HSCT), follows different timelines. We prospectively investigated changes in lymphocyte subsets after HSCT and their associations with primary diagnosis, conditioning regimen, and HSCT type in event-free patients. A total of 95 patients (48 with acute myeloid leukemia, 22 with acute lymphoid leukemia, and 25 with myelodysplastic syndrome) who underwent allogeneic HSCT (34 sibling matched, 37 unrelated matched, and 24 haploidentical HSCT) but did not experience any events such as relapse or death were enrolled in this study. Lymphocyte subpopulations (T cells, helper/inducer T cells, cytotoxic/suppressor T cells, memory T cells, regulatory T cells, natural killer (NK) cells, NK-T cells, and B cells) were quantified by flow cytometry of peripheral blood from recipients 7 days before and 1, 2, 3, 6, and 12 months after HSCT. Leukocyte counts recovered within 1 month after HSCT. However, the number of T and B lymphocytes recovered at 2 months after HSCT. NK cell counts recovered shortly after haploidentical HSCT. However, T lymphocytes and their subpopulations showed delayed recovery after haploidentical HSCT. Lymphocyte subsets showed different sequential patterns according to HSCT type but no differences were seen according to primary diagnosis or conditioning regimen.
Collapse
Affiliation(s)
- Borae G Park
- Department of Laboratory Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea; Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Chan-Jeoung Park
- Department of Laboratory Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea.
| | - Seongsoo Jang
- Department of Laboratory Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea
| | - Hyun-Sook Chi
- Department of Laboratory Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea
| | - Dae-Young Kim
- Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea
| | - Jung-Hee Lee
- Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea
| | - Je-Hwan Lee
- Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea
| | - Kyoo-Hyung Lee
- Department of Internal Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
349
|
Dai H, Rahman A, Saxena A, Jaiswal AK, Mohamood A, Ramirez L, Noel S, Rabb H, Jie C, Hamad ARA. Syndecan-1 identifies and controls the frequency of IL-17-producing naïve natural killer T (NKT17) cells in mice. Eur J Immunol 2015; 45:3045-51. [PMID: 26300525 DOI: 10.1002/eji.201545532] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 07/21/2015] [Accepted: 08/19/2015] [Indexed: 02/06/2023]
Abstract
Invariant natural killer T (iNKT) cells recognize glycolipids as antigens and diversify into NKT1 (IFN-γ), NKT2 (IL-4), and NKT17 (IL-17) functional subsets while developing in the thymus. Mechanisms that govern the balance between these functional subsets are poorly understood due, partly, to the lack of distinguishing surface markers. Here we identify the heparan sulfate proteoglycan syndecan-1 (sdc1) as a specific marker of naïve thymic NKT17 cells in mice and show that sdc1 deficiency significantly increases thymic NKT17 cells at the expense of NKT1 cells, leading to impaired iNKT cell-derived IFN-γ, both in vitro and in vivo. Using surface expression of sdc1 to identify NKT17 cells, we confirm differential tissue localization and interstrain variability of NKT17 cells, and reveal that NKT17 cells express high levels of TCR-β, preferentially use Vβ8, and are more highly sensitive to ɑ-GalCer than to CD3/CD28 stimulation. These findings provide a novel, noninvasive, simple method for identification, and viable sorting of naïve NKT17 cells from unmanipulated mice, and suggest that sdc1 expression negatively regulates homeostasis in iNKT cells. In addition, these findings lay the groundwork for investigating the mechanisms by which sdc1 regulates NKT17 cells.
Collapse
Affiliation(s)
- Hong Dai
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ayesha Rahman
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ankit Saxena
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anil K Jaiswal
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abdiaziz Mohamood
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lourdes Ramirez
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanjeev Noel
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chunfa Jie
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, USA
| | - Abdel Rahim A Hamad
- Department of Pathology, Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
350
|
Abstract
The structure and amino acid diversity of the T-cell receptor (TCR), similar in nature to that of Fab portions of antibodies, would suggest that these proteins have a nearly infinite capacity to recognize antigen. Yet all currently defined native T cells expressing an α and β chain in their TCR can only sense antigen when presented in the context of a major histocompatibility complex (MHC) molecule. This MHC molecule can be one of many that exist in vertebrates, presenting small peptide fragments, lipid molecules, or small molecule metabolites. Here we review the pattern of TCR recognition of MHC molecules throughout a broad sampling of species and T-cell lineages and also touch upon T cells that do not appear to require MHC presentation for their surveillance function. We review the diversity of MHC molecules and information on the corresponding T-cell lineages identified in divergent species. We also discuss TCRs with structural domains unlike that of conventional TCRs of mouse and human. By presenting this broad view of TCR sequence, structure, domain organization, and function, we seek to explore how this receptor has evolved across time and been selected for alternative antigen-recognition capabilities in divergent lineages.
Collapse
Affiliation(s)
- Caitlin C. Castro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Adrienne M. Luoma
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Erin J. Adams
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|