301
|
Arabpour M, Lebrero-Fernandez C, Schön K, Strömberg A, Börjesson V, Lahl K, Ballegeer M, Saelens X, Angeletti D, Agace W, Lycke N. ADP-ribosylating adjuvant reveals plasticity in cDC1 cells that drive mucosal Th17 cell development and protection against influenza virus infection. Mucosal Immunol 2022; 15:745-761. [PMID: 35418673 PMCID: PMC9259495 DOI: 10.1038/s41385-022-00510-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023]
Abstract
Migratory dendritic cells expressing CD103 are the targets for mucosal vaccines. These belong to either of two lineage-restricted subsets, cDC1 or cDC2 cells, which have been linked to priming of functionally distinct CD4 T cells. However, recent studies have identified plasticity in cDC2 cells with overlapping functions with cDC1 cells, while the converse has not been reported. We genetically engineered a vaccine adjuvant platform that targeted the cholera toxin A1 (CTA1) ADP-ribosylating enzyme to CD103+ cDC1 and cDC2 cells using a single-chain antibody (scFv) to CD103. Unexpectedly, intranasal immunization with the CTA1-svFcCD103 adjuvant modified cDC1 cells to effectively prime Th17 cells, a function previously limited to cDC2 cells. In fact, cDC2 cells were dispensible, while cDC1 cells, lacking in Batf3-/- mice, were critical. Following intranasal immunizations isolated cDC1 cells from mLN exclusively promoted Rorgt+ T cells and IL-17, IL-21, and IL-22 production. Strong CD8 T cell responses through antigen cross presentation by cDC1 cells were also observed. Single-cell RNAseq analysis revealed upregulation of Th17-promoting gene signatures in sorted cDC1 cells. Gene expression in isolated cDC2 cells was largely unaffected. Our finding represents a major shift of paradigm as we have documented functional plasticity in cDC1 cells.
Collapse
Affiliation(s)
- Mohammad Arabpour
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernandez
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Anneli Strömberg
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Vanja Börjesson
- grid.8761.80000 0000 9919 9582Bioinformatics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- grid.4514.40000 0001 0930 2361Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden
| | - Marlies Ballegeer
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- grid.5342.00000 0001 2069 7798VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium and Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Davide Angeletti
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - William Agace
- grid.4514.40000 0001 0930 2361Immunology Section, Lund University, BMC D14, 221-84 Lund, Sweden ,grid.5170.30000 0001 2181 8870Mucosal Immunology Group, Department of Health Technology, Technical University of Denmark, Kemitorvet, 2800 Kgs, Lyngby, Denmark
| | - Nils Lycke
- grid.8761.80000 0000 9919 9582MIVAC-Mucosal Immunobiology & Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
302
|
Generation of high cross-presentation ability human dendritic cells by combination of interleukin 4, interferon β and GM-CSF. Cent Eur J Immunol 2022; 47:125-138. [PMID: 36751394 PMCID: PMC9894086 DOI: 10.5114/ceji.2022.117767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
Dendritic cell (DC)-based immunotherapies have been utilized for the treatment of numerous diseases. However, the conventional generation strategies of DCs in vitro require 7 days and these DCs showed an unsatisfactory function, which prompted us to explore new approaches. We found that in vitro culture of human CD14+ cells, in the medium containing granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-4, as well as interferon β (IFN-β) for 48 h, followed by the maturation stimuli of IL-1β and poly I:C for another 24 h can be differentiated into high cross-presentation ability DCs (G4B-DCs). These DCs express high levels of CD11c, CD86, and HLA-DR, producing a high level of tumor necrosis factor α (TNF-α). Of note, compared with the conventional DCs, G4B-DCs showed a higher ability to promote allogeneic naïve CD4+ T cell and CD8+ T cell proliferation and interferon (IFN)-γ production. These DCs also have the remarkable ability to induce Flu-M1-specific CD8+ T cells. In addition, we found that these G4B-DCs express partially the cDC1 phenotype. These data indicate that G4B-DC is unique and may provide a relatively rapid alternative method for potential clinical use.
Collapse
|
303
|
CD40 stimulation as a molecular adjuvant for cancer vaccines and other immunotherapies. Cell Mol Immunol 2022; 19:14-22. [PMID: 34282297 PMCID: PMC8752810 DOI: 10.1038/s41423-021-00734-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
The substantial advances attained by checkpoint blockade immunotherapies have driven an expansion in the approaches used to promote T cell access to the tumor microenvironment to provide targets for checkpoint immunotherapy. Inherent in any T cell response to a tumor antigen is the capacity of dendritic cells to initiate and support such responses. Here, the rationale and early immunobiology of CD40 as a master regulator of dendritic cell activation is reviewed, with further contextualization and appreciation for the role of CD40 stimulation not only in cancer vaccines but also in other contemporary immune-oncology approaches.
Collapse
|
304
|
Zhang Y, Chen H, Mo H, Hu X, Gao R, Zhao Y, Liu B, Niu L, Sun X, Yu X, Wang Y, Chang Q, Gong T, Guan X, Hu T, Qian T, Xu B, Ma F, Zhang Z, Liu Z. Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer. Cancer Cell 2021; 39:1578-1593.e8. [PMID: 34653365 DOI: 10.1016/j.ccell.2021.09.010] [Citation(s) in RCA: 416] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 09/17/2021] [Indexed: 12/11/2022]
Abstract
In triple-negative breast cancer (TNBC), the benefit of combining chemotherapy with checkpoint inhibitors is still not very clear. We utilize single-cell RNA- and ATAC-sequencing to examine the immune cell dynamics in 22 patients with advanced TNBC treated with paclitaxel or its combination with the anti-PD-L1 atezolizumab. We demonstrate that high levels of baseline CXCL13+ T cells are linked to the proinflammatory features of macrophages and can predict effective responses to the combination therapy. In responsive patients, lymphoid tissue inducer (LTi) cells, follicular B (Bfoc) cells, CXCL13+ T cells, and conventional type 1 dendritic cells (cDC1) concertedly increase following the combination therapy, but instead decrease after paclitaxel monotherapy. Our data highlight the importance of CXCL13+ T cells in effective responses to anti-PD-L1 therapies and suggest that their reduction by paclitaxel regimen may compromise the clinical outcomes of accompanying atezolizumab for TNBC treatment.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Hongyan Chen
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hongnan Mo
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xueda Hu
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Ranran Gao
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Yahui Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Baolin Liu
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China
| | - Lijuan Niu
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoying Sun
- Department of Medical Oncology, Cancer Hospital of HuanXing ChaoYang District, Beijing 100005, China
| | - Xiao Yu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yong Wang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qing Chang
- Department of Ultrasound, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tongyang Gong
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiuwen Guan
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ting Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyi Qian
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Binghe Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Zemin Zhang
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing 100871, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518132, China.
| | - Zhihua Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
305
|
Duraiswamy J, Turrini R, Minasyan A, Barras D, Crespo I, Grimm AJ, Casado J, Genolet R, Benedetti F, Wicky A, Ioannidou K, Castro W, Neal C, Moriot A, Renaud-Tissot S, Anstett V, Fahr N, Tanyi JL, Eiva MA, Jacobson CA, Montone KT, Westergaard MCW, Svane IM, Kandalaft LE, Delorenzi M, Sorger PK, Färkkilä A, Michielin O, Zoete V, Carmona SJ, Foukas PG, Powell DJ, Rusakiewicz S, Doucey MA, Dangaj Laniti D, Coukos G. Myeloid antigen-presenting cell niches sustain antitumor T cells and license PD-1 blockade via CD28 costimulation. Cancer Cell 2021; 39:1623-1642.e20. [PMID: 34739845 PMCID: PMC8861565 DOI: 10.1016/j.ccell.2021.10.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/06/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
The mechanisms regulating exhaustion of tumor-infiltrating lymphocytes (TIL) and responsiveness to PD-1 blockade remain partly unknown. In human ovarian cancer, we show that tumor-specific CD8+ TIL accumulate in tumor islets, where they engage antigen and upregulate PD-1, which restrains their functions. Intraepithelial PD-1+CD8+ TIL can be, however, polyfunctional. PD-1+ TIL indeed exhibit a continuum of exhaustion states, with variable levels of CD28 costimulation, which is provided by antigen-presenting cells (APC) in intraepithelial tumor myeloid niches. CD28 costimulation is associated with improved effector fitness of exhausted CD8+ TIL and is required for their activation upon PD-1 blockade, which also requires tumor myeloid APC. Exhausted TIL lacking proper CD28 costimulation in situ fail to respond to PD-1 blockade, and their response may be rescued by local CTLA-4 blockade and tumor APC stimulation via CD40L.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riccardo Turrini
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Aspram Minasyan
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alizée J Grimm
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Julia Casado
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Alexandre Wicky
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Kalliopi Ioannidou
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Wilson Castro
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Christopher Neal
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Amandine Moriot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Stéphanie Renaud-Tissot
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Victor Anstett
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Noémie Fahr
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Janos L Tanyi
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monika A Eiva
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Connor A Jacobson
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kathleen T Montone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Inge Marie Svane
- National Center for Cancer Immune Therapy, Copenhagen University Hospital, 2730 Herlev, Denmark
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland; Department of Oncology, UNIL, 1011 Lausanne, Switzerland
| | - Peter K Sorger
- Harvard Ludwig Center, Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Anniina Färkkilä
- Research Program of Systems Oncology, University of Helsinki, 00014 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Hospital, 00014 Helsinki, Finland
| | - Olivier Michielin
- Center for Precision Oncology, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Santiago J Carmona
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Periklis G Foukas
- 2nd Department of Pathology, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Daniel J Powell
- Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, CHUV, 1011 Lausanne, Switzerland
| | - Marie-Agnès Doucey
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland.
| |
Collapse
|
306
|
Cui C, Wang J, Fagerberg E, Chen PM, Connolly KA, Damo M, Cheung JF, Mao T, Askari AS, Chen S, Fitzgerald B, Foster GG, Eisenbarth SC, Zhao H, Craft J, Joshi NS. Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses. Cell 2021; 184:6101-6118.e13. [PMID: 34852236 PMCID: PMC8671355 DOI: 10.1016/j.cell.2021.11.007] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/21/2021] [Accepted: 11/05/2021] [Indexed: 12/31/2022]
Abstract
CD4 T follicular helper (TFH) cells support B cells, which are critical for germinal center (GC) formation, but the importance of TFH-B cell interactions in cancer is unclear. We found enrichment of TFH cell transcriptional signature correlates with GC B cell signature and with prolonged survival in individuals with lung adenocarcinoma (LUAD). We further developed a murine LUAD model in which tumor cells express B cell- and T cell-recognized neoantigens. Interactions between tumor-specific TFH and GC B cells, as well as interleukin (IL)-21 primarily produced by TFH cells, are necessary for tumor control and effector CD8 T cell function. Development of TFH cells requires B cells and B cell-recognized neoantigens. Thus, tumor neoantigens can regulate the fate of tumor-specific CD4 T cells by facilitating their interactions with tumor-specific B cells, which in turn promote anti-tumor immunity by enhancing CD8 T cell effector functions.
Collapse
Affiliation(s)
- Can Cui
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jiawei Wang
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT 06510, USA
| | - Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ping-Min Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Martina Damo
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie F Cheung
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Adnan S Askari
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Brittany Fitzgerald
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gena G Foster
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA; Department of Lab Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Joseph Craft
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine (Rheumatology, Allergy and Immunology), Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
307
|
Hitchcock CL, Povoski SP, Mojzisik CM, Martin EW. Survival Advantage Following TAG-72 Antigen-Directed Cancer Surgery in Patients With Colorectal Carcinoma: Proposed Mechanisms of Action. Front Oncol 2021; 11:731350. [PMID: 34950576 PMCID: PMC8688248 DOI: 10.3389/fonc.2021.731350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/25/2021] [Indexed: 12/09/2022] Open
Abstract
Patients with colorectal carcinoma (CRC) continue to have variable clinical outcomes despite undergoing the same surgical procedure with curative intent and having the same pathologic and clinical stage. This problem suggests the need for better techniques to assess the extent of disease during surgery. We began to address this problem 35 years ago by injecting patients with either primary or recurrent CRC with 125I-labeled murine monoclonal antibodies against the tumor-associated glycoprotein-72 (TAG-72) and using a handheld gamma-detecting probe (HGDP) for intraoperative detection and removal of radioactive, i.e., TAG-72-positive, tissue. Data from these studies demonstrated a significant difference in overall survival data (p < 0.005 or better) when no TAG-72-positive tissue remained compared to when TAG-72-positive tissue remained at the completion of surgery. Recent publications indicate that aberrant glycosylation of mucins and their critical role in suppressing tumor-associated immune response help to explain the cellular mechanisms underlying our results. We propose that monoclonal antibodies to TAG-72 recognize and bind to antigenic epitopes on mucins that suppress the tumor-associated immune response in both the tumor and tumor-draining lymph nodes. Complete surgical removal of all TAG-72-positive tissue serves to reverse the escape phase of immunoediting, allowing a resetting of this response that leads to improved overall survival of the patients with either primary or recurrent CRC. Thus, the status of TAG-72 positivity after resection has a significant impact on patient survival.
Collapse
Affiliation(s)
- Charles L. Hitchcock
- Department of Pathology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Stephen P. Povoski
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Cathy M. Mojzisik
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Edward W. Martin
- Division of Surgical Oncology, Department of Surgery, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
308
|
Hofer T, Rossi M, Carboni S, Di Berardino Besson W, von Laer D, Wollmann G, Derouazi M, Santiago-Raber ML. Heterologous Prime-Boost Vaccination with a Peptide-Based Vaccine and Viral Vector Reshapes Dendritic Cell, CD4+ and CD8+ T Cell Phenotypes to Improve the Antitumor Therapeutic Effect. Cancers (Basel) 2021; 13:cancers13236107. [PMID: 34885215 PMCID: PMC8656755 DOI: 10.3390/cancers13236107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Developing new therapeutic cancer vaccines is of paramount importance to counteract tumor escape observed after conventional therapies in certain types of cancer. We have previously shown that the combination of two different vaccine platforms, targeting tumor-specific antigens, resulted in potent immune responses in preclinical models. Here, we show that the heterologous prime-boost combination with a protein vaccine and a viral vector vesicular stomatitis virus immunologically reshapes the immune-excluded TC-1 tumor model as well as the inflamed MC-38 tumor model, leading to beneficial therapeutic efficacy. Furthermore, the treatment with a multi-epitope vaccine allowed us to appreciate the various repartition among three antigen-specific cytotoxic T-cell responses combined with the viral boost. The combination leads to improved efficacy in all animals and highlights the importance of combining tumor epitopes. Our vaccine strategy could be further extended to prophylactic cancer vaccines and beyond, for infectious diseases. Abstract Heterologous prime-boost settings with a protein vaccine and the viral vector vesicular stomatitis virus, both expressing tumor-associated antigens (KISIMA-TAA and VSV-GP-TAA), have been previously shown to generate potent antitumor immunity. In the cold TC-1 model (HPV antigen) and the immune-infiltrate MC-38 model (Adpgk, Reps1 and Rpl18 neo-antigens), we further investigated pivotal immune cells that educate CD8+ T cells. Heterologous prime-boost vaccination induced a superior antitumor response characterized by the increase in number and functionality of antigen-specific CD8+ T cells, recruitment of cross-presenting dendritic cells, and polarization of CD4+ T cells towards an antitumor Th1 phenotype within the tumor and tumor-draining lymph nodes, turning the cold TC-1 tumor into a hot, inflamed tumor. In the inflamed MC-38 tumor model, treatment combination markedly prolonged the overall survival of mice. Treatment with multi-epitope vaccines also induced high frequencies of multiple antigen specificities in the periphery and in the tumor. Prime-boost treatment reduced tumor-infiltrating regulatory CD4+ T cells whilst increasing cross-presenting dendritic cells in tumor-draining lymph nodes. In conclusion, heterologous prime-boost vaccination possesses the ability to induce a potent anti-tumor response in both immune-excluded and immune-infiltrated mouse tumor models. Additionally, this study highlights the design of a multi-epitope vaccine for cancer immunotherapy.
Collapse
Affiliation(s)
- Tamara Hofer
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria; (T.H.); (G.W.)
- Division of Virology, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria;
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Matteo Rossi
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Susanna Carboni
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Wilma Di Berardino Besson
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria;
| | - Guido Wollmann
- Christian Doppler Laboratory for Viral Immunotherapy of Cancer, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria; (T.H.); (G.W.)
- Division of Virology, Medical University of Innsbruck, Peter-Mayr-Straße 4b, 6020 Innsbruck, Austria;
| | - Madiha Derouazi
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
- Correspondence: (M.D.); (M.-L.S.-R.)
| | - Marie-Laure Santiago-Raber
- AMAL Therapeutics, Fondation Pour Recherches Médicales, Avenue de la Roseraie 64, 1205 Geneva, Switzerland; (M.R.); (S.C.); (W.D.B.B.)
- Boehringer Ingelheim International GmbH, 55216 Ingelheim, Germany
- Correspondence: (M.D.); (M.-L.S.-R.)
| |
Collapse
|
309
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
310
|
Ma J, Han M, Yang D, Zheng T, Hu R, Wang B, Ye Y, Liu J, Huang G. Vps33B in Dendritic Cells Regulates House Dust Mite-Induced Allergic Lung Inflammation. THE JOURNAL OF IMMUNOLOGY 2021; 207:2649-2659. [PMID: 34732466 DOI: 10.4049/jimmunol.2100502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/27/2021] [Indexed: 12/19/2022]
Abstract
Dendritic cells (DCs) are the most specialized APCs that play a critical role in driving Th2 differentiation, but the mechanism is not fully understood. Here we show that vacuolar protein sorting 33B (Vps33B) plays an important role in this process. Mice with Vps33b-specific deletion in DCs, but not in macrophages or T cells, were more susceptible to Th2-mediated allergic lung inflammation than wild-type mice. Deletion of Vps33B in DCs led to enhanced CD4+ T cell proliferation and Th2 differentiation. Moreover, Vps33B specifically restrained reactive oxygen species production in conventional DC1s to inhibit Th2 responses in vitro, whereas Vps33B in monocyte-derived DCs and conventional DC2s was dispensable for Th2 development in asthma pathogenesis. Taken together, our results identify Vps33B as an important molecule that mediates the cross-talk between DCs and CD4+ T cells to further regulate allergic asthma pathogenesis.
Collapse
Affiliation(s)
- Jingyu Ma
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Miaomiao Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Di Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Zheng
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Ran Hu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| | - Youqiong Ye
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gonghua Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; .,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, China; and
| |
Collapse
|
311
|
McDaniel MM, Meibers HE, Pasare C. Innate control of adaptive immunity and adaptive instruction of innate immunity: bi-directional flow of information. Curr Opin Immunol 2021; 73:25-33. [PMID: 34425435 PMCID: PMC8648974 DOI: 10.1016/j.coi.2021.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 07/14/2021] [Accepted: 07/28/2021] [Indexed: 12/21/2022]
Abstract
The ability of the innate and adaptive immune systems to communicate with each other is central to protective immune responses and maintenance of host health. Myeloid cells of the innate immune system are able to sense microbial ligands, perturbations in cellular homeostasis, and virulence factors, thereby allowing them to relay distinct pathogen-specific information to naïve T cells in the form of pathogen-derived peptides and a unique cytokine milieu. Once primed, effector T helper cells produce lineage-defining cytokines to help combat the original pathogen, and a subset of these cells persist as memory or effector-memory populations. These memory T cells then play a dual role in host protection by not only responding rapidly to reinfection, but by also directly instructing myeloid cells to express licensing cytokines. This means there is a bi-directional flow of information first from the innate to the adaptive immune system, and then from the adaptive back to innate immune system. Here, we focus on how signals, first from pathogens and then from primed effector and memory T cells, are integrated by myeloid cells and its consequences for protective immunity or systemic inflammation.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Immunology Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States
| | - Hannah E Meibers
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Immunology Graduate Program, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45220, United States
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, United States; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH 45220, United States.
| |
Collapse
|
312
|
Wang N, Zhou Y, Zuo Z, Wang R, Li J, Han T, Yang B. Construction of a competing endogenous RNA network related to the prognosis of cholangiocarcinoma and comprehensive analysis of the immunological correlation. J Gastrointest Oncol 2021; 12:2287-2309. [PMID: 34790393 DOI: 10.21037/jgo-21-619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/19/2021] [Indexed: 12/21/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a malignant tumor of the digestive system, with occult onset in the early stage, a high degree of malignancy in the late stage, and poor prognosis. At present, the pathogenesis of CCA is not clear, and there is a lack of effective immunotherapy. The purpose of this study was to identify the potential regulatory mechanism of CCA and analyze the possibility of its related immunotherapy. Methods The circular RNAs (circRNAs) expression profile data of CCA was downloaded from the Gene Expression Omnibus (GEO) database; the miRNA and mRNA expression profile data of CCA were downloaded from The Cancer Genome Atlas (TCGA) database. Prognostic factors were screened by univariate Cox regression analysis, and the competing endogenous RNA (ceRNA) network was constructed via survival analysis. Multivariate Cox analysis was used to screen the independent prognostic factors and construct a prognostic correlation subnetwork. Analyzing the tumor microenvironment of CCA and survival analysis were performed according to the score of the microenvironment, and the distribution of tumor infiltrating immune cells (TICs) in CCA was calculated using the CIBERSORT algorithm. We explored the expression pattern of the target genes in pan-cancer, and the correlation between the key genes in the ceRNA subnetwork, TICs and immune checkpoints was analyzed using an online database. Finally, the expression levels of target genes were validated based on the Human Protein Atlas (HPA) databases. Results We screened four circRNAs, 10 miRNAs, and 17 mRNAs with significant differences, and constructed the ceRNA network. Independent prognostic factors were screened by multivariate Cox regression analysis, and a subnetwork containing five nodes (hsa_circ_0002073→hsa-mir-4524a-3p→SLC16A3/SLC35E4/DDX4) was constructed. Further analysis showed that SLC16A3 was not only an independent posterior factor of CCA, but was also closely correlated with immune cells, immune checkpoints, and immunotherapy, and had a certain regulatory effect on the tumor microenvironment. Conclusions Our study identified a novel prognostic marker of CCA, SLC16A3, and revealed the regulatory role of SLC16A3 in the tumor microenvironment, which is expected to provide new insights for the early diagnosis, prognosis, and targeted therapy of CCA.
Collapse
Affiliation(s)
- Ning Wang
- Department of Oncology, the Second Affiliated Hospital of Liaoning Traditional Chinese Medicine University, Shenyang, China
| | - Yinghui Zhou
- Jinzhou Medical University, General Hospital of Northern Theater Command Training Base for Graduate, Shenyang, China.,Department of Hepatobiliary surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Zhifan Zuo
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Ruoyu Wang
- Department of Hepatic Surgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Jing Li
- Liaoning Academy of Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Han
- Department of Oncology, the First Hospital of China Medical University, Shenyang, China
| | - Bin Yang
- Department of General Surgery, 967 Hospital of PLA, Dalian, China
| |
Collapse
|
313
|
Tijtgat J, De Munck J, Dufait I, Schwarze JK, Van Riet I, Franceschini L, Breckpot K, Aerts JL, Neyns B, Tuyaerts S. Unraveling the Effects of a Talimogene Laherparepvec (T-VEC)-Induced Tumor Oncolysate on Myeloid Dendritic Cells. Front Immunol 2021; 12:733506. [PMID: 34777344 PMCID: PMC8581672 DOI: 10.3389/fimmu.2021.733506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/13/2021] [Indexed: 01/18/2023] Open
Abstract
T-VEC, a HSV-1 derived oncolytic virus, is approved for the treatment of advanced melanoma. The mechanisms that underly the systemic anti-tumor effect that is seen following intratumoral injection have not yet been studied but are likely to be mediated by myeloid dendritic cells (myDC) that initiate an adaptive immune response. In this study we could demonstrate that T-VEC is non-toxic for human myDC. T-VEC and a T-VEC oncolysate of melanoma cell lines were able to mature human myDC. myDC were able to take up lysed melanoma cells and cross-present melanoma-derived tumor antigens to antigen-specific T cells. Our results support the possible role of myDC as mediators of an adaptive anti-tumor effect and intratumoral co-administration of T-VEC plus autologous myDC could be a complementary treatment option. A clinical trial that investigates this hypothesis is currently ongoing.
Collapse
Affiliation(s)
- Jens Tijtgat
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Jolien De Munck
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Inès Dufait
- Department of Radiotherapy/Laboratory of Translational Radiation Oncology, Supportive Care and Physics (TROP), Universitair Ziekenhuis Brussel (UZ Brussel)/Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Julia Katharina Schwarze
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Ivan Van Riet
- Stem Cell Laboratory, Department of Hematology, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Lorenzo Franceschini
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Department of Biomedical Sciences, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Joeri L Aerts
- Neuro-Aging and Viro-Immunotherapy (NAVI) Research Group, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Bart Neyns
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - Sandra Tuyaerts
- Department of Medical Oncology/Laboratory of Medical and Molecular Oncology (LMMO), Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
314
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
315
|
Zhou B, Lawrence T, Liang Y. The Role of Plasmacytoid Dendritic Cells in Cancers. Front Immunol 2021; 12:749190. [PMID: 34737750 PMCID: PMC8560733 DOI: 10.3389/fimmu.2021.749190] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/13/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are a special subtype of dendritic cells with the morphology of plasma cells. pDCs produce massive amounts of type I interferon (IFN-I), which was originally found to play an extremely pivotal role in antiviral immunity. Interestingly, accumulated evidence indicates that pDCs can also play an important role in tumorigenesis. In the human body, most of the IFN-α is secreted by activated pDCs mediated by toll-like receptor (TLR) stimulation. In many types of cancer, tumors are infiltrated by a large number of pDCs, however, these pDCs exhibit no response to TLR stimulation, and reduced or absent IFN-α production. In addition, tumor-infiltrating pDCs promote recruitment of regulatory T cells (Tregs) into the tumor microenvironment, leading to immunosuppression and promoting tumor growth. In this review, we discuss recent insights into the development of pDCs and their roles in a variety of malignancies, with special emphasis on the basic mechanisms.
Collapse
Affiliation(s)
- Binhui Zhou
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China
| | - Toby Lawrence
- Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China.,Centre for Inflammation Biology and Cancer Immunology, King's College London, London, United Kingdom
| | - Yinming Liang
- Laboratory of Mouse Genetics, Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Henan, China.,Laboratory of Genetic Regulators in the Immune System, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Henan, China.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Henan, China
| |
Collapse
|
316
|
Zhang S, Chopin M, Nutt SL. Type 1 conventional dendritic cells: ontogeny, function, and emerging roles in cancer immunotherapy. Trends Immunol 2021; 42:1113-1127. [PMID: 34728143 DOI: 10.1016/j.it.2021.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key immune sentinels that orchestrate protective immune responses against pathogens or cancers. DCs have evolved into multiple phenotypically, anatomically, and functionally distinct cell types. One of these DC types, Type 1 conventional DCs (cDC1s), are uniquely equipped to promote cytotoxic CD8+ T cell differentiation and, therefore, represent a promising target for harnessing antitumor immunity. Indeed, recent studies have highlighted the importance of cDC1s in tumor immunotherapy using immune checkpoint inhibitors. Here, we review the progress in defining the key developmental and functional attributes of cDC1s and the approaches to optimizing the potency of cDC1s for anticancer immunity.
Collapse
Affiliation(s)
- Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Michaël Chopin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
317
|
Giza HM, Bozzacco L. Unboxing dendritic cells: Tales of multi-faceted biology and function. Immunology 2021; 164:433-449. [PMID: 34309853 PMCID: PMC8517577 DOI: 10.1111/imm.13394] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
Often referred to as the bridge between innate and adaptive immunity, dendritic cells (DCs) are professional antigen-presenting cells (APCs) that constitute a unique, yet complex cell system. Among other APCs, DCs display the unique property of inducing protective immune responses against invading microbes, or cancer cells, while safeguarding the proper homeostatic equilibrium of the immune system and maintaining self-tolerance. Unsurprisingly, DCs play a role in many diseases such as autoimmunity, allergy, infectious disease and cancer. This makes them attractive but challenging targets for therapeutics. Since their initial discovery, research and understanding of DC biology have flourished. We now recognize the presence of multiple subsets of DCs distributed across tissues. Recent studies of phenotype and gene expression at the single cell level have identified heterogeneity even within the same DC type, supporting the idea that DCs have evolved to greatly expand the flexibility of the immune system to react appropriately to a wide range of threats. This review is meant to serve as a quick and robust guide to understand the basic divisions of DC subsets and their role in the immune system. Between mice and humans, there are some differences in how these subsets are identified and function, and we will point out specific distinctions as necessary. Throughout the text, we are using both fundamental and therapeutic lens to describe overlaps and distinctions and what this could mean for future research and therapies.
Collapse
|
318
|
Im K, Combes AJ, Spitzer MH, Satpathy AT, Krummel MF. Archetypes of checkpoint-responsive immunity. Trends Immunol 2021; 42:960-974. [PMID: 34642094 PMCID: PMC8724347 DOI: 10.1016/j.it.2021.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/08/2021] [Accepted: 09/14/2021] [Indexed: 01/10/2023]
Abstract
Responsiveness to immune checkpoint blockade (ICB) therapy in cancer is currently predicted by disparate individual measures - with varying degrees of accuracy - including tumor mutation burden, tumor-infiltrating T cell densities, dendritic cell frequencies, and the expression of checkpoint ligands. We propose that many of these individual parameters are linked, forming two distinct 'reactive' immune archetypes - collections of cells and gene expression - in ICB-responsive patients. We hypothesize that these are 'seeds' of antitumor immunity and are supported by specific elements of the tumor microenvironment (TME) and by actions of the microbiome. Although removing 'immunosuppressive' factors in the TME is important, understanding and parsing reactive immunity is crucial for optimal prognosis and for engaging this biology with candidate therapies to increase tumor cure rates.
Collapse
Affiliation(s)
- Kwok Im
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Alexis J Combes
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA; UCSF CoLabs, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Matthew H Spitzer
- Department of Otolaryngology, School of Medicine, University of California at San Francisco, San Franciso, CA 94143, USA
| | | | - Matthew F Krummel
- Department of Pathology and ImmunoX Initiative, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
319
|
Johnson P, Rosendahl N, Radford KJ. Conventional type 1 dendritic cells (cDC1) as cancer therapeutics: challenges and opportunities. Expert Opin Biol Ther 2021; 22:465-472. [PMID: 34654337 DOI: 10.1080/14712598.2022.1994943] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION The use of dendritic cell (DC)-based cancer vaccines over three decades has shown them to be a safe therapeutic approach against a range of hematological and solid malignancies. However, underwhelming and inconsistent results from clinical trials have seen them move in and out of favor. The limitations of ex vivo generated monocyte-derived DC (MoDC) in these therapies provide a pointed explanation for the varying and somewhat disappointing clinical outcomes. The identification of a specialized role for the rare conventional type 1 dendritic cell (cDC1) subset in orchestrating tumor immunity via the initiation of CD8+ T cell responses has led to a new concept of targeting cDC1 as a therapeutic option to address the unmet need of enhancing the immune response in cancer patients. AREAS COVERED This article reviews several current challenges and key opportunities associated with the development and use of next generation cDC1 cancer vaccines. EXPERT OPINION Manipulation of cDC1 quantity and quality holds enormous potential to improve tumor immunogenicity, as already demonstrated in preclinical models. New technologies are rapidly advancing the understanding of cDC1 in human cancer patients and facilitating the generation of these extremely rare cells in vitro, providing feasible new approaches toward clinical translation.
Collapse
Affiliation(s)
- Phillip Johnson
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia.,Queensland Cord Blood Bank At The Mater, South Brisbane, Australia
| | - Nikita Rosendahl
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Kristen J Radford
- Mater Research Institute-The University of Queensland, Translational Research Institute, Brisbane, Australia
| |
Collapse
|
320
|
Zhong S, Jia Z, Zhang H, Gong Z, Feng J, Xu H. Identification and validation of tumor microenvironment-related prognostic biomarkers in breast cancer. Transl Cancer Res 2021; 10:4355-4364. [PMID: 35116294 PMCID: PMC8798301 DOI: 10.21037/tcr-21-1248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Background Stromal cells and immune cells in tumor microenvironment (TME) have been reported to have significant value in the diagnosis and prognosis of cancers. We aimed to identify key biomarkers predicting survival in the TME of breast cancer. Methods Cell type enrichment analysis was performed to estimate cell scores using the xCell method with gene expression data from public database. Least absolute shrinkage and selection operator (LASSO) regression was used to identify key signature from the cell scores. Results Totally, 50 cells in TME had different scores between 1,078 breast cancer tissues and 112 adjacent normal tissues. We identified a 4-cell signature predicting breast cancer survival, including myocytes, natural killer T cell (NKT), conventional dendritic cell (cDC) and sebocytes, which was validated in the test set. Further analysis showed that cDC score was a key signature predicting prognosis of breast cancer. cDC score was significantly associated with molecular classification and stage of breast cancer, as well as expression level of Ki67. Spearman’s correlation analysis found that cDC score was inversely correlated with the expression level of HER2. High cDC score may predicate better pathological complete response rate. Mechanism analysis indicated high cDC score was associated with elevated immune activity; IL-2 was a key gene associated with high cDC score; and Breast cancer patients with high IL-2 expression had a longer survival time. Conclusions In conclusion, cDC score was a key signature predicting prognosis for breast cancer. cDCs may exert antitumor effects by upregulating IL-2.
Collapse
Affiliation(s)
- Shanliang Zhong
- Center of Clinical Laboratory Science, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Zhangjun Jia
- Department of Clinical Laboratory, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Heda Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhen Gong
- Department of Gynecology, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University & Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jifeng Feng
- Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Hanzi Xu
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| |
Collapse
|
321
|
Kanda Y, Okazaki T, Katakai T. Motility Dynamics of T Cells in Tumor-Draining Lymph Nodes: A Rational Indicator of Antitumor Response and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:4616. [PMID: 34572844 PMCID: PMC8465463 DOI: 10.3390/cancers13184616] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 01/22/2023] Open
Abstract
The migration status of T cells within the densely packed tissue environment of lymph nodes reflects the ongoing activation state of adaptive immune responses. Upon encountering antigen-presenting dendritic cells, actively migrating T cells that are specific to cognate antigens slow down and are eventually arrested on dendritic cells to form immunological synapses. This dynamic transition of T cell motility is a fundamental strategy for the efficient scanning of antigens, followed by obtaining the adequate activation signals. After receiving antigenic stimuli, T cells begin to proliferate, and the expression of immunoregulatory receptors (such as CTLA-4 and PD-1) is induced on their surface. Recent findings have revealed that these 'immune checkpoint' molecules control the activation as well as motility of T cells in various situations. Therefore, the outcome of tumor immunotherapy using checkpoint inhibitors is assumed to be closely related to the alteration of T cell motility, particularly in tumor-draining lymph nodes (TDLNs). In this review, we discuss the migration dynamics of T cells during their activation in TDLNs, and the roles of checkpoint molecules in T cell motility, to provide some insight into the effect of tumor immunotherapy via checkpoint blockade, in terms of T cell dynamics and the importance of TDLNs.
Collapse
Affiliation(s)
- Yasuhiro Kanda
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan;
| | - Tomoya Katakai
- Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 950-8510, Japan;
| |
Collapse
|
322
|
Monteiro AC, Bonomo A. CD8 + T cells from experimental in situ breast carcinoma interfere with bone homeostasis. Bone 2021; 150:116014. [PMID: 34022456 DOI: 10.1016/j.bone.2021.116014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 10/21/2022]
Abstract
Before bone colonization, immune cells primed by breast primary tumor cells actively modify the bone microenvironment, disturbing the complex and tightly homeostatic signaling network regulated by osteoblasts and osteoclasts. Indeed, we have shown that RANKL+ CD4+ T cells specific for the 4T1 mammary carcinoma cell line, arrive at the bone marrow (BM) before metastatic cells and set the pre-metastatic niche. In the absence of RANKL expressed by T cells, there is no pre-metastatic osteolytic disease and bone metastases are blocked. Adding to the role of T cells, we have recently demonstrated that dendritic cells (DCs) provide a positive feedback loop to the osteolytic profile induced by the metastatic tumor. In this setting, DCs are able to differentiate into potent bone resorbing osteoclast-like cells keeping their antigen-presenting cell (APC) properties to maintain RANKL+ CD4+ Th17 T cells activities, via IL-23 expression. Here we show that 67NR non-metastatic tumor cells, a sibling of 4T1 tumor cell line, induce an increase in trabecular bone mass on day 11 post-tumor implant. This observation was associated with an expansion of the osteoblastic lineage cells accompanied by a reduction of osteoclasts numbers. Moreover, BM derived CD8+ T cells from 67NR tumor-bearing mice, express an anti-osteoclastogenic cytokine milieu enriched by IFN-γ, IL-10 and producing low levels of RANKL. The frequency of BM derived CD8+ FoxP3+ regulatory T cells, known as potent suppressors of osteoclastogenesis both in vitro and in vivo, was also increased in such animals. This milieu was capable to suppress 4T1 tumor-specific CD4+ T cells phenotype in vivo and in vitro and strongly inhibited bone metastases establishment, restoring trabecular bone mass volume. We concluded that the 67NR+ tumor derived CD8+ T cells phenotypes, either contributing to bone homeostasis and/or control of 4T1 breast tumor pre-metastatic disease, interfere with osteoclasts and osteoblasts activities inside BM. Our study highlights the opposing roles of subverted tumor CD4+ and CD8+ T cell subtypes in directing breast cancer progression and bone metastases establishment. For non-metastatic tumors, the role of T cells regarding bone remodeling has never been addressed before. As far as we know, this is the first description that an in situ carcinoma can modify distant sites. In the case showed here, modification of the distant bone site disfavors pre-metastatic bone niche formation.
Collapse
Affiliation(s)
- Ana Carolina Monteiro
- Laboratory of Osteo and Tumor Immunology, Department of Immunobiology, Fluminense Federal University, Rio de Janeiro, Brazil; Laboratory on Thymus Research, Brazil.
| | - Adriana Bonomo
- Laboratory on Thymus Research, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil; Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
323
|
Zaongo SD, Liu Y, Harypursat V, Song F, Xia H, Ma P, Chen Y. P-Selectin Glycoprotein Ligand 1: A Potential HIV-1 Therapeutic Target. Front Immunol 2021; 12:710121. [PMID: 34434194 PMCID: PMC8380821 DOI: 10.3389/fimmu.2021.710121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/28/2021] [Indexed: 01/21/2023] Open
Abstract
Antiretroviral therapy (ART), which is a life-long therapeutic option, remains the only currently effective clinical method to treat HIV-1 infection. However, ART may be toxic to vital organs including the liver, brain, heart, and kidneys, and may result in systemic complications. In this context, to consider HIV-1 restriction factors from the innate immune system to explore novel HIV therapeutics is likely to be a promising investigative strategy. In light of this, P-selectin glycoprotein ligand 1 (PSGL-1) has recently become the object of close scrutiny as a recognized cell adhesion molecule, and has become a major focus of academic study, as researchers believe that PSGL-1 may represent a novel area of interest in the research inquiry into the field of immune checkpoint inhibition. In this article, we review PSGL-1's structure and functions during infection and/or inflammation. We also outline a comprehensive review of its role and potential therapeutic utility during HIV-1 infection as published in contemporary academic literature.
Collapse
Affiliation(s)
- Silvere D Zaongo
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China.,Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yanqiu Liu
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Vijay Harypursat
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Huan Xia
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Yaokai Chen
- Division of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
324
|
Shibata H, Xu N, Saito S, Zhou L, Ozgenc I, Webb J, Fu C, Zolkind P, Egloff AM, Uppaluri R. Integrating CD4 + T cell help for therapeutic cancer vaccination in a preclinical head and neck cancer model. Oncoimmunology 2021; 10:1958589. [PMID: 34408919 PMCID: PMC8366550 DOI: 10.1080/2162402x.2021.1958589] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are well suited for cancer vaccination strategies. In addition to tumor-associated antigens (TAAs) and endogenous retrovirus (ERV) encoded proteins, HNSCCs have a relatively high tumor mutational burden encoding potential neoepitopes. Peptide vaccine candidates are prioritized by predicted high-affinity to major histocompatibility complex (MHC) class I with MHC-II affinity largely not being considered. Herein, we extend previous studies to evaluate therapeutic vaccination in the mouse oral cancer (MOC) 22 model. Two distinct MOC22 derived SLPs were tested – a TSA-oriented mutant intercellular adhesion molecule 1 (mICAM1) and p15E, an ERV encoded antigen. In silico prediction revealed mICAM1 SLP bore strong MHC-I and MHC-II epitopes sharing a mutant residue with vaccination significantly increasing both antigen-specific IFN-γ producing CD4+ and CD8+ T cells. By contrast, p15E SLP had a predicted high-affinity MHC-I epitope but lacked an MHC-II epitope and vaccination induced antigen-specific CD8+ but not CD4+ T cell responses. Therapeutic mICAM1 vaccination attenuated tumor growth effectively with mICAM1-specific T cells displaying durable IFN-γ production compared with p15E SLP. Furthermore, mICAM1 SLPs carrying weakened MHC-II binding epitopes were unable to control tumor growth. These data underscore the potential value of therapeutic targeting of HNSCC epitopes and highlight the importance of studying distinct antigen classes in this setting. Moreover, they raise the possibility that, at least in part, CD4+ T cell help is critical for cancer vaccination in this preclinical HNSCC model and suggest in silico prediction approaches prioritize overlapping MHC-I and MHC-II epitopes to generate potent cancer vaccines.
Collapse
Affiliation(s)
- Hirofumi Shibata
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Otolaryngology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Na Xu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Tea and Food Science, Anhui Agricultural University, Hefei, Anhui, PR China
| | - Shin Saito
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Otolaryngology - Head and Neck Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Liye Zhou
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ibrahim Ozgenc
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason Webb
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Cong Fu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Zolkind
- Department of Otolaryngology/ Head and Neck Surgery, Washington University, St. Louis, MO, USA
| | - Ann Marie Egloff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Surgery/Otolaryngology, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
325
|
Moreira TG, Mangani D, Cox LM, Leibowitz J, Lobo ELC, Oliveira MA, Gauthier CD, Nakagaki BN, Willocq V, Song A, Guo L, Lima DCA, Murugaiyan G, Butovsky O, Gabriely G, Anderson AC, Rezende RM, Faria AMC, Weiner HL. PD-L1 + and XCR1 + dendritic cells are region-specific regulators of gut homeostasis. Nat Commun 2021; 12:4907. [PMID: 34389726 PMCID: PMC8363668 DOI: 10.1038/s41467-021-25115-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal mucosa constitutes an environment of closely regulated immune cells. Dendritic cells (DC) interact with the gut microbiome and antigens and are important in maintaining gut homeostasis. Here, we investigate DC transcriptome, phenotype and function in five anatomical locations of the gut lamina propria (LP) which constitute different antigenic environments. We show that DC from distinct gut LP compartments induce distinct T cell differentiation and cytokine secretion. We also find that PD-L1+ DC in the duodenal LP and XCR1+ DC in the colonic LP comprise distinct tolerogenic DC subsets that are crucial for gut homeostasis. Mice lacking PD-L1+ and XCR1+ DC have a proinflammatory gut milieu associated with an increase in Th1/Th17 cells and a decrease in Treg cells and have exacerbated disease in the models of 5-FU-induced mucositis and DSS-induced colitis. Our findings identify PD-L1+ and XCR1+ DC as region-specific physiologic regulators of intestinal homeostasis.
Collapse
Affiliation(s)
- Thais G Moreira
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Davide Mangani
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura M Cox
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey Leibowitz
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Eduardo L C Lobo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mariana A Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Christian D Gauthier
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brenda N Nakagaki
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valerie Willocq
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anya Song
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Lydia Guo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David C A Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gopal Murugaiyan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oleg Butovsky
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Galina Gabriely
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rafael M Rezende
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ana Maria C Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Howard L Weiner
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
326
|
Alfei F, Ho PC, Lo WL. DCision-making in tumors governs T cell anti-tumor immunity. Oncogene 2021; 40:5253-5261. [PMID: 34290401 PMCID: PMC8390370 DOI: 10.1038/s41388-021-01946-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
The exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell-T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.
Collapse
Affiliation(s)
- Francesca Alfei
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Ping-Chih Ho
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland.
| | - Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
327
|
Gao S, Hsu TW, Li MO. Immunity beyond cancer cells: perspective from tumor tissue. Trends Cancer 2021; 7:1010-1019. [PMID: 34305041 DOI: 10.1016/j.trecan.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022]
Abstract
Investigation of cancer as a cell-level disease has led to the development of cancer cell-directed therapies including cytotoxic T lymphocyte (CTL)-based immunotherapy; yet, many patients are refractory to these modalities of cancer treatment and acquired resistance frequently occurs. Of note, cancer environment controls the manifestation of cancerous cell phenotype. Helper T (Th) cells orchestrate immune defense responses targeting cancer cells as well as the tumor microenvironment. Recent studies have shown that in addition to interferon (IFN)-γ-producing Th1 cells, interleukin (IL)-4-producing Th2 cells function as potent anticancer effectors in part by promoting tumor stroma reconfiguration and tumor tissue repair. Such Th cell-mediated tissue-level immunity may be harnessed for novel modalities of cancer environment immunotherapy.
Collapse
Affiliation(s)
- Shengyu Gao
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ting-Wei Hsu
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Graduate Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Ming O Li
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
328
|
Iwanowycz S, Ngoi S, Li Y, Hill M, Koivisto C, Parrish M, Guo B, Li Z, Liu B. Type-2 dendritic cells mediate control of cytotoxic T cell-resistant tumors. JCI Insight 2021; 6:e145885. [PMID: 34283809 PMCID: PMC8492342 DOI: 10.1172/jci.insight.145885] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
Type 2 DCs (DC2s) comprise the majority of conventional DCs within most tumors; however, little is known about their ability to initiate and sustain antitumor immunity, as most studies have focused on antigen cross-presenting DC1s. Here, we report that DC2 infiltration identified by analysis of multiple human cancer data sets showed a significant correlation with survival across multiple human cancers, with the benefit being seen in tumors resistant to cytotoxic T cell control. Characterization of DC subtype infiltration into an immunotherapy-resistant model of breast cancer revealed that impairment of DC1s through 2 unique models resulted in enhanced DC2 functionality and improved tumor control. BATF3 deficiency depleted intratumoral DC1s, which led to increased DC2 lymph node migration and CD4+ T cell activation. Enhancing DC2 stimulatory potential by genetic deletion of Hsp90b1 (encoding molecular chaperon GP96) led to a similar enhancement of T cell immunity and improved survival in a spontaneous breast cancer model. These data highlight the therapeutic and prognostic potential of DC2s within checkpoint blockade–resistant tumors.
Collapse
Affiliation(s)
- Stephen Iwanowycz
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Soo Ngoi
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| | - Yingqi Li
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Megan Hill
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| | - Christopher Koivisto
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, United States of America
| | - Melodie Parrish
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, United States of America
| | - Beichu Guo
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, United States of America
| | - Zihai Li
- The Pelotonia Institute for Immuno-Oncology, The Ohio State University College of Medicine, Columbus, United States of America
| | - Bei Liu
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, United States of America
| |
Collapse
|
329
|
Mattiuz R, Brousse C, Ambrosini M, Cancel J, Bessou G, Mussard J, Sanlaville A, Caux C, Bendriss‐Vermare N, Valladeau‐Guilemond J, Dalod M, Crozat K. Type 1 conventional dendritic cells and interferons are required for spontaneous CD4 + and CD8 + T-cell protective responses to breast cancer. Clin Transl Immunology 2021; 10:e1305. [PMID: 34277006 PMCID: PMC8279130 DOI: 10.1002/cti2.1305] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To better understand how immune responses may be harnessed against breast cancer, we investigated which immune cell types and signalling pathways are required for spontaneous control of a mouse model of mammary adenocarcinoma. METHODS The NOP23 mammary adenocarcinoma cell line expressing epitopes derived from the ovalbumin model antigen is spontaneously controlled when orthotopically engrafted in syngeneic C57BL/6 mice. We combined this breast cancer model with antibody-mediated depletion of lymphocytes and with mutant mice affected in interferon (IFN) or type 1 conventional dendritic cell (cDC1) responses. We monitored tumor growth and immune infiltration including the activation of cognate ovalbumin-specific T cells. RESULTS Breast cancer immunosurveillance required cDC1, NK/NK T cells, conventional CD4+ T cells and CD8+ cytotoxic T lymphocytes (CTLs). cDC1 were required constitutively, but especially during T-cell priming. In tumors, cDC1 were interacting simultaneously with CD4+ T cells and tumor-specific CTLs. cDC1 expression of the XCR1 chemokine receptor and of the T-cell-attracting or T-cell-activating cytokines CXCL9, IL-12 and IL-15 was dispensable for tumor rejection, whereas IFN responses were necessary, including cDC1-intrinsic signalling by STAT1 and IFN-γ but not type I IFN (IFN-I). cDC1 and IFNs promoted CD4+ and CD8+ T-cell infiltration, terminal differentiation and effector functions. In breast cancer patients, high intratumor expression of genes specific to cDC1, CTLs, CD4+ T cells or IFN responses is associated with a better prognosis. CONCLUSION Interferons and cDC1 are critical for breast cancer immunosurveillance. IFN-γ plays a prominent role over IFN-I in licensing cDC1 for efficient T-cell activation.
Collapse
Affiliation(s)
- Raphaël Mattiuz
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
- Present address:
The Precision Immunology Institute and Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Carine Brousse
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Marc Ambrosini
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Jean‐Charles Cancel
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Gilles Bessou
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Julie Mussard
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Amélien Sanlaville
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Christophe Caux
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Nathalie Bendriss‐Vermare
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Jenny Valladeau‐Guilemond
- INSERM 1052CNRS 5286Centre Léon BérardCancer Research Center of LyonUniv LyonUniversité Claude Bernard Lyon 1LyonFrance
| | - Marc Dalod
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| | - Karine Crozat
- Centre d'Immunologie de Marseille‐LuminyTuring Center for Living SystemsCNRSINSERMAix Marseille UnivMarseilleFrance
| |
Collapse
|
330
|
Ghislat G, Cheema AS, Baudoin E, Verthuy C, Ballester PJ, Crozat K, Attaf N, Dong C, Milpied P, Malissen B, Auphan-Anezin N, Manh TPV, Dalod M, Lawrence T. NF-κB-dependent IRF1 activation programs cDC1 dendritic cells to drive antitumor immunity. Sci Immunol 2021; 6:6/61/eabg3570. [PMID: 34244313 DOI: 10.1126/sciimmunol.abg3570] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/02/2021] [Indexed: 11/02/2022]
Abstract
Conventional type 1 dendritic cells (cDC1s) are critical for antitumor immunity. They acquire antigens from dying tumor cells and cross-present them to CD8+ T cells, promoting the expansion of tumor-specific cytotoxic T cells. However, the signaling pathways that govern the antitumor functions of cDC1s in immunogenic tumors are poorly understood. Using single-cell transcriptomics to examine the molecular pathways regulating intratumoral cDC1 maturation, we found nuclear factor κB (NF-κB) and interferon (IFN) pathways to be highly enriched in a subset of functionally mature cDC1s. We identified an NF-κB-dependent and IFN-γ-regulated gene network in cDC1s, including cytokines and chemokines specialized in the recruitment and activation of cytotoxic T cells. By mapping the trajectory of intratumoral cDC1 maturation, we demonstrated the dynamic reprogramming of tumor-infiltrating cDC1s by NF-κB and IFN signaling pathways. This maturation process was perturbed by specific inactivation of either NF-κB or IFN regulatory factor 1 (IRF1) in cDC1s, resulting in impaired expression of IFN-γ-responsive genes and consequently a failure to efficiently recruit and activate antitumoral CD8+ T cells. Last, we demonstrate the relevance of these findings to patients with melanoma, showing that activation of the NF-κB/IRF1 axis in association with cDC1s is linked with improved clinical outcome. The NF-κB/IRF1 axis in cDC1s may therefore represent an important focal point for the development of new diagnostic and therapeutic approaches to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Ghita Ghislat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Ammar S Cheema
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Elodie Baudoin
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Christophe Verthuy
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Pedro J Ballester
- Cancer Research Center of Marseille CRCM, INSERM, Institut Paoli-Calmettes, Aix-Marseille University, CNRS, 13009 Marseille, France
| | - Karine Crozat
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Noudjoud Attaf
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Chuang Dong
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Pierre Milpied
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Bernard Malissen
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Nathalie Auphan-Anezin
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Thien P Vu Manh
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Marc Dalod
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France
| | - Toby Lawrence
- CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), Turing Center for Living Systems, Aix-Marseille University, 13009 Marseille, France. .,Centre for Inflammation Biology and Cancer Immunology, Cancer Research UK King's Health Partners Centre, School of Immunology and Microbial Sciences, King's College London, London SE1 1UL, UK.,Henan Key Laboratory of Immunology and Targeted Therapy, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
331
|
Leclair L, Depil S. [CD4 + T Lymphocytes: major players in antitumor immune response]. Med Sci (Paris) 2021; 37:671-673. [PMID: 34180830 DOI: 10.1051/medsci/2021075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cette année encore, dans le cadre d’un partenariat avec médecine/sciences, les étudiants de l’unité d’enseignement « Immunologie, virologie et cancer », dirigée par le Dr Julien Marie, au sein du Master Cancer (Université Lyon 1/VetAgroSup), présentent une analyse d’articles scientifiques récents faisant état d’observations innovantes et importantes. Ce travail de M1 a été encadré par des chercheurs immunologistes et virologistes du Centre de Recherche en Cancérologie de Lyon. Le master de cancérologie de Lyon est une formation dite d’excellence, qui accueille chaque année 30 à 40 étudiants en M1 et en M2. Ce master assure aux étudiants de M1 une formation à la cancérologie reposant sur un socle de base commun. En M2, les étudiants peuvent choisir l’une des trois spécialités suivantes : « Recherche en cancérologie », « Technologie haut débit en cancérologie » ou « Innovations thérapeutiques en cancérologie ». Créé en 2013, le Master de cancérologie de Lyon repose sur une forte implication des chercheurs et enseignants-chercheurs du laboratoire d’excellence (LabEx DEV2CAN), ainsi que sur un partenariat solide avec des laboratoires académiques situés à Oxford, Bruxelles, Tokyo, Boston, New York, San Diego, etc.
Collapse
Affiliation(s)
- Lucie Leclair
- Master Cancer ISPB, Université Claude Bernard Lyon 1, Lyon, France
| | - Stéphane Depil
- Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
332
|
The formation of pre-effectors in the steady state opens a new perspective for cancer immunosurveillance. Oncotarget 2021; 12:1318-1320. [PMID: 34194629 PMCID: PMC8238249 DOI: 10.18632/oncotarget.27967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Indexed: 11/25/2022] Open
|
333
|
Li N, Steiger S, Fei L, Li C, Shi C, Salei N, Schraml BU, Zheng Z, Anders HJ, Lichtnekert J. IRF8-Dependent Type I Conventional Dendritic Cells (cDC1s) Control Post-Ischemic Inflammation and Mildly Protect Against Post-Ischemic Acute Kidney Injury and Disease. Front Immunol 2021; 12:685559. [PMID: 34234783 PMCID: PMC8255684 DOI: 10.3389/fimmu.2021.685559] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Post-ischemic acute kidney injury and disease (AKI/AKD) involve acute tubular necrosis and irreversible nephron loss. Mononuclear phagocytes including conventional dendritic cells (cDCs) are present during different phases of injury and repair, but the functional contribution of this subset remains controversial. Transcription factor interferon regulatory factor 8 (IRF8) is required for the development of type I conventional dendritic cells (cDC1s) lineage and helps to define distinct cDC1 subsets. We identified one distinct subset among mononuclear phagocyte subsets according to the expression patterns of CD11b and CD11c in healthy kidney and lymphoid organs, of which IRF8 was significantly expressed in the CD11blowCD11chigh subset that mainly comprised cDC1s. Next, we applied a Irf8-deficient mouse line (Irf8fl/flClec9acre mice) to specifically target Clec9a-expressing cDC1s in vivo. During post-ischemic AKI/AKD, these mice lacked cDC1s in the kidney without affecting cDC2s. The absence of cDC1s mildly aggravated the loss of living primary tubule and decline of kidney function, which was associated with decreased anti-inflammatory Tregs-related immune responses, but increased T helper type 1 (TH1)-related and pro-inflammatory cytokines, infiltrating neutrophils and acute tubular cell death, while we also observed a reduced number of cytotoxic CD8+ T cells in the kidney when cDC1s were absent. Together, our data show that IRF8 is indispensable for kidney cDC1s. Kidney cDC1s mildly protect against post-ischemic AKI/AKD, probably via suppressing tissue inflammation and damage, which implies an immunoregulatory role for cDC1s.
Collapse
Affiliation(s)
- Na Li
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China.,Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Stefanie Steiger
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lingyan Fei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China
| | - Chenyu Li
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Chongxu Shi
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Natallia Salei
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Barbara U Schraml
- Walter-Brendel-Centre of Experimental Medicine, University Hospital, LMU Munich, Munich, Germany.,Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Zhihua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shen Zhen, China
| | - Hans-Joachim Anders
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Julia Lichtnekert
- Division of Nephrology, Department of Medicine IV, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| |
Collapse
|
334
|
Diamond MS, Lin JH, Vonderheide RH. Site-Dependent Immune Escape Due to Impaired Dendritic Cell Cross-Priming. Cancer Immunol Res 2021; 9:877-890. [PMID: 34145076 DOI: 10.1158/2326-6066.cir-20-0785] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/07/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022]
Abstract
T-cell recognition of tumor neoantigens is critical for cancer immune surveillance and the efficacy of immunotherapy. Tumors can evade host immunity by altering their antigenicity or orchestrating an immunosuppressive microenvironment, leading to outgrowth of poorly immunogenic tumors through the well-established process of cancer immunoediting. Whether cancer immune surveillance and immunoediting depend on the tissue site of origin, however, is poorly understood. Herein, we studied T-cell-mediated surveillance of antigenic, clonal murine pancreatic adenocarcinoma cells expressing neoantigen. Whereas such tumors are robustly eliminated after subcutaneous or intravenous challenge, we observed selective immune escape within the pancreas and peritoneum. Tumor outgrowth occurred in the absence of immunoediting, and antitumor immunity could not be rescued by PD-1 or CTLA-4 checkpoint blockade. Instead, tumor escape was associated with diminished CD8+ T-cell priming by type I conventional dendritic cells (cDC1). Enhancing cDC1 cross-presentation by CD40 agonist treatment restored immunologic control by promoting T-cell priming and broadening T-cell responses through epitope spread. These findings demonstrate that immune escape of highly antigenic tumors can occur without immunoediting in a tissue-restricted manner and highlight barriers to cDC1-mediated T-cell priming imposed by certain microenvironments that must be addressed for successful combination immunotherapies.
Collapse
Affiliation(s)
- Mark S Diamond
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jeffrey H Lin
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania.,Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert H Vonderheide
- Division of Hematology Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania. .,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
335
|
Garris CS, Wong JL, Ravetch JV, Knorr DA. Dendritic cell targeting with Fc-enhanced CD40 antibody agonists induces durable antitumor immunity in humanized mouse models of bladder cancer. Sci Transl Med 2021; 13:eabd1346. [PMID: 34011627 PMCID: PMC8325152 DOI: 10.1126/scitranslmed.abd1346] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/12/2020] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Intravesical immunotherapy using Bacille Calmette-Guérin (BCG) attenuated bacteria delivered transurethrally to the bladder has been the standard of care for patients with high-risk non-muscle-invasive bladder cancer (NMIBC) for several decades. BCG therapy continues to be limited by high rates of disease recurrence and progression, and patients with BCG-unresponsive disease have few effective salvage therapy options besides radical cystectomy, highlighting a need for new therapies. We report that the immune-stimulatory receptor CD40 is highly expressed on dendritic cells (DCs) within the bladder tumor microenvironment of orthotopic bladder cancer mouse models, recapitulating CD40 expression by DCs found in human disease. We demonstrate that local CD40 agonism in mice with orthotopic bladder cancer through intravesical delivery of anti-CD40 agonist antibodies drives potent antitumor immunity and induces pharmacodynamic effects in the bladder tumor microenvironment, including a reduction in CD8+ T cells with an exhausted phenotype. We further show that type 1 conventional DCs (cDC1) and CD8+ T cells are required for both bladder cancer immune surveillance and anti-CD40 agonist antibody responses. Using orthotopic murine models humanized for CD40 and Fcγ receptors, we demonstrate that intravesical treatment with a fully human, Fc-enhanced anti-CD40 agonist antibody (2141-V11) induces robust antitumor activity in both treatment-naïve and treatment-refractory settings, driving long-term systemic antitumor immunity with no evidence of systemic toxicity. These findings support targeting CD40-expressing DCs in the bladder cancer microenvironment through an intravesical agonistic antibody approach for the treatment of NMIBC.
Collapse
Affiliation(s)
- Christopher S Garris
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
| | - Jeffrey L Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
336
|
Altered ratio of dendritic cell subsets in skin-draining lymph nodes promotes Th2-driven contact hypersensitivity. Proc Natl Acad Sci U S A 2021; 118:2021364118. [PMID: 33431694 DOI: 10.1073/pnas.2021364118] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.
Collapse
|
337
|
Impact of Immunotherapy on CD4 T Cell Phenotypes and Function in Cancer. Vaccines (Basel) 2021; 9:vaccines9050454. [PMID: 34064410 PMCID: PMC8147771 DOI: 10.3390/vaccines9050454] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/29/2021] [Accepted: 05/02/2021] [Indexed: 12/29/2022] Open
Abstract
Immunotherapy has become a standard treatment in many cancers and it is based on three main therapeutic axes: immune checkpoint blockade (ICB), vaccination and adoptive cell transfer (ACT). If originally these therapies mainly focused on exploiting CD8 T cells given their role in the direct elimination of tumor cells, increasing evidence highlights the crucial role CD4 T cells play in the antitumor immune response. Indeed, these cells can profoundly modulate the tumor microenvironment (TME) by secreting different types of cytokine or by directly eliminating cancer cells. In this review, we describe how different CD4 T cell subsets can contribute to tumor immune responses during immunotherapy and the novel high-throughput immune monitoring tools that are expected to facilitate the study of CD4 T cells, at antigen-specific and single cell level, thus accelerating bench-to-bed translational research in cancer.
Collapse
|
338
|
Abstract
Tumor metastasis is a singularly important determinant of survival in most cancers. Historically, radiation therapy (RT) directed at a primary tumor mass was associated infrequently with remission of metastasis outside the field of irradiation. This away-from-target or "abscopal effect" received fringe attention because of its rarity. With the advent of immunotherapy, there are now increasing reports of abscopal effects upon RT in combination with immune checkpoint inhibition. This sparked investigation into underlying mechanisms and clinical trials aimed at enhancement of this effect. While these studies clearly attribute the abscopal effect to an antitumor immune response, the initial molecular triggers for its onset and specificity remain enigmatic. Here, we propose that DNA damage-induced inflammation coupled with neoantigen generation is essential during this intriguing phenomenon of systemic tumor regression and discuss the implications of this model for treatment aimed at triggering the abscopal effect in metastatic cancer.
Collapse
|
339
|
Basu A, Ramamoorthi G, Albert G, Gallen C, Beyer A, Snyder C, Koski G, Disis ML, Czerniecki BJ, Kodumudi K. Differentiation and Regulation of T H Cells: A Balancing Act for Cancer Immunotherapy. Front Immunol 2021; 12:669474. [PMID: 34012451 PMCID: PMC8126720 DOI: 10.3389/fimmu.2021.669474] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022] Open
Abstract
Current success of immunotherapy in cancer has drawn attention to the subsets of TH cells in the tumor which are critical for activation of anti-tumor response either directly by themselves or by stimulating cytotoxic T cell activity. However, presence of immunosuppressive pro-tumorigenic TH subsets in the tumor milieu further contributes to the complexity of regulation of TH cell-mediated immune response. In this review, we present an overview of the multifaceted positive and negative effects of TH cells, with an emphasis on regulation of different TH cell subtypes by various immune cells, and how a delicate balance of contradictory signals can influence overall success of cancer immunotherapy. We focus on the regulatory network that encompasses dendritic cell-induced activation of CD4+ TH1 cells and subsequent priming of CD8+ cytotoxic T cells, along with intersecting anti-inflammatory and pro-tumorigenic TH2 cell activity. We further discuss how other tumor infiltrating immune cells such as immunostimulatory TH9 and Tfh cells, immunosuppressive Treg cells, and the duality of TH17 function contribute to tip the balance of anti- vs pro-tumorigenic TH responses in the tumor. We highlight the developing knowledge of CD4+ TH1 immune response against neoantigens/oncodrivers, impact of current immunotherapy strategies on CD4+ TH1 immunity, and how opposing action of TH cell subtypes can be explored further to amplify immunotherapy success in patients. Understanding the nuances of CD4+ TH cells regulation and the molecular framework undergirding the balancing act between anti- vs pro-tumorigenic TH subtypes is critical for rational designing of immunotherapies that can bypass therapeutic escape to maximize the potential of immunotherapy.
Collapse
Affiliation(s)
- Amrita Basu
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | | | - Gabriella Albert
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Corey Gallen
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Amber Beyer
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Colin Snyder
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States
| | - Gary Koski
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Mary L Disis
- UW Medicine Cancer Vaccine Institute, University of Washington, Seattle, WA, United States
| | - Brian J Czerniecki
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Oncological Sciences, University of South Florida, Tampa, FL, United States.,Department of Breast Cancer Program, Moffitt Cancer Center, Tampa, FL, United States
| | - Krithika Kodumudi
- Clinical Science Division, Moffitt Cancer Center, Tampa, FL, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
340
|
Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021; 21:298-312. [PMID: 33750922 DOI: 10.1038/s41568-021-00339-z] [Citation(s) in RCA: 808] [Impact Index Per Article: 202.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 01/31/2023]
Abstract
Immune checkpoint blockade, which blocks inhibitory signals of T cell activation, has shown tremendous success in treating cancer, although success still remains limited to a fraction of patients. To date, clinically effective CD8+ T cell responses appear to target predominantly antigens derived from tumour-specific mutations that accumulate in cancer, also called neoantigens. Tumour antigens are displayed on the surface of cells by class I human leukocyte antigens (HLA-I). To elicit an effective antitumour response, antigen presentation has to be successful at two distinct events: first, cancer antigens have to be taken up by dendritic cells (DCs) and cross-presented for CD8+ T cell priming. Second, the antigens have to be directly presented by the tumour for recognition by primed CD8+ T cells and killing. Tumours exploit multiple escape mechanisms to evade immune recognition at both of these steps. Here, we review the tumour-derived factors modulating DC function, and we summarize evidence of immune evasion by means of quantitative modulation or qualitative alteration of the antigen repertoire presented on tumours. These mechanisms include modulation of antigen expression, HLA-I surface levels, alterations in the antigen processing and presentation machinery in tumour cells. Lastly, as complete abrogation of antigen presentation can lead to natural killer (NK) cell-mediated tumour killing, we also discuss how tumours can harbour antigen presentation defects and still evade NK cell recognition.
Collapse
|
341
|
Blair TC, Alice AF, Zebertavage L, Crittenden MR, Gough MJ. The Dynamic Entropy of Tumor Immune Infiltrates: The Impact of Recirculation, Antigen-Specific Interactions, and Retention on T Cells in Tumors. Front Oncol 2021; 11:653625. [PMID: 33968757 PMCID: PMC8101411 DOI: 10.3389/fonc.2021.653625] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Analysis of tumor infiltration using conventional methods reveals a snapshot view of lymphocyte interactions with the tumor environment. However, lymphocytes have the unique capacity for continued recirculation, exploring varied tissues for the presence of cognate antigens according to inflammatory triggers and chemokine gradients. We discuss the role of the inflammatory and cellular makeup of the tumor environment, as well as antigen expressed by cancer cells or cross-presented by stromal antigen presenting cells, on recirculation kinetics of T cells. We aim to discuss how current cancer therapies may manipulate lymphocyte recirculation versus retention to impact lymphocyte exclusion in the tumor.
Collapse
Affiliation(s)
- Tiffany C Blair
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Alejandro F Alice
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Lauren Zebertavage
- Molecular Microbiology and Immunology, Oregon Health and Sciences University (OHSU), Portland, OR, United States.,Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| | - Marka R Crittenden
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States.,The Oregon Clinic, Portland, OR, United States
| | - Michael J Gough
- Earle A. Chiles Research Institute, Providence Cancer Institute, Providence Portland Medical Center, Portland, OR, United States
| |
Collapse
|
342
|
Abstract
CD4 T cell effector subsets not only profoundly affect cancer progression, but recent evidence also underscores their critical contribution to the anticancer efficacy of immune checkpoint inhibitors. In 2012, the two seminal studies suggested the superior antimelanoma activity of TH9 cells over other T cell subsets upon adoptive T cell transfer. While these findings provided great impetus to investigate further the unique functions of TH9 cells and explore their relevance in cancer immunotherapy, the following questions still remain outstanding: are TH9 cell anticancer functions restricted to melanoma? What are the factors favouring TH9 cell effector functions? What is the contribution of TH9 cells to cancer immunotherapy treatments? Can TH9 cells be identified in humans and, if so, what is their clinical relevance? By reviewing the studies addressing these questions, we will discuss how TH9 cells could be therapeutically harnessed for cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Isis Benoit-Lizon
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France; Faculté de Médecine, Université de Bourgogne Franche Comté, Dijon, France; Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
343
|
Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy. Expert Opin Investig Drugs 2021; 30:529-541. [PMID: 33641576 DOI: 10.1080/13543784.2021.1896702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Derived from genetic alterations, cancer neoantigens are proteins with novel amino acid sequences that can be recognized by the immune system. Recent evidence demonstrates that cancer neoantigens represent important targets of cancer immunotherapy. The goal of cancer neoantigen vaccines is to induce neoantigen-specific immune responses and antitumor immunity, while minimizing the potential for autoimmune toxicity. Advances in sequencing technologies, neoantigen prediction ?algorithms,? and other technologies have dramatically improved the ability to identify and prioritize cancer neoantigens. These advances have generated considerable enthusiasm for ?the ?development of neoantigen vaccines. Several neoantigen vaccine platforms are currently being evaluated in early phase clinical trials including the synthetic long peptide (SLP), RNA, dendritic cell (DC), and DNA vaccine platforms. AREAS COVERED In this review, we describe, evaluate the mechanism(s) of action, compare the advantages and disadvantages, and summarize early clinical experience with each vaccine platform. We provide perspectives on the future directions of the neoantigen vaccine field. All data are derived from PubMed and ClinicalTrials search updated in October 2020. EXPERT OPINION Although the initial clinical experience is promising, significant challenges to the success of neoantigen vaccines include limitations in neoantigen identification and the need to successfully target the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Suangson Supabphol
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, St Louis, MO, USA.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
344
|
Cueto FJ, Sancho D. The Flt3L/Flt3 Axis in Dendritic Cell Biology and Cancer Immunotherapy. Cancers (Basel) 2021; 13:1525. [PMID: 33810248 PMCID: PMC8037622 DOI: 10.3390/cancers13071525] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Dendritic cells (DCs) prime anti-tumor T cell responses in tumor-draining lymph nodes and can restimulate T effector responses in the tumor site. Thus, in addition to unleashing T cell effector activity, current immunotherapies should be directed to boost DC function. Herein, we review the potential function of Flt3L as a tool for cancer immunotherapy. Flt3L is a growth factor that acts in Flt3-expressing multipotent progenitors and common lymphoid progenitors. Despite the broad expression of Flt3 in the hematopoietic progenitors, the main effect of the Flt3/Flt3L axis, revealed by the characterization of mice deficient in these genes, is the generation of conventional DCs (cDCs) and plasmacytoid DCs (pDCs). However, Flt3 signaling through PI3K and mTOR may also affect the function of mature DCs. We recapitulate the use of Flt3L in preclinical studies either as a single agent or in combination with other cancer therapies. We also analyze the use of Flt3L in clinical trials. The strong correlation between type 1 cDC (cDC1) infiltration of human cancers with overall survival in many cancer types suggests the potential use of Flt3L to boost expansion of this DC subset. However, this may need the combination of Flt3L with other immunomodulatory agents to boost cancer immunotherapy.
Collapse
Affiliation(s)
- Francisco J. Cueto
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
345
|
Liang Y, Hannan R, Fu YX. Type I IFN Activating Type I Dendritic Cells for Antitumor Immunity. Clin Cancer Res 2021; 27:3818-3824. [PMID: 33692027 DOI: 10.1158/1078-0432.ccr-20-2564] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors are successful immunotherapy modalities that enhance CD8+ T-cell responses. Although T cells are initially primed in draining lymph nodes, the mechanisms that underlie their reactivation inside the tumor microenvironment are less clear. Recent studies have found that not only is the cross-priming of conventional type 1 dendritic cells (cDC1) required to initiate CD8+ T-cell responses during tumor progression, but it also plays a central role in immunotherapy-mediated reactivation of tumor-specific CD8+ T cells for tumor regression. Moreover, many cancer treatment modalities trigger type I IFN responses, which play critical roles in boosting cDC1 cross-priming and CD8+ T-cell reactivation. Inducing type I IFNs within tumors can overcome innate immune resistance and activate antitumor adaptive immunity. Here, we review recent studies on how type I IFN-cDC1 cross-priming reactivates CD8+ T cells and contributes to tumor control by cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Liang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Raquibul Hannan
- The Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
346
|
Watanabe A, Togi M, Koya T, Taniguchi M, Sakamoto T, Iwabuchi K, Kato T, Shimodaira S. Identification of CD56 dim subpopulation marked with high expression of GZMB/PRF1/PI-9 in CD56 + interferon-α-induced dendritic cells. Genes Cells 2021; 26:313-327. [PMID: 33662167 DOI: 10.1111/gtc.12844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/28/2021] [Indexed: 01/08/2023]
Abstract
As the sentinels of innate and adaptive immune system, dendritic cells (DCs) have been considered to hold a great promise for medical application. Among the diverse types of DCs, monocyte-derived DCs (mo-DCs) generated in vitro have been most commonly employed. We have been improving the culture protocol and devised a protocol to produce mature interferon-α-induced DCs (IFN-DCs), hereinafter called (mat)IFN-DCs. While exploring the relationship between the expression of CD56 and the cytotoxic activity of (mat)IFN-DCs, we unexpectedly found that sorting of (mat)IFN-DCs with CD56 antibody-coated microbeads (MB) resulted in fractionating cells with tumoricidal activity into the flow-through (FT) but not MB-bound fraction. We uncovered that the FT fraction contains cells expressing low but substantial level of CD56. Moreover, those cells express granzyme B (GrB), perforin (PFN), and serpin B9 at high levels. By employing a specific inhibitor of PFN, we confirmed that direct tumoricidal activity relies on the GrB/PFN pathway. We designated subpopulation in FT fraction as CD56dim and that in CD56 positively sorted fraction as CD56bright , respectively. This is the first time, to our knowledge, to identify subpopulations of CD56-positive IFN-DCs with distinct tumoricidal activity which is ascribed to high expression of the components of GrB/PFN pathway.
Collapse
Affiliation(s)
- Asuka Watanabe
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Misa Togi
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Terutsugu Koya
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Makoto Taniguchi
- Division of Genome Damage Response Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Takuya Sakamoto
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Kuniyoshi Iwabuchi
- Division of Genome Damage Response Research, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan.,Department of Biochemistry I, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan
| | - Tomohisa Kato
- Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, School of Medicine, Kanazawa Medical University, Kahoku-gun, Japan.,Division of Stem Cell Medicine, Department of Advanced Medicine, Medical Research Institute, Kanazawa Medical University, Kahoku-gun, Japan
| |
Collapse
|
347
|
Abstract
Dendritic cell (DC) vaccines are a safe and effective means of inducing tumor immune responses, however, a better understanding of DC biology is required in order to realize their full potential. Recent advances in DC biology have identified a crucial role for cDC1 in tumor immune responses, making this DC subset an attractive vaccine target. Human cDC1 exclusively express the C-type-lectin-like receptor, CLEC9A (DNGR-1) that plays an important role in cross-presentation, the process by which effective CD8+ T cell responses are generated. CLEC9A antibodies deliver antigen specifically to cDC1 for the induction of humoral, CD4+ and CD8+ T cell responses and are therefore promising candidates to develop as vaccines for infectious diseases and cancer. The development of human CLEC9A antibodies now facilitates their application as vaccines for cancer immunotherapy. Here we discuss the recent advances in CLEC9A targeting antibodies as vaccines for cancer and their translation to the clinic.
Collapse
Affiliation(s)
- M H Lahoud
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - K J Radford
- Cancer Immunotherapies Laboratory, Mater Research Institute, University of Queensland, Translational Research Institute, Woolloongabba, Brisbane, Australia
| |
Collapse
|
348
|
DeRogatis JM, Viramontes KM, Neubert EN, Tinoco R. PSGL-1 Immune Checkpoint Inhibition for CD4 + T Cell Cancer Immunotherapy. Front Immunol 2021; 12:636238. [PMID: 33708224 PMCID: PMC7940186 DOI: 10.3389/fimmu.2021.636238] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
Immune checkpoint inhibition targeting T cells has shown tremendous promise in the treatment of many cancer types and are now standard therapies for patients. While standard therapies have focused on PD-1 and CTLA-4 blockade, additional immune checkpoints have shown promise in promoting anti-tumor immunity. PSGL-1, primarily known for its role in cellular migration, has also been shown to function as a negative regulator of CD4+ T cells in numerous disease settings including cancer. PSGL-1 is highly expressed on T cells and can engage numerous ligands that impact signaling pathways, which may modulate CD4+ T cell differentiation and function. PSGL-1 engagement in the tumor microenvironment may promote CD4+ T cell exhaustion pathways that favor tumor growth. Here we highlight that blocking the PSGL-1 pathway on CD4+ T cells may represent a new cancer therapy approach to eradicate tumors.
Collapse
Affiliation(s)
| | | | | | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
349
|
Shadbad MA, Hajiasgharzadeh K, Derakhshani A, Silvestris N, Baghbanzadeh A, Racanelli V, Baradaran B. From Melanoma Development to RNA-Modified Dendritic Cell Vaccines: Highlighting the Lessons From the Past. Front Immunol 2021; 12:623639. [PMID: 33692796 PMCID: PMC7937699 DOI: 10.3389/fimmu.2021.623639] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Although melanoma remains the deadliest skin cancer, the current treatment has not resulted in the desired outcomes. Unlike chemotherapy, immunotherapy has provided more tolerable approaches and revolutionized cancer therapy. Although dendritic cell-based vaccines have minor side effects, the undesirable response rates of traditional approaches have posed questions about their clinical translation. The immunosuppressive tumor microenvironment can be the underlying reason for their low response rates. Immune checkpoints and indoleamine 2,3-dioxygenase have been implicated in the induction of immunosuppressive tumor microenvironment. Growing evidence indicates that the mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Protein kinase B (PKB) (PI3K/AKT) pathways, as the main oncogenic pathways of melanoma, can upregulate the tumoral immune checkpoints, like programmed death-ligand 1. This study briefly represents the main oncogenic pathways of melanoma and highlights the cross-talk between these oncogenic pathways with indoleamine 2,3-dioxygenase, tumoral immune checkpoints, and myeloid-derived suppressor cells. Moreover, this study sheds light on a novel tumor antigen on melanoma, which has substantial roles in tumoral immune checkpoints expression, indoleamine 2,3-dioxygenase secretion, and stimulating the oncogenic pathways. Finally, this review collects the lessons from the previous unsuccessful trials and integrates their lessons with new approaches in RNA-modified dendritic cell vaccines. Unlike traditional approaches, the advances in single-cell RNA-sequencing techniques and RNA-modified dendritic cell vaccines along with combined therapy of the immune checkpoint inhibitors, indoleamine 2,3-dioxygenase inhibitor, and RNA-modified dendritic cell-based vaccine can overcome these auto-inductive loops and pave the way for developing robust dendritic cell-based vaccines with the most favorable response rate and the least side effects.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/adverse effects
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/therapeutic use
- Cancer Vaccines/adverse effects
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dendritic Cells/transplantation
- Humans
- Immune Checkpoint Proteins/metabolism
- Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism
- Melanoma/genetics
- Melanoma/immunology
- Melanoma/metabolism
- Melanoma/therapy
- Myeloid-Derived Suppressor Cells/immunology
- Myeloid-Derived Suppressor Cells/metabolism
- RNA, Small Interfering/adverse effects
- RNA, Small Interfering/genetics
- RNA, Small Interfering/immunology
- RNA, Small Interfering/therapeutic use
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Escape
- Tumor Microenvironment
- Vaccines, Synthetic/adverse effects
- Vaccines, Synthetic/therapeutic use
- mRNA Vaccines
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
| | - Nicola Silvestris
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Tumori “Giovanni Paolo II” of Bari, Bari, Italy
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, Aldo Moro University of Bari, Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
350
|
Yuan Z, Lu Y, Wei J, Wu J, Yang J, Cai Z. Abdominal Aortic Aneurysm: Roles of Inflammatory Cells. Front Immunol 2021; 11:609161. [PMID: 33613530 PMCID: PMC7886696 DOI: 10.3389/fimmu.2020.609161] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/14/2022] Open
Abstract
Abdominal aortic aneurysms (AAAs) are local dilations of infrarenal segment of aortas. Molecular mechanisms underlying the pathogenesis of AAA remain not fully clear. However, inflammation has been considered as a central player in the development of AAA. In the past few decades, studies demonstrated a host of inflammatory cells, including T cells, macrophages, dendritic cells, neutrophils, B cells, and mast cells, etc. infiltrating into aortic walls, which implicated their crucial roles. In addition to direct cell contacts and cytokine or protease secretions, special structures like inflammasomes and neutrophil extracellular traps have been investigated to explore their functions in aneurysm formation. The above-mentioned inflammatory cells and associated structures may initiate and promote AAA expansion. Understanding their impacts and interaction networks formation is meaningful to develop new strategies of screening and pharmacological interventions for AAA. In this review, we aim to discuss the roles and mechanisms of these inflammatory cells in AAA pathogenesis.
Collapse
Affiliation(s)
- Zhen Yuan
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Lu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jia Wei
- Department of Urology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Wu
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jin Yang
- Translational Medicine Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.,Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
| | - Zhejun Cai
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Jiaxing Key Laboratory of Cardiac Rehabilitation, Jiaxing, China
| |
Collapse
|