301
|
Supplemental nitric oxide augments satellite cell activity on cultured myofibers from aged mice. Exp Gerontol 2008; 43:1094-101. [DOI: 10.1016/j.exger.2008.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/25/2008] [Accepted: 09/08/2008] [Indexed: 11/21/2022]
|
302
|
PETROVIĆ V, KORAĆ A, BUZADŽIĆ B, VASILIJEVIĆ A, JANKOVIĆ A, MIĆUNOVIĆ K, KORAĆ B. Nitric oxide regulates mitochondrial re-modelling in interscapular brown adipose tissue: ultrastructural and morphometric-stereologic studies. J Microsc 2008; 232:542-8. [DOI: 10.1111/j.1365-2818.2008.02132.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
303
|
Garofalo F, Amelio D, Cerra MC, Tota B, Sidell BD, Pellegrino D. Morphological and physiological study of the cardiac NOS/NO system in the Antarctic (Hb-/Mb-) icefish Chaenocephalus aceratus and in the red-blooded Trematomus bernacchii. Nitric Oxide 2008; 20:69-78. [PMID: 19027084 DOI: 10.1016/j.niox.2008.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 10/08/2008] [Accepted: 10/22/2008] [Indexed: 02/06/2023]
Abstract
The nitric oxide synthase (NOS)/nitric oxide (NO) system integrates cellular biochemical machinery and energetics. In heart microenvironment, dynamic NO behaviour depends upon the presence of superoxide anions, haemoglobin (Hb), and myoglobin (Mb), being hemoproteins are major players disarming NO bioactivity. The Antarctic icefish, which lack Hb and, in some species, also cardiac Mb, represent a unique model for exploring Hb and Mb impact on NOS/NO function. We report in the (Hb(-)/Mb(-)) icefish Chaenocephalus aceratus the presence of cardiac NOSs activity (NADPH-diaphorase) and endothelial NOS (eNOS)/inducible NOS (iNOS) zonal immuno-localization in the myocardium. eNOS is localized on endocardium and, to a lesser extent, in myocardiocytes, while iNOS is localized exclusively in myocardiocytes. Confronting eNOS and iNOS expression in Trematomus bernacchii (Hb(+)/Mb(+)), C. hamatus (Hb(-)/Mb(+)) and C. aceratus (Hb(-)/Mb(-)) is evident a lower expression in the Mb-less icefish. NO signaling was analyzed using isolated working heart preparations. In T. bernacchii, L-arginine and exogenous (SIN-1) NO donor dose-dependently decreased stroke volume, indicating decreased inotropism. L-arginine-induced inotropism was NOSs-dependent, being abolished by NOSs-inhibitor NG-monomethyl-L-arginine (L-NMMA). A SIN-1-induced negative inotropism was found in presence of SOD. NOS inhibition by L-N5-N-iminoethyl-L-ornithine (L-NIO) and L-NMMA confirmed the NO-mediated negative inotropic influence on cardiac performance. In contrast, in C. aceratus, L-arginine elicited a positive inotropism. SIN-1 induced a negative inotropism, which disappeared in presence of SOD, indicating peroxynitrite involvement. Cardiac performance was unaffected by L-NIO and L-NIL. NO signaling acted via a cGMP-independent mechanism. This high conservation degree of NOS localization pattern and signaling highlights its importance for cardiac biology.
Collapse
Affiliation(s)
- Filippo Garofalo
- Department of Cellular Biology, University of Calabria, 87030 Arcavacata di Rende, CS, Italy
| | | | | | | | | | | |
Collapse
|
304
|
Hall AM, Unwin RJ, Hanna MG, Duchen MR. Renal function and mitochondrial cytopathy (MC): more questions than answers? QJM 2008; 101:755-66. [PMID: 18487272 DOI: 10.1093/qjmed/hcn060] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Our knowledge of mitochondrial biology has advanced significantly in the last 10 years. The effects of mitochondrial dysfunction or cytopathy (MC) on the heart and neuromuscular system are well known, and its involvement in the pathophysiology of several common clinical disorders such as diabetes, hyperlipidaemia and hypertension, is just beginning to emerge; however, its contribution to renal disease has received much less attention, and the available literature raises some interesting questions: Why do children with MC commonly present with a renal phenotype that is often quite different from adults? How does a mutation in mitochondrial DNA (mtDNA) lead to disease at the cellular level, and how can a single mtDNA point mutation result in such a variety of renal- and non-renal phenotypes in isolation or combined? Why are some regions of the nephron seemingly more sensitive to mitochondrial dysfunction and damage by mitochondrial toxins? Perhaps most important of all, what can be done to diagnose and treat MC, now and in the future? In this review we summarize our current understanding of the relationship between mitochondrial biology, renal physiology and clinical nephrology, in an attempt to try to answer some of these questions. Although MC is usually considered a rare defect, it is almost certainly under-diagnosed. A greater awareness and understanding of kidney involvement in MC might lead to new treatment strategies for diseases in which mitochondrial dysfunction is secondary to toxic or ischaemic injury, rather than to an underlying genetic mutation.
Collapse
Affiliation(s)
- A M Hall
- Department of Physiology, University College London, London, UK.
| | | | | | | |
Collapse
|
305
|
McConell GK, Wadley GD. Potential role of nitric oxide in contraction-stimulated glucose uptake and mitochondrial biogenesis in skeletal muscle. Clin Exp Pharmacol Physiol 2008; 35:1488-92. [PMID: 18759853 DOI: 10.1111/j.1440-1681.2008.05038.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
1. The present review discusses the potential role of nitric oxide (NO) in the: (i) regulation of skeletal muscle glucose uptake during exercise; and (ii) activation of mitochondrial biogenesis after exercise. 2. We have shown in humans that local infusion of an NO synthase inhibitor during exercise attenuates increases in skeletal muscle glucose uptake without affecting blood flow. Recent studies from our laboratory in rodents support these findings in humans, although rodent studies from other laboratories have yielded conflicting results. 3. There is clear evidence that NO increases mitochondrial biogenesis in non-contracting cells and that NO influences basal skeletal muscle mitochondrial biogenesis. However, there have been few studies examining the potential role of NO in the activation of mitochondrial biogenesis following an acute bout of exercise or in response to exercise training. Early indications are that NO is not involved in regulating the increase in mitochondrial biogenesis that occurs in response to exercise. 4. Exercise is considered the best prevention and treatment option for diabetes, but unfortunately many people with diabetes do not or cannot exercise regularly. Alternative therapies are therefore critical to effectively manage diabetes. If skeletal muscle NO is found to play an important role in regulating glucose uptake and/or mitochondrial biogenesis, pharmaceutical agents designed to mimic these effects of exercise may improve glycaemic control.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, The University of Melbourne, Melbourne, Victoria, Australia.
| | | |
Collapse
|
306
|
Yin W, Signore AP, Iwai M, Cao G, Gao Y, Chen J. Rapidly increased neuronal mitochondrial biogenesis after hypoxic-ischemic brain injury. Stroke 2008; 39:3057-63. [PMID: 18723421 DOI: 10.1161/strokeaha.108.520114] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND PURPOSE Mitochondrial biogenesis is regulated through the coordinated actions of both nuclear and mitochondrial genomes to ensure that the organelles are replenished on a regular basis. This highly regulated process has been well defined in skeletal and heart muscle, but its role in neuronal cells, particularly when under stress or injury, is not well understood. In this study, we report for the first time rapidly increased mitochondrial biogenesis in a rat model of neonatal hypoxic/ischemic brain injury (H-I). METHODS Postnatal day 7 rats were subjected to H-I induced by unilateral carotid artery ligation followed by 2.5 hours of hypoxia. The relative amount of brain mitochondrial DNA (mtDNA) was measured semiquantitatively using long fragment PCR at various time points after H-I. HSP60 and COXIV proteins were detected by Western blot. Expression of three genes critical for the transcriptional regulation of mitochondrial biogenesis, peroxisome proliferator-activated receptor coactivator-1 (PGC-1), nuclear respiratory factor-1 (NRF-1), and mitochondrial transcription factor A (TFAM), were examined by Western blot and RT-PCR. RESULTS Brain mtDNA content was markedly increased 6 hours after H-I, and continued to increase up to 24 hours after H-I. Paralleling the temporal change in mtDNA content, mitochondrial number and proteins HSP60 and COXIV, and citrate synthase activity were increased in neurons in the cortical infarct border zone after H-I. Moreover, cortical expression of NRF-1 and TFAM were increased 6 to 24 hours after H-I, whereas PGC-1 was not changed. CONCLUSIONS Neonatal H-I brain injury rapidly induces mitochondrial biogenesis, which may constitute a novel component of the endogenous repair mechanisms of the brain.
Collapse
Affiliation(s)
- Wei Yin
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
307
|
Urschel MR, O'Brien KM. High mitochondrial densities in the hearts of Antarctic icefishes are maintained by an increase in mitochondrial size rather than mitochondrial biogenesis. J Exp Biol 2008; 211:2638-46. [DOI: 10.1242/jeb.018598] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SUMMARY
We investigated the molecular mechanisms regulating differences in mitochondrial volume density between heart ventricles of Antarctic notothenioids that vary in the expression of hemoglobin (Hb) and myoglobin(Mb). In mammals, peroxisome proliferator-activated receptor γcoactivator-1α (PGC-1α) and nuclear respiratory factor 1 (NRF-1)stimulate mitochondrial biogenesis and maintain mitochondrial density in muscle tissues. We hypothesized that these factors would also maintain mitochondrial density in the hearts of Antarctic notothenioids. The percent cell volume occupied by mitochondria is significantly lower in hearts of the red-blooded notothenioid Notothenia coriiceps (18.18±0.69%) in comparison with those of the icefish Chaenocephalus aceratus(36.53±2.07%), which lacks both Hb and cardiac Mb. Mitochondrial densities are not different between hearts of N. coriiceps and Chionodraco rastrospinosus, which lacks Hb, but whose heart expresses Mb. Despite differences in mitochondrial volume density between hearts of N. coriiceps and C. aceratus, the levels of transcripts of the genes encoding PGC-1α, NRF-1 and citrate synthase, and the copy number of mitochondrial DNA do not differ. Our results indicate that the high mitochondrial densities in hearts of C. aceratus may result from an increase in organelle size. The surface-to-volume ratio of mitochondria from N. coriiceps is 1.9-fold greater than that of mitochondria from C. aceratus. In addition, the levels of PGC-1α correlate with mitochondrial density in muscle tissues of notothenioids possessing mitochondria of similar size and morphology. Finally, the levels of PGC-1α are 4.6-fold higher in the aerobic pectoral adductor muscle in comparison with the glycolytic skeletal muscle of N. coriiceps. The potential physiological significance of an increase in mitochondrial size in hearts of Antarctic icefishes is discussed.
Collapse
Affiliation(s)
- Matthew R. Urschel
- University of Alaska, Fairbanks, Institute of Arctic Biology, PO Box 757000, Fairbanks, AK 99775, USA
| | - Kristin M. O'Brien
- University of Alaska, Fairbanks, Institute of Arctic Biology, PO Box 757000, Fairbanks, AK 99775, USA
| |
Collapse
|
308
|
de Cavanagh EMV, Flores I, Ferder M, Inserra F, Ferder L. Renin-angiotensin system inhibitors protect against age-related changes in rat liver mitochondrial DNA content and gene expression. Exp Gerontol 2008; 43:919-28. [PMID: 18765277 DOI: 10.1016/j.exger.2008.08.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 07/14/2008] [Accepted: 08/08/2008] [Indexed: 02/07/2023]
Abstract
Chronic renin-angiotensin system inhibition protects against liver fibrosis, ameliorates age-associated mitochondrial dysfunction and increases rodent lifespan. We hypothesized that life-long angiotensin-II-mediated stimulation of oxidant generation might participate in mitochondrial DNA "common deletion" formation, and the resulting impairment of bioenergetic capacity. Enalapril (10 mg/kg/d) or losartan (30 mg/kg/d) administered during 16.5 months were unable to prevent the age-dependent accumulation of rat liver mitochondrial DNA "common deletion", but attenuated the decrease of mitochondrial DNA content. This evidence - together with the enhancement of NRF-1 and PGC-1 mRNA contents - seems to explain why enalapril and losartan improved mitochondrial functioning and lowered oxidant production, since both the absolute number of mtDNA molecules and increased NRF-1 and PGC-1 transcription are positively related to mitochondrial respiratory capacity, and PGC-1 protects against increases in ROS production and damage. Oxidative stress evoked by abnormal respiratory function contributes to the pathophysiology of mitochondrial disease and human aging. If the present mitochondrial actions of renin-angiotensin system inhibitors are confirmed in humans they may modify the therapeutic significance of that strategy.
Collapse
Affiliation(s)
- Elena M V de Cavanagh
- Institute of Cardiovascular Pathophysiology (INFICA), School of Medicine, University of Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
309
|
Tedesco L, Valerio A, Cervino C, Cardile A, Pagano C, Vettor R, Pasquali R, Carruba MO, Marsicano G, Lutz B, Pagotto U, Nisoli E. Cannabinoid type 1 receptor blockade promotes mitochondrial biogenesis through endothelial nitric oxide synthase expression in white adipocytes. Diabetes 2008; 57:2028-36. [PMID: 18477809 PMCID: PMC2494670 DOI: 10.2337/db07-1623] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 05/07/2008] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Cannabinoid type 1 (CB1) receptor blockade decreases body weight and adiposity in obese subjects; however, the underlying mechanism is not yet fully understood. Nitric oxide (NO) produced by endothelial NO synthase (eNOS) induces mitochondrial biogenesis and function in adipocytes. This study was undertaken to test whether CB1 receptor blockade increases the espression of eNOS and mitochondrial biogenesis in white adipocytes. RESEARCH DESIGN AND METHODS We examined the effects on eNOS and mitochondrial biogenesis of selective pharmacological blockade of CB1 receptors by SR141716 (rimonabant) in mouse primary white adipocytes. We also examined eNOS expression and mitochondrial biogenesis in white adipose tissue (WAT) and isolated mature white adipocytes of CB1 receptor-deficient (CB1(-/-)) and chronically SR141716-treated mice on either a standard or high-fat diet. RESULTS SR141716 treatment increased eNOS expression in cultured white adipocytes. Moreover, SR141716 increased mitochondrial DNA amount, mRNA levels of genes involved in mitochondrial biogenesis, and mitochondrial mass and function through eNOS induction, as demonstrated by reversal of SR141716 effects by small interfering RNA-mediated decrease in eNOS. While high-fat diet-fed wild-type mice showed reduced eNOS expression and mitochondrial biogenesis in WAT and isolated mature white adipocytes, genetic CB1 receptor deletion or chronic treatment with SR141716 restored these parameters to the levels observed in wild-type mice on the standard diet, an effect linked to the prevention of adiposity and body weight increase. CONCLUSIONS CB1 receptor blockade increases mitochondrial biogenesis in white adipocytes by inducing the expression of eNOS. This is linked to the prevention of high-fat diet-induced fat accumulation, without concomitant changes in food intake.
Collapse
MESH Headings
- AMP-Activated Protein Kinases
- Adenosine Triphosphate/metabolism
- Adipocytes, White/cytology
- Adipocytes, White/drug effects
- Adipocytes, White/metabolism
- Animals
- Cells, Cultured
- Citrate (si)-Synthase/metabolism
- DNA, Mitochondrial/genetics
- Dose-Response Relationship, Drug
- Flow Cytometry
- Immunoblotting
- Male
- Mice
- Mice, Inbred C57BL
- Mitochondria/drug effects
- Mitochondria/metabolism
- Multienzyme Complexes/metabolism
- Nitric Oxide Synthase Type III/genetics
- Nitric Oxide Synthase Type III/metabolism
- Phosphorylation/drug effects
- Piperidines/pharmacology
- Protein Serine-Threonine Kinases/metabolism
- Pyrazoles/pharmacology
- RNA, Small Interfering/genetics
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Rimonabant
Collapse
Affiliation(s)
- Laura Tedesco
- Integrated Laboratories Network, Center for Study and Research on Obesity, Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
310
|
Keator CS, Schreiber DT, Hoagland TA, McCracken JA. Luteotrophic and luteolytic effects of nitric oxide in sheep are dose-dependent in vivo. Domest Anim Endocrinol 2008; 35:74-80. [PMID: 18448306 DOI: 10.1016/j.domaniend.2008.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/15/2008] [Accepted: 02/12/2008] [Indexed: 11/23/2022]
Abstract
It has been suggested that nitric oxide (NO) acts in either an anti-luteolytic or in a luteolytic manner, but the mechanism for these opposing roles is unclear. We hypothesized that NO may act in a dose-dependent manner to regulate luteal function, whereby low concentrations of NO might stimulate luteal progesterone production (i.e. luteotrophic) and high concentrations of NO might reduce concentrations of plasma progesterone (i.e. luteolytic). To test this hypothesis we infused increasing concentrations of the fast-acting NO donor, dipropylenetriamine NONOate (DPTA), into the arterial supply of sheep with ovarian transplants bearing a corpus luteum (CL). Infusions were performed on sheep with CL 11 days of age (n=9) or over 30 days of age (n=15). We measured changes in the concentration of progesterone in ovarian venous plasma during the 1-h infusion and for 24h after the infusion, and then compared the mean concentration of progesterone between treatment groups for effects by dose and dose by period interactions. Compared with saline-treated controls (n=6), the highest dose of 1000 microg/min DPTA (n=6) reduced (P<or=0.05) the mean concentration of progesterone after the infusion. In sheep bearing a CL over 30 days of age, the 10 microg/min DPTA dose (n=3) markedly increased (P<or=0.05) the mean concentration of progesterone both during and after the infusion, whereas the 100 microg/min DPTA dose (n=3) increased (P<or=0.05) the mean concentration of progesterone only during the 1-h infusion. The mean concentration of progesterone was not different (P>0.05) in sheep infused with the lowest dose of 1 microg/min DPTA (n=6) compared with controls. We conclude that NO regulates luteal function in a dose-dependent manner in sheep in vivo.
Collapse
Affiliation(s)
- Christopher S Keator
- Department of Animal Science, University of Connecticut, 3636 Horsebarn Hill Road Extension, Storrs, CT 06269-4040, United States.
| | | | | | | |
Collapse
|
311
|
Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008; 88:611-38. [PMID: 18391175 DOI: 10.1152/physrev.00025.2007] [Citation(s) in RCA: 1173] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mitochondria contain their own genetic system and undergo a unique mode of cytoplasmic inheritance. Each organelle has multiple copies of a covalently closed circular DNA genome (mtDNA). The entire protein coding capacity of mtDNA is devoted to the synthesis of 13 essential subunits of the inner membrane complexes of the respiratory apparatus. Thus the majority of respiratory proteins and all of the other gene products necessary for the myriad mitochondrial functions are derived from nuclear genes. Transcription of mtDNA requires a small number of nucleus-encoded proteins including a single RNA polymerase (POLRMT), auxiliary factors necessary for promoter recognition (TFB1M, TFB2M) and activation (Tfam), and a termination factor (mTERF). This relatively simple system can account for the bidirectional transcription of mtDNA from divergent promoters and key termination events controlling the rRNA/mRNA ratio. Nucleomitochondrial interactions depend on the interplay between transcription factors (NRF-1, NRF-2, PPARalpha, ERRalpha, Sp1, and others) and members of the PGC-1 family of regulated coactivators (PGC-1alpha, PGC-1beta, and PRC). The transcription factors target genes that specify the respiratory chain, the mitochondrial transcription, translation and replication machinery, and protein import and assembly apparatus among others. These factors are in turn activated directly or indirectly by PGC-1 family coactivators whose differential expression is controlled by an array of environmental signals including temperature, energy deprivation, and availability of nutrients and growth factors. These transcriptional paradigms provide a basic framework for understanding the integration of mitochondrial biogenesis and function with signaling events that dictate cell- and tissue-specific energetic properties.
Collapse
Affiliation(s)
- Richard C Scarpulla
- Department of Cell and Molecular Biology, Northwestern Medical School, Chicago, Illinois 60611, USA
| |
Collapse
|
312
|
Wright GL, Maroulakou IG, Eldridge J, Liby TL, Sridharan V, Tsichlis PN, Muise-Helmericks RC. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB J 2008; 22:3264-75. [PMID: 18524868 DOI: 10.1096/fj.08-106468] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear-encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed in ECs and has uncovered a discrete role for Akt3 in the control of mitochondrial biogenesis. Silencing of Akt3, but not Akt1, results in a decrease in mitochondrial gene expression and mtDNA content. Nuclear-encoded mitochondrial gene transcripts are also found to decrease when Akt3 expression is silenced. Concurrent with these changes in mitochondrial gene expression, lower O(2) consumption was observed. VEGF stimulation of the major mitochondrial import protein TOM70 is also blocked by Akt3 inhibition. In support of a role for Akt3 in the regulation of mitochondrial biogenesis, Akt3 silencing results in the cytoplasmic accumulation of the master regulator of mitochondrial biogenesis, PGC-1alpha, and a reduction in known PGC-1alpha target genes. Finally, a subtle but significant, abnormal mitochondrial phenotype is observed in the brain tissue of AKT3 knockout mice. These results suggest that Akt3 is important in coordinating mitochondrial biogenesis with growth factor-induced increases in cellular energy demands.
Collapse
Affiliation(s)
- Gary L Wright
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | | | | | | | | | |
Collapse
|
313
|
Abstract
Mitochondria are sources of energy production through their role in producing adenosine triphosphate for cell metabolism. Defective mitochondrial biogenesis and function play relevant roles in the pathophysiology of relevant diseases, including obesity, diabetes mellitus, myopathies, and neurodegenerative diseases. Their function is the product of synthesis of macromolecules within the mitochondria and import of proteins and lipids synthesized outside the organelles. Both are required for mitochondrial proliferation and may also facilitate the growth of preexisting mitochondria. Recent evidence indicates that these events are regulated in a complex way by several agonists and environmental conditions, through activation of specific signaling pathways and transcription factors. Nitric oxide (NO) appears to be a novel modulator of mitochondrial biogenesis. High levels of NO acutely inhibit cell respiration by binding to cytochrome c oxidase. Conversely, chronic, low-grade increases of NO stimulate mitochondrial biogenesis in diverse cell types. Here, we suggest that some types of nutrients, including specific mixtures of amino acids, may improve mitochondrial biogenesis and energy production in energy-defective conditions by increasing endothelial NO synthase expression.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, University of Milan, Milan, Italy.
| | | | | |
Collapse
|
314
|
|
315
|
Fu X, Wan S, Lyu YL, Liu LF, Qi H. Etoposide induces ATM-dependent mitochondrial biogenesis through AMPK activation. PLoS One 2008; 3:e2009. [PMID: 18431490 PMCID: PMC2329593 DOI: 10.1371/journal.pone.0002009] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Accepted: 03/09/2008] [Indexed: 12/12/2022] Open
Abstract
Background DNA damage such as double-stranded DNA breaks (DSBs) has been reported to stimulate mitochondrial biogenesis. However, the underlying mechanism is poorly understood. The major player in response to DSBs is ATM (ataxia telangiectasia mutated). Upon sensing DSBs, ATM is activated through autophosphorylation and phosphorylates a number of substrates for DNA repair, cell cycle regulation and apoptosis. ATM has been reported to phosphorylate the α subunit of AMP-activated protein kinase (AMPK), which senses AMP/ATP ratio in cells, and can be activated by upstream kinases. Here we provide evidence for a novel role of ATM in mitochondrial biogenesis through AMPK activation in response to etoposide-induced DNA damage. Methodology/Principal Findings Three pairs of human ATM+ and ATM- cells were employed. Cells treated with etoposide exhibited an ATM-dependent increase in mitochondrial mass as measured by 10-N-Nonyl-Acridine Orange and MitoTracker Green FM staining, as well as an increase in mitochondrial DNA content. In addition, the expression of several known mitochondrial biogenesis regulators such as the major mitochondrial transcription factor NRF-1, PGC-1α and TFAM was also elevated in response to etoposide treatment as monitored by RT-PCR. Three pieces of evidence suggest that etoposide-induced mitochondrial biogenesis is due to ATM-dependent activation of AMPK. First, etoposide induced ATM-dependent phosphorylation of AMPK α subunit at Thr172, indicative of AMPK activation. Second, inhibition of AMPK blocked etoposide-induced mitochondrial biogenesis. Third, activation of AMPK by AICAR (an AMP analogue) stimulated mitochondrial biogenesis in an ATM-dependent manner, suggesting that ATM may be an upstream kinase of AMPK in the mitochondrial biogenesis pathway. Conclusions/Significance These results suggest that activation of ATM by etoposide can lead to mitochondrial biogenesis through AMPK activation. We propose that ATM-dependent mitochondrial biogenesis may play a role in DNA damage response and ROS regulation, and that defect in ATM-dependent mitochondrial biogenesis could contribute to the manifestations of A-T disease.
Collapse
Affiliation(s)
- Xuan Fu
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Shan Wan
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Yi Lisa Lyu
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
| | - Leroy F. Liu
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (LL); (HQ)
| | - Haiyan Qi
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey, United States of America
- * To whom correspondence should be addressed. E-mail: (LL); (HQ)
| |
Collapse
|
316
|
Abstract
Insulin resistance is characteristic of obesity, type 2 diabetes, and components of the cardiometabolic syndrome, including hypertension and dyslipidemia, that collectively contribute to a substantial risk for cardiovascular disease. Metabolic actions of insulin in classic insulin target tissues (eg, skeletal muscle, fat, and liver), as well as actions in nonclassic targets (eg, cardiovascular tissue), help to explain why insulin resistance and metabolic dysregulation are central in the pathogenesis of the cardiometabolic syndrome and cardiovascular disease. Glucose and lipid metabolism are largely dependent on mitochondria to generate energy in cells. Thereby, when nutrient oxidation is inefficient, the ratio of ATP production/oxygen consumption is low, leading to an increased production of superoxide anions. Reactive oxygen species formation may have maladaptive consequences that increase the rate of mutagenesis and stimulate proinflammatory processes. In addition to reactive oxygen species formation, genetic factors, aging, and reduced mitochondrial biogenesis all contribute to mitochondrial dysfunction. These factors also contribute to insulin resistance in classic and nonclassic insulin target tissues. Insulin resistance emanating from mitochondrial dysfunction may contribute to metabolic and cardiovascular abnormalities and subsequent increases in cardiovascular disease. Furthermore, interventions that improve mitochondrial function also improve insulin resistance. Collectively, these observations suggest that mitochondrial dysfunction may be a central cause of insulin resistance and associated complications. In this review, we discuss mechanisms of mitochondrial dysfunction related to the pathophysiology of insulin resistance in classic insulin-responsive tissue, as well as cardiovascular tissue.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Internal Medicine, University of Missouri-Columbia School of Medicine, Columbia, Missouri, USA
| | | | | |
Collapse
|
317
|
Drenning JA, Lira VA, Simmons CG, Soltow QA, Sellman JE, Criswell DS. Nitric oxide facilitates NFAT-dependent transcription in mouse myotubes. Am J Physiol Cell Physiol 2008; 294:C1088-95. [PMID: 18272817 DOI: 10.1152/ajpcell.00523.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular calcium transients in skeletal muscle cells initiate phenotypic adaptations via activation of calcineurin and its effector nuclear factor of activated t-cells (NFAT). Furthermore, endogenous production of nitric oxide (NO) via calcium-calmodulin-dependent NO synthase (NOS) is involved in skeletal muscle phenotypic plasticity. Here, we provide evidence that NO enhances calcium-dependent nuclear accumulation and transcriptional activity of NFAT and induces phosphorylation of glycogen synthase kinase-3beta (GSK-3beta) in C2C12 myotubes. The calcium ionophore A23187 (1 microM for 9 h) or thapsigargin (2 microM for 4 h) increased NFAT transcriptional activity by seven- and fourfold, respectively, in myotubes transiently transfected with an NFAT-dependent reporter plasmid (pNFAT-luc, Stratagene). Cotreatment with the NOS-inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME; 5 mM) or the guanylate cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 microM) prevented the calcium effects on NFAT activity. The NO donor diethylenetriamine-NONO (DETA-NO; 10 microM) augmented the effects of A23187 on NFAT-dependent transcription. Similarly, A23187 (0.4 microM for 4 h) caused nuclear accumulation of NFAT and increased phosphorylation (i.e., inactivation) of GSK-3beta, whereas cotreatment with L-NAME or ODQ inhibited these responses. Finally, the NO donor 3-(2-hydroxy-2-nitroso-1-propylhydrazino)-1-propanamine (PAPA-NO; 1 microM for 1 h) increased phosphorylation of GSK-3beta in a manner dependent on guanylate cyclase activity. We conclude that NOS activity mediates calcium-induced phosphorylation of GSK-3beta and activation of NFAT-dependent transcription in myotubes. Furthermore, these effects of NO are guanylate cyclase-dependent.
Collapse
Affiliation(s)
- Jason A Drenning
- Center for Exercise Science, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida 32611, USA
| | | | | | | | | | | |
Collapse
|
318
|
Ungvari Z, Labinskyy N, Gupte S, Chander PN, Edwards JG, Csiszar A. Dysregulation of mitochondrial biogenesis in vascular endothelial and smooth muscle cells of aged rats. Am J Physiol Heart Circ Physiol 2008; 294:H2121-8. [PMID: 18326800 DOI: 10.1152/ajpheart.00012.2008] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondrial biogenesis is involved in the control of cell metabolism, signal transduction, and regulation of mitochondrial reactive oxygen species (ROS) production. Despite the central role of mitochondria in cellular aging and endothelial physiology, there are no studies extant investigating age-related alterations in mitochondrial biogenesis in blood vessels. Electronmicroscopy and confocal microscopy (en face Mitotracker staining) revealed that in aortas of F344 rats, a decline in mitochondrial biogenesis occurs with aging. In aged vessels, the expression of the mitochondrial biogenesis factors (including mitochondrial transcription factor A and peroxisome proliferator-activated receptor-gamma coactivator-1) was decreased. The vascular expression of complex I, III, and IV significantly declined with age, whereas aging did not alter the expression of complex II and V. Cytochrome c oxidase (COX) expression/activity exhibited the greatest age-related decline, which was associated with increased mitochondrial ROS production in the aged vessels. In cultured coronary arterial endothelial cells, a partial knockdown of COX significantly increased mitochondrial ROS production. In conclusion, vascular aging is characterized by a decline in mitochondrial mass in the endothelial cells and an altered expression of components of the mitochondrial electron transport chain likely due to a dysregulation of mitochondrial biogenesis factors. We posit that impaired mitochondrial biogenesis and downregulation of COX may contribute to the increased mitochondrial oxidative stress in aged endothelial cells.
Collapse
Affiliation(s)
- Zoltan Ungvari
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.
| | | | | | | | | | | |
Collapse
|
319
|
Cheng CHC, Detrich HW. Molecular ecophysiology of Antarctic notothenioid fishes. Philos Trans R Soc Lond B Biol Sci 2008; 362:2215-32. [PMID: 17553777 PMCID: PMC2443173 DOI: 10.1098/rstb.2006.1946] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The notothenioid fishes of the Southern Ocean surrounding Antarctica are remarkable examples of organismal adaptation to extreme cold. Their evolution since the mid-Miocene in geographical isolation and a chronically cold marine environment has resulted in extreme stenothermality of the extant species. Given the unique thermal history of the notothenioids, one may ask what traits have been gained, and conversely, what characters have been lost through change in the information content of their genomes. Two dramatic changes that epitomize such evolutionary transformations are the gain of novel antifreeze proteins, which are obligatory for survival in icy seawater, by most notothenioids and the paradoxical loss of respiratory haemoproteins and red blood cells, normally deemed indispensable for vertebrate life, by the species of a highly derived notothenioid family, the icefishes. Here, we review recent advances in our understanding of these traits and their evolution and suggest future avenues of investigation. The formerly coherent paradigm of notothenioid freeze avoidance, developed from three decades of study of antifreeze glycoprotein (AFGP) based cold adaptation, now faces challenges stemming from the recent discovery of antifreeze-deficient, yet freeze-resistant, early notothenioid life stages and from definitive evidence that the liver is not the physiological source of AFGPs in notothenioid blood. The resolution of these intriguing observations is likely to reveal new physiological traits that are unique to the notothenioids. Similarly, the model of AFGP gene evolution from a notothenioid pancreatic trypsinogen-like gene precursor is being expanded and refined based on genome-level analyses of the linked AFGP loci and their ancestral precursors. Finally, the application of comparative genomics to study evolutionary change in the AFGP genotypes of cool-temperate notothenioids from sub-Antarctic habitats, where these genes are not necessary, will contribute to the mechanistic understanding of the dynamics of AFGP gene gain and loss. In humans and most vertebrates, mutations in the alpha- or beta-globin genes or defects in globin chain synthesis are causes of severe genetic disease. Thus, the 16 species of haemoglobinless, erythrocyte-null icefishes are surprising anomalies -- in fact, they could only have evolved and thrived due to relaxed selection pressure for oxygen-binding proteins in the cold, oxygen-rich waters of the Southern Ocean. Fifteen of the sixteen icefish species have lost most of the adult alphabeta-globin locus and retain only a small 3' fragment of the alpha-globin gene. The only exception to this pattern occurs in Neopagetopsis ionah, which possesses a disrupted alphabeta-globin gene complex that probably represents a non-functional intermediate on the evolutionary pathway to near total globin gene extinction. By contrast, six of the icefish species fail to express myoglobin. The absence of myoglobin expression has occurred by several independent mutations and distinct mechanisms. Haemoprotein loss is correlated with dramatic increases in cellular mitochondrial density, heart size, blood volume and capillary bed volume. Evolution of these compensatory traits was probably facilitated by the homeostatic activity of nitric oxide, a key modulator of angiogenesis and mitochondrial biogenesis. These natural knockouts of the red blood cell lineage are an excellent genomic resource for erythroid gene discovery by comparative genomics, as illustrated for the newly described gene, bloodthirsty.
Collapse
Affiliation(s)
- C-H Christina Cheng
- Department of Animal Biology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
320
|
Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-Wolf KE, Piantadosi CA. The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 2008; 117:3730-41. [PMID: 18037988 DOI: 10.1172/jci32967] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 09/26/2007] [Indexed: 11/17/2022] Open
Abstract
The clinical utility of anthracycline anticancer agents, especially doxorubicin, is limited by a progressive toxic cardiomyopathy linked to mitochondrial damage and cardiomyocyte apoptosis. Here we demonstrate that the post-doxorubicin mouse heart fails to upregulate the nuclear program for mitochondrial biogenesis and its associated intrinsic antiapoptosis proteins, leading to severe mitochondrial DNA (mtDNA) depletion, sarcomere destruction, apoptosis, necrosis, and excessive wall stress and fibrosis. Furthermore, we exploited recent evidence that mitochondrial biogenesis is regulated by the CO/heme oxygenase (CO/HO) system to ameliorate doxorubicin cardiomyopathy in mice. We found that the myocardial pathology was averted by periodic CO inhalation, which restored mitochondrial biogenesis and circumvented intrinsic apoptosis through caspase-3 and apoptosis-inducing factor. Moreover, CO simultaneously reversed doxorubicin-induced loss of DNA binding by GATA-4 and restored critical sarcomeric proteins. In isolated rat cardiac cells, HO-1 enzyme overexpression prevented doxorubicin-induced mtDNA depletion and apoptosis via activation of Akt1/PKB and guanylate cyclase, while HO-1 gene silencing exacerbated doxorubicin-induced mtDNA depletion and apoptosis. Thus doxorubicin disrupts cardiac mitochondrial biogenesis, which promotes intrinsic apoptosis, while CO/HO promotes mitochondrial biogenesis and opposes apoptosis, forestalling fibrosis and cardiomyopathy. These findings imply that the therapeutic index of anthracycline cancer chemotherapeutics can be improved by the protection of cardiac mitochondrial biogenesis.
Collapse
Affiliation(s)
- Hagir B Suliman
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
321
|
Wadley GD, Choate J, McConell GK. Reply from G. D. Wadley, J. Choate and G. K. McConell. J Physiol 2008; 586:915-916. [PMCID: PMC2375613 DOI: 10.1113/jphysiol.2007.149955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2023] Open
Affiliation(s)
- G D Wadley
- Department of Physiology University of Melbourne Parkville3010 Australia
| | - J Choate
- Department of Physiology University of Melbourne Parkville3010 Australia
| | - G K McConell
- Department of Physiology University of Melbourne Parkville3010 Australia
| |
Collapse
|
322
|
|
323
|
Trian T, Benard G, Begueret H, Rossignol R, Girodet PO, Ghosh D, Ousova O, Vernejoux JM, Marthan R, Tunon-de-Lara JM, Berger P. Bronchial smooth muscle remodeling involves calcium-dependent enhanced mitochondrial biogenesis in asthma. J Exp Med 2007; 204:3173-81. [PMID: 18056286 PMCID: PMC2150973 DOI: 10.1084/jem.20070956] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Accepted: 10/31/2007] [Indexed: 12/28/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by different patterns of airway remodeling, which all include an increased mass of bronchial smooth muscle (BSM). A remaining major question concerns the mechanisms underlying such a remodeling of BSM. Because mitochondria play a major role in both cell proliferation and apoptosis, we hypothesized that mitochondrial activation in BSM could play a role in this remodeling. We describe that both the mitochondrial mass and oxygen consumption were higher in the BSM from asthmatic subjects than in that from both COPD and controls. This feature, which is specific to asthma, was related to an enhanced mitochondrial biogenesis through up-regulation of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, nuclear respiratory factor-1, and mitochondrial transcription factor A. The priming event of such activation was an alteration in BSM calcium homeostasis. BSM cell apoptosis was not different in the three groups of subjects. Asthmatic BSM was, however, characterized by increased cell growth and proliferation. Both characteristics were completely abrogated in mitochondria-deficient asthmatic BSM cells. Conversely, in both COPD and control BSM cells, induction of mitochondrial biogenesis reproduced these characteristics. Thus, BSM in asthmatic patients is characterized by an altered calcium homeostasis that increases mitochondrial biogenesis, which, in turn, enhances cell proliferation, leading to airway remodeling.
Collapse
Affiliation(s)
- Thomas Trian
- Universite Bordeaux 2, Laboratoire de Physiologie Cellulaire Respiratoire, F-33076 Bordeaux, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
324
|
|
325
|
Navarro A, López-Cepero JM, Bández MJ, Sánchez-Pino MJ, Gómez C, Cadenas E, Boveris A. Hippocampal mitochondrial dysfunction in rat aging. Am J Physiol Regul Integr Comp Physiol 2007; 294:R501-9. [PMID: 18077512 DOI: 10.1152/ajpregu.00492.2007] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hippocampus mitochondrial dysfunction with impaired electron transfer and increased oxidative damage was observed upon rat aging. Hippocampal mitochondria of aged (12 mo) and senescent (20 mo) rats showed, compared with young (4 mo) rats, marked decreases in the rate of state 3 respiration with NAD-dependent substrates (32-51%) and in the activities of mitochondrial complexes I (57-73%) and IV (33-54%). The activity of mitochondrial nitric oxide synthase was also decreased, 53-66%, with age. These losses in enzymatic activity were more marked in the hippocampus than in brain cortex or in whole brain. The histochemical assay of mitochondrial complex IV in the hippocampus showed decreased staining upon aging. Oxidative damage, determined as the mitochondrial content of thiobarbituric-acid reactive substances (TBARS) and protein carbonyls, increased in aged and senescent hippocampus (66-74% in TBARS and 48-96% in carbonyls). A significant statistical correlation was observed between mitochondrial oxidative damage and enzymatic activity. Mitochondrial dysfunction with shortage of energy supply is considered a likely cause of dysfunction in aged hippocampus.
Collapse
Affiliation(s)
- Ana Navarro
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Plaza Fragela 9, 11003-Cádiz, Spain.
| | | | | | | | | | | | | |
Collapse
|
326
|
Abstract
OBJECTIVE To describe temporal changes in mitochondrial function during the septic process, including the recovery phase. DESIGN Literature review. SUBJECTS Clinical studies and laboratory models. MAIN RESULTS Biochemical and ultrastructural mitochondrial abnormalities have been recognized in in vivo, ex vivo, and in vitro laboratory models of sepsis for >30 yrs. Short-term models show variable effects on mitochondrial function and structure; this is likely related to differences in model design, including species, organs studied, degree of septic insult, and degree of resuscitation. Longer-term models more consistently reveal mitochondrial dysfunction and damage. There is a rebound increase in oxygen consumption and resting energy expenditure in the recovery phase of sepsis. This could reflect mitochondrial recovery (biogenesis) that may restore the energy supply needed to fuel restorative metabolic processes and enable patient survival. CONCLUSION Mitochondrial dysfunction seems to be intrinsically involved in the pathogenesis of multiple organ failure. As a consequence of a progressive decrease in energy availability, metabolism must decrease or the cell will die. The interplay between adenosine 5'-triphosphate supply and demand, dictated by the degree of mitochondrial dysfunction and the level of metabolic shutdown (analogous to a hibernation-type response), seems to be crucial in determining outcome. Further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Mervyn Singer
- Intensive Care Medicine, Bloomsbury Institute of Intensive Care Medicine, Department of Medicine, University College London, London, UK.
| |
Collapse
|
327
|
Le Gouill E, Jimenez M, Binnert C, Jayet PY, Thalmann S, Nicod P, Scherrer U, Vollenweider P. Endothelial nitric oxide synthase (eNOS) knockout mice have defective mitochondrial beta-oxidation. Diabetes 2007; 56:2690-6. [PMID: 17682093 DOI: 10.2337/db06-1228] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Recent observations indicate that the delivery of nitric oxide by endothelial nitric oxide synthase (eNOS) is not only critical for metabolic homeostasis, but could also be important for mitochondrial biogenesis, a key organelle for free fatty acid (FFA) oxidation and energy production. Because mice deficient for the gene of eNOS (eNOS(-/-)) have increased triglycerides and FFA levels, in addition to hypertension and insulin resistance, we hypothesized that these knockout mice may have decreased energy expenditure and defective beta-oxidation. RESEARCH DESIGN AND METHODS Several markers of mitochondrial activity were assessed in C57BL/6J wild-type or eNOS(-/-) mice including the energy expenditure and oxygen consumption by indirect calorimetry, in vitro beta-oxidation in isolated mitochondria from skeletal muscle, and expression of genes involved in fatty acid oxidation. RESULTS eNOS(-/-) mice had markedly lower energy expenditure (-10%, P < 0.05) and oxygen consumption (-15%, P < 0.05) than control mice. This was associated with a roughly 30% decrease of the mitochondria content (P < 0.05) and, most importantly, with mitochondrial dysfunction, as evidenced by a markedly lower beta-oxidation of subsarcolemmal mitochondria in skeletal muscle (-30%, P < 0.05). Finally, impaired mitochondrial beta-oxidation was associated with a significant increase of the intramyocellular lipid content (30%, P < 0.05) in gastrocnemius muscle. CONCLUSIONS These data indicate that elevated FFA and triglyceride in eNOS(-/-) mice result in defective mitochondrial beta-oxidation in muscle cells.
Collapse
Affiliation(s)
- Eric Le Gouill
- Department of Cellular Biology and Morphology, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Hsu YC, Lee HC, Ping YH, Liu TY, Lui WY, Chi CW. Mitochondria are an essential mediator of nitric oxide/cyclic guanosine 3',5'-monophosphate blocking of glucose depletion induced cytotoxicity in human HepG2 cells. Mol Cancer Res 2007; 5:923-32. [PMID: 17855661 DOI: 10.1158/1541-7786.mcr-07-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is well known that glucose is a major energy source in tumors and that mitochondria are specialized organelles required for energy metabolism. Previous studies have revealed that nitric oxide (NO) protects against glucose depletion-induced cytotoxicity in mouse liver cells and in rat hepatocytes, but the detailed mechanism is not well understood. Therefore, we investigated the involvement of mitochondria in the NO protective effect in human hepatoma HepG2 cells. In this study, we showed that glucose depletion resulted in a time-dependent decrease in intracellular NO and in the protein expression of NO synthases. This glucose depletion-induced decrease in NO was blocked by NO donors. Next, we showed that the cytoprotective effect of NO is via a cyclic guanosine 3',5'-monophosphate-dependent pathway. Additionally, SNP blocked a glucose depletion-induced decrease in mitochondrial mass, mitochondrial DNA copies, and ATP level in HepG2 cells. Moreover, glucose depletion decreased the expression of various mitochondrial proteins, including cytochrome c, complex I (NADH dehydrogenase), complex III (cytochrome c reductase), and heat shock protein 60; these glucose depletion-induced effects were blocked by SNP. Furthermore, we found that rotenone and antimycin A (mitochondria complex I and III inhibitors, respectively) blocked SNP cytoprotection against glucose depletion-induced cytotoxicity. Taken together, our results indicated that the mitochondria serve as an important cellular mediator of NO during protection against glucose deprivation-induced damage.
Collapse
Affiliation(s)
- Yi-Chiung Hsu
- Institute of Pharmacology, School of Medicine, National Yang-Ming University, and Department of Medical Research and Education, Taipei Veterans General Hospital, Taiwan
| | | | | | | | | | | |
Collapse
|
329
|
Wadley GD, Choate J, McConell GK. NOS isoform-specific regulation of basal but not exercise-induced mitochondrial biogenesis in mouse skeletal muscle. J Physiol 2007; 585:253-62. [PMID: 17916611 DOI: 10.1113/jphysiol.2007.141309] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide is a potential regulator of mitochondrial biogenesis. Therefore, we investigated if mice deficient in endothelial nitric oxide synthase (eNOS-/-) or neuronal NOS (nNOS-/-) have attenuated activation of skeletal muscle mitochondrial biogenesis in response to exercise. eNOS-/-, nNOS-/- and C57Bl/6 (CON) mice (16.3 +/- 0.2 weeks old) either remained in their cages (basal) or ran on a treadmill (16 m min(-1), 5% grade) for 60 min (n = 8 per group) and were killed 6 h after exercise. Other eNOS-/-, nNOS-/- and CON mice exercise trained for 9 days (60 min per day) and were killed 24 h after the last bout of exercise training. eNOS-/- mice had significantly higher nNOS protein and nNOS-/- mice had significantly higher eNOS protein in the EDL, but not the soleus. The basal mitochondrial biogenesis markers NRF1, NRF2alpha and mtTFA mRNA were significantly (P< 0.05) higher in the soleus and EDL of nNOS-/- mice whilst basal citrate synthase activity was higher in the soleus and basal PGC-1alpha mRNA higher in the EDL. Also, eNOS-/- mice had significantly higher basal citrate synthase activity in the soleus but not the EDL. Acute exercise increased (P< 0.05) PGC-1alpha mRNA in soleus and EDL and NRF2alpha mRNA in the EDL to a similar extent in all genotypes. In addition, short-term exercise training significantly increased cytochrome c protein in all genotypes (P< 0.05) in the EDL. In conclusion, eNOS and nNOS are differentially involved in the basal regulation of mitochondrial biogenesis in skeletal muscle but are not critical for exercise-induced increases in mitochondrial biogenesis in skeletal muscle.
Collapse
Affiliation(s)
- G D Wadley
- Department of Physiology, University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | | |
Collapse
|
330
|
Antunes F, Boveris A, Cadenas E. On the biologic role of the reaction of NO with oxidized cytochrome c oxidase. Antioxid Redox Signal 2007; 9:1569-79. [PMID: 17665969 DOI: 10.1089/ars.2007.1677] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inhibition of cytochrome c oxidase (CcOX) by nitric oxide (NO) is analyzed with a mathematical model that simulates the metabolism in vivo. The main results were the following: (a) We derived novel equations for the catalysis of CcOX that can be used to predict CcOX inhibition in any tissue for any [NO] or [O(2)]; (b) Competitive inhibition (resulting from the reversible binding of NO to reduced CcOX) emerges has the sole relevant component of CcOX inhibition under state 3 in vivo; (c) In state 4, contribution of uncompetitive inhibition (resulting from the reaction of oxidized CcOX with NO) represents a significant nonmajority fraction of inhibition, being favored by high [O(2)]; and (d) The main biologic role of the reaction between NO and oxidized CcOX is to consume NO. By reducing [NO], this reaction stimulates, rather than inhibits, respiration. Finally, we propose that the biologic role of NO as an inhibitor of CcOX is twofold: in state 4, it avoids an excessive buildup of mitochondrial membrane potential that triggers rapid production of oxidants, and in state 3, increases the efficiency of oxidative phosphorylation by increasing the ADP/O ratio, supporting the therapeutic use of NO in situations in which mitochondria are dysfunctional.
Collapse
Affiliation(s)
- Fernando Antunes
- Grupo de Bioquímica dos Oxidantes e Antioxidantes, Centro de Química e Bioquímica and Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, P-1250-047 Lisboa, Portugal.
| | | | | |
Collapse
|
331
|
Lira VA, Soltow QA, Long JHD, Betters JL, Sellman JE, Criswell DS. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 2007; 293:E1062-8. [PMID: 17666490 DOI: 10.1152/ajpendo.00045.2007] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Nitric oxide (NO) and 5'-AMP-activated protein kinase (AMPK) are involved in glucose transport and mitochondrial biogenesis in skeletal muscle. Here, we examined whether NO regulates the expression of the major glucose transporter in muscle (GLUT4) and whether it influences AMPK-induced upregulation of GLUT4. At low levels, the NO donor S-nitroso-N-penicillamine (SNAP, 1 and 10 microM) significantly increased GLUT4 mRNA ( approximately 3-fold; P < 0.05) in L6 myotubes, and cotreatment with the AMPK inhibitor compound C ablated this effect. The cGMP analog 8-bromo-cGMP (8-Br-cGMP, 2 mM) increased GLUT4 mRNA by approximately 50% (P < 0.05). GLUT4 protein expression was elevated 40% by 2 days treatment with 8-Br-cGMP, whereas 6 days treatment with 10 microM SNAP increased GLUT4 expression by 65%. Cotreatment of cultures with the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one prevented the SNAP-induced increase in GLUT4 protein. SNAP (10 microM) also induced significant phosphorylation of alpha-AMPK and acetyl-CoA carboxylase and translocation of phosphorylated alpha-AMPK to the nucleus. Furthermore, L6 myotubes exposed to 5-aminoimidazole-4-carboxamide-1-beta-d-ribofuranoside (AICAR) for 16 h presented an approximately ninefold increase in GLUT4 mRNA, whereas cotreatment with the non-isoform-specific NOS inhibitor N(G)-nitro-l-arginine methyl ester, prevented approximately 70% of this effect. In vivo, GLUT4 mRNA was increased 1.8-fold in the rat plantaris muscle 12 h after AICAR injection, and this induction was reduced by approximately 50% in animals cotreated with the neuronal and inducible nitric oxide synthases selective inhibitor 1-(2-trifluoromethyl-phenyl)-imidazole. We conclude that, in skeletal muscle, NO increases GLUT4 expression via a cGMP- and AMPK-dependent mechanism. The data are consistent with a role for NO in the regulation of AMPK, possibly via control of cellular activity of AMPK kinases and/or AMPK phosphatases.
Collapse
Affiliation(s)
- Vitor A Lira
- Department of Applied Physiology and Kinesiology, Center for Exercise Science, Univ. of Florida, Gainesville, FL 32611, USA
| | | | | | | | | | | |
Collapse
|
332
|
Lynn EG, Lu Z, Minerbi D, Sack MN. The regulation, control, and consequences of mitochondrial oxygen utilization and disposition in the heart and skeletal muscle during hypoxia. Antioxid Redox Signal 2007; 9:1353-61. [PMID: 17627469 DOI: 10.1089/ars.2007.1700] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The major oxygen-dependent function of mitochondria partitions molecular oxygen between oxidative phosphorylation and reactive oxygen species generation. When oxygen becomes limiting, the modulation of mitochondrial function plays an important role in overall biologic adaptation. This review focuses on mitochondrial biology in the heart and skeletal muscle during hypoxia. The disparate mitochondrial responses discussed appear to be dependent on the degree of hypoxia, on the age at exposure to hypoxia, and on the duration of exposure. These hypoxia-induced changes include modulation in mitochondrial respiratory capacity; activation of the mitochondrial biogenesis regulatory program; induction of mitochondrial antioxidant defense systems; regulation of antiapoptotic mitochondrial proteins, and modulation of mitochondrial sensitivity to permeability transition. The mitochondria-derived reactive oxygen species signal-transduction events in response to hypoxia also are reviewed. The cardiac and skeletal muscle phenotypic signatures that result from mitochondrial adaptations include an amelioration of resistance to cardiac ischemia and modulations in exercise capacity and oxidative fuel preference. Overall, the data demonstrate the plasticity in mitochondrial regulation and function that facilitates adaptations to a limited oxygen supply. Moreover, data supporting the role of mitochondria as oxygen-sensing organelles, integrated into global cellular signal transduction are discussed.
Collapse
Affiliation(s)
- Edward G Lynn
- Cardiology Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892-1454, USA
| | | | | | | |
Collapse
|
333
|
Shiva S, Sack MN, Greer JJ, Duranski M, Ringwood LA, Burwell L, Wang X, MacArthur PH, Shoja A, Raghavachari N, Calvert JW, Brookes PS, Lefer DJ, Gladwin MT. Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer. ACTA ACUST UNITED AC 2007; 204:2089-102. [PMID: 17682069 PMCID: PMC2118713 DOI: 10.1084/jem.20070198] [Citation(s) in RCA: 429] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nitrite (NO(2)(-)) is an intrinsic signaling molecule that is reduced to NO during ischemia and limits apoptosis and cytotoxicity at reperfusion in the mammalian heart, liver, and brain. Although the mechanism of nitrite-mediated cytoprotection is unknown, NO is a mediator of the ischemic preconditioning cell-survival program. Analogous to the temporally distinct acute and delayed ischemic preconditioning cytoprotective phenotypes, we report that both acute and delayed (24 h before ischemia) exposure to physiological concentrations of nitrite, given both systemically or orally, potently limits cardiac and hepatic reperfusion injury. This cytoprotection is associated with increases in mitochondrial oxidative phosphorylation. Remarkably, isolated mitochondria subjected to 30 min of anoxia followed by reoxygenation were directly protected by nitrite administered both in vitro during anoxia or in vivo 24 h before mitochondrial isolation. Mechanistically, nitrite dose-dependently modifies and inhibits complex I by posttranslational S-nitrosation; this dampens electron transfer and effectively reduces reperfusion reactive oxygen species generation and ameliorates oxidative inactivation of complexes II-IV and aconitase, thus preventing mitochondrial permeability transition pore opening and cytochrome c release. These data suggest that nitrite dynamically modulates mitochondrial resilience to reperfusion injury and may represent an effector of the cell-survival program of ischemic preconditioning and the Mediterranean diet.
Collapse
Affiliation(s)
- Sruti Shiva
- Vascular Medicine Branch, National Heart Lung Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
McConell GK, Bradley SJ, Stephens TJ, Canny BJ, Kingwell BA, Lee-Young RS. Skeletal muscle nNOSμ protein content is increased by exercise training in humans. Am J Physiol Regul Integr Comp Physiol 2007; 293:R821-8. [PMID: 17459909 DOI: 10.1152/ajpregu.00796.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The major isoform of nitric oxide synthase (NOS) in skeletal muscle is the splice variant of neuronal NOS, termed nNOSμ. Exercise training increases nNOSμ protein levels in rat skeletal muscle, but data in humans are conflicting. We performed two studies to determine 1) whether resting nNOSμ protein expression is greater in skeletal muscle of 10 endurance-trained athletes compared with 11 sedentary individuals ( study 1) and 2) whether intense short-term (10 days) exercise training increases resting nNOSμ protein (within whole muscle and also within types I, IIa, and IIx fibers) in eight sedentary individuals ( study 2). In study 1, nNOSμ protein was ∼60% higher ( P < 0.05) in endurance-trained athletes compared with the sedentary participants. In study 2, nNOSμ protein expression was similar in types I, IIa, and IIx fibers before training. Ten days of intense exercise training significantly ( P < 0.05) increased nNOSμ protein levels in types I, IIa, and IIx fibers, a finding that was validated by using whole muscle samples. Endothelial NOS and inducible NOS protein were barely detectable in the skeletal muscle samples. In conclusion, nNOSμ protein expression is greater in endurance-trained individuals when compared with sedentary individuals. Ten days of intense exercise is also sufficient to increase nNOSμ expression in untrained individuals, due to uniform increases of nNOSμ within types I, IIa, and IIx fibers.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | | | |
Collapse
|
335
|
Abstract
Although neurohumoral antagonism has successfully reduced heart failure morbidity and mortality, the residual disability and death rate remains unacceptably high. Though abnormalities of myocardial metabolism are associated with heart failure, recent data suggest that heart failure may itself promote metabolic changes such as insulin resistance, in part through neurohumoral activation. A detrimental self-perpetuating cycle (heart failure --> altered metabolism --> heart failure) that promotes the progression of heart failure may thus be postulated. Accordingly, we review the cellular mechanisms and pathophysiology of altered metabolism and insulin resistance in heart failure. It is hypothesized that the ensuing detrimental myocardial energetic perturbations result from neurohumoral activation, increased adverse free fatty acid metabolism, decreased protective glucose metabolism, and in some cases insulin resistance. The result is depletion of myocardial ATP, phosphocreatine, and creatine kinase with decreased efficiency of mechanical work. On the basis of the mechanisms outlined, appropriate therapies to mitigate aberrant metabolism include intense neurohumoral antagonism, limitation of diuretics, correction of hypokalemia, exercise, and diet. We also discuss more novel mechanistic-based therapies to ameliorate metabolism and insulin resistance in heart failure. For example, metabolic modulators may optimize myocardial substrate utilization to improve cardiac function and exercise performance beyond standard care. The ultimate success of metabolic-based therapy will be manifest by its capacity further to lessen the residual mortality in heart failure.
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | | | | |
Collapse
|
336
|
Abstract
OBJECTIVES To review mechanisms underlying sepsis-induced cardiac dysfunction in general and intrinsic myocardial depression in particular. DATA SOURCE MEDLINE database. DATA SYNTHESIS Myocardial depression is a well-recognized manifestation of organ dysfunction in sepsis. Due to the lack of a generally accepted definition and the absence of large epidemiologic studies, its frequency is uncertain. Echocardiographic studies suggest that 40% to 50% of patients with prolonged septic shock develop myocardial depression, as defined by a reduced ejection fraction. Sepsis-related changes in circulating volume and vessel tone inevitably affect cardiac performance. Although the coronary circulation during sepsis is maintained or even increased, alterations in the microcirculation are likely. Mitochondrial dysfunction, another feature of sepsis-induced organ dysfunction, will also place the cardiomyocytes at risk of adenosine triphosphate depletion. However, clinical studies have demonstrated that myocardial cell death is rare and that cardiac function is fully reversible in survivors. Hence, functional rather than structural changes seem to be responsible for intrinsic myocardial depression during sepsis. The underlying mechanisms include down-regulation of beta-adrenergic receptors, depressed postreceptor signaling pathways, impaired calcium liberation from the sarcoplasmic reticulum, and impaired electromechanical coupling at the myofibrillar level. Most, if not all, of these changes are regulated by cytokines and nitric oxide. CONCLUSIONS Integrative studies are needed to distinguish the hierarchy of the various mechanisms underlying septic cardiac dysfunction. As many of these changes are related to severe inflammation and not to infection per se, a better understanding of septic myocardial dysfunction may be usefully extended to other systemic inflammatory conditions encountered in the critically ill. Myocardial depression may be arguably viewed as an adaptive event by reducing energy expenditure in a situation when energy generation is limited, thereby preventing activation of cell death pathways and allowing the potential for full functional recovery.
Collapse
Affiliation(s)
- Alain Rudiger
- Bloomsbury Institute of Intensive Care Medicine, Wolfson Institute for Biomedical Research and Department of Medicine, University College London, UK
| | | |
Collapse
|
337
|
Stoimenova M, Igamberdiev AU, Gupta KJ, Hill RD. Nitrite-driven anaerobic ATP synthesis in barley and rice root mitochondria. PLANTA 2007; 226:465-74. [PMID: 17333252 DOI: 10.1007/s00425-007-0496-0] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 02/07/2007] [Indexed: 05/14/2023]
Abstract
Mitochondria isolated from the roots of barley (Hordeum vulgare L.) and rice (Oryza sativa L.) seedlings were capable of oxidizing external NADH and NADPH anaerobically in the presence of nitrite. The reaction was linked to ATP synthesis and nitric oxide (NO) was a measurable product. The rates of NADH and NADPH oxidation were in the range of 12-16 nmol min(-1) mg(-1) protein for both species. The anaerobic ATP synthesis rate was 7-9 nmol min(-1) mg(-1) protein for barley and 15-17 nmol min(-1) mg(-1) protein for rice. The rates are of the same order of magnitude as glycolytic ATP production during anoxia and about 3-5% of the aerobic mitochondrial ATP synthesis rate. NADH/NADPH oxidation and ATP synthesis were sensitive to the mitochondrial inhibitors myxothiazol, oligomycin, diphenyleneiodonium and insensitive to rotenone and antimycin A. The uncoupler FCCP completely eliminated ATP production. Succinate was also capable of driving ATP synthesis. We conclude that plant mitochondria, under anaerobic conditions, have a capacity to use nitrite as an electron acceptor to oxidize cytosolic NADH/NADPH and generate ATP.
Collapse
Affiliation(s)
- Maria Stoimenova
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | | | | | | |
Collapse
|
338
|
Struewing IT, Barnett CD, Tang T, Mao CD. Lithium increases PGC-1alpha expression and mitochondrial biogenesis in primary bovine aortic endothelial cells. FEBS J 2007; 274:2749-65. [PMID: 17451429 DOI: 10.1111/j.1742-4658.2007.05809.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Lithium is a therapeutic agent commonly used to treat bipolar disorder and its beneficial effects are thought to be due to a combination of activation of the Wnt/beta-catenin pathway via inhibition of glycogen synthase kinase-3beta and depletion of the inositol pool via inhibition of the inositol monophosphatase-1. We demonstrated that lithium in primary endothelial cells induced an increase in mitochondrial mass leading to an increase in ATP production without any significant change in mitochondrial efficiency. This increase in mitochondrial mass was associated with an increase in the mRNA levels of mitochondrial biogenesis transcription factors: nuclear respiratory factor-1 and -2beta, as well as mitochondrial transcription factors A and B2, which lead to the coordinated upregulation of oxidative phosphorylation components encoded by either the nuclear or mitochondrial genome. These effects of lithium on mitochondrial biogenesis were independent of the inhibition of glycogen synthase kinase-3beta and independent of inositol depletion. Also, expression of the coactivator PGC-1alpha was increased, whereas expression of the coactivator PRC was not affected. Lithium treatment rapidly induced a decrease in activating Akt-Ser473 phosphorylation and inhibitory Forkhead box class O (FOXO1)-Thr24 phosphorylation, as well as an increase in activating c-AMP responsive element binding (CREB)-Ser133 phosphorylation, two mechanisms known to control PGC-1alpha expression. Together, our results show that lithium induces mitochondrial biogenesis via CREB/PGC-1alpha and FOXO1/PGC-1alpha cascades, which highlight the pleiotropic effects of lithium and reveal also novel beneficial effects via preservation of mitochondrial functions.
Collapse
Affiliation(s)
- Ian T Struewing
- Graduate Center for Nutritional Sciences, University of Kentucky, 900 Limestone Street, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
339
|
Sciorati C, Galvez BG, Brunelli S, Tagliafico E, Ferrari S, Cossu G, Clementi E. Ex vivo treatment with nitric oxide increases mesoangioblast therapeutic efficacy in muscular dystrophy. J Cell Sci 2007; 119:5114-23. [PMID: 17158915 DOI: 10.1242/jcs.03300] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Muscular dystrophies are characterized by primary wasting of skeletal muscle for which no satisfactory therapy is available. Studies in animal models have shown that stem cell-based therapies may improve the outcome of the disease, and that mesoangioblasts are promising stem cells in this respect. The efficacy of mesoangioblasts in yielding extensive muscle repair is, however, still limited. We found that mesoangioblasts treated with nitric oxide (NO) donors and injected intra-arterially in alpha-sarcoglycan-null dystrophic mice have a significantly enhanced ability to migrate to dystrophic muscles, to resist their apoptogenic environment and engraft into them, yielding a significant recovery of alpha-sarcolgycan expression. In vitro NO-treated mesoangioblasts displayed an enhanced chemotactic response to myotubes, cytokines and growth factors generated by the dystrophic muscle. In addition, they displayed an increased ability to fuse with myotubes and differentiating myoblasts and to survive when exposed to cytotoxic stimuli similar to those present in the dystrophic muscle. All the effects of NO were cyclic GMP-dependent since they were mimicked by treatment with the membrane permeant cyclic-GMP analogue 8-bromo-cGMP and prevented by inhibiting guanylate cyclase. We conclude that NO donors exert multiple beneficial effects on mesoangioblasts that may be used to increase their efficacy in cell therapy of muscular dystrophies.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Differentiation/drug effects
- Cell Movement/drug effects
- Cells, Cultured
- Cyclic GMP/analogs & derivatives
- Cyclic GMP/pharmacology
- Gene Expression Profiling
- Immunohistochemistry
- Mesoderm/cytology
- Mesoderm/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscular Dystrophy, Animal/genetics
- Muscular Dystrophy, Animal/therapy
- Nitric Oxide Donors/pharmacology
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Stem Cell Transplantation
- Stem Cells/cytology
- Stem Cells/drug effects
- Stem Cells/metabolism
Collapse
Affiliation(s)
- Clara Sciorati
- Stem Cell Research Institute, H San Raffaele Scientific Institute, 20132, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
340
|
Nisoli E, Clementi E, Carruba MO, Moncada S. Defective mitochondrial biogenesis: a hallmark of the high cardiovascular risk in the metabolic syndrome? Circ Res 2007; 100:795-806. [PMID: 17395885 DOI: 10.1161/01.res.0000259591.97107.6c] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The metabolic syndrome is a group of risk factors of metabolic origin that are accompanied by increased risk for type 2 diabetes mellitus and cardiovascular disease. These risk factors include atherogenic dyslipidemia, elevated blood pressure and plasma glucose, and a prothrombotic and proinflammatory state. The condition is progressive and is exacerbated by physical inactivity, advancing age, hormonal imbalance, and genetic predisposition. The metabolic syndrome is a particularly challenging clinical condition because its complex molecular basis is still largely undefined. Impaired cell metabolism has, however, been suggested as a relevant pathophysiological process underlying several clinical features of the syndrome. In particular, defective oxidative metabolism seems to be involved in visceral fat gain and in the development of insulin resistance in skeletal muscle. This suggests that mitochondrial function may be impaired in the metabolic syndrome and, thus, in the consequent cardiovascular disease. We have recently found that mitochondrial biogenesis and function are enhanced by nitric oxide in various cell types and tissues, including cardiac muscle. Increasing evidence suggests that this mediator acts as a metabolic sensor in cardiomyocytes. This implies that a defective production of nitric oxide might be linked to dysfunction of the cardiomyocyte metabolism. Here we summarize some recent findings and propose a hypothesis for the high cardiovascular risk linked to the metabolic syndrome.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Pharmacology, Chemotherapy and Medical Toxicology, School of Medicine, Milan University, Milan, Italy.
| | | | | | | |
Collapse
|
341
|
Linnane AW, Kios M, Vitetta L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide. Biogerontology 2007; 8:445-67. [PMID: 17415678 DOI: 10.1007/s10522-007-9096-4] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 03/08/2007] [Indexed: 12/31/2022]
Abstract
The production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has long been proposed as leading to random deleterious modification of macromolecules with an associated progressive development of age associated systemic disease. ROS and RNS formation has been posited as a major contributor to the aging process. On the contrary, this review presents evidence that superoxide anion (and hydrogen peroxide) and nitric oxide (and peroxynitrite) constitute regulated prooxidant second messenger systems, with specific sub-cellular locales of production and are essential for normal metabolome and physiological function. The role of these second messengers in the regulation of the metabolome is discussed in terms of radical formation as an essential contributor to the physiologically normal regulation of sub-cellular bioenergy systems; proteolysis regulation; transcription activation; enzyme activation; mitochondrial DNA changes; redox regulation of metabolism and cell differentiation; the concept that orally administered small molecule antioxidant therapy is a chimera. The formation of superoxide anion/hydrogen peroxide and nitric oxide do not conditionally lead to random macromolecular damage; under normal physiological conditions their production is actually regulated consistent with their second messenger roles.
Collapse
Affiliation(s)
- Anthony William Linnane
- Epworth Medical Centre, Centre for Molecular Biology and Medicine, 185-187 Hoddle Street, Richmond, Melbourne, VIC 3121, Australia.
| | | | | |
Collapse
|
342
|
Ayala JE, Bracy DP, Julien BM, Rottman JN, Fueger PT, Wasserman DH. Chronic treatment with sildenafil improves energy balance and insulin action in high fat-fed conscious mice. Diabetes 2007; 56:1025-33. [PMID: 17229936 DOI: 10.2337/db06-0883] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Stimulation of nitric oxide-cGMP signaling results in vascular relaxation and increased muscle glucose uptake. We show that chronically inhibiting cGMP hydrolysis with the phosphodiesterase-5 inhibitor sildenafil improves energy balance and enhances in vivo insulin action in a mouse model of diet-induced insulin resistance. High-fat-fed mice treated with sildenafil plus L-arginine or sildenafil alone for 12 weeks had reduced weight and fat mass due to increased energy expenditure. However, uncoupling protein-1 levels were not increased in sildenafil-treated mice. Chronic treatment with sildenafil plus L-arginine or sildenafil alone increased arterial cGMP levels but did not adversely affect blood pressure or cardiac morphology. Sildenafil treatment, with or without l-arginine, resulted in lower fasting insulin and glucose levels and enhanced rates of glucose infusion, disappearance, and muscle glucose uptake during a hyperinsulinemic (4 mU x kg(-1) x min(-1))-euglycemic clamp in conscious mice. These effects occurred without an increase in activation of muscle insulin signaling. An acute treatment of high fat-fed mice with sildenafil plus l-arginine did not improve insulin action. These results show that phosphodiesterase-5 is a potential target for therapies aimed at preventing diet-induced energy imbalance and insulin resistance.
Collapse
Affiliation(s)
- Julio E Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, 2200 Pierce Ave., 702 Light Hall, Nashville, TN 37232, USA.
| | | | | | | | | | | |
Collapse
|
343
|
Bernstein H, Holubec H, Bernstein C, Ignatenko NA, Gerner E, Dvorak K, Besselsen D, Blohm-Mangone KA, Padilla-Torres J, Dvorakova B, Garewal H, Payne CM. Deoxycholate-induced colitis is markedly attenuated in Nos2 knockout mice in association with modulation of gene expression profiles. Dig Dis Sci 2007; 52:628-42. [PMID: 17253130 DOI: 10.1007/s10620-006-9608-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 09/07/2006] [Indexed: 12/12/2022]
Abstract
Nos2 knockout mice were compared to wild-type mice for susceptibility to colitis in response to a diet supplemented with deoxycholate, a bile acid increased in the colon of individuals on a high-fat diet. Wild-type mice fed a fat-related diet, supplemented with 0.2% DOC, develop colonic inflammation associated with increases in nitrosative stress, proliferation, oxidative DNA/RNA damage, and angiogenesis, as well as altered expression of numerous genes. However, Nos2 knockout mice fed a diet supplemented with deoxycholate were resistant to these alterations. In particular, 35 genes were identified whose expression was significantly altered at the mRNA level in deoxycholate-fed Nos2(+/+) mice but not in deoxycholate-fed Nos2(-/-) mice. Some of these alterations in NOS2-dependent gene expression correspond to those reported in human inflammatory bowel disease. Overall, our results indicate that NOS2 expression is necessary for the development of deoxycholate-induced colitis in mice, a unique dietary-related model of colitis.
Collapse
Affiliation(s)
- Harris Bernstein
- Department of Cell Biology and Anatomy, College of Medicine, University of Arizona, Tucson, Arizona 85724-5044, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Abstract
Major modifications in energy homeostasis occur in skeletal muscle during exercise. Emerging evidence suggests that changes in energy homeostasis take part in the regulation of gene expression and contribute to muscle plasticity. A number of energy-sensing molecules have been shown to sense variations in energy homeostasis and trigger regulation of gene expression. The AMP-activated protein kinase, hypoxia-inducible factor 1, peroxisome proliferator-activated receptors, and Sirt1 proteins all contribute to altering skeletal muscle gene expression by sensing changes in the concentrations of AMP, molecular oxygen, intracellular free fatty acids, and NAD+, respectively. These molecules may therefore sense information relating to the intensity, duration, and frequency of muscle exercise. Mitochondria also contribute to the overall response, both by modulating the response of energy-sensing molecules and by generating their own signals. This review seeks to examine our current understanding of the roles that energy-sensing molecules and mitochondria can play in the regulation of gene expression in skeletal muscle.
Collapse
Affiliation(s)
- Damien Freyssenet
- Unité Physiologie et Physiopathologie de l'Exercice et Handicap, EA3062, Université Jean Monnet, Saint-Etienne Cedex 2, France.
| |
Collapse
|
345
|
Xu W, Koeck T, Lara AR, Neumann D, DiFilippo FP, Koo M, Janocha AJ, Masri FA, Arroliga AC, Jennings C, Dweik RA, Tuder RM, Stuehr DJ, Erzurum SC. Alterations of cellular bioenergetics in pulmonary artery endothelial cells. Proc Natl Acad Sci U S A 2007; 104:1342-7. [PMID: 17227868 PMCID: PMC1783136 DOI: 10.1073/pnas.0605080104] [Citation(s) in RCA: 290] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is pathogenetically related to low levels of the vasodilator nitric oxide (NO). Because NO regulates cellular respiration and mitochondrial biogenesis, we hypothesized that abnormalities of bioenergetics may be present in IPAH. Evaluation of pulmonary artery endothelial cells from IPAH and control lungs in vitro revealed that oxygen consumption of IPAH cells was decreased, especially in state 3 respiration with substrates glutamate-malate or succinate, and this decrease paralleled reduction in Complex IV activity and IPAH cellular NO synthesis. IPAH pulmonary artery endothelial cells had decreased mitochondrial dehydrogenase activity and lowered mitochondrial numbers per cell and mitochondrial DNA content, all of which increased after exposure to NO donors. Although IPAH/pulmonary artery endothelial cells' ATP content was similar to control under normoxia, cellular ATP did not change significantly in IPAH cells under hypoxia, whereas ATP decreased 35% in control cells, identifying a greater dependence on cellular respiration for energy in control cells. Evidence that glucose metabolism was subserving the primary role for energy requirements of IPAH cells was provided by the approximately 3-fold greater glycolytic rate of IPAH cells. Positron emission tomography scan with [18F]fluoro-deoxy-D-glucose performed on IPAH patients and healthy controls revealed significantly higher uptake in IPAH lungs as compared with controls, confirming that the glycolytic rate was increased in vivo. Thus, there are substantial changes in bioenergetics of IPAH endothelial cells, which may have consequences for pulmonary hypertensive responses and potentially in development of novel imaging modalities for diagnosis and evaluation of treatment.
Collapse
Affiliation(s)
| | | | | | - Donald Neumann
- Nuclear Medicine, Cleveland Clinic, Cleveland, OH 44195; and
| | | | | | | | | | | | | | - Raed A. Dweik
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
| | - Rubin M. Tuder
- Division of Cardiopulmonary Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Serpil C. Erzurum
- Departments of *Pathobiology
- Pulmonary and Critical Care Medicine, and
- To whom correspondence should be addressed at:
Cleveland Clinic, Lerner Research Institute, 9500 Euclid Avenue/NC22, Cleveland, OH 44195. E-mail:
| |
Collapse
|
346
|
Abstract
Mitochondrial dysfunction is a common consequence of ischemia-reperfusion and drug injuries. For example, sublethal injury of renal proximal tubular cells (RPTCs) with the model oxidant tert-butylhydroperoxide (TBHP) causes mitochondrial injury that recovers over the course of six days. Although regeneration of mitochondrial function is integral to cell repair and function, the signaling pathway of mitochondrial biogenesis following oxidant injury has not been examined. A 10-fold overexpression of the mitochondrial biogenesis regulator PPAR-gamma cofactor-1alpha (PGC-1alpha) in control RPTCs resulted in a 52% increase in mitochondrial number, a 27% increase in respiratory capacity, and a 30% increase in mitochondrial protein markers, demonstrating that PGC-1alpha mediates mitochondrial biogenesis in RPTCs. RPTCs sublethally injured with TBHP exhibited a 50% decrease in mitochondrial function and increased mitochondrial autophagy. Compared with the controls, PGC-1alpha levels increased 12-fold on days 1, 2, and 3 post-injury and returned to base line on day 4 as mitochondrial function returned. Inhibition p38 MAPK blocked the up-regulation of PGC-1alpha following oxidant injury, whereas inhibition of calcium-calmodulin-dependent protein kinase, calcineurin A, nitric-oxide synthase, and phosphoinositol 3-kinase had no effect. The epidermal growth factor receptor (EGFR) was activated following TBHP exposure, and the EGFR inhibitor AG1478 blocked the up-regulation of PGC-1alpha. Additional inhibitor studies revealed that the sequential activation of Src, p38 MAPK, EGFR, and p38 MAPK regulate the expression of PGC-1alpha following oxidant injury. In contrast, although Akt was activated following oxidant injury, it did not play a role in PGC-1alpha expression. We suggest that mitochondrial biogenesis following oxidant injury is mediated by p38 and EGFR activation of PGC-1alpha.
Collapse
Affiliation(s)
- Kyle A Rasbach
- Department of Pharmaceutical Sciences, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | |
Collapse
|
347
|
Abstract
PURPOSE OF REVIEW To describe the influence of acute and chronic administration of L-arginine on metabolism at rest and during exercise. RECENT FINDINGS There has been substantial examination of the effect of infusion and ingestion of L-arginine at rest. It has been clearly demonstrated that L-arginine administration improves endothelial function in various disease states. In addition, L-arginine infusion at rest increases plasma insulin, growth hormone, glucagon, catecholamines and prolactin. Such hormonal changes affect metabolism. There has, however, been very little examination of the effect of increases in L-arginine availability during exercise. This is important to study as there is preliminary evidence that L-arginine infusion, probably via increases in nitric oxide (NO), alters skeletal-muscle metabolism during exercise. There is a need for further research, especially to understand the mechanisms of how L-arginine affects exercise metabolism and also to determine whether the hormonal responses that occur in response to L-arginine at rest are also present to some extent during exercise. SUMMARY This line of research may have important therapeutic implications as there are indications that L-arginine augments the effects of exercise training on insulin sensitivity and capillary growth in muscles.
Collapse
Affiliation(s)
- Glenn K McConell
- Department of Physiology, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
348
|
Moroz LL, Kohn AB. On the comparative biology of Nitric Oxide (NO) synthetic pathways: Parallel evolution of NO-mediated signaling. Nitric Oxide 2007. [DOI: 10.1016/s1872-2423(07)01001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
349
|
Brunelli S, Sciorati C, D'Antona G, Innocenzi A, Covarello D, Galvez BG, Perrotta C, Monopoli A, Sanvito F, Bottinelli R, Ongini E, Cossu G, Clementi E. Nitric oxide release combined with nonsteroidal antiinflammatory activity prevents muscular dystrophy pathology and enhances stem cell therapy. Proc Natl Acad Sci U S A 2006; 104:264-9. [PMID: 17182743 PMCID: PMC1765447 DOI: 10.1073/pnas.0608277104] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Duchenne muscular dystrophy is a relatively common disease that affects skeletal muscle, leading to progressive paralysis and death. There is currently no resolutive therapy. We have developed a treatment in which we combined the effects of nitric oxide with nonsteroidal antiinflammatory activity by using HCT 1026, a nitric oxide-releasing derivative of flurbiprofen. Here, we report the results of long-term (1-year) oral treatment with HCT 1026 of two murine models for limb girdle and Duchenne muscular dystrophies (alpha-sarcoglycan-null and mdx mice). In both models, HCT 1026 significantly ameliorated the morphological, biochemical, and functional phenotype in the absence of secondary effects, efficiently slowing down disease progression. HCT 1026 acted by reducing inflammation, preventing muscle damage, and preserving the number and function of satellite cells. HCT 1026 was significantly more effective than the corticosteroid prednisolone, which was analyzed in parallel. As an additional beneficial effect, HCT 1026 enhanced the therapeutic efficacy of arterially delivered donor stem cells, by increasing 4-fold their ability to migrate and reconstitute muscle fibers. The therapeutic strategy we propose is not selective for a subset of mutations; it provides ground for immediate clinical experimentation with HCT 1026 alone, which is approved for use in humans; and it sets the stage for combined therapies with donor or autologous, genetically corrected stem cells.
Collapse
Affiliation(s)
- Silvia Brunelli
- *Department of Experimental Medicine, University of Milano–Bicocca, 20052 Monza, Italy
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Clara Sciorati
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Giuseppe D'Antona
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Anna Innocenzi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Diego Covarello
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Beatriz G. Galvez
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Cristiana Perrotta
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
| | - Angela Monopoli
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Francesca Sanvito
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Bottinelli
- Department of Experimental Medicine, University of Pavia, 27100 Pavia, Italy
| | - Ennio Ongini
- Nicox Research Institute, Via Ariosto 21, 20091 Bresso, Italy
| | - Giulio Cossu
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- Department of Biology, University of Milano, 20130 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| | - Emilio Clementi
- San Raffaele Scientific Institute, Stem Cell Research Institute, Via Olgettina 58, 20132 Milan, Italy
- E. Medea Scientific Institute, 23842 Bosisio Parini, Italy; and
- Department of Preclinical Sciences, University of Milano, 20157 Milan, Italy
- **To whom correspondence may be addressed at:
Stem Cell Research Institute, H. San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy. E-mail:
or
| |
Collapse
|
350
|
Brunelli S, Rovere-Querini P, Sciorati C, Manfredi AA, Clementi E. Nitric oxide: emerging concepts about its use in cell-based therapies. Expert Opin Investig Drugs 2006; 16:33-43. [PMID: 17155852 DOI: 10.1517/13543784.16.1.33] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Regenerative medicine is an emerging clinical discipline in which cell-based therapies are used to restore the functions of damaged or defective tissues and organs. Along with the well-established use of cells derived from bone marrow or pancreatic islets, novel approaches of cell therapy have recently emerged that appear particularly promising; that is, those using cell-based vaccines and stem cells. This review focuses on the recent developments of these experimental therapeutic approaches and their drawbacks, with specific focus on dendritic cell vaccines in tumours and mesoangioblasts in muscular dystrophies. The authors discuss how the unique properties of a gaseous messenger, NO, may be exploited to overcome some of the drawbacks of these cell-based approaches in combined therapies based on NO-releasing drugs and cell delivery.
Collapse
Affiliation(s)
- Silvia Brunelli
- University of Milano-Bicocca, Department of Experimental, Environmental Medicine and Medical Biotechnology, 20052 Monza, Italy
| | | | | | | | | |
Collapse
|