301
|
Montesinos J, Pascual M, Pla A, Maldonado C, Rodríguez-Arias M, Miñarro J, Guerri C. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun 2015; 45:233-44. [PMID: 25486089 DOI: 10.1016/j.bbi.2014.11.015] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/29/2014] [Accepted: 11/26/2014] [Indexed: 12/30/2022] Open
Abstract
The adolescent brain undergoes important dynamic and plastic cell changes, including overproduction of axons and synapses, followed by rapid pruning along with ongoing axon myelination. These developmental changes make the adolescent brain particularly vulnerable to neurotoxic and behavioral effects of alcohol. Although the mechanisms of these effects are largely unknown, we demonstrated that ethanol by activating innate immune receptors toll-like receptor 4 (TLR4), induces neuroinflammation and brain damage in adult mice. The present study aims to evaluate whether intermittent ethanol treatment in adolescence promotes TLR4-dependent pro-inflammatory processes, leading to myelin and synaptic dysfunctions, and long-term cognitive impairments. Using wild-type (WT) and TLR4-deficient (TLR4-KO) adolescent mice treated intermittently with ethanol (3.0g/kg) for 2weeks, we show that binge-like ethanol treatment activates TLR4 signaling pathways (MAPK, NFκB) leading to the up-regulation of cytokines and pro-inflammatory mediators (COX-2, iNOS, HMGB1), impairing synaptic and myelin protein levels and causing ultrastructural alterations. These changes were associated with long-lasting cognitive dysfunctions in young adult mice, as demonstrated with the object recognition, passive avoidance and olfactory behavior tests. Notably, elimination of TLR4 receptors prevented neuroinflammation along with synaptic and myelin derangements, as well as long-term cognitive alterations. These results support the role of the neuroimmune response and TLR4 signaling in the neurotoxic and behavioral effects of ethanol in adolescence.
Collapse
Affiliation(s)
- Jorge Montesinos
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - María Pascual
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Antoni Pla
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain
| | - Concepción Maldonado
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Príncipe Felipe Research Center, C/Eduardo Primo Yúfera, 3, 46012 Valencia, Spain.
| |
Collapse
|
302
|
Corrigan F, Wu Y, Tuke J, Coller JK, Rice KC, Diener KR, Hayball JD, Watkins LR, Somogyi AA, Hutchinson MR. Alcohol-induced sedation and synergistic interactions between alcohol and morphine: a key mechanistic role for Toll-like receptors and MyD88-dependent signaling. Brain Behav Immun 2015; 45:245-52. [PMID: 25542736 PMCID: PMC4394865 DOI: 10.1016/j.bbi.2014.12.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/16/2014] [Accepted: 12/16/2014] [Indexed: 11/22/2022] Open
Abstract
Increasing evidence demonstrates induction of proinflammatory Toll-like receptor (TLR) 2 and TLR4 signaling by morphine and, TLR4 signaling by alcohol; thus indicating a common site of drug action and a potential novel innate immune-dependent hypothesis for opioid and alcohol drug interactions. Hence, the current study aimed to assess the role of TLR2, TLR4, MyD88 (as a critical TLR-signaling participant), NF-κB, Interleukin-1β (IL-1β; as a downstream proinflammatory effector molecule) and the μ opioid receptor (MOR; as a classical site for morphine action) in acute alcohol-induced sedation (4.5g/kg) and alcohol (2.5g/kg) interaction with morphine (5mg/kg) by assessing the loss of righting reflex (LORR) as a measure of sedation. Wild-type male Balb/c mice and matched genetically-deficient TLR2, TLR4, and MyD88 strains were utilized, together with pharmacological manipulation of MOR, NF-κB, TLR4 and Interleukin-1β. Alcohol induced significant LORR in wild-type mice; this was halved by MyD88 and TLR4 deficiency, and surprisingly nearly completely eliminated by TLR2 deficiency. In contrast, the interaction between morphine and alcohol was found to be MOR-, NF-κB-, TLR2- and MyD88-dependent, but did not involve TLR4 or Interleukin-1β. Morphine-alcohol interactions caused acute elevations in microglial cell counts and NF-κB-p65 positive cells in the motor cortex in concordance with wild-type and TLR2 deficient mouse behavioral data, implicating neuroimmunopharmacological signaling as a pivotal mechanism in this clinically problematic drug-drug interaction.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yue Wu
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Janet K Coller
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Kenner C Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, MD, USA
| | - Kerrilyn R Diener
- School of Paediatrics and Reproductive Health, University of Adelaide, Adelaide, South Australia, Australia; Experimental Therapeutics Laboratory, Hanson Institute & Sansom Institute, Adelaide, South Australia, Australia; School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - John D Hayball
- Experimental Therapeutics Laboratory, Hanson Institute & Sansom Institute, Adelaide, South Australia, Australia; School of Pharmacy & Medical Sciences, University of South Australia, Adelaide, South Australia, Australia; School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Linda R Watkins
- Department of Psychology and Neuroscience and The Center for Neuroscience, University of Colorado at Boulder, Boulder, CO, USA
| | - Andrew A Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia; Centre for Translational Cancer Research, University of Adelaide, Adelaide, South Australia, Australia; Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Mark R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
303
|
Morphine for the treatment of pain in sickle cell disease. ScientificWorldJournal 2015; 2015:540154. [PMID: 25654130 PMCID: PMC4306369 DOI: 10.1155/2015/540154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 11/18/2014] [Indexed: 01/11/2023] Open
Abstract
Pain is a hallmark of sickle cell disease (SCD) and its treatment remains challenging. Opioids are the major family of analgesics that are commonly used for treating severe pain. However, these are not always effective and are associated with the liabilities of their own. The pharmacology and multiorgan side effects of opioids are rapidly emerging areas of investigation, but there remains a scarcity of clinical studies. Due to opioid-induced endothelial-, mast cell-, renal mesangial-, and epithelial-cell-specific effects and proinflammatory as well as growth influencing signaling, it is likely that when used for analgesia, opioids may have organ specific pathological effects. Experimental and clinical studies, even though extremely few, suggest that opioids may exacerbate existent organ damage and also stimulate pathologies of their own. Because of the recurrent and/or chronic use of large doses of opioids in SCD, it is critical to evaluate the role and contribution of opioids in many complications of SCD. The aim of this review is to initiate inquiry to develop strategies that may prevent the inadvertent effect of opioids on organ function in SCD, should it occur, without compromising analgesia.
Collapse
|
304
|
Lundeberg S. Pain in children--are we accomplishing the optimal pain treatment? Paediatr Anaesth 2015; 25:83-92. [PMID: 25279762 DOI: 10.1111/pan.12539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/02/2014] [Indexed: 12/01/2022]
Abstract
Morphine, paracetamol and local anesthetics have for a long time been the foremost used analgesics in the pediatric patient by tradition but not always enough effective and associated with side effects. The purpose with this article is to propose alternative approaches in pain management, not always supported up by substantial scientific work but from a combination of science and clinical experience in the field. The scientific literature has been reviewed in parts regarding different aspects of pain assessment and analgesics used for treatment of diverse pain conditions with focus on procedural and acute pain. Clinical experience has been added to form the suggested improvements in accomplishing an improved pain management in pediatric patients. The aim with pain management in children should be a tailored analgesic medication with an individual acceptable pain level and optimal degree of mobilization with as little side effects as possible. Simple techniques of pain control are as effective as and complex techniques in pediatrics but the technique used is not of the highest importance in achieving a good pain management. Increased interest and improved education of the doctors prescribing analgesics is important in accomplishing a better pain management. The optimal treatment with analgesics is depending on the analysis of pain origin and analgesics used should be adjusted thereafter. A multimodal treatment regime is advocated for optimal analgesic effect.
Collapse
Affiliation(s)
- Stefan Lundeberg
- Pediatric Pain Treatment Service, Department of Pediatric Anesthesia, Operating Services and Intensive Care, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Intitutet, Stockholm, Sweden
| |
Collapse
|
305
|
Thomas J, Mustafa S, Johnson J, Nicotra L, Hutchinson M. The relationship between opioids and immune signalling in the spinal cord. Handb Exp Pharmacol 2015; 227:207-238. [PMID: 25846621 DOI: 10.1007/978-3-662-46450-2_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Opioids are considered the gold standard for the treatment of moderate to severe pain. However, heterogeneity in analgesic efficacy, poor potency and side effects are associated with opioid use, resulting in dose limitations and suboptimal pain management. Traditionally thought to exhibit their analgesic actions via the activation of the neuronal G-protein-coupled opioid receptors, it is now widely accepted that neuronal activity of opioids cannot fully explain the initiation and maintenance of opioid tolerance, hyperalgesia and allodynia. In this review we will highlight the evidence supporting the role of non-neuronal mechanisms in opioid signalling, paying particular attention to the relationship of opioids and immune signalling.
Collapse
Affiliation(s)
- Jacob Thomas
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia,
| | | | | | | | | |
Collapse
|
306
|
Qiu S, Feng Y, LeSage G, Zhang Y, Stuart C, He L, Li Y, Caudle Y, Peng Y, Yin D. Chronic morphine-induced microRNA-124 promotes microglial immunosuppression by modulating P65 and TRAF6. THE JOURNAL OF IMMUNOLOGY 2014; 194:1021-30. [PMID: 25539811 DOI: 10.4049/jimmunol.1400106] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Opioids have been widely applied in clinics as one of the most potent pain relievers for centuries, but their abuse has deleterious physiological effects including immunosuppression. However, the mechanisms are unclear. TLRs and acetylcholine are widely expressed in the immune and nervous systems, and play critical roles in immune responses. In this article, we show that morphine suppresses the innate immunity in microglia and bone marrow-derived macrophages through differential regulation of TLRs and acetylcholinesterase. Either morphine or inhibition of acetylcholine significantly promotes upregulation of microRNA-124 (miR-124) in microglia, bone marrow-derived macrophages, and the mouse brain, where miR-124 mediates morphine inhibition of the innate immunity by directly targeting a subunit of NF-κB p65 and TNFR-associated factor 6 (TRAF6). Furthermore, transcription factors AP-1 and CREB inhibited miR-124, whereas p65 bound directly to promoters of miR-124, thereby enhancing miR-124 transcription. Moreover, acute morphine treatment transiently upregulated the expression of p65 and phospho-p65 in both nucleus and cytoplasm priming the expression of miR-124, whereas long exposure of morphine maintained miR-124 expression, which inhibited p65- and TRAF6-dependent TLR signaling. These data suggest that modulation of miRs is capable of preventing opioid-induced damage to microglia.
Collapse
Affiliation(s)
- Shuwei Qiu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| | - Yimin Feng
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| | - Gene LeSage
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| | - Ying Zhang
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205
| | - Charles Stuart
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| | - Lei He
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yi Caudle
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China;
| | - Deling Yin
- Department of Internal Medicine, College of Medicine, East Tennessee State University, Johnson City, TN 37614; and
| |
Collapse
|
307
|
Jiang C, Xu L, Chen L, Han Y, Tang J, Yang Y, Zhang G, Liu W. Selective suppression of microglial activation by paeoniflorin attenuates morphine tolerance. Eur J Pain 2014; 19:908-19. [DOI: 10.1002/ejp.617] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 12/11/2022]
Affiliation(s)
- C. Jiang
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
- Research Division of Pharmacology; China Pharmaceutical University; Nanjing China
| | - L. Xu
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
- Research Division of Pharmacology; China Pharmaceutical University; Nanjing China
| | - L. Chen
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
- Research Division of Pharmacology; China Pharmaceutical University; Nanjing China
| | - Y. Han
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
- Jiangsu Key Laboratory of Anesthesiology; Xuzhou Medical College; China
| | - J. Tang
- Department of Physiology; Nanjing University of Traditional Chinese Medicine; China
| | - Y. Yang
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
| | - G. Zhang
- Research Division of Pharmacology; China Pharmaceutical University; Nanjing China
| | - W. Liu
- Jiangsu Key Laboratory of Neurodegeneration; Department of Pharmacology; Nanjing Medical University; China
| |
Collapse
|
308
|
Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na⁺ influx, mitochondrial instability, and Ca²⁺ overload. J Neurosci 2014; 34:12850-64. [PMID: 25232120 DOI: 10.1523/jneurosci.5351-13.2014] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptodendritic injury is thought to underlie HIV-associated neurocognitive disorders and contributes to exaggerated inflammation and cognitive impairment seen in opioid abusers with HIV-1. To examine events triggering combined transactivator of transcription (Tat)- and morphine-induced synaptodendritic injury systematically, striatal neuron imaging studies were conducted in vitro. These studies demonstrated nearly identical pathologic increases in dendritic varicosities as seen in Tat transgenic mice in vivo. Tat caused significant focal increases in intracellular sodium ([Na(+)]i) and calcium ([Ca(2+)]i) in dendrites that were accompanied by the emergence of dendritic varicosities. These effects were largely, but not entirely, attenuated by the NMDA and AMPA receptor antagonists MK-801 and CNQX, respectively. Concurrent morphine treatment accelerated Tat-induced focal varicosities, which were accompanied by localized increases in [Ca(2+)]i and exaggerated instability in mitochondrial inner membrane potential. Importantly, morphine's effects were prevented by the μ-opioid receptor antagonist CTAP and were not observed in neurons cultured from μ-opioid receptor knock-out mice. Combined Tat- and morphine-induced initial losses in ion homeostasis and increases in [Ca(2+)]i were attenuated by the ryanodine receptor inhibitor ryanodine, as well as pyruvate. In summary, Tat induced increases in [Na(+)]i, mitochondrial instability, excessive Ca(2+) influx through glutamatergic receptors, and swelling along dendrites. Morphine, acting via μ-opioid receptors, exacerbates these excitotoxic Tat effects at the same subcellular locations by mobilizing additional [Ca(2+)]i and by further disrupting [Ca(2+)]i homeostasis. We hypothesize that the spatiotemporal relationship of μ-opioid and aberrant AMPA/NMDA glutamate receptor signaling is critical in defining the location and degree to which opiates exacerbate the synaptodendritic injury commonly observed in neuroAIDS.
Collapse
|
309
|
Molina-Martínez LM, González-Espinosa C, Cruz SL. Dissociation of immunosuppressive and nociceptive effects of fentanyl, but not morphine, after repeated administration in mice: fentanyl-induced sensitization to LPS. Brain Behav Immun 2014; 42:60-4. [PMID: 24975593 DOI: 10.1016/j.bbi.2014.06.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/04/2014] [Accepted: 06/13/2014] [Indexed: 11/24/2022] Open
Abstract
UNLABELLED Immunosuppressive morphine actions are well characterized, but other opiates are less studied. The objectives of this work were: (a) to compare the acute effects of morphine and fentanyl to inhibit early peritoneal LPS-induced TNFα release; (b) to find if, as in the case of morphine, intraperitoneal mast cells (MCs) are the target of fentanyl's immunosuppressive actions; and (c) to analyze if repeated opiate administration induces tolerance to opiate immunosuppressive effects. Independent groups of mice received a single i.p. injection of morphine (0.1-10mg/kg) or fentanyl (0.001-0.1mg/kg) 10min prior to LPS (1mg/kg). Peritoneal TNFα levels were determined 1h later. The effects of fentanyl were analyzed in MC-deficient mice (W-sh) and in W-sh mice reconstituted with bone marrow-derived MCs. Other animals received 6 or 10 doses of morphine (10mg/kg, 3×/day) or fentanyl (0.1mg/kg 3×/day) and were then challenged with LPS. Fentanyl was equally effective and 1000× more potent than morphine to inhibit i.p. LPS-induced TNFα release and this was dependent on intraperitoneal MCs. Repeated morphine administration induced tolerance to both antinociception and inhibition of response to endotoxin. Repeated fentanyl injection did not induce significant antinociceptive tolerance, but, interestingly, produced sensitization to LPS. IN CONCLUSION (1) opiates with different analgesic potency also differ in their potency to induce immunosuppression; (2) MCs are the cellular target of the immunosuppressive actions of fentanyl here studied; (3) in contrast with morphine, tolerance to fentanyl's immunosuppressive actions can be dissociated from tolerance to its antinociceptive effects.
Collapse
Affiliation(s)
| | | | - Silvia L Cruz
- Departamento de Farmacobiología, Cinvestav, México D.F. 14330, Mexico.
| |
Collapse
|
310
|
Das S, Rani M, Rabidas V, Pandey K, Sahoo GC, Das P. TLR9 and MyD88 are crucial for the maturation and activation of dendritic cells by paromomycin-miltefosine combination therapy in visceral leishmaniasis. Br J Pharmacol 2014; 171:1260-74. [PMID: 24670148 DOI: 10.1111/bph.12530] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 10/30/2013] [Accepted: 11/08/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE The combination of paromomycin-miltefosine is a successful anti-leishmanial therapy in visceral leishmaniasis (VL). This encouraged us to study its effect on Toll-like receptor (TLR)-mediated immunomodulation of dendritic cells (DC), as DC maturation and activation is crucial for anti-leishmanial activity. EXPERIMENTAL APPROACH In silico protein-ligand interaction and biophysical characterization of TLR9-drug interaction was performed. Interaction assays of HEK293 cells with different concentrations of miltefosine and/or paromomycin were performed, and NF-κB promoter activity measured. The role of TLR9 and MyD88 in paromomycin/miltefosine-induced maturation and activation of DCs was evaluated through RNA interference techniques. The effect of drugs on DCs was measured in terms of counter-regulatory production of IL-12 over IL-10, and characterized by chromatin immunoprecipitation assay at the molecular level. KEY RESULTS Computational and biophysical studies revealed that paromomycin/miltefosine interact with TLR9. Both drugs, as a monotherapy/combination, induced TLR9-dependent NF-κB promoter activity through MyD88. Moreover, the drug combination induced TLR9/MyD88-dependent functional maturation of DCs, evident as an up-regulation of co-stimulatory markers, enhanced antigen presentation by increasing MHC II expression, and increased stimulation of naive T-cells to produce IFN-γ. Both drugs, by modifying histone H3 at the promoter level, increased the release of IL-12, but down-regulated IL-10 in a TLR9-dependent manner. CONCLUSIONS AND IMPLICATIONS These results provide the first evidence that the combination of paromomycin-miltefosine critically modifies the maturation, activation and development of host DCs through a mechanism dependent on TLR9 and MyD88. This has implications for evaluating the success of other combination anti-leishmanial therapies that act by targeting host DCs.
Collapse
Affiliation(s)
- Sushmita Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences, Indian Council of Medical Research, Bihar, India
| | | | | | | | | | | |
Collapse
|
311
|
Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience 2014; 280:299-317. [PMID: 25241065 DOI: 10.1016/j.neuroscience.2014.09.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/21/2022]
Abstract
CNS immune signaling contributes to deleterious opioid effects including hyperalgesia, tolerance, reward, and dependence/withdrawal. Such effects are mediated by opioid signaling at toll-like receptor 4 (TLR4), presumptively of glial origin. Whether CNS endothelial cells express TLR4 is controversial. If so, they would be well positioned for activation by blood-borne opioids, contributing to opioid-induced pro-inflammatory responses. These studies examined adult primary rat CNS endothelial cell responses to (-)-morphine or its mu opioid receptor (MOR)-inactive metabolite morphine-3-glucuronide (M3G), both known TLR4 agonists. We demonstrate that adult rat CNS endothelial cells express functional TLR4. M3G activated nuclear factor kappaB (NF-κB), increased tumor necrosis factor-α (TNFα) and cyclooxygenase-2 (COX2) mRNAs, and released prostaglandin E2 (PGE2) from these cells. (-)-Morphine-induced upregulation of TNFα mRNA and PGE2 release were unmasked by pre-treatment with nalmefene, a MOR antagonist without TLR4 activity (unlike CTAP, shown to have both MOR- and TLR4-activity), suggestive of an interplay between MOR and TLR4 co-activation by (-)-morphine. In support, MOR-dependent Protein Kinase A (PKA) opposed TLR4 signaling, as PKA inhibition (H-89) also unmasked (-)-morphine-induced TNFα and COX2 mRNA upregulation. Intrathecal injection of CNS endothelial cells, stimulated in vitro with M3G, produced TLR4-dependent tactile allodynia. Further, cortical suffusion with M3G in vivo induced TLR4-dependent vasodilation. Finally, endothelial cell TLR4 activation by lipopolysaccharide and/or M3G was blocked by the glial inhibitors AV1013 and propentofylline, demonstrating endothelial cells as a new target of such drugs. These data indicate that (-)-morphine and M3G can activate CNS endothelial cells via TLR4, inducing proinflammatory, biochemical, morphological, and behavioral sequelae. CNS endothelial cells may have previously unanticipated roles in opioid-induced effects, in phenomena blocked by presumptive glial inhibitors, as well as TLR4-mediated phenomena more broadly.
Collapse
|
312
|
Due MR, Yang XF, Allette YM, Randolph AL, Ripsch MS, Wilson SM, Dustrude ET, Khanna R, White FA. Carbamazepine potentiates the effectiveness of morphine in a rodent model of neuropathic pain. PLoS One 2014; 9:e107399. [PMID: 25221944 PMCID: PMC4164621 DOI: 10.1371/journal.pone.0107399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 08/13/2014] [Indexed: 01/05/2023] Open
Abstract
Approximately 60% of morphine is glucuronidated to morphine-3-glucuronide (M3G) which may aggravate preexisting pain conditions. Accumulating evidence indicates that M3G signaling through neuronal Toll-like receptor 4 (TLR4) may be central to this proalgesic signaling event. These events are known to include elevated neuronal excitability, increased voltage-gated sodium (NaV) current, tactile allodynia and decreased opioid analgesic efficacy. Using an in vitro ratiometric-based calcium influx analysis of acutely dissociated small and medium-diameter neurons derived from lumbar dorsal root ganglion (DRG), we observed that M3G-sensitive neurons responded to lipopolysaccharide (LPS) and over 35% of these M3G/LPS-responsive cells exhibited sensitivity to capsaicin. In addition, M3G-exposed sensory neurons significantly increased excitatory activity and potentiated NaV current as measured by current and voltage clamp, when compared to baseline level measurements. The M3G-dependent excitability and potentiation of NaV current in these sensory neurons could be reversed by the addition of carbamazepine (CBZ), a known inhibitor of several NaV currents. We then compared the efficacy between CBZ and morphine as independent agents, to the combined treatment of both drugs simultaneously, in the tibial nerve injury (TNI) model of neuropathic pain. The potent anti-nociceptive effects of morphine (5 mg/kg, i.p.) were observed in TNI rodents at post-injury day (PID) 7–14 and absent at PID21–28, while administration of CBZ (10 mg/kg, i.p.) alone failed to produce anti-nociceptive effects at any time following TNI (PID 7–28). In contrast to either drug alone at PID28, the combination of morphine and CBZ completely attenuated tactile hyperalgesia in the rodent TNI model. The basis for the potentiation of morphine in combination with CBZ may be due to the effects of a latent upregulation of NaV1.7 in the DRG following TNI. Taken together, our observations demonstrate a potential therapeutic use of morphine and CBZ as a combinational treatment for neuropathic pain.
Collapse
Affiliation(s)
- Michael R. Due
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiao-Fang Yang
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
| | - Yohance M. Allette
- Department of Cell Biology and Anatomy, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Aaron L. Randolph
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Matthew S. Ripsch
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Sarah M. Wilson
- Program in Medical Neurosciences, Paul and Carole Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Erik T. Dustrude
- Department of Cell Biology and Anatomy, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Rajesh Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, Arizona, United States of America
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Fletcher A. White
- Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
313
|
In vivo veritas: (+)-Naltrexone's actions define translational importance. Trends Pharmacol Sci 2014; 35:432-3. [DOI: 10.1016/j.tips.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 12/26/2022]
|
314
|
Elhabazi K, Ayachi S, Ilien B, Simonin F. Assessment of morphine-induced hyperalgesia and analgesic tolerance in mice using thermal and mechanical nociceptive modalities. J Vis Exp 2014:e51264. [PMID: 25145878 PMCID: PMC4692352 DOI: 10.3791/51264] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioid-induced hyperalgesia and tolerance severely impact the clinical efficacy of opiates as pain relievers in animals and humans. The molecular mechanisms underlying both phenomena are not well understood and their elucidation should benefit from the study of animal models and from the design of appropriate experimental protocols. We describe here a methodological approach for inducing, recording and quantifying morphine-induced hyperalgesia as well as for evidencing analgesic tolerance, using the tail-immersion and tail pressure tests in wild-type mice. As shown in the video, the protocol is divided into five sequential steps. Handling and habituation phases allow a safe determination of the basal nociceptive response of the animals. Chronic morphine administration induces significant hyperalgesia as shown by an increase in both thermal and mechanical sensitivity, whereas the comparison of analgesia time-courses after acute or repeated morphine treatment clearly indicates the development of tolerance manifested by a decline in analgesic response amplitude. This protocol may be similarly adapted to genetically modified mice in order to evaluate the role of individual genes in the modulation of nociception and morphine analgesia. It also provides a model system to investigate the effectiveness of potential therapeutic agents to improve opiate analgesic efficacy.
Collapse
Affiliation(s)
- Khadija Elhabazi
- Biotechnology and Cellular Signalling, UMR 7242 CNRS, Université de Strasbourg
| | - Safia Ayachi
- Biotechnology and Cellular Signalling, UMR 7242 CNRS, Université de Strasbourg
| | - Brigitte Ilien
- Biotechnology and Cellular Signalling, UMR 7242 CNRS, Université de Strasbourg
| | - Frédéric Simonin
- Biotechnology and Cellular Signalling, UMR 7242 CNRS, Université de Strasbourg;
| |
Collapse
|
315
|
|
316
|
Afsharimani B, Doornebal CW, Cabot PJ, Hollmann MW, Parat MO. Comparison and analysis of the animal models used to study the effect of morphine on tumour growth and metastasis. Br J Pharmacol 2014; 172:251-9. [PMID: 24467261 DOI: 10.1111/bph.12589] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 11/27/2013] [Accepted: 12/05/2013] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED The effect of opioids on tumour growth and metastasis has been debated for many years, with recent emphasis on the possibility that they might influence the rate of disease-free survival after tumour resection when used in the perioperative pain management of cancer surgery patients. The literature presents conflicting and inconclusive in vitro and in vivo data about the potential effect of opioids, especially morphine, on tumour growth and metastasis. To inform clinical practice, appropriate animal models are needed to test whether opioids alter the course of tumour growth and metastasis. Here, we review the literature on animal-based studies testing the effect of morphine on cancer so far, and analyse differences between the models used that may explain the discrepancies in published results. Such analysis should elucidate the role of opioids in cancer and help define ideal pre-clinical models to provide definitive answers. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- B Afsharimani
- School of Pharmacy, University of Queensland, Woolloongabba, Qld, Australia
| | | | | | | | | |
Collapse
|
317
|
Abstract
With increased prescription of opioids has come increased recognition of adverse consequences, including narcotic bowel syndrome (NBS). Characterized by incompletely controlled abdominal pain despite continued or increasing doses of opioids, NBS is estimated to occur in 4.2-6.4% of patients chronically taking opioids. Patients with NBS have a high degree of comorbid psychiatric illness, catastrophizing and disability; comorbid substance abuse must also be considered among this population. NBS should be distinguished from opioid-induced bowel disorder, which results from the effects of opioids on gastrointestinal motility and secretion. By contrast, the mechanisms of NBS are probably centrally mediated and include glial cell activation, bimodal opioid modulation in the dorsal horn, descending facilitation of pain and the glutaminergic system. Few treatments have been rigorously studied. A trial of opioid detoxification resulted in complete detoxification for the vast majority of patients with reduction in pain symptoms; however, despite improvement in pain, approximately half of patients returned to opioid use within 3 months. Improved strategies are needed to identify patients who will respond to detoxification and remain off opioids. Comorbid psychiatric and substance abuse disorders are barriers to durable response after detoxification and should be actively sought out and treated accordingly. An effective patient-physician relationship is essential.
Collapse
|
318
|
Cox BM, Christie MJ, Devi L, Toll L, Traynor JR. Challenges for opioid receptor nomenclature: IUPHAR Review 9. Br J Pharmacol 2014; 172:317-23. [PMID: 24528283 DOI: 10.1111/bph.12612] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 01/13/2014] [Accepted: 01/27/2014] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED Recent developments in the study of the structure and function of opioid receptors raise significant challenges for the definition of individual receptor types and the development of a nomenclature that precisely describes isoforms that may subserve different functions in vivo. Presentations at the 2013 meeting of the International Narcotics Research Conference in Cairns, Australia, considered some of the new discoveries that are now unravelling the complexities of opioid receptor signalling. Variable processing of opioid receptor messenger RNAs may lead to the presence of several isoforms of the μ receptor. Each opioid receptor type can function either as a monomer or as part of a homo- or heterodimer or higher multimer. Additionally, recent evidence points to the existence of agonist bias in the signal transduction pathways activated through μ receptors, and to the presence of regulatory allosteric sites on the receptors. This brief review summarizes the recent discoveries that raise challenges for receptor definition and the characterization of signal transduction pathways activated by specific receptor forms. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- Brian M Cox
- Department of Pharmacology, Uniformed Services University, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
319
|
Barr GA, Hunter DA. Interactions between glia, the immune system and pain processes during early development. Dev Psychobiol 2014; 56:1698-710. [PMID: 24910104 DOI: 10.1002/dev.21229] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/15/2014] [Indexed: 01/10/2023]
Abstract
Pain is a serious problem for infants and children and treatment options are limited. Moreover, infants born prematurely or hospitalized for illness likely have concurrent infection that activates the immune system. It is now recognized that the immune system in general and glia in particular influence neurotransmission and that the neural bases of pain are intimately connected to immune function. We know that injuries that induce pain activate immune function and suppressing the immune system alleviates pain. Despite this advance in our understanding, virtually nothing is known of the role that the immune system plays in pain processing in infants and children, even though pain is a serious clinical issue in pediatric medicine. This brief review summarizes the existing data on immune-neural interactions in infants, providing evidence for the immaturity of these interactions.
Collapse
Affiliation(s)
- Gordon A Barr
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, 19104.
| | | |
Collapse
|
320
|
Reece AS, Hulse GK. Impact of lifetime opioid exposure on arterial stiffness and vascular age: cross-sectional and longitudinal studies in men and women. BMJ Open 2014; 4:e004521. [PMID: 24889849 PMCID: PMC4054659 DOI: 10.1136/bmjopen-2013-004521] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To characterise and compare the potentiation of arterial stiffness and vascular ageing by opioids in men and women. DESIGN Cross-sectional and longitudinal studies of 576 clinical controls and 687 opioid-dependent patients (ODP) on 710 and 1305 occasions, respectively, over a total of 2382 days (6.52 years), 2006-2011. Methodology Radial pulse wave analysis with Atcor SphygmoCor system (Sydney). SETTING Primary care. CONTROLS General practice patients with non-cardiovascular disorders, and university student controls. ODP: Patients undergoing clinical management of their opioid dependence. CONTROLS had lower chronological ages (CAs) than ODP (30.0±0.5 vs 34.5±0.3, mean±SEM, p<0.0001). 69.6% and 67.7% participants were men, and 16% and 92.3% were smokers (p<0.0001) for controls and ODP, respectively. 86.3%, 10.3% and 3.4% of ODP were treated with buprenorphine (6.98±0.21 mg), methadone (63.04±4.01 mg) or implant naltrexone, respectively. Body mass index (BMI) was depressed in ODP. INTERVENTIONS Nil. PRIMARY OUTCOME MEASURES Vascular Reference Age (RA) and the ratio of vascular age to chronological age (RA/CA). SECONDARY OUTCOME MEASURES Arterial stiffness including Augmentation Index. RESULTS After BMI adjustment, RA in ODP was higher as a function of CA and of time (both p<0.05). Modelled mean RA in control and ODP was 35.6 and 36.3 years (+1.97%) in men, and 34.5 and 39.2 years (+13.43%) in women, respectively. Changes in RA and major arterial stiffness indices were worse in women both as a factor (p = 0.0036) and in interaction with CA (p = 0.0040). Quadratic, cubic and quartic functions of opioid exposure duration outperformed linear models with RA/CA over CA and over time. The opioid dose-response relationship persisted longitudinally after multiple adjustments from p=0.0013 in men and p=0.0073 in women. CONCLUSIONS Data show that lifetime opioid exposure, an interactive cardiovascular risk factor, particularly in women, is related to linear, quadratic, cubic and quartic functions of treatment duration and is consistent with other literature of accelerated ageing in patients with OD.
Collapse
Affiliation(s)
- Albert Stuart Reece
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Gary Kenneth Hulse
- School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
321
|
Elyasi L, Eftekhar-Vaghefi SH, Esmaeili-Mahani S. Morphine Protects SH-SY5Y Human Neuroblastoma Cells Against 6-Hydroxydopamine–Induced Cell Damage: Involvement of Anti-Oxidant, Calcium Blocking, and Anti-Apoptotic Properties. Rejuvenation Res 2014; 17:255-63. [DOI: 10.1089/rej.2013.1473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Leila Elyasi
- Laboratory of Molecular Neuroscience, Kerman Neuroscience Research Center (KNRC), Kerman University of Medical Sciences. Kerman, Iran
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences. Kerman, Iran
| | | | - Saeed Esmaeili-Mahani
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman. Kerman, Iran
| |
Collapse
|
322
|
Abstract
As investigations into the innate immune responses that lead to allergic sensitization become better defined, there is a need to determine how allergens could interact with pattern recognition receptors that bind non-proteinaceous moieties. Many important allergens are not covalently bound to lipid or carbohydrate, but have structures belonging to lipid, glycan and glycolipid-binding families. These include ML-domain proteins, lipopolysaccharide-binding/cell permeability-increasing proteins, von Ebner gland lipocalins, salivary lipocalins/major urinary proteins, plant pathogenesis-related proteins PR-5 and -10, uteroglobins, non-specific lipid transfer proteins, large lipid transfer proteins and proteins with chitin and other carbohydrate-binding modules. The binding expected is overviewed with regard to importance of the allergens and their ability to elicit responses proposed from experimental models. The evidence compiled showing that allergens from the same source sensitize for different types of adaptive immune responses supports the concept that individual allergens within these sources have their own distinctive interactions with innate immunity.
Collapse
|
323
|
Mattioli TA, Leduc-Pessah H, Skelhorne-Gross G, Nicol CJB, Milne B, Trang T, Cahill CM. Toll-like receptor 4 mutant and null mice retain morphine-induced tolerance, hyperalgesia, and physical dependence. PLoS One 2014; 9:e97361. [PMID: 24824631 PMCID: PMC4019634 DOI: 10.1371/journal.pone.0097361] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 04/18/2014] [Indexed: 11/18/2022] Open
Abstract
The innate immune system modulates opioid-induced effects within the central nervous system and one target that has received considerable attention is the toll-like receptor 4 (TLR4). Here, we examined the contribution of TLR4 in the development of morphine tolerance, hyperalgesia, and physical dependence in two inbred mouse strains: C3H/HeJ mice which have a dominant negative point mutation in the Tlr4 gene rendering the receptor non-functional, and B10ScNJ mice which are TLR4 null mutants. We found that neither acute antinociceptive response to a single dose of morphine, nor the development of analgesic tolerance to repeated morphine treatment, was affected by TLR4 genotype. Likewise, opioid induced hyperalgesia and opioid physical dependence (assessed by naloxone precipitated withdrawal) were not altered in TLR4 mutant or null mice. We also examined the behavioural consequence of two stereoisomers of naloxone: (-) naloxone, an opioid receptor antagonist, and (+) naloxone, a purported antagonist of TLR4. Both stereoisomers of naloxone suppressed opioid induced hyperalgesia in wild-type control, TLR4 mutant, and TLR4 null mice. Collectively, our data suggest that TLR4 is not required for opioid-induced analgesic tolerance, hyperalgesia, or physical dependence.
Collapse
Affiliation(s)
| | - Heather Leduc-Pessah
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Graham Skelhorne-Gross
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Christopher J. B. Nicol
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Cancer Biology and Genetics Division, Cancer Research Institute, Queen’s University, Kingston, Ontario, Canada
| | - Brian Milne
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anaesthesiology & Perioperative Medicine, Queen’s University, Kingston, Ontario, Canada
| | - Tuan Trang
- Departments of Comparative Biology & Experimental Medicine, Physiology & Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Catherine M. Cahill
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Care, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
324
|
Pravetoni M, Vervacke JS, Distefano MD, Tucker AM, Laudenbach M, Pentel PR. Effect of currently approved carriers and adjuvants on the pre-clinical efficacy of a conjugate vaccine against oxycodone in mice and rats. PLoS One 2014; 9:e96547. [PMID: 24797666 PMCID: PMC4010527 DOI: 10.1371/journal.pone.0096547] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/08/2014] [Indexed: 11/19/2022] Open
Abstract
Vaccination against the highly abused prescription opioid oxycodone has shown pre-clinical efficacy for blocking oxycodone effects. The current study further evaluated a candidate vaccine composed of oxycodone derivatized at the C6 position (6OXY) conjugated to the native keyhole limpet hemocyanin (nKLH) carrier protein. To provide an oxycodone vaccine formulation suitable for human studies, we studied the effect of alternative carriers and adjuvants on the generation of oxycodone-specific serum antibody and B cell responses, and the effect of immunization on oxycodone distribution and oxycodone-induced antinociception in mice and rats. 6OXY conjugated to tetanus toxoid (TT) or a GMP grade KLH dimer (dKLH) was as effective as 6OXY conjugated to the nKLH decamer in mice and rats, while the 6OXY hapten conjugated to a TT-derived peptide was not effective in preventing oxycodone-induced antinociception in mice. Immunization with 6OXY-TT s.c. absorbed on alum adjuvant provided similar protection to 6OXY-TT administered i.p. with Freund's adjuvant in rats. The toll-like receptor 4 (TLR4) agonist monophosphoryl lipid A (MPLA) adjuvant, alone or in combination with alum, offered no advantage over alum alone for generating oxycodone-specific serum antibodies or 6OXY-specific antibody secreting B cells in mice vaccinated with 6OXY-nKLH or 6OXY-TT. The immunogenicity of oxycodone vaccines may be modulated by TLR4 signaling since responses to 6OXY-nKLH in alum were decreased in TLR4-deficient mice. These data suggest that TT, nKLH and dKLH carriers provide consistent 6OXY conjugate vaccine immunogenicity across species, strains and via different routes of administration, while adjuvant formulations may need to be tailored to individual immunogens or patient populations.
Collapse
Affiliation(s)
- Marco Pravetoni
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- University of Minnesota, School of Medicine, Department of Medicine, Minneapolis, Minnesota, United States of America
- University of Minnesota, School of Medicine, Department of Pharmacology, Minneapolis, Minnesota, United States of America
- University of Minnesota, Center for Immunology, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - Jeffrey S. Vervacke
- University of Minnesota, Department of Chemistry, Minneapolis, Minnesota, United States of America
| | - Mark D. Distefano
- University of Minnesota, Department of Chemistry, Minneapolis, Minnesota, United States of America
| | - Ashli M. Tucker
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
| | - Megan Laudenbach
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
| | - Paul R. Pentel
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- University of Minnesota, School of Medicine, Department of Medicine, Minneapolis, Minnesota, United States of America
- University of Minnesota, School of Medicine, Department of Pharmacology, Minneapolis, Minnesota, United States of America
| |
Collapse
|
325
|
Han Y, Jiang C, Tang J, Wang C, Wu P, Zhang G, Liu W, Jamangulova N, Wu X, Song X. Resveratrol reduces morphine tolerance by inhibiting microglial activation via AMPK signalling. Eur J Pain 2014; 18:1458-70. [PMID: 24756886 DOI: 10.1002/ejp.511] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND Evidence has accumulated indicating that microglia within the spinal cord play a critical role in morphine tolerance. The present study investigated the effects and possible mechanisms of 5' adenosine monophosphate-activated protein kinase (AMPK) activator resveratrol and AICAR to inhibit microglial activation and to limit the decrease in antinociceptive effects of morphine. METHODS The microglial cell line BV-2 was used. Cytokine expression was measured using quantitative polymerase chain reaction. Cell signalling was assayed by Western blot and immunohistochemistry. The antinociception and morphine tolerance were assessed in CD-1 mice using the hot plate and tail-flick tests. RESULTS (1) Morphine induces robust BV-2 cell activation, as evidenced by increased p38 mitogen-activated protein kinase phosphorylation, nuclear factor-κB translocation and mRNA expression of pro-inflammatory cytokines [including interleukin-1β (IL-1β), IL-6 and tumour necrosis factor-α], inducible nitric oxide synthase and Toll-like receptor-4, and these changes are inhibited by resveratrol. (2) Resveratrol activates AMPK to suppress morphine-induced BV-2 cell activation. AICAR, another AMPK activator, can mimic the effects of resveratrol, whereas compound C, an AMPK inhibitor, reverses the inhibitory effects of resveratrol treatment. (3) Systemic or spinal administration of resveratrol with morphine significantly blocks microglial activation in the spinal cord and then attenuates the development of acute and chronic morphine tolerance in both male and female mice. CONCLUSION Resveratrol directly suppresses morphine-induced microglial activation through activating AMPK, resulting in significant attenuation of morphine antinociceptive tolerance.
Collapse
Affiliation(s)
- Y Han
- Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China; Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Bogen IL, Boix F, Nerem E, Mørland J, Andersen JM. A monoclonal antibody specific for 6-monoacetylmorphine reduces acute heroin effects in mice. J Pharmacol Exp Ther 2014; 349:568-76. [PMID: 24700886 DOI: 10.1124/jpet.113.212035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy against drugs of abuse is being studied as an alternative treatment option in addiction medicine and is based on antibodies sequestering the drug in the bloodstream and blocking its entry into the brain. Producing an efficient vaccine against heroin has been considered particularly challenging because of the rapid metabolism of heroin to multiple psychoactive molecules. We have previously reported that heroin's first metabolite, 6-monoacetylmorphine (6-MAM), is the predominant mediator for heroin's acute behavioral effects and that heroin is metabolized to 6-MAM primarily prior to brain entry. On this basis, we hypothesized that antibody sequestration of 6-MAM is sufficient to impair heroin-induced effects and therefore examined the effects of a monoclonal antibody (mAb) specific for 6-MAM. In vitro experiments in human and rat blood revealed that the antibody was able to bind 6-MAM and block the metabolism to morphine almost completely, whereas the conversion of heroin to 6-MAM remained unaffected. Mice pretreated with the mAb toward 6-MAM displayed a reduction in heroin-induced locomotor activity that corresponded closely to the reduction in brain 6-MAM levels. Intraperitoneal and intravenous administration of the anti-6-MAM mAb gave equivalent protection against heroin effects, and the mAb was estimated to have a functional half-life of 8 to 9 days in mice. Our study implies that an antibody against 6-MAM is effective in counteracting heroin effects.
Collapse
Affiliation(s)
- Inger Lise Bogen
- Department of Drug Abuse Research and Method Development, Division of Forensic Sciences, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | |
Collapse
|
327
|
|
328
|
Abstract
Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.
Collapse
|
329
|
Sauer RS, Hackel D, Morschel L, Sahlbach H, Wang Y, Mousa SA, Roewer N, Brack A, Rittner HL. Toll like receptor (TLR)-4 as a regulator of peripheral endogenous opioid-mediated analgesia in inflammation. Mol Pain 2014; 10:10. [PMID: 24499354 PMCID: PMC3922964 DOI: 10.1186/1744-8069-10-10] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/04/2014] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Leukocytes containing opioid peptides locally control inflammatory pain. In the early phase of complete Freund's adjuvant (CFA)-induced hind paw inflammation, formyl peptides (derived e.g. from Mycobacterium butyricum) trigger the release of opioid peptides from neutrophils contributing to tonic basal antinociception. In the later phase we hypothesized that toll-like-receptor-(TLR)-4 activation of monocytes/macrophages triggers opioid peptide release and thereby stimulates peripheral opioid-dependent antinociception. RESULTS In Wistar rats with CFA hind paw inflammation in the later inflammatory phase (48-96 h) systemic leukocyte depletion by cyclophosphamide (CTX) or locally injected naloxone (NLX) further decreased mechanical and thermal nociceptive thresholds. In vitro β-endorphin (β-END) content increased during human monocyte differentiation as well as in anti-inflammatory CD14+CD16- or non-classical M2 macrophages. Monocytes expressing TLR4 dose-dependently released β-END after stimulation with lipopolysaccharide (LPS) dependent on intracellular calcium. Despite TLR4 expression proinflammatory M1 and anti-inflammatory M2 macrophages only secreted opioid peptides in response to ionomycin, a calcium ionophore. Intraplantar injection of LPS as a TLR4 agonist into the inflamed paw elicited an immediate opioid- and dose-dependent antinociception, which was blocked by TAK-242, a small-molecule inhibitor of TLR4, or by peripheral applied NLX. In the later phase LPS lowered mechanical and thermal nociceptive thresholds. Furthermore, local peripheral TLR4 blockade worsened thermal and mechanical nociceptive pain thresholds in CFA inflammation. CONCLUSION Endogenous opioids from monocytes/macrophages mediate endogenous antinociception in the late phase of inflammation. Peripheral TLR4 stimulation acts as a transient counter-regulatory mechanism for inflammatory pain in vivo, and increases the release of opioid peptides from monocytes in vitro. TLR4 antagonists as new treatments for sepsis and neuropathic pain might unexpectedly transiently enhance pain by impairing peripheral opioid analgesia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Heike L Rittner
- Department of Anesthesiology, University Hospital of Wuerzburg, Oberdürrbacher Strasse 6, D-97080 Würzburg, Germany.
| |
Collapse
|
330
|
Thomas J, Hutchinson MR. Exploring neuroinflammation as a potential avenue to improve the clinical efficacy of opioids. Expert Rev Neurother 2014; 12:1311-24. [DOI: 10.1586/ern.12.125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
331
|
Differential expression of the alternatively spliced OPRM1 isoform μ-opioid receptor-1K in HIV-infected individuals. AIDS 2014; 28:19-30. [PMID: 24413261 DOI: 10.1097/qad.0000000000000113] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE We previously examined the expression of specific C-terminal μ-opioid receptor (MOR) splice variants in human central nervous system cell types and HIV-infected brain tissue from individuals with neurocognitive impairment ± HIV encephalitis (HIVE). In the present study, we examined the N-terminal splice variant MOR-1K, which mediates excitatory cellular signaling. METHODS AND RESULTS We found segregation of expression ranging from undetectable to seemingly exclusive across nervous system cell types compared to the pool of C-terminal MOR splice variants using the real-time polymerase chain reaction (RT-PCR). Expression of MOR-1K mRNA was also increased in HIV-infected individuals with combined neurocognitive impairment and HIVE compared with the other groups. MOR-1K expression correlated with the level of patient neurocognitive impairment, whereas the pool of C-terminal MOR splice variants did not. HIVE was also associated with increased expression of the inflammatory mediators MCP-1, MCP-2, and RANTES, but not the host HIV coreceptors CXCR4 and CCR5 or the CD4 receptor using qRT-PCR. Network analysis of microarray data from these same patients revealed filamin A (FLNA) as a possible interaction partner with MOR-1K, and FLNA gene expression was also found to be upregulated in HIVE using qRT-PCR. Overexpression of FLNA in HEK293 cells redistributed MOR-1K from intracellular compartments to the cell surface. CONCLUSION These results suggest that HIVE, and neurocognitive impairment depending on its severity, are associated with enhanced MOR-1K signaling through both increased expression and trafficking to the cell surface, which may alter the contribution of MOR receptor isoforms and exacerbate the effects of MOR activation in neuroAIDS.
Collapse
|
332
|
Moossavi S. Gliadin is an uncatalogued Toll-like receptor ligand. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2014. [DOI: 10.1016/j.jmhi.2013.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
333
|
Beardsley PM, Hauser KF. Glial modulators as potential treatments of psychostimulant abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:1-69. [PMID: 24484974 DOI: 10.1016/b978-0-12-420118-7.00001-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glia (including astrocytes, microglia, and oligodendrocytes), which constitute the majority of cells in the brain, have many of the same receptors as neurons, secrete neurotransmitters and neurotrophic and neuroinflammatory factors, control clearance of neurotransmitters from synaptic clefts, and are intimately involved in synaptic plasticity. Despite their prevalence and spectrum of functions, appreciation of their potential general importance has been elusive since their identification in the mid-1800s, and only relatively recently have they been gaining their due respect. This development of appreciation has been nurtured by the growing awareness that drugs of abuse, including the psychostimulants, affect glial activity, and glial activity, in turn, has been found to modulate the effects of the psychostimulants. This developing awareness has begun to illuminate novel pharmacotherapeutic targets for treating psychostimulant abuse, for which targeting more conventional neuronal targets has not yet resulted in a single, approved medication. In this chapter, we discuss the molecular pharmacology, physiology, and functional relationships that the glia have especially in the light in which they present themselves as targets for pharmacotherapeutics intended to treat psychostimulant abuse disorders. We then review a cross section of preclinical studies that have manipulated glial processes whose behavioral effects have been supportive of considering the glia as drug targets for psychostimulant-abuse medications. We then close with comments regarding the current clinical evaluation of relevant compounds for treating psychostimulant abuse, as well as the likelihood of future prospects.
Collapse
Affiliation(s)
| | - Kurt F Hauser
- Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
334
|
Wang X, Smith C, Yin H. Targeting Toll-like receptors with small molecule agents. Chem Soc Rev 2013; 42:4859-66. [PMID: 23503527 DOI: 10.1039/c3cs60039d] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Toll-like receptors (TLRs) are type I transmembrane proteins that are key regulators of both innate and adaptive immune responses. To protect the host from viral and bacterial threats, TLRs trigger a pro-inflammatory immune response by detecting pathogen and danger associated molecular patterns. Considerable evidence has accumulated to show that the dysregulation of TLR signaling contributes to the development and progression of numerous diseases. Therefore, TLRs are emerging as important drug discovery targets. Currently, there is great interest in the development of TLR small molecule modulators for interrogating TLR signaling and treating diseases caused by TLR signaling malfunctions. In this tutorial review, we will outline methods for the discovery of TLR small molecule modulators and the up-to-date progress in this field. Small molecules targeting TLRs not only provide an opportunity to identify promising drug candidates, but also unveil knowledge regarding TLR signaling pathways.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Chemistry and Biochemistry and the BioFrontiers Institute, 596 University of Colorado at Boulder, Boulder, CO 80309-0596, USA
| | | | | |
Collapse
|
335
|
FACS analysis of neuronal-glial interactions in the nucleus accumbens following morphine administration. Psychopharmacology (Berl) 2013; 230:525-35. [PMID: 23793269 PMCID: PMC4134011 DOI: 10.1007/s00213-013-3180-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
Abstract
RATIONALE Glia, including astrocytes and microglia, can profoundly modulate neuronal function and behavior; however, very little is known about the signaling molecules that govern neuronal-glial communication and in turn affect behavior. Morphine treatment activates microglia and astrocytes in the nucleus accumbens (NAcc) to induce the synthesis of cytokines and chemokines, and this has important implications for addictive behavior. Blocking morphine-induced glial activation using the nonspecific glial inhibitor, ibudilast, has no effect on the initial rewarding properties of morphine, but completely prevents the relapse of drug-seeking behavior months later. OBJECTIVES We sought to determine the cellular source of these cytokines and chemokines in the NAcc in response to morphine, and the cell-type-specific expression pattern of their receptors to determine whether neurons have the capacity to respond to these immune signals directly. METHODS We used fluorescence-activated cell sorting of neurons (Thy1+), astrocytes (GLT1+), and microglia (CD11b+) from the NAcc for the analysis of cell type specific gene expression following morphine or saline treatment. RESULTS The results indicate that microglia and neurons each produce a subset of chemokines in response to morphine and that neurons have the capacity to respond directly to a select group of these chemokines via their receptors. In addition, we provide evidence that microglia are capable of responding directly to dopamine release in the NAcc. CONCLUSIONS Future studies will examine the mechanism(s) by which neurons respond to these immune signals produced by microglia in an effort to understand their effect on addictive behaviors.
Collapse
|
336
|
Abstract
This paper is the thirty-fifth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2012 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
337
|
Peri F, Calabrese V. Toll-like receptor 4 (TLR4) modulation by synthetic and natural compounds: an update. J Med Chem 2013; 57:3612-22. [PMID: 24188011 DOI: 10.1021/jm401006s] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Toll-like receptor 4 (TLR4), together with MD-2, binds bacterial endotoxins (E) with high affinity, triggering formation of the activated homodimer (E.MD-2.TLR4)2. Activated TLR4 induces intracellular signaling leading to activation of transcription factors that result in cytokine and chemokine production and initiation of inflammatory and immune responses. TLR4 also responds to endogenous ligands called danger associated molecular patterns (DAMPs). Increased sensitivity to infection and a variety of immune pathologies have been associated with either too little or too much TLR4 activation. We review here the molecular mechanisms of TLR4 activation (agonism) or inhibition (antagonism) by small organic molecules of both natural and synthetic origin. The role of co-receptors MD-2 and CD14 in the TLR4 modulation process is also discussed. Recent achievements in the field of chemical TLR4 modulation are reviewed, with special focus on nonclassical TLR4 ligands with a chemical structure different from that of lipid A.
Collapse
Affiliation(s)
- Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca , Piazza della Scienza, 2, 20126 Milano, Italy
| | | |
Collapse
|
338
|
Campbell LA, Avdoshina V, Rozzi S, Mocchetti I. CCL5 and cytokine expression in the rat brain: differential modulation by chronic morphine and morphine withdrawal. Brain Behav Immun 2013; 34:130-40. [PMID: 23968971 PMCID: PMC3795805 DOI: 10.1016/j.bbi.2013.08.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 01/23/2023] Open
Abstract
Opioids have been shown to influence the immune system and to promote the expression of pro-inflammatory cytokines in the central nervous system. However, recent data have shown that activation of opioid receptors increases the expression and release of the neuroprotective chemokine CCL5 from astrocytes in vitro. To further define the interaction between CCL5 and inflammation in response to opioids, we have examined the effect of chronic morphine and morphine withdrawal on the in vivo expression of CCL5 as well as of pro-inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Rats undergoing a chronic morphine paradigm (10 mg/kg increasing to 30 mg/kg, twice a day for 5 days) showed a twofold increase of CCL5 protein and mRNA within the cortex and striatum. No changes were observed in the levels of IL-1β and TNF-α. Naltrexone blocked the effect of morphine. A chronic morphine paradigm with no escalating doses (10 mg/kg, twice a day) did not alter CCL5 levels compared to saline-treated animals. On the contrary, rats undergoing spontaneous morphine withdrawal exhibited lower levels of CCL5 within the cortex as well as increased levels of pro-inflammatory cytokines and Iba-1 positive cells than saline-treated rats. Overall, these data suggest that morphine withdrawal may promote cytokines and other inflammatory responses that have the potential of exacerbating neuronal damage.
Collapse
Affiliation(s)
- Lee A. Campbell
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC 20057
| | - Valeriya Avdoshina
- Department of Neuroscience, Georgetown University Medical Center, Washington DC 20057
| | - Summer Rozzi
- Interdisciplinary Program of Neuroscience, Laboratory of Preclinical Neurobiology, Georgetown University Medical Center, Washington DC 20057
| | - Italo Mocchetti
- Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC 20057,Department of Neuroscience, Georgetown University Medical Center, Washington DC 20057
| |
Collapse
|
339
|
Harada S, Nakamoto K, Tokuyama S. The involvement of midbrain astrocyte in the development of morphine tolerance. Life Sci 2013; 93:573-8. [DOI: 10.1016/j.lfs.2013.08.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/02/2013] [Accepted: 08/13/2013] [Indexed: 01/28/2023]
|
340
|
Cytokines, chaperones and neuroinflammatory responses in heroin-related death: what can we learn from different patterns of cellular expression? Int J Mol Sci 2013; 14:19831-45. [PMID: 24084728 PMCID: PMC3821589 DOI: 10.3390/ijms141019831] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/22/2013] [Accepted: 09/26/2013] [Indexed: 01/11/2023] Open
Abstract
Heroin (3,6-diacetylmorphine) has various effects on the central nervous system with several neuropathological alterations including hypoxic-ischemic brain damage from respiratory depressing effects and neuroinflammatory response. Both of these mechanisms induce the release of cytokines, chemokines and other inflammatory mediators by the activation of many cell types such as leucocytes and endothelial and glial cells, especially microglia, the predominant immunocompetent cell type within the central nervous system. The aim of this study is to clarify the correlation between intravenous heroin administration in heroin related death and the neuroinflammatory response. We selected 45 cases among autopsies executed for heroin-related death (358 total cases); immunohistochemical studies and Western blotting analyses were used to investigate the expression of brain markers such as tumor necrosis factor-α, oxygen-regulated protein 150, (interleukins) IL-1β, IL-6, IL-8, IL-10, IL-15, cyclooxygenase-2, heat shock protein 70, and CD68 (MAC387). Findings demonstrated that morphine induces inflammatory response and cytokine release. In particular, oxygen-regulated protein 150, cyclooxygenase-2, heat shock protein 70, IL-6 and IL-15 cytokines were over-expressed with different patterns of cellular expression.
Collapse
|
341
|
Stevens CW, Aravind S, Das S, Davis RL. Pharmacological characterization of LPS and opioid interactions at the toll-like receptor 4. Br J Pharmacol 2013; 168:1421-9. [PMID: 23083095 DOI: 10.1111/bph.12028] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 10/03/2012] [Accepted: 10/10/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Previous work in our laboratory showed opioid agents inhibit cytokine expression in astrocytes. Recently, Watkins and colleagues hypothesized that opioid agonists activate toll-like receptor 4 (TLR4) signalling, which leads to neuroinflammation. To test this hypothesis, we characterized LPS and opioid effects on TLR4 signalling in reporter cells. EXPERIMENTAL APPROACH NF-κB reporter cells expressing high levels of TLR4 were used to compare LPS and opioid effects on NF-κB activation, a pathway activated by TLR4 stimulation. KEY RESULTS LPS increased TLR4 signalling in a concentration-dependent manner and was antagonized by LPS antagonist (LPS-RS, from Rhodobacter sphaeroides). A concentration ratio analysis showed that LPS-RS was a competitive antagonist. The opioid agonists, morphine and fentanyl, produced minor activation of TLR4 signalling when given alone. When tested following LPS stimulation, opioid agonists inhibited NF-κB activation but this inhibition was not blocked by the general opioid antagonist, naloxone, nor by the selective μ opioid receptor antagonist, β-FNA. Indeed, both naloxone and β-FNA also inhibited NF-κB activation in reporter cells. Further examination of fentanyl and β-FNA effects revealed that both opioid agents inhibited LPS signalling in a non-competitive fashion. CONCLUSIONS AND IMPLICATIONS These results show that LPS-RS is a competitive antagonist at the TLR4 complex, and that both opioid agonists and antagonists inhibit LPS signalling in a non-competitive fashion through a non-GPCR, opioid site(s) in the TLR4 signalling pathway. If confirmed, existing opioid agents or other drug molecules more selective at this novel site may provide a new therapeutic approach to the treatment of neuroinflammation.
Collapse
Affiliation(s)
- C W Stevens
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA.
| | | | | | | |
Collapse
|
342
|
Leonti M, Casu L. Traditional medicines and globalization: current and future perspectives in ethnopharmacology. Front Pharmacol 2013; 4:92. [PMID: 23898296 PMCID: PMC3722488 DOI: 10.3389/fphar.2013.00092] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/02/2013] [Indexed: 01/27/2023] Open
Abstract
The ethnopharmacological approach toward the understanding and appraisal of traditional and herbal medicines is characterized by the inclusions of the social as well as the natural sciences. Anthropological field-observations describing the local use of nature-derived medicines are the basis for ethnopharmacological enquiries. The multidisciplinary scientific validation of indigenous drugs is of relevance to modern societies at large and helps to sustain local health care practices. Especially with respect to therapies related to aging related, chronic and infectious diseases traditional medicines offer promising alternatives to biomedicine. Bioassays applied in ethnopharmacology represent the molecular characteristics and complexities of the disease or symptoms for which an indigenous drug is used in “traditional” medicine to variable depth and extent. One-dimensional in vitro approaches rarely cope with the complexity of human diseases and ignore the concept of polypharmacological synergies. The recent focus on holistic approaches and systems biology in medicinal plant research represents the trend toward the description and the understanding of complex multi-parameter systems. Ethnopharmacopoeias are non-static cultural constructs shaped by belief and knowledge systems. Intensified globalization and economic liberalism currently accelerates the interchange between local and global pharmacopoeias via international trade, television, the World Wide Web and print media. The increased infiltration of newly generated biomedical knowledge and introduction of “foreign” medicines into local pharmacopoeias leads to syncretic developments and generates a feedback loop. While modern and post-modern cultures and knowledge systems adapt and transform the global impact, they become more relevant for ethnopharmacology. Moreover, what is traditional, alternative or complementary medicine depends on the adopted historic-cultural perspective.
Collapse
Affiliation(s)
- Marco Leonti
- Department of Biomedical Sciences, University of Cagliari Cagliari, Italy
| | | |
Collapse
|
343
|
Weber ML, Chen C, Li Y, Farooqui M, Nguyen J, Poonawala T, Hebbel RP, Gupta K. Morphine stimulates platelet-derived growth factor receptor-β signalling in mesangial cells in vitro and transgenic sickle mouse kidney in vivo. Br J Anaesth 2013; 111:1004-12. [PMID: 23820675 DOI: 10.1093/bja/aet221] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Pain and renal dysfunction occur in sickle cell disease. Morphine used to treat pain also co-activates platelet-derived growth factor receptor-β (PDGFR-β), which can adversely affect renal disease. We examined the influence of morphine in mesangial cells in vitro and in mouse kidneys in vivo. METHODS > Mouse mesangial cells treated with 1 μM morphine in vitro or kidneys of transgenic homozygous or hemizygous sickle or control mice (n=3 for each), treated with morphine (0.75, 1.4, 2.14, 2.8, 3.6, and 4.3 mg kg(-1) day(-1) in two divided doses during the first, second, third, fourth, fifth, and sixth weeks, respectively), were used. Western blotting, bromylated deoxy uridine incorporation-based cell proliferation assay, reverse transcriptase-polymerase chain reaction, immunofluorescent microscopy, and blood/urine chemistry were used to analyse signalling, cell proliferation, opioid receptor (OP) expression, and renal function. RESULTS Morphine stimulated phosphorylation of PDGFR-β and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) to the same extent as induced by platelet-derived growth factor-BB (PDGF-BB) and promoted a two-fold increase in mesangial cell proliferation. The PDGFR-β inhibitor, AG1296, OP antagonists, and silencing of μ- and κ-OP abrogated morphine-induced MAPK/ERK phosphorylation and proliferation by ~100%. Morphine treatment of transgenic mice resulted in phosphorylation of PDGFR-β, MAPK/ERK, and signal transducer and activator of transcription 3 (Stat3) in the kidneys. Morphine inhibited micturition and blood urea nitrogen (BUN) clearance and increased BUN and urinary protein in sickle mice. CONCLUSION Morphine stimulates mitogenic signalling leading to mesangial cell proliferation and promotes renal dysfunction in sickle mice.
Collapse
Affiliation(s)
- M L Weber
- Division of Renal Diseases and Hypertension and
| | | | | | | | | | | | | | | |
Collapse
|
344
|
Weng Z, Lin Y, Zhang J, Yao S. Caspase inhibitors may attenuate opioid-induced hyperalgesia and tolerance via inhibiting microglial activation and neuroinflammation. JOURNAL OF MEDICAL HYPOTHESES AND IDEAS 2013. [DOI: 10.1016/j.jmhi.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
345
|
Abstract
Sickle cell anemia (SCA) is an inherited disorder associated with severe lifelong pain and significant morbidity. The mechanisms of pain in SCA remain poorly understood. We show that mast cell activation/degranulation contributes to sickle pain pathophysiology by promoting neurogenic inflammation and nociceptor activation via the release of substance P in the skin and dorsal root ganglion. Mast cell inhibition with imatinib ameliorated cytokine release from skin biopsies and led to a correlative decrease in granulocyte-macrophage colony-stimulating factor and white blood cells in transgenic sickle mice. Targeting mast cells by genetic mutation or pharmacologic inhibition with imatinib ameliorates tonic hyperalgesia and prevents hypoxia/reoxygenation-induced hyperalgesia in sickle mice. Pretreatment with the mast cell stabilizer cromolyn sodium improved analgesia following low doses of morphine that were otherwise ineffective. Mast cell activation therefore underlies sickle pathophysiology leading to inflammation, vascular dysfunction, pain, and requirement for high doses of morphine. Pharmacological targeting of mast cells with imatinib may be a suitable approach to address pain and perhaps treat SCA.
Collapse
|
346
|
Shastri A, Bonifati DM, Kishore U. Innate immunity and neuroinflammation. Mediators Inflamm 2013; 2013:342931. [PMID: 23843682 PMCID: PMC3697414 DOI: 10.1155/2013/342931] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/15/2013] [Indexed: 01/07/2023] Open
Abstract
Inflammation of central nervous system (CNS) is usually associated with trauma and infection. Neuroinflammation occurs in close relation to trauma, infection, and neurodegenerative diseases. Low-level neuroinflammation is considered to have beneficial effects whereas chronic neuroinflammation can be harmful. Innate immune system consisting of pattern-recognition receptors, macrophages, and complement system plays a key role in CNS homeostasis following injury and infection. Here, we discuss how innate immune components can also contribute to neuroinflammation and neurodegeneration.
Collapse
Affiliation(s)
- Abhishek Shastri
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| | - Domenico Marco Bonifati
- Unit of Neurology, Department of Neurological Disorders, Santa Chiara Hospital, Largo Medaglie d'oro 1, 38100 Trento, Italy
| | - Uday Kishore
- Centre for Infection, Immunity and Disease Mechanisms, Heinz Wolff Building, Brunel University, London UB8 3PH, UK
| |
Collapse
|
347
|
Hutchinson MR, Watkins LR. Why is neuroimmunopharmacology crucial for the future of addiction research? Neuropharmacology 2013; 76 Pt B:218-27. [PMID: 23764149 DOI: 10.1016/j.neuropharm.2013.05.039] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/13/2013] [Accepted: 05/23/2013] [Indexed: 12/13/2022]
Abstract
A major development in drug addiction research in recent years has been the discovery that immune signaling within the central nervous system contributes significantly to mesolimbic dopamine reward signaling induced by drugs of abuse, and hence is involved in the presentation of reward behaviors. Additionally, in the case of opioids, these hypotheses have advanced through to the discovery of the novel site of opioid action at the innate immune pattern recognition receptor Toll-like receptor 4 as the necessary triggering event that engages this reward facilitating central immune signaling. Thus, the hypothesis of major proinflammatory contributions to drug abuse was born. This review will examine these key discoveries, but also address several key lingering questions of how central immune signaling is able to contribute in this fashion to the pharmacodynamics of drugs of abuse. It is hoped that by combining the collective wisdom of neuroscience, immunology and pharmacology, into Neuroimmunopharmacology, we may more fully understanding the neuronal and immune complexities of how drugs of abuse, such as opioids, create their rewarding and addiction states. Such discoveries will point us in the direction such that one day soon we might successfully intervene to successfully treat drug addiction. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
- Mark R Hutchinson
- Discipline of Physiology, School of Medical Sciences, University of Adelaide, Level 5, Medical School South, Frome Rd, Adelaide, South Australia 5005, Australia.
| | | |
Collapse
|
348
|
Lewis SS, Hutchinson MR, Zhang Y, Hund DK, Maier SF, Rice KC, Watkins LR. Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain Behav Immun 2013; 30:24-32. [PMID: 23348028 PMCID: PMC3641160 DOI: 10.1016/j.bbi.2013.01.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022] Open
Abstract
We have previously observed that the non-opioid morphine metabolite, morphine-3-glucuronide, enhances pain via a toll-like receptor 4 (TLR4) dependent mechanism. The present studies were undertaken to determine whether TLR4-dependent pain enhancement generalizes to other classes of glucuronide metabolites. In silico modeling predicted that glucuronic acid alone and ethyl glucuronide, a minor but long-lasting ethanol metabolite, would dock to the same MD-2 portion of the TLR4 receptor complex previously characterized as the docking site for morphine-3-glucuronide. Glucuronic acid, ethyl glucuronide and ethanol all caused an increase in TLR4-dependent reporter protein expression in a cell line transfected with TLR4 and associated co-signaling molecules. Glucuronic acid-, ethyl glucuronide-, and ethanol-induced increases in TLR4 signaling were blocked by the TLR4 antagonists LPS-RS and (+)-naloxone. Glucuronic acid and ethyl glucuronide both caused allodynia following intrathecal injection in rats, which was blocked by intrathecal co-administration of the TLR4 antagonist LPS-RS. The finding that ethyl glucuronide can cause TLR4-dependent pain could have implications for human conditions such as hangover headache and alcohol withdrawal hyperalgesia, as well as suggesting that other classes of glucuronide metabolites could have similar effects.
Collapse
Affiliation(s)
- Susannah S. Lewis
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Mark R. Hutchinson
- Discipline of Pharmacology and Discipline of Physiology, School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Yingning Zhang
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Dana K. Hund
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Steven F. Maier
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA
| | - Kenner C. Rice
- Chemical Biology Research Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism National Institutes of Health, Rockville, Maryland, USA
| | - Linda R. Watkins
- Department of Psychology & Neuroscience, University of Colorado at Boulder, Boulder, Colorado, USA,Corresponding author: Linda R. Watkins, Department of Psychology, Campus Box 345, University of Colorado at Boulder, Boulder, Colorado, USA 80309-0345, , Fax: (303) 492-2967, Phone: (303) 492-7034
| |
Collapse
|
349
|
Theberge FR, Li X, Kambhampati S, Pickens CL, St Laurent R, Bossert JM, Baumann MH, Hutchinson MR, Rice KC, Watkins LR, Shaham Y. Effect of chronic delivery of the Toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. Biol Psychiatry 2013; 73:729-37. [PMID: 23384483 PMCID: PMC3615146 DOI: 10.1016/j.biopsych.2012.12.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent evidence implicates toll-like receptor 4 (TLR4) in opioid analgesia, tolerance, conditioned place preference, and self-administration. Here, we determined the effect of the TLR4 antagonist (+)-naltrexone (a μ-opioid receptor inactive isomer) on the time-dependent increases in cue-induced heroin seeking after withdrawal (incubation of heroin craving). METHODS In an initial experiment, we trained rats for 9 hours per day to self-administer heroin (.1 mg/kg/infusion) for 9 days; lever presses were paired with a 5-second tone-light cue. We then assessed cue-induced heroin seeking in 30-minute extinction sessions on withdrawal day 1; immediately after testing, we surgically implanted rats with Alzet minipumps delivering (+)-naltrexone (0, 7.5, 15, 30 mg/kg/day, subcutaneous) for 14 days. We then tested the rats for incubated cue-induced heroin seeking in 3-hour extinction tests on withdrawal day 13. RESULTS We found that chronic delivery of (+)-naltrexone via minipumps during the withdrawal phase decreased incubated cue-induced heroin seeking. In follow-up experiments, we found that acute injections of (+)-naltrexone immediately before withdrawal day 13 extinction tests had no effect on incubated cue-induced heroin seeking. Furthermore, chronic delivery of (+)-naltrexone (15 or 30 mg/kg/day) or acute systemic injections (15 or 30 mg/kg) had no effect on ongoing extended access heroin self-administration. Finally, in rats trained to self-administer methamphetamine (.1 mg/kg/infusion, 9 hours/day, 9 days), chronic delivery of (+)-naltrexone (30 mg/kg/day) during the withdrawal phase had no effect on incubated cue-induced methamphetamine seeking. CONCLUSIONS The present results suggest a critical role of TLR4 in the development of incubation of heroin, but not methamphetamine, craving.
Collapse
Affiliation(s)
- Florence R Theberge
- Intramural Research Program of the National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Wang X, Grace PM, Pham MN, Cheng K, Strand KA, Smith C, Li J, Watkins LR, Yin H. Rifampin inhibits Toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J 2013; 27:2713-22. [PMID: 23568774 DOI: 10.1096/fj.12-222992] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rifampin has been used for the treatment of bacterial infections for many years. Clinically, rifampin has been found to possess immunomodulatory effects. However, the molecular target responsible for the immunosuppressive effects of rifampin is not known. Herein, we show that rifampin binds to myeloid differentiation protein 2 (MD-2), the key coreceptor for innate immune TLR4. Rifampin blocked TLR4 signaling induced by LPS, including NF-κB activation and the overproduction of proinflammatory mediators nitric oxide, interleukin 1β, and tumor necrosis factor α in mouse microglia BV-2 cells and macrophage RAW 264.7 cells. Rifampin's inhibition of TLR4 signaling was also observed in immunocompetent rat primary macrophage, microglia, and astrocytes. Further, we show that rifampin (75 or 100 mg/kg b.i.d. for 3 d, intraperitoneal) suppressed allodynia induced by chronic constriction injury of the sciatic nerve and suppressed nerve injury-induced activation of microglia. Our findings indicate that MD-2 is a important target of rifampin in its inhibition of innate immune function and contributes to its clinically observed immune-suppressive effect. The results also suggest that rifampin may be repositioned as an agent for the treatment of neuropathic pain.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309, USA
| | | | | | | | | | | | | | | | | |
Collapse
|