301
|
Armstrong JPK, Holme MN, Stevens MM. Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS NANO 2017; 11:69-83. [PMID: 28068069 PMCID: PMC5604727 DOI: 10.1021/acsnano.6b07607] [Citation(s) in RCA: 416] [Impact Index Per Article: 59.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In the past decade, extracellular vesicles (EVs) have emerged as a key cell-free strategy for the treatment of a range of pathologies, including cancer, myocardial infarction, and inflammatory diseases. Indeed, the field is rapidly transitioning from promising in vitro reports toward in vivo animal models and early clinical studies. These investigations exploit the high physicochemical stability and biocompatibility of EVs as well as their innate capacity to communicate with cells via signal transduction and membrane fusion. This review focuses on methods in which EVs can be chemically or biologically modified to broaden, alter, or enhance their therapeutic capability. We examine two broad strategies, which have been used to introduce a wide range of nanoparticles, reporter systems, targeting peptides, pharmaceutics, and functional RNA molecules. First, we explore how EVs can be modified by manipulating their parent cells, either through genetic or metabolic engineering or by introducing exogenous material that is subsequently incorporated into secreted EVs. Second, we consider how EVs can be directly functionalized using strategies such as hydrophobic insertion, covalent surface chemistry, and membrane permeabilization. We discuss the historical context of each specific technology, present prominent examples, and evaluate the complexities, potential pitfalls, and opportunities presented by different re-engineering strategies.
Collapse
Affiliation(s)
- James PK Armstrong
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Margaret N Holme
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute for Biomedical Engineering, Imperial College, London, U.K. SW7 2AZ
| |
Collapse
|
302
|
Zhang W, Yu ZL, Wu M, Ren JG, Xia HF, Sa GL, Zhu JY, Pang DW, Zhao YF, Chen G. Magnetic and Folate Functionalization Enables Rapid Isolation and Enhanced Tumor-Targeting of Cell-Derived Microvesicles. ACS NANO 2017; 11:277-290. [PMID: 28005331 DOI: 10.1021/acsnano.6b05630] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Cell-derived microvesicles (MVs), which are biogenic nanosized membrane-bound vesicles that convey bioactive molecules between cells, have recently received attention for use as natural therapeutic platforms. However, the medical applications of MV-based delivery platforms are limited by the lack of effective methods for the efficient isolation of MVs and the convenient tuning of their targeting properties. Herein, we report the development of magnetic and folate (FA)-modified MVs based on a donor cell-assisted membrane modification strategy. MVs inherit the membrane properties of their donor cells, which allows them to be modified with the biotin and FA on their own membrane. By conjugating with streptavidin-modified iron oxide nanoparticles (SA-IONPs), the MVs can be conveniently, efficiently, and rapidly isolated from the supernatant of their donor cells using magnetic activated sorting. Moreover, the conjugated magnetic nanoparticles and FA confer magnetic and ligand targeting activities on the MVs. Then, the MVs were transformed into antitumor delivery platforms by directly loading doxorubicin via electroporation. The modified MVs exhibited significantly enhanced antitumor efficacy both in vitro and in vivo. Taken together, this study provides an efficient and convenient strategy for the simultaneous isolation of cell-derived MVs and transformation into targeted drug delivery nanovectors, thus facilitating the development of natural therapeutic nanoplatforms.
Collapse
Affiliation(s)
- Wei Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Zi-Li Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Min Wu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and the Institute for Advanced Studies, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan University , 299 Bayi Road, Wuhan 430072, P. R. China
| | - Jian-Gang Ren
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Hou-Fu Xia
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Guo-Liang Sa
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Jun-Yi Zhu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, and the Institute for Advanced Studies, Key Laboratory of Analytical Chemistry for Biology and Medicine, Wuhan University , 299 Bayi Road, Wuhan 430072, P. R. China
| | - Yi-Fang Zhao
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| | - Gang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University , Wuhan 430079, P. R. China
| |
Collapse
|
303
|
French KC, Antonyak MA, Cerione RA. Extracellular vesicle docking at the cellular port: Extracellular vesicle binding and uptake. Semin Cell Dev Biol 2017; 67:48-55. [PMID: 28104520 DOI: 10.1016/j.semcdb.2017.01.002] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/22/2016] [Accepted: 01/06/2017] [Indexed: 12/21/2022]
Abstract
Extracellular vesicles (EVs), lipid bilayer-enclosed structures that contain a variety of biological molecules shed by cells, are increasingly becoming appreciated as a major form of cell-to-cell communication. Indeed, EVs have been shown to play important roles in several physiological processes, as well as diseases such as cancer. EVs dock on to the surfaces of recipient cells where they transmit signals from the cell surface and/or transfer their contents into cells to elicit functional responses. EV docking and uptake by cells represent critical, but poorly understood processes. Here, we focus on the mechanisms by which EVs dock and transfer their contents to cells. Moreover, we highlight how these findings may provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kinsley C French
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Marc A Antonyak
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States
| | - Richard A Cerione
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14850, United States.
| |
Collapse
|
304
|
Choi D, Lee TH, Spinelli C, Chennakrishnaiah S, D'Asti E, Rak J. Extracellular vesicle communication pathways as regulatory targets of oncogenic transformation. Semin Cell Dev Biol 2017; 67:11-22. [PMID: 28077296 DOI: 10.1016/j.semcdb.2017.01.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/23/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022]
Abstract
Pathogenesis of human cancers bridges intracellular oncogenic driver events and their impact on intercellular communication. Among multiple mediators of this 'pathological connectivity' the role of extracellular vesicles (EVs) and their subsets (exosomes, ectosomes, oncosomes) is of particular interest for several reasons. The release of EVs from cancer cells represents a unique mechanism of regulated expulsion of bioactive molecules, a process that also mediates cell-to-cell transfer of lipids, proteins, and nucleic acids. Biological effects of these processes have been implicated in several aspects of cancer-related pathology, including tumour growth, invasion, angiogenesis, metastasis, immunity and thrombosis. Notably, the emerging evidence suggests that oncogenic mutations may impact several aspects of EV-mediated cell-cell communication including: (i) EV release rate and protein content; (ii) molecular composition of cancer EVs; (iii) the inclusion of oncogenic and mutant macromolecules in the EV cargo; (iv) EV-mediated release of genomic DNA; (v) deregulation of mechanisms responsible for EV biogenesis (vesiculome) and (vi) mechanisms of EV uptake by cancer cells. Intriguingly, EV-mediated intercellular transfer of mutant and oncogenic molecules between subpopulations of cancer cells, their indolent counterparts and stroma may exert profound biological effects that often resemble (but are not tantamount to) oncogenic transformation, including changes in cell growth, clonogenicity and angiogenic phenotype, or cause cell stress and death. However, several biological barriers likely curtail a permanent horizontal transformation of normal cells through EV-mediated mechanisms. The ongoing analysis and targeting of EV-mediated intercellular communication pathways can be viewed as a new therapeutic paradigm in cancer, while the analysis of oncogenic cargo contained in EVs released from cancer cells into biofluids is being developed for clinical use as a biomarker and companion diagnostics. Indeed, studies are underway to further explore the multiple links between molecular causality in cancer and various aspects of cellular vesiculation.
Collapse
Affiliation(s)
- Dongsic Choi
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Cristiana Spinelli
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Esterina D'Asti
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- Research Institute of the McGill University Health Centre, Glen Site, McGill University, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
305
|
Sunkara V, Woo HK, Cho YK. Emerging techniques in the isolation and characterization of extracellular vesicles and their roles in cancer diagnostics and prognostics. Analyst 2017; 141:371-81. [PMID: 26535415 DOI: 10.1039/c5an01775k] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles (EVs) are cell-derived nanovesicles, present in almost all types of body fluids, which play an important role in intercellular communication and are involved in the transport of biological signals for regulating diverse cellular functions. Due to the increasing clinical interest in the role of EVs in tumor promotion, various techniques for their isolation, detection, and characterization are being developed. In this review, we present an overview of the current EV isolation and characterization methods in addition to their applications and limitations. Furthermore, EVs as the potential emerging biomarkers in cancer management and their clinical implementation are briefly discussed.
Collapse
Affiliation(s)
- Vijaya Sunkara
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| | - Hyun-Kyung Woo
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| | - Yoon-Kyoung Cho
- Center for Soft and Living Matter, Institute for Basic Science (IBS), UNIST-gil 50, Ulsan 689-798, Republic of Korea. and Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 689-798, Republic of Korea.
| |
Collapse
|
306
|
Stranford DM, Leonard JN. Delivery of Biomolecules via Extracellular Vesicles. ADVANCES IN GENETICS 2017; 98:155-175. [DOI: 10.1016/bs.adgen.2017.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
307
|
Zempleni J, Aguilar-Lozano A, Sadri M, Sukreet S, Manca S, Wu D, Zhou F, Mutai E. Biological Activities of Extracellular Vesicles and Their Cargos from Bovine and Human Milk in Humans and Implications for Infants. J Nutr 2017; 147:3-10. [PMID: 27852870 PMCID: PMC5177735 DOI: 10.3945/jn.116.238949] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) in milk harbor a variety of compounds, including lipids, proteins, noncoding RNAs, and mRNAs. Among the various classes of EVs, exosomes are of particular interest, because cargo sorting in exosomes is a regulated, nonrandom process and exosomes play essential roles in cell-to-cell communication. Encapsulation in exosomes confers protection against enzymatic and nonenzymatic degradation of cargos and provides a pathway for cellular uptake of cargos by endocytosis of exosomes. Compelling evidence suggests that exosomes in bovine milk are transported by intestinal cells, vascular endothelial cells, and macrophages in human and rodent cell cultures, and bovine-milk exosomes are delivered to peripheral tissues in mice. Evidence also suggests that cargos in bovine-milk exosomes, in particular RNAs, are delivered to circulating immune cells in humans. Some microRNAs and mRNAs in bovine-milk exosomes may regulate the expression of human genes and be translated into protein, respectively. Some exosome cargos are quantitatively minor in the diet compared with endogenous synthesis. However, noncanonical pathways have been identified through which low concentrations of dietary microRNAs may alter gene expression, such as the accumulation of exosomes in the immune cell microenvironment and the binding of microRNAs to Toll-like receptors. Phenotypes observed in infant-feeding studies include higher Mental Developmental Index, Psychomotor Development Index, and Preschool Language Scale-3 scores in breastfed infants than in those fed various formulas. In mice, supplementation with plant-derived MIR-2911 improved the antiviral response compared with controls. Porcine-milk exosomes promote the proliferation of intestinal cells in mice. This article discusses the above-mentioned advances in research concerning milk exosomes and their cargos in human nutrition. Implications for infant nutrition are emphasized, where permitted, but data in infants are limited.
Collapse
Affiliation(s)
- Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ana Aguilar-Lozano
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Mahrou Sadri
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonal Sukreet
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Sonia Manca
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Di Wu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Fang Zhou
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| | - Ezra Mutai
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE
| |
Collapse
|
308
|
Belov L, Hallal S, Matic K, Zhou J, Wissmueller S, Ahmed N, Tanjil S, Mulligan SP, Best OG, Simpson RJ, Christopherson RI. Surface Profiling of Extracellular Vesicles from Plasma or Ascites Fluid Using DotScan Antibody Microarrays. Methods Mol Biol 2017; 1619:263-301. [PMID: 28674892 DOI: 10.1007/978-1-4939-7057-5_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DotScan antibody microarrays were initially developed for the extensive surface profiling of live leukemia and lymphoma cells. DotScan's diagnostic capability was validated with an extensive clinical trial using mononuclear cells from the blood or bone marrow of leukemia or lymphoma patients. DotScan has also been used for the profiling of surface proteins on peripheral blood mononuclear cells (PBMC) from patients with HIV, liver disease, and stable and progressive B-cell chronic lymphocytic leukemia (CLL). Fluorescence multiplexing allowed the simultaneous profiling of cancer cells and leukocytes from disaggregated colorectal and melanoma tumor biopsies after capture on DotScan. In this chapter, we have used DotScan for the surface profiling of extracellular vesicles (EV) recovered from conditioned growth medium of cancer cell lines and the blood of patients with CLL. The detection of captured EV was performed by enhanced chemiluminescence (ECL) using biotinylated antibodies that recognized antigens expressed on the surface of the EV subset of interest. DotScan was also used to profile EV from the blood of healthy individuals and the ascites fluid of ovarian cancer patients. DotScan binding patterns of EV from human plasma and other body fluids may yield diagnostic or prognostic signatures for monitoring the incidence, treatment, and progression of cancers.
Collapse
Affiliation(s)
- Larissa Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia.
| | - Susannah Hallal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Kieran Matic
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Jerry Zhou
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sandra Wissmueller
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC, 3350, Australia
- Federation University, Ballarat, VIC, 3355, Australia
| | - Sumaiya Tanjil
- Department of Obstetrics & Gynaecology, Women's Cancer Research Centre, Royal Women's Hospital, Parkville, VIC, 3052, Australia
| | - Stephen P Mulligan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - O Giles Best
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
- Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, NSW, 2065, Australia
| | - Richard J Simpson
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | | |
Collapse
|
309
|
Foster BP, Balassa T, Benen TD, Dominovic M, Elmadjian GK, Florova V, Fransolet MD, Kestlerova A, Kmiecik G, Kostadinova IA, Kyvelidou C, Meggyes M, Mincheva MN, Moro L, Pastuschek J, Spoldi V, Wandernoth P, Weber M, Toth B, Markert UR. Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci 2016; 53:379-95. [PMID: 27191915 DOI: 10.1080/10408363.2016.1190682] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Extracellular vesicles (EVs) are released from almost all cells and tissues. They are able to transport substances (e.g. proteins, RNA or DNA) at higher concentrations than in their environment and may adhere in a receptor-controlled manner to specific cells or tissues in order to release their content into the respective target structure. Blood contains high concentrations of EVs mainly derived from platelets, and, at a smaller amount, from erythrocytes. The female and male reproductive tracts produce EVs which may be associated with fertility or infertility and are released into body fluids and mucosas of the urogenital organs. In this review, the currently relevant detection methods are presented and critically compared. During pregnancy, placenta-derived EVs are dynamically detectable in peripheral blood with changing profiles depending upon progress of pregnancy and different pregnancy-associated pathologies, such as preeclampsia. EVs offer novel non-invasive diagnostic tools which may reflect the situation of the placenta and the foetus. EVs in urine have the potential of reflecting urogenital diseases including cancers of the neighbouring organs. Several methods for detection, quantification and phenotyping of EVs have been established, which include electron microscopy, flow cytometry, ELISA-like methods, Western blotting and analyses based on Brownian motion. This review article summarises the current knowledge about EVs in blood and cord blood, in the different compartments of the male and female reproductive tracts, in trophoblast cells from normal and pre-eclamptic pregnancies, in placenta ex vivo perfusate, in the amniotic fluid, and in breast milk, as well as their potential effects on natural killer cells as possible targets.
Collapse
Affiliation(s)
- B P Foster
- a Maternal and Fetal Health Research Centre, School of Biomedicine, University of Manchester, and Manchester Academic Health Sciences Centre, University Research , Manchester , UK
| | - T Balassa
- b Department of Medical Microbiology and Immunology , Medical School, University of Pécs , Pécs , Hungary
| | - T D Benen
- c Microtrac GmbH , Krefeld , Germany
| | - M Dominovic
- d Department of Physiology and Immunology , Medical Faculty, University of Rijeka , Rijeka , Croatia
| | - G K Elmadjian
- e Repro Inova Immunology Laboratory , Sofia , Bulgaria
| | - V Florova
- f Department of Obstetrics , Gynecology and Perinatology, First Moscow State Medical University , Moscow , Russia
| | - M D Fransolet
- g Laboratory of Tumor and Development Biology , GIGA-R, University of Liège , Liège , Belgium
| | - A Kestlerova
- h Institute of Medical Biochemistry and Laboratory Diagnostics, General University Hospital and First Faculty of Medicine , Charles University Prague , Czech Republic
- i Institute of Biophysics and Informatics, First Faculty of Medicine, Charles University , Prague , Czech Republic
| | - G Kmiecik
- j Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero , Brescia , Italy
| | - I A Kostadinova
- k Department of Immunoneuroendocrinology , Institute of Biology and Immunology of Reproduction , Sofia , Bulgaria
| | - C Kyvelidou
- l Department of Biology , University of Crete , Crete , Greece
| | - M Meggyes
- b Department of Medical Microbiology and Immunology , Medical School, University of Pécs , Pécs , Hungary
| | - M N Mincheva
- m Repro Inova Immunology Laboratory , Sofia , Bulgaria
| | - L Moro
- n ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic- Universitat de Barcelona , Barcelona , Spain
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - J Pastuschek
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - V Spoldi
- j Centro di Ricerca E. Menni, Fondazione Poliambulanza Istituto Ospedaliero , Brescia , Italy
| | - P Wandernoth
- p Institute of Anatomy, University Hospital, University Duisburg-Essen , Essen , Germany
| | - M Weber
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| | - B Toth
- q Department of Gynecological Endocrinology and Fertility Disorders , Ruprecht-Karls University of Heidelberg , Heidelberg , Germany
| | - U R Markert
- o Department of Obstetrics , Placenta-Lab, University Hospital Jena , Jena , Germany
| |
Collapse
|
310
|
Katsiougiannis S, Chia D, Kim Y, Singh RP, Wong DTW. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity. FASEB J 2016; 31:998-1010. [PMID: 27895106 DOI: 10.1096/fj.201600984r] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022]
Abstract
Tumor exosomes are emerging as antitumor immunity regulators; however, their effects on secondary exosome secretion by distal organs have not been explored. We have previously demonstrated that suppression of exosomes at the distal tumor site of pancreatic ductal adenocarcinoma (PDAC) ablated the development of salivary biomarker profile. Here, we explore the function of salivary exosomes from tumor-bearing mice in immune surveillance. We provide evidence that salivary exosomes from mice with PDAC exhibit a suppressive effect that results in reduced tumor-killing capacity by NK cells. Salivary exosomes from mice with PDAC where pancreatic tumors were engineered to suppress exosome biogenesis failed to suppress NK cell cytotoxic potential against tumor cells, as opposed to salivary exosomes from mice with PDAC with normal tumor exosome biogenesis. These results reveal an important and previously unknown mechanism of antitumor immune regulation and provide new insights into our understanding of the alterations of this biofluid during tumor development.-Katsiougiannis, S., Chia, D., Kim, Y., Singh, R. P., Wong, D. T. W. Saliva exosomes from pancreatic tumor-bearing mice modulate NK cell phenotype and antitumor cytotoxicity.
Collapse
Affiliation(s)
- Stergios Katsiougiannis
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA
| | - David Chia
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Yong Kim
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA.,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA.,Laboratory of Stem Cell and Cancer Epigenetic Research, University of California Los Angeles, Los Angeles, California, USA
| | - Ram P Singh
- Division of Rheumatology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA; and.,Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - David T W Wong
- Center for Oral/Head and Neck Oncology Research, School of Dentistry, University of California Los Angeles, Los Angeles, California, USA; .,Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
311
|
Abstract
Stem cells are critical to maintaining steady-state organ homeostasis and regenerating injured tissues. Recent intriguing reports implicate extracellular vesicles (EVs) as carriers for the distribution of morphogens and growth and differentiation factors from tissue parenchymal cells to stem cells, and conversely, stem cell-derived EVs carrying certain proteins and nucleic acids can support healing of injured tissues. We describe approaches to make use of engineered EVs as technology platforms in therapeutics and diagnostics in the context of stem cells. For some regenerative therapies, natural and engineered EVs from stem cells may be superior to single-molecule drugs, biologics, whole cells, and synthetic liposome or nanoparticle formulations because of the ease of bioengineering with multiple factors while retaining superior biocompatibility and biostability and posing fewer risks for abnormal differentiation or neoplastic transformation. Finally, we provide an overview of current challenges and future directions of EVs as potential therapeutic alternatives to cells for clinical applications.
Collapse
Affiliation(s)
- Milad Riazifar
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Egest J Pone
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine, The Sahlgrenska Academy, Göteborg University, SE-405 30 Göteborg, Sweden.,Codiak BioSciences Inc., Woburn, Massachusetts 01801
| | - Weian Zhao
- Department of Pharmaceutical Sciences, University of California, Irvine, California 92697; .,Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, California 92697.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, California 92868.,Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California, Irvine, California 92697.,Department of Biomedical Engineering, University of California, Irvine, California 92697.,Department of Biological Chemistry, University of California, Irvine, California 92697
| |
Collapse
|
312
|
Wang L, Gu Z, Zhao X, Yang N, Wang F, Deng A, Zhao S, Luo L, Wei H, Guan L, Gao Z, Li Y, Wang L, Liu D, Gao C. Extracellular Vesicles Released from Human Umbilical Cord-Derived Mesenchymal Stromal Cells Prevent Life-Threatening Acute Graft-Versus-Host Disease in a Mouse Model of Allogeneic Hematopoietic Stem Cell Transplantation. Stem Cells Dev 2016; 25:1874-1883. [PMID: 27649744 DOI: 10.1089/scd.2016.0107] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are attractive agents for the prophylaxis of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation (allo-HSCT). However, safety concerns remain about their clinical application. In this study, we explored whether extracellular vesicles released from human umbilical cord-derived MSCs (hUC-MSC-EVs) could prevent aGVHD in a mouse model of allo-HSCT. hUC-MSC-EVs were intravenously administered to recipient mice on days 0 and 7 after allo-HSCT, and the prophylactic effects of hUC-MSC-EVs were assessed by observing the in vivo manifestations of aGVHD, histologic changes in target organs, and recipient mouse survival. We evaluated the effects of hUC-MSC-EVs on immune cells and inflammatory cytokines by flow cytometry and ProcartaPlex™ Multiplex Immunoassays, respectively. The in vitro effects of hUC-MSC-EVs were determined by mitogen-induced proliferation assays. hUC-MSC-EVs alleviated the in vivo manifestations of aGVHD and the associated histologic changes and significantly reduced the mortality of the recipient mice. Recipients treated with hUC-MSC-EVs had significantly lower frequencies and absolute numbers of CD3+CD8+ T cells; reduced serum levels of IL-2, TNF-α, and IFN-γ; a higher ratio of CD3+CD4+ and CD3+CD8+ T cells; and higher serum levels of IL-10. An in vitro experiment demonstrated that hUC-MSC-EVs inhibited the mitogen-induced proliferation of splenocytes in a dose-dependent manner, and the cytokine changes were similar to those observed in vivo. This study indicated that hUC-MSC-EVs can prevent life-threatening aGVHD by modulating immune responses. These data provide the first evidence that hUC-MSC-EVs represent an ideal alternative in the prophylaxis of aGVHD after allo-HSCT.
Collapse
Affiliation(s)
- Li Wang
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China .,2 Department of Hematology and Oncology, Laoshan Branch, No. 401 Hospital of Chinese PLA , Qingdao, China
| | - Zhenyang Gu
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Xiaoli Zhao
- 3 Bone Marrow Transplantation Center , Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Nan Yang
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Feiyan Wang
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Ailing Deng
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Shasha Zhao
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Lan Luo
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Huaping Wei
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Lixun Guan
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Zhe Gao
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Yonghui Li
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Lili Wang
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Daihong Liu
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| | - Chunji Gao
- 1 Department of Hematology, Chinese People's Liberation Army (PLA) General Hospital , Beijing, China
| |
Collapse
|
313
|
Bacterial membrane vesicles (MVs): novel tools as nature- and nano-carriers for immunogenic antigen, enzyme support, and drug delivery. Appl Microbiol Biotechnol 2016; 100:9837-9843. [DOI: 10.1007/s00253-016-7916-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/21/2023]
|
314
|
Rim KT, Kim SJ. Quantitative Analysis of Exosomes From Murine Lung Cancer Cells by Flow Cytometry. J Cancer Prev 2016; 21:194-200. [PMID: 27722146 PMCID: PMC5051594 DOI: 10.15430/jcp.2016.21.3.194] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 02/02/2023] Open
Abstract
In vivo studies regarding biochemical, molecular biological, and histopathological changes in cancer tissues have been widely performed by the administration of carcinogens in rodents. In these established methods, dissection of the animal following sacrifice must be carried out. Exosomes are cell-derived vesicles that are present in all body fluids and these vesicles have specific roles within cells. Thus, much attention is given to the clinical application of exosomes that can possibly be used for prediction and therapy and as biomarkers related to cancer. To develop a new tool for monitoring in vivo genetic alterations, as a result of carcinogenesis, without the need for frequent euthanasia, we performed quantitative measurement of exosomes in Mlg2908 murine lung fibroblasts and LA-4 and KLN 205 murine lung cancer cells using fluorescence-activated cell sorting. We detected an increase in CD63-specific exosomes in LA-4 lung cancer cells. This result is able to be applied to the classification of cancer-specific proteins and miRNA as diagnostic markers.
Collapse
Affiliation(s)
- Kyung-Taek Rim
- Chemicals Toxicity Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| | - Soo-Jin Kim
- Chemicals Toxicity Research Bureau, Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency, Daejeon, Korea
| |
Collapse
|
315
|
Löf L, Ebai T, Dubois L, Wik L, Ronquist KG, Nolander O, Lundin E, Söderberg O, Landegren U, Kamali-Moghaddam M. Detecting individual extracellular vesicles using a multicolor in situ proximity ligation assay with flow cytometric readout. Sci Rep 2016; 6:34358. [PMID: 27681459 PMCID: PMC5041182 DOI: 10.1038/srep34358] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022] Open
Abstract
Flow cytometry is a powerful method for quantitative and qualitative analysis of individual cells. However, flow cytometric analysis of extracellular vesicles (EVs), and the proteins present on their surfaces has been hampered by the small size of the EVs – in particular for the smallest EVs, which can be as little as 40 nm in diameter, the limited number of antigens present, and their low refractive index. We addressed these limitations for detection and characterization of EV by flow cytometry through the use of multiplex and multicolor in situ proximity ligation assays (in situ PLA), allowing each detected EV to be easily recorded over background noise using a conventional flow cytometer. By targeting sets of proteins on the surface that are specific for distinct classes of EVs, the method allows for selective recognition of populations of EVs in samples containing more than one type of EVs. The method presented herein opens up for analyses of EVs using flow cytometry for their characterization and quantification.
Collapse
Affiliation(s)
- Liza Löf
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Tonge Ebai
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Louise Dubois
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Lotta Wik
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - K Göran Ronquist
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Olivia Nolander
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Emma Lundin
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Ola Söderberg
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Ulf Landegren
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| | - Masood Kamali-Moghaddam
- Department of Immunology, Genetics &Pathology, Science for Life Laboratory, Uppsala University, SE-751 08 Uppsala, Sweden
| |
Collapse
|
316
|
Jin Y, Chen K, Wang Z, Wang Y, Liu J, Lin L, Shao Y, Gao L, Yin H, Cui C, Tan Z, Liu L, Zhao C, Zhang G, Jia R, Du L, Chen Y, Liu R, Xu J, Hu X, Wang Y. DNA in serum extracellular vesicles is stable under different storage conditions. BMC Cancer 2016; 16:753. [PMID: 27662833 PMCID: PMC5035490 DOI: 10.1186/s12885-016-2783-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/15/2016] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, can be secreted by most cell types and released in perhaps all biological fluids. EVs contain multiple proteins, specific lipids and several kinds of nucleic acids such as RNAs and DNAs. Studies have found that EVs contain double-stranded DNA and that genetic information has a certain degree of consistency with tumor DNA. Therefore, if genes that exist in exosomes are stable, we may be able to use EVs genetic testing as a new means to monitor gene mutation. Methods In this study, EVs were extracted from serum under various storage conditions (4 °C, room temperature and repeated freeze-thaw). We used western blotting to examine the stability of serum EVs. Then, we extracted DNA from EVs and tested the concentration changing under different conditions. We further assessed the stability of EVs DNA s using polymerase chain reaction (PCR) and Sanger sequencing. Results EVs is stable under the conditions of 4 °C (for 24 h, 72 h, 168 h), room temperature (for 6 h, 12 h, 24 h, 48 h) and repeated freeze-thaw (after one time, three times, five times). Also, serum DNA is mainly present in EVs, especially in exosomes, and that the content and function of DNA in EVs is stable whether in a changing environment or not. We showed that EVs DNA stayed stable for 1 week at 4 °C, 1 day at room temperature and after repeated freeze-thaw cycles (less than three times). However, DNA from serum EVs after 2 days at room temperature or after five repeated freeze-thaw cycles could be used for PCR and sequencing. Conclusions Serum EVs and EVs DNA can remain stable under different environments, which is the premise that EVs could serve as a novel means for genetic tumor detection and potential biomarkers for cancer diagnostics and prognostics.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Keyan Chen
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Zongying Wang
- Department of Ultrasonics, People's Hospital, Donggang District, Rizhao, Shandong Province, China
| | - Yan Wang
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jianzhi Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Li Lin
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Yong Shao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Lihua Gao
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Huihui Yin
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
| | - Cong Cui
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Zhaoli Tan
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.,Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Liejun Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Chuanhua Zhao
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Gairong Zhang
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Ru Jia
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Lijuan Du
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Yuling Chen
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Rongrui Liu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jianming Xu
- Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China.
| | - Xianwen Hu
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.
| | - Youliang Wang
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China.
| |
Collapse
|
317
|
Abstract
The ability of cells to transmit bioactive molecules to recipient cells and the extracellular environment is a fundamental requirement for both normal physiology and disease pathogenesis. It has traditionally been thought that soluble factors released from cells were responsible for this cellular signaling but recent research has revealed a fundamental role for microvesicles in this process. Microvesicles are heterogeneous membrane-bound sacs that are shed from the surface of cells into the extracellular environment in a highly regulated process. They are shed following the selective incorporation of a host of molecular cargo including multiple types of proteins and nucleic acids. In addition to providing new insight into the etiology of complex human diseases, microvesicles also show great promise as a tool for advanced diagnosis and therapy as we move forward into a new age of personalized medicine. Here we review current status of the rapidly evolving field of microvesicle biology, highlighting critical regulatory roles for several small GTPases in the biology and biogenesis of shed microvesicles.
Collapse
Affiliation(s)
- Christopher Tricarico
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| | - James Clancy
- a Department of Biological Sciences , University of Notre Dame , Notre Dame , IN , USA
| | | |
Collapse
|
318
|
Wang JH, Endsley AN, Green CE, Matin AC. Utilizing native fluorescence imaging, modeling and simulation to examine pharmacokinetics and therapeutic regimen of a novel anticancer prodrug. BMC Cancer 2016; 16:524. [PMID: 27457630 PMCID: PMC4960810 DOI: 10.1186/s12885-016-2508-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/23/2016] [Indexed: 01/23/2023] Open
Abstract
Background Success of cancer prodrugs relying on a foreign gene requires specific delivery of the gene to the cancer, and improvements such as higher level gene transfer and expression. Attaining these objectives will be facilitated in preclinical studies using our newly discovered CNOB-GDEPT, consisting of the produrg: 6-chloro-9-nitro-5-oxo-5H-benzo-(a)-phenoxazine (CNOB) and its activating enzyme ChrR6, which generates the cytotoxic product 9-amino-6-chloro-5H-benzo[a]phenoxazine-5-one (MCHB). MCHB is fluorescent and can be noninvasively imaged in mice, and here we investigated whether MCHB fluorescence quantitatively reflects its concentration, as this would enhance its reporter value in further development of the CNOB-GDEPT therapeutic regimen. PK parameters were estimated and used to predict more effective CNOB administration schedules. Methods CNOB (3.3 mg/kg) was injected iv in mice implanted with humanized ChrR6 (HChrR6)-expressing 4T1 tumors. Fluorescence was imaged in live mice using IVIS Spectrum, and quantified by Living Image 3.2 software. MCHB and CNOB were quantified also by LC/MS/MS analysis. We used non-compartmental model to estimate PK parameters. Phoenix WinNonlin software was used for simulations to predict a more effective CNOB dosage regimen. Results CNOB administration significantly prolonged mice survival. MCHB fluorescence quantitatively reflected its exposure levels to the tumor and the plasma, as verified by LC/MS/MS analysis at various time points, including at a low concentration of 2 ng/g tumor. The LC/MS/MS data were used to estimate peak plasma concentrations, exposure (AUC0-24), volume of distribution, clearance and half-life in plasma and the tumor. Simulations suggested that the CNOB-GDEPT can be a successful therapy without large increases in the prodrug dosage. Conclusion MCHB fluorescence quantifies this drug, and CNOB can be effective at relatively low doses. MCHB fluorescence characteristics will expedite further development of CNOB-GDEPT by, for example, facilitating specific gene delivery to the tumor, its prolonged expression, as well as other attributes necessary for successful gene-delivered enzyme prodrug therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2508-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing-Hung Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA, 94305, USA
| | - Aaron N Endsley
- Bioanalytical Assays and Pharmacokinetics, Bayer HealthCare LLC, 455 Mission Bay Boulevard South, San Francisco, CA, 94158, USA
| | - Carol E Green
- Biosciences Division, SRI International, Menlo Park, 94025, CA, USA
| | - A C Matin
- Department of Microbiology and Immunology, Stanford University School of Medicine, Sherman Fairchild Science Building, 299 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
319
|
Przygodzka P, Papiewska-Pajak I, Bogusz H, Kryczka J, Sobierajska K, Kowalska MA, Boncela J. Neuromedin U is upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochim Biophys Acta Gen Subj 2016; 1860:2445-2453. [PMID: 27450890 DOI: 10.1016/j.bbagen.2016.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) is considered a core process that facilitates the escape of cancer cells from the primary tumor site. The transcription factor Snail was identified as a key regulator of EMT; however, the cascade of regulatory events leading to metastasis remains unknown and new predictive markers of the process are awaited. METHODS Gene expressions were analysed using real-time PCR, protein level by Western immunoblotting and confocal imaging. The motility of the cells was examined using time-lapse microscopy. Affymetrix GeneChip Human Genome U133 Plus 2.0 analysis was performed to identify transcriptomic changes upon Snail. Snail silencing was performed using siRNA nucleofection. NMU detection was performed by ELISA. RESULTS HT29 cells overexpressing Snail showed changed morphology, functions and transcriptomic profile indicating EMT induction. Changes in expression of 324 genes previously correlated with cell motility were observed. Neuromedin U was the second highest upregulated gene in HT29-Snail cells. This increase was validated by real-time PCR. Additionally elevated NMU protein was detected by ELISA in cell media. CONCLUSIONS These results show that Snail in HT29 cells regulates early phenotype conversion towards an intermediate epithelial state. We provided the first evidence that neuromedin U is associated with Snail regulatory function of metastatic induction in colon cancer cells. GENERAL SIGNIFICANCE We described the global, early transcriptomic changes induced through Snail in HT29 colon cancer cells and suggested NMU involvement in this process.
Collapse
Affiliation(s)
| | | | - Helena Bogusz
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Jakub Kryczka
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University, 6/8 Mazowiecka Street, 92215 Lodz, Poland.
| | - M Anna Kowalska
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland; Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Joanna Boncela
- Institute of Medical Biology, PAS, 106 Lodowa Street, 93232 Lodz, Poland.
| |
Collapse
|
320
|
Abstract
During apoptosis or activation, cells can release a subcellular structure, called a membrane microvesicle (also known as microparticle) into the extracellular environment. Microvesicles bud-off as a portion of cell membrane with its associated proteins and lipids surrounding a cytosolic core that contains intracellular proteins, lipids, and nucleic acids (DNA, RNA, siRNA, microRNA, lncRNA). Biologically active molecules on the microvesicle surface and encapsulated within can act on recipient cells as a novel mode of intercellular communication. Apoptosis has long been known to be involved in the development of diseases of autoimmunity. Abnormally persistent microvesicles, particularly apoptotic microvesicles, can accelerate autoimmune responses locally in specific organs and tissues as well as systemically. In this review, we focus on studies implicating microvesicles in the pathogenesis of autoimmune diseases and their complications.
Collapse
|
321
|
Williams KC, Wong E, Leong HS, Jackson DN, Allan AL, Chambers AF. Cancer dissemination from a physical sciences perspective. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016. [DOI: 10.1088/2057-1739/2/2/023001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
322
|
Rapisuwon S, Vietsch EE, Wellstein A. Circulating biomarkers to monitor cancer progression and treatment. Comput Struct Biotechnol J 2016; 14:211-22. [PMID: 27358717 PMCID: PMC4913179 DOI: 10.1016/j.csbj.2016.05.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/11/2022] Open
Abstract
Tumor heterogeneity is a major challenge and the root cause of resistance to treatment. Still, the standard diagnostic approach relies on the analysis of a single tumor sample from a local or metastatic site that is obtained at a given time point. Due to intratumoral heterogeneity and selection of subpopulations in diverse lesions this will provide only a limited characterization of the makeup of the disease. On the other hand, recent developments of nucleic acid sequence analysis allows to use minimally invasive serial blood samples to assess the mutational status and altered gene expression patterns for real time monitoring in individual patients. Here, we focus on cell-free circulating tumor-specific mutant DNA and RNA (including mRNA and non-coding RNA), as well as current limitations and challenges associated with circulating nucleic acids biomarkers.
Collapse
Affiliation(s)
| | | | - Anton Wellstein
- Georgetown University Medical Center, Lombardi Comprehensive Cancer Center, 3970 Reservoir Rd, NW, Washington, DC 20007, USA
| |
Collapse
|
323
|
Hung ME, Leonard JN. A platform for actively loading cargo RNA to elucidate limiting steps in EV-mediated delivery. J Extracell Vesicles 2016; 5:31027. [PMID: 27189348 PMCID: PMC4870355 DOI: 10.3402/jev.v5.31027] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/07/2016] [Accepted: 04/19/2016] [Indexed: 12/15/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication through transfer of RNA and protein between cells. Thus, understanding how cargo molecules are loaded and delivered by EVs is of central importance for elucidating the biological roles of EVs and developing EV-based therapeutics. While some motifs modulating the loading of biomolecular cargo into EVs have been elucidated, the general rules governing cargo loading and delivery remain poorly understood. To investigate how general biophysical properties impact loading and delivery of RNA by EVs, we developed a platform for actively loading engineered cargo RNAs into EVs. In our system, the MS2 bacteriophage coat protein was fused to EV-associated proteins, and the cognate MS2 stem loop was engineered into cargo RNAs. Using this Targeted and Modular EV Loading (TAMEL) approach, we identified a configuration that substantially enhanced cargo RNA loading (up to 6-fold) into EVs. When applied to vesicles expressing the vesicular stomatitis virus glycoprotein (VSVG) – gesicles – we observed a 40-fold enrichment in cargo RNA loading. While active loading of mRNA-length (>1.5 kb) cargo molecules was possible, active loading was much more efficient for smaller (~0.5 kb) RNA molecules. We next leveraged the TAMEL platform to elucidate the limiting steps in EV-mediated delivery of mRNA and protein to prostate cancer cells, as a model system. Overall, most cargo was rapidly degraded in recipient cells, despite high EV-loading efficiencies and substantial EV uptake by recipient cells. While gesicles were efficiently internalized via a VSVG-mediated mechanism, most cargo molecules were rapidly degraded. Thus, in this model system, inefficient endosomal fusion or escape likely represents a limiting barrier to EV-mediated transfer. Altogether, the TAMEL platform enabled a comparative analysis elucidating a key opportunity for enhancing EV-mediated delivery to prostate cancer cells, and this technology should be of general utility for investigations and applications of EV-mediated transfer in other systems.
Collapse
Affiliation(s)
- Michelle E Hung
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA;
| |
Collapse
|
324
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
325
|
|
326
|
Yuan MJ, Wang T. Advances of the interleukin-21 signaling pathway in immunity and angiogenesis. Biomed Rep 2016; 5:3-6. [PMID: 27330746 DOI: 10.3892/br.2016.665] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
Interleukin-21 (IL-21) and its receptor (IL-21R) are broadly expressed on human B cells, activated T cells and other myeloid cells. IL-21 cooperates with IL-6 and transforming growth factor-β to regulate T-cell differentiation. IL-21-mediated human B cell and dendritic cells differentiation requires signal transducer and activator of transcription 3 (STAT3), and also induces B-cell apoptosis dependents on the Toll-like receptor signal. Recently, in vitro and in vivo experiments showed that IL-21/IL-21R regulate angiogenesis through STAT3. IL-21 signaling pathways are complex due to its cooperation with other transcriptional factors, such as interferon regulatory factor 4 and granulocyte-macrophage colony-stimulating factor. The Janus kinase-STAT pathway has been the most extensively studied. With the increase in the understanding of IL-21 biology in the context of each specific disease or pathological condition, IL-21 could be a new therapeutic target for immune-related disease.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Tao Wang
- Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
327
|
Belov L, Matic KJ, Hallal S, Best OG, Mulligan SP, Christopherson RI. Extensive surface protein profiles of extracellular vesicles from cancer cells may provide diagnostic signatures from blood samples. J Extracell Vesicles 2016; 5:25355. [PMID: 27086589 PMCID: PMC4834364 DOI: 10.3402/jev.v5.25355] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 02/25/2016] [Accepted: 03/15/2016] [Indexed: 12/20/2022] Open
Abstract
Extracellular vesicles (EV) are membranous particles (30–1,000 nm in diameter) secreted by cells. Important biological functions have been attributed to 2 subsets of EV, the exosomes (bud from endosomal membranes) and the microvesicles (MV; bud from plasma membranes). Since both types of particles contain surface proteins derived from their cell of origin, their detection in blood may enable diagnosis and prognosis of disease. We have used an antibody microarray (DotScan) to compare the surface protein profiles of live cancer cells with those of their EV, based on their binding patterns to immobilized antibodies. Initially, EV derived from the cancer cell lines, LIM1215 (colorectal cancer) and MEC1 (B-cell chronic lymphocytic leukaemia; CLL), were used for assay optimization. Biotinylated antibodies specific for EpCAM (CD326) and CD19, respectively, were used to detect captured particles by enhanced chemiluminescence. Subsequently, this approach was used to profile CD19+ EV from the plasma of CLL patients. These EV expressed a subset (~40%) of the proteins detected on CLL cells from the same patients: moderate or high levels of CD5, CD19, CD31, CD44, CD55, CD62L, CD82, HLA-A,B,C, HLA-DR; low levels of CD21, CD49c, CD63. None of these proteins was detected on EV from the plasma of age- and gender-matched healthy individuals.
Collapse
Affiliation(s)
- Larissa Belov
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia;
| | - Kieran J Matic
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Susannah Hallal
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - O Giles Best
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Stephen P Mulligan
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia.,Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | |
Collapse
|
328
|
Zappulli V, Friis KP, Fitzpatrick Z, Maguire CA, Breakefield XO. Extracellular vesicles and intercellular communication within the nervous system. J Clin Invest 2016; 126:1198-207. [PMID: 27035811 DOI: 10.1172/jci81134] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs, including exosomes) are implicated in many aspects of nervous system development and function, including regulation of synaptic communication, synaptic strength, and nerve regeneration. They mediate the transfer of packets of information in the form of nonsecreted proteins and DNA/RNA protected within a membrane compartment. EVs are essential for the packaging and transport of many cell-fate proteins during development as well as many neurotoxic misfolded proteins during pathogenesis. This form of communication provides another dimension of cellular crosstalk, with the ability to assemble a "kit" of directional instructions made up of different molecular entities and address it to specific recipient cells. This multidimensional form of communication has special significance in the nervous system. How EVs help to orchestrate the wiring of the brain while allowing for plasticity associated with learning and memory and contribute to regeneration and degeneration are all under investigation. Because they carry specific disease-related RNAs and proteins, practical applications of EVs include potential uses as biomarkers and therapeutics. This Review describes our current understanding of EVs and serves as a springboard for future advances, which may reveal new important mechanisms by which EVs in coordinate brain and body function and dysfunction.
Collapse
|
329
|
Morton MC, Feliciano DM. Neurovesicles in Brain Development. Cell Mol Neurobiol 2016; 36:409-16. [PMID: 26993505 DOI: 10.1007/s10571-015-0297-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022]
Abstract
Long before the nervous system is organized into electrically active neural circuits, connectivity emerges between cells of the developing brain through extracellular signals. Extracellular vesicles that shuttle RNA, proteins, and lipids from donor cells to recipient cells are candidates for mediating connectivity in the brain. Despite the abundance of extracellular vesicles during brain development, evidence for their physiological functions is only beginning to materialize. Here, we review evidence of the existence, content, and functions of extracellular vesicles in brain development.
Collapse
Affiliation(s)
- Mary C Morton
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA
| | - David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC, 29634-0314, USA.
| |
Collapse
|
330
|
Hall J, Prabhakar S, Balaj L, Lai CP, Cerione RA, Breakefield XO. Delivery of Therapeutic Proteins via Extracellular Vesicles: Review and Potential Treatments for Parkinson's Disease, Glioma, and Schwannoma. Cell Mol Neurobiol 2016; 36:417-27. [PMID: 27017608 PMCID: PMC4860146 DOI: 10.1007/s10571-015-0309-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/20/2015] [Indexed: 12/20/2022]
Abstract
Extracellular vesicles present an attractive delivery vehicle for therapeutic proteins. They intrinsically contain many proteins which can provide information to other cells. Advantages include reduced immune reactivity, especially if derived from the same host, stability in biologic fluids, and ability to target uptake. Those from mesenchymal stem cells appear to be intrinsically therapeutic, while those from cancer cells promote tumor progression. Therapeutic proteins can be loaded into vesicles by overexpression in the donor cell, with oligomerization and membrane sequences increasing their loading. Examples of protein delivery for therapeutic benefit in pre-clinical models include delivery of: catalase for Parkinson's disease to reduce oxidative stress and thus help neurons to survive; prodrug activating enzymes which can convert a prodrug which crosses the blood-brain barrier into a toxic chemotherapeutic drug for schwannomas and gliomas; and the apoptosis-inducing enzyme, caspase-1 under a Schwann cell specific promoter for schwannoma. This therapeutic delivery strategy is novel and being explored for a number of diseases.
Collapse
Affiliation(s)
- Justin Hall
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Shilpa Prabhakar
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Leonora Balaj
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
| | - Charles P Lai
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Richard A Cerione
- Departments of Chemistry and Chemical Biology and Molecular Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Xandra O Breakefield
- Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA, 02114, USA.
- Molecular Neurogenetics Unit, Massachusetts General Hospital-East, 13th Street, Building 149, Charlestown, MA, 02129, USA.
| |
Collapse
|
331
|
D'Asti E, Chennakrishnaiah S, Lee TH, Rak J. Extracellular Vesicles in Brain Tumor Progression. Cell Mol Neurobiol 2016; 36:383-407. [PMID: 26993504 DOI: 10.1007/s10571-015-0296-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/24/2015] [Indexed: 12/18/2022]
Abstract
Brain tumors can be viewed as multicellular 'ecosystems' with increasingly recognized cellular complexity and systemic impact. While the emerging diversity of malignant disease entities affecting brain tissues is often described in reference to their signature alterations within the cellular genome and epigenome, arguably these cell-intrinsic changes can be regarded as hardwired adaptations to a variety of cell-extrinsic microenvironmental circumstances. Conversely, oncogenic events influence the microenvironment through their impact on the cellular secretome, including emission of membranous structures known as extracellular vesicles (EVs). EVs serve as unique carriers of bioactive lipids, secretable and non-secretable proteins, mRNA, non-coding RNA, and DNA and constitute pathway(s) of extracellular exit of molecules into the intercellular space, biofluids, and blood. EVs are also highly heterogeneous as reflected in their nomenclature (exosomes, microvesicles, microparticles) attempting to capture their diverse origin, as well as structural, molecular, and functional properties. While EVs may act as a mechanism of molecular expulsion, their non-random uptake by heterologous cellular recipients defines their unique roles in the intercellular communication, horizontal molecular transfer, and biological activity. In the central nervous system, EVs have been implicated as mediators of homeostasis and repair, while in cancer they may act as regulators of cell growth, clonogenicity, angiogenesis, thrombosis, and reciprocal tumor-stromal interactions. EVs produced by specific brain tumor cell types may contain the corresponding oncogenic drivers, such as epidermal growth factor receptor variant III (EGFRvIII) in glioblastoma (and hence are often referred to as 'oncosomes'). Through this mechanism, mutant oncoproteins and nucleic acids may be transferred horizontally between cellular populations altering their individual and collective phenotypes. Oncogenic pathways also impact the emission rates, types, cargo, and biogenesis of EVs, as reflected by preliminary analyses pointing to differences in profiles of EV-regulating genes (vesiculome) between molecular subtypes of glioblastoma, and in other brain tumors. Molecular regulators of vesiculation can also act as oncogenes. These intimate connections suggest the context-specific roles of different EV subsets in the progression of specific brain tumors. Advanced efforts are underway to capture these events through the use of EVs circulating in biofluids as biomarker reservoirs and to guide diagnostic and therapeutic decisions.
Collapse
Affiliation(s)
- Esterina D'Asti
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Shilpa Chennakrishnaiah
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Tae Hoon Lee
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada
| | - Janusz Rak
- RI MUHC, Montreal Children's Hospital, McGill University, 1001 Decarie Blvd, E M1 2244, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
332
|
Basso M, Bonetto V. Extracellular Vesicles and a Novel Form of Communication in the Brain. Front Neurosci 2016; 10:127. [PMID: 27065789 PMCID: PMC4814526 DOI: 10.3389/fnins.2016.00127] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/14/2016] [Indexed: 01/08/2023] Open
Abstract
In numerous neurodegenerative diseases, the interplay between neurons and glia modulates the outcome and progression of pathology. One particularly intriguing mode of interaction between neurons, astrocytes, microglia, and oligodendrocytes is characterized by the release of extracellular vesicles that transport proteins, lipids, and nucleotides from one cell to another. Notably, several proteins that cause disease, including the prion protein and mutant SOD1, have been detected in glia-derived extracellular vesicles and observed to fuse with neurons and trigger pathology in vitro. Here we review the structural and functional characterization of such extracellular vesicles in neuron-glia interactions. Furthermore, we discuss possible mechanisms of extracellular vesicle biogenesis and release from activated glia and microglia, and their effects on neurons. Given that exosomes, the smallest type of extracellular vesicles, have been reported to recognize specific cellular populations and act as carriers of very specialized cargo, a thorough analysis of these vesicles may aid in their engineering in vitro and targeted delivery in vivo, opening opportunities for therapeutics.
Collapse
Affiliation(s)
- Manuela Basso
- Laboratory of Transcriptional Neurobiology, Centre for Integrative Biology, University of Trento Trento, Italy
| | - Valentina Bonetto
- Department of Molecular Biochemistry and Pharmacology, IRCCS-Istituto di Ricerche Farmacologiche "Mario Negri," Milano, Italy
| |
Collapse
|
333
|
Wang L, Gao CJ. [Role of extracellular vesicles in hematological malignancies]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2016; 37:258-261. [PMID: 27033771 PMCID: PMC7342940 DOI: 10.3760/cma.j.issn.0253-2727.2016.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 06/05/2023]
Affiliation(s)
| | - C J Gao
- Department of Hematology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
334
|
Wood LW, Cox NI, Phelps CA, Lai SC, Poddar A, Talbot C, Mu D. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome. Sci Rep 2016; 6:19857. [PMID: 26912193 PMCID: PMC4766481 DOI: 10.1038/srep19857] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/21/2015] [Indexed: 01/15/2023] Open
Abstract
Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1+ lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1+ lung cancer cells (designated EDM-TTF-1+) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1+ conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1+ lung adenocarcinomas.
Collapse
Affiliation(s)
- Lauren W Wood
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Nicole I Cox
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Cody A Phelps
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Shao-Chiang Lai
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Arjun Poddar
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| | - Conover Talbot
- Institute for Basic Biomedical Sciences, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - David Mu
- Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23501, USA.,Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA 23501, USA
| |
Collapse
|
335
|
Martins M, Ribeiro D, Martins A, Reis RL, Neves NM. Extracellular Vesicles Derived from Osteogenically Induced Human Bone Marrow Mesenchymal Stem Cells Can Modulate Lineage Commitment. Stem Cell Reports 2016; 6:284-91. [PMID: 26923821 PMCID: PMC4788762 DOI: 10.1016/j.stemcr.2016.01.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 12/29/2022] Open
Abstract
The effective osteogenic commitment of human bone marrow mesenchymal stem cells (hBMSCs) is critical for bone regenerative therapies. Extracellular vesicles (EVs) derived from hBMSCs have a regenerative potential that has been increasingly recognized. Herein, the osteoinductive potential of osteogenically induced hBMSC-EVs was examined. hBMSCs secreted negatively charged nanosized vesicles (∼35 nm) with EV-related surface markers. The yield of EVs over 7 days was dependent on an osteogenic stimulus (standard chemical cocktail or RUNX2 cationic-lipid transfection). These EVs were used to sequentially stimulate homotypic uncommitted cells during 7 days, matching the seeding density of EV parent cells, culture time, and stimuli. Osteogenically committed hBMSC-EVs induced an osteogenic phenotype characterized by marked early induction of BMP2, SP7, SPP1, BGLAP/IBSP, and alkaline phosphatase. Both EV groups outperformed the currently used osteoinductive strategies. These data show that naturally secreted EVs can guide the osteogenic commitment of hBMSCs in the absence of other chemical or genetic osteoinductors. hBMSC-EV secretion during culture is osteogenic stimulus dependent Osteogenically induced hBMSC-EVs are early osteoinductors Osteogenically induced hBMSC-EVs outperform currently used osteoinductive strategies
Collapse
Affiliation(s)
- Margarida Martins
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Diana Ribeiro
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Albino Martins
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Rui Luís Reis
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Nuno Meleiro Neves
- 3B's Research Group-Biomaterials, Biodegradable and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Barco, 4805-017 Guimarães, Portugal; ICVS/3B's PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
336
|
Sato YT, Umezaki K, Sawada S, Mukai SA, Sasaki Y, Harada N, Shiku H, Akiyoshi K. Engineering hybrid exosomes by membrane fusion with liposomes. Sci Rep 2016; 6:21933. [PMID: 26911358 PMCID: PMC4766490 DOI: 10.1038/srep21933] [Citation(s) in RCA: 416] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 02/03/2016] [Indexed: 12/18/2022] Open
Abstract
Exosomes are a valuable biomaterial for the development of novel nanocarriers as functionally advanced drug delivery systems. To control and modify the performance of exosomal nanocarriers, we developed hybrid exosomes by fusing their membranes with liposomes using the freeze–thaw method. Exosomes embedded with a specific membrane protein isolated from genetically modified cells were fused with various liposomes, confirming that membrane engineering methods can be combined with genetic modification techniques. Cellular uptake studies performed using the hybrid exosomes revealed that the interactions between the developed exosomes and cells could be modified by changing the lipid composition or the properties of the exogenous lipids. These results suggest that the membrane-engineering approach reported here offers a new strategy for developing rationally designed exosomes as hybrid nanocarriers for use in advanced drug delivery systems.
Collapse
Affiliation(s)
- Yuko T Sato
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kaori Umezaki
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shinichi Sawada
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sada-atsu Mukai
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naozumi Harada
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Hiroshi Shiku
- Department of Immuno-Gene Therapy, Graduate School of Medicine, Mie University, Tsu 514-8507, Japan
| | - Kazunari Akiyoshi
- JST-ERATO, Akiyoshi Bio-nanotransporter Project, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.,Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
337
|
Kowal J, Arras G, Colombo M, Jouve M, Morath JP, Primdal-Bengtson B, Dingli F, Loew D, Tkach M, Théry C. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A 2016; 113:E968-77. [PMID: 26858453 PMCID: PMC4776515 DOI: 10.1073/pnas.1521230113] [Citation(s) in RCA: 2387] [Impact Index Per Article: 298.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.
Collapse
Affiliation(s)
- Joanna Kowal
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Guillaume Arras
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Marina Colombo
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Mabel Jouve
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Jakob Paul Morath
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Bjarke Primdal-Bengtson
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de masse Protéomique, 75248 Paris, France
| | - Mercedes Tkach
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France
| | - Clotilde Théry
- Institut Curie, PSL Research University, INSERM U932, Department "Immunité et Cancer", 75248 Paris, France;
| |
Collapse
|
338
|
Batrakova EV, Kim MS. Development and regulation of exosome-based therapy products. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:744-57. [PMID: 26888041 DOI: 10.1002/wnan.1395] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/08/2016] [Accepted: 01/19/2016] [Indexed: 12/12/2022]
Abstract
Recently, various innovative therapies involving the ex vivo manipulation and subsequent reintroduction of exosome-based therapeutics into humans have been developed and validated, although no exosome-based therapeutics have yet to be brought into the clinic. Exosomes are nanosized vesicles secreted by many cells that utilize them for cell-to-cell communications to facilitate transport of proteins and genetic material. Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes offer distinct advantages that exceptionally position them as highly effective drug carriers. Additionally, exosomes can exert unique biological activity reflective of their origin that may be used for therapy of various diseases. In fact, exosomes have benefits of both synthetic nanocarriers and cell-mediated drug delivery systems, and avoid their limitations. This concise review highlights the recent developments in exosome-based drug delivery systems and the main regulatory considerations for using this type of therapeutic in clinic. WIREs Nanomed Nanobiotechnol 2016, 8:744-757. doi: 10.1002/wnan.1395 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Elena V Batrakova
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Myung Soo Kim
- Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
339
|
Focus on Extracellular Vesicles: New Frontiers of Cell-to-Cell Communication in Cancer. Int J Mol Sci 2016; 17:175. [PMID: 26861306 PMCID: PMC4783909 DOI: 10.3390/ijms17020175] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/16/2015] [Indexed: 12/16/2022] Open
Abstract
Extracellular Vesicles (EVs) have received considerable attention in recent years, both as mediators of intercellular communication pathways that lead to tumor progression, and as potential sources for discovery of novel cancer biomarkers. For many years, research on EVs has mainly investigated either the mechanism of biogenesis and cargo selection and incorporation, or the methods of EV isolation from available body fluids for biomarker discovery. Recent studies have highlighted the existence of different populations of cancer-derived EVs, with distinct molecular cargo, thus pointing to the possibility that the various EV populations might play diverse roles in cancer and that this does not happen randomly. However, data attributing cancer specific intercellular functions to given populations of EVs are still limited. A deeper functional, biochemical and molecular characterization of the various EV classes might identify more selective clinical markers, and significantly advance our knowledge of the pathogenesis and disease progression of many cancer types.
Collapse
|
340
|
Mesenchymal stem cell-derived exosomes from different sources selectively promote neuritic outgrowth. Neuroscience 2016; 320:129-39. [PMID: 26851773 DOI: 10.1016/j.neuroscience.2016.01.061] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) obtained from bone marrow (BM) have been shown to promote neuronal growth and survival. However, the comparative effects of MSCs of different sources, including menstrual MSCs (MenSCs), BM, umbilical cord and chorion stem cells on neurite outgrowth have not yet been explored. Moreover, the modulatory effects of MSCs may be mediated by paracrine mechanisms, i.e. by molecules contained in the MSC secretome that includes soluble factors and extracellular vesicles such as microvesicles and/or exosomes. The biogenesis of microvesicles, characterized by a vesicle diameter of 50 to 1000 nm, involves membrane shedding while exosomes, of 30 to 100 nm in diameter, originate in the multivesicular bodies within cells. Both vesicle types, which can be harvested from the conditioned media of cell cultures by differential centrifugation steps, regulate the function of target cells due to their molecular content of microRNA, mRNA, proteins and lipids. Here, we compared the effect of human menstrual MSCs (MenSCs) mediated by cell-cell contact, by their total secretome or by secretome-derived extracellular vesicles on neuritic outgrowth in primary neuronal cultures. The contact of MenSCs with cortical neurons inhibited neurite outgrowth while their total secretome enhanced it. The extracellular vesicle fractions showed a distinctive effect: while the exosome-enriched fraction enhanced neurite outgrowth, the microvesicle-enriched fraction displayed an inhibitory effect. When we compared exosome fractions of different human MSC sources, MenSC exosomes showed superior effects on the growth of the longest neurite in cortical neurons and had a comparable effect to BM-SC exosomes on neurite outgrowth in dorsal root ganglia neurons. Thus, the growth-stimulating effects of exosomes derived from MenSCs as well as the opposing effects of both extracellular vesicle fractions provide important information regarding the potential use of MenSCs as therapeutic conveyors in neurodegenerative pathologies.
Collapse
|
341
|
Vituret C, Gallay K, Confort MP, Ftaich N, Matei CI, Archer F, Ronfort C, Mornex JF, Chanson M, Di Pietro A, Boulanger P, Hong SS. Transfer of the Cystic Fibrosis Transmembrane Conductance Regulator to Human Cystic Fibrosis Cells Mediated by Extracellular Vesicles. Hum Gene Ther 2016; 27:166-83. [DOI: 10.1089/hum.2015.144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Cyrielle Vituret
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Kathy Gallay
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marie-Pierre Confort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Najate Ftaich
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Constantin I. Matei
- Centre Technologique des Microstructures, Université Claude Bernard—Lyon, Villeurbanne, France
| | - Fabienne Archer
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Corinne Ronfort
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Jean-François Mornex
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Marc Chanson
- Département de Physiologie Cellulaire & Métabolisme, Centre Médical Universitaire, Geneva, Switzerland
| | - Attilio Di Pietro
- Institut de Biologie et Chimie des Protéines, Unité BMSSI, UMR 5086 CNRS-Université Lyon 1, Lyon Cedex 07, France
| | - Pierre Boulanger
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
| | - Saw See Hong
- Viral Infections & Comparative Pathology, UMR-754 UCBL-INRA-EPHE, Université Lyon 1, Lyon Cedex 07, France
- Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
342
|
Kanada M, Bachmann MH, Contag CH. Signaling by Extracellular Vesicles Advances Cancer Hallmarks. Trends Cancer 2016; 2:84-94. [DOI: 10.1016/j.trecan.2015.12.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/17/2015] [Accepted: 12/18/2015] [Indexed: 12/21/2022]
|
343
|
Exosome-mediated communication in the ovarian follicle. J Assist Reprod Genet 2016; 33:303-311. [PMID: 26814471 DOI: 10.1007/s10815-016-0657-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 01/07/2016] [Indexed: 01/14/2023] Open
Abstract
Cells are able to produce and release different types of vesicles, such as microvesicles and exosomes, in the extracellular microenvironment. According to the scientific community, both microvesicles and exosomes are able to take on and transfer different macromolecules from and to other cells, and in this way, they can influence the recipient cell function. Among the different macromolecule cargos, the most studied are microRNAs. MicroRNAs are a large family of non-coding RNAs involved in the regulation of gene expression. They control every cellular process and their altered regulation is involved in human diseases. Their presence in mammalian follicular fluid has been recently demonstrated, and here, they are enclosed within microvesicles and exosomes or they can also be associated to protein complexes. The presence of microvesicles and exosomes carrying microRNAs in follicular fluid could represent an alternative mechanism of autocrine and paracrine communication inside the ovarian follicle. The outcomes from these studies could be important in basic reproductive research but could also be useful for clinical application. In fact, the characterization of extracellular vesicles in follicular fluid could improve reproductive disease diagnosis and provide biomarkers of oocyte quality in ART (Assisted Reproductive Treatment).
Collapse
|
344
|
Bell BM, Kirk ID, Hiltbrunner S, Gabrielsson S, Bultema JJ. Designer exosomes as next-generation cancer immunotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:163-9. [DOI: 10.1016/j.nano.2015.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 12/21/2022]
|
345
|
Yuan MJ, Maghsoudi T, Wang T. Exosomes Mediate the Intercellular Communication after Myocardial Infarction. Int J Med Sci 2016; 13:113-6. [PMID: 26941569 PMCID: PMC4764777 DOI: 10.7150/ijms.14112] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023] Open
Abstract
The mechanisms of cardiac repair after myocardial infarction (MI) are complicated and not well-understood currently. It is known that exosomes are released from most cells, recognized as new candidates with important roles in intercellular and tissue-level communication. Cells can package proteins and RNA messages into exosome and secret to recipient cells, which regulate gene expression in recipient cells. The research on exosomes in cardiovascular disease is just emerging. It is well-known that exosomes from cardiomyocyte can transfect endothelial cells, stem cells, fibroblasts and smooth muscle cells to induce cellular changes. After myocardial infarction (MI), the exosomes play important roles in local and distant microcommunication. Nowadays, exosomal microRNAs transportation has been found to deliver signals to mediate cardiac repair after MI. However, the exosomes quality and quantities are variable under different pathological conditions. Therefore, we speculate that the monitoring of the quality and quantity of exosomes may serve as diagnosis and prognosis biomarkers of MI, and the study of exosomes will provide insights for the new therapeutics to cardiac remodeling after MI.
Collapse
Affiliation(s)
- Ming-Jie Yuan
- 1. Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, P.R. China
| | | | - Tao Wang
- 2. Cardiovascular Research Center, University of Virginia, USA
| |
Collapse
|
346
|
Green TM, Santos MF, Barsky SH, Rappa G, Lorico A. Analogies Between Cancer-Derived Extracellular Vesicles and Enveloped Viruses with an Emphasis on Human Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2016; 4:169-179. [PMID: 32226654 PMCID: PMC7099913 DOI: 10.1007/s40139-016-0116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Purpose of Review Cancer cells utilize extracellular vesicles (EVs) as a means of transferring oncogenic proteins and nucleic acids to other cells to enhance the growth and spread of the tumor. There is an unexpected amount of similarities between these small, membrane-bound particles and enveloped virions, including protein content, physical characteristics (i.e., size and morphology), and mechanisms of entry and exit into target cells. Recent Findings This review describes the attributes shared by both cancer-derived EVs, with an emphasis on breast cancer-derived EVs, and enveloped viral particles and discusses the methods by which virions can utilize the EV pathway as a means of transferring viral material and oncogenes to host cells. Additionally, the possible links between human papilloma virus and its influence on the miRNA content of breast cancer-derived EVs are examined. Summary The rapidly growing field of EVs is allowing investigators from different disciplines to enter uncharted territory. The study of the emerging similarities between cancer-derived EVs and enveloped virions may lead to novel important scientific discoveries.
Collapse
Affiliation(s)
- Toni M Green
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Mark F Santos
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Sanford H Barsky
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Germana Rappa
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| | - Aurelio Lorico
- Department of Pathology and Laboratory Medicine, College of Medicine, Roseman University of Health Sciences and The Roseman Comprehensive Community Cancer Center, Las Vegas, NV 89135 USA
| |
Collapse
|
347
|
Nitroreductase gene-directed enzyme prodrug therapy: insights and advances toward clinical utility. Biochem J 2015; 471:131-53. [PMID: 26431849 DOI: 10.1042/bj20150650] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.
Collapse
|
348
|
Lamichhane TN, Raiker RS, Jay SM. Exogenous DNA Loading into Extracellular Vesicles via Electroporation is Size-Dependent and Enables Limited Gene Delivery. Mol Pharm 2015; 12:3650-7. [PMID: 26376343 DOI: 10.1021/acs.molpharmaceut.5b00364] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Extracellular vesicles (EVs) hold immense promise for utilization as biotherapeutics and drug delivery vehicles due to their nature as biological nanoparticles that facilitate intercellular molecular transport. Specifically, EVs have been identified as natural carriers of nucleic acids, sparking interest in their use for gene therapy and RNA interference applications. So far, small RNAs (siRNA and miRNA) have been successfully loaded into EVs for a variety of delivery applications, but the potential use of EVs for DNA delivery has scarcely been explored. Here, we report that exogenous linear DNA can be associated with EVs via electroporation in quantities sufficient to yield an average of hundreds of DNA molecules per vesicle. We determined that loading efficiency and capacity of DNA in EVs is dependent on DNA size, with linear DNA molecules less than 1000 bp in length being more efficiently associated with EVs compared to larger linear DNAs and plasmid DNAs using this approach. We further showed that EV size is also determinant with regard to DNA loading, as larger microvesicles encapsulated more linear and plasmid DNA than smaller, exosome-like EVs. Additionally, we confirmed the ability of EVs to transfer foreign DNA loaded via electroporation into recipient cells, although functional gene delivery was not observed. These results establish critical parameters that inform the potential use of EVs for gene therapy and, in agreement with other recent results, suggest that substantial barriers must be overcome to establish EVs as broadly applicable DNA delivery vehicles.
Collapse
Affiliation(s)
- Tek N Lamichhane
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Rahul S Raiker
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| | - Steven M Jay
- Fischell Department of Bioengineering, ‡Program in Oncology, Marlene and Stewart Greenebaum Cancer Center, and §Program in Molecular and Cell Biology, University of Maryland , College Park, Maryland 20742, United States
| |
Collapse
|
349
|
Exosome-mediated microenvironment dysregulation in leukemia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:464-470. [PMID: 26384870 DOI: 10.1016/j.bbamcr.2015.09.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 09/05/2015] [Accepted: 09/11/2015] [Indexed: 12/23/2022]
Abstract
The hematopoietic stem cell (HSC) niche is composed of a complex set of stromal support cells that maintain HSCs and promote normal hematopoiesis. We now know that molecular changes within the hematopoietic niche contribute to leukemia development. Leukemia cells often reorganize the hematopoietic niche to promote and support their own survival and growth. Here we will summarize recent works that decipher the normal hematopoietic niche cellular components and describe how the leukemia-transformed niche contributes to hematological malignances. Finally, we will discuss recent publications that highlight a possible role for exosomes in the leukemia-induced niche reorganization. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
350
|
Exosomes or microvesicles? Two kinds of extracellular vesicles with different routes to modify protozoan-host cell interaction. Parasitol Res 2015; 114:3567-75. [PMID: 26272631 DOI: 10.1007/s00436-015-4659-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 07/30/2015] [Indexed: 01/09/2023]
Abstract
Parasite-host cell interaction can be modulated by a dynamic communication between extracellular vesicles (EVs). They should play key roles in cell-cell communications transferring biomolecules (miRNA, proteins, soluble factors) from one cell to another cell. While many names have been used to denominate EVs, a better comprehension to understand these vesicles is raised when we classify it according to biogenesis: originated from multivesicular bodies, named exosomes, and from plasmatic membranes, denominated microvesicles. Here, we have reviewed EV participation during the protozoan-host cell interaction and reinforced the differences and similarities between exosomes and microvesicles, suggesting different intracellular routes and functions. We also discussed perspectives to study EVs and the role of EVs in diagnosis and chemotherapies of infectious diseases.
Collapse
|