301
|
Abstract
Estrogen receptor alpha (ERalpha) is phosphorylated on multiple amino acid residues. For example, in response to estradiol binding, human ERalpha is predominately phosphorylated on Ser-118 and to a lesser extent on Ser-104 and Ser-106. In response to activation of the mitogen-activated protein kinase pathway, phosphorylation occurs on Ser-118 and Ser-167. These serine residues are all located within the activation function 1 region of the N-terminal domain of ERalpha. In contrast, activation of protein kinase A increases the phosphorylation of Ser-236, which is located in the DNA-binding domain. The in vivo phosphorylation status of Tyr-537, located in the ligand-binding domain, remains controversial. In this review, I present evidence that these phosphorylations occur, and identify the kinases thought to be responsible. Additionally, the functional importance of ERalpha phosphorylation is discussed.
Collapse
Affiliation(s)
- Deborah A Lannigan
- Center for Cell Signaling, Health Sciences Center, University of Virginia, Hospital West, Room 7041, Box 800577, Charlottesville, VA 22908-0577, USA.
| |
Collapse
|
302
|
Rudick CN, Woolley CS. Selective estrogen receptor modulators regulate phasic activation of hippocampal CA1 pyramidal cells by estrogen. Endocrinology 2003; 144:179-87. [PMID: 12488344 DOI: 10.1210/en.2002-220581] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies demonstrated that estrogen induces two sequential waves of CA1 pyramidal cell activation, evidenced by induction of c-Fos at 2 and 24 h after a single estrogen treatment. The second wave of activation is paralleled by suppression of immunoreactivity for glutamic acid decarboxylase-65kD (GAD65) in CA1 and decreased synaptic inhibition of CA1 pyramidal cells. Here, we report that pretreatment with either of the selective estrogen receptor (ER) modulators, tamoxifen (T) or CI628, has no effect on the first wave of c-Fos expression at 2 h but completely blocks the second wave of c-Fos and the suppression of GAD65 at 24 h. Interestingly, T, given 4 h after estrogen, failed to block c-Fos expression or suppression of GAD65 at 24 h. Electrophysiological experiments showed that the T metabolite, 4OH-T, or CI628 can inhibit the so-called rapid estrogen effect, to potentiate excitatory postsynaptic currents (EPSCs) in CA1 pyramidal cells. Thus, estrogen seems to act within 4 h via classical ERs and/or a rapid estrogen effect, such as EPSC potentiation, to produce activation/disinhibition of pyramidal cells 24 h later. In contrast, the initial activation of pyramidal cells, at 2 h after estrogen, seems to involve neither classical ERs nor rapid potentiation of EPSCs.
Collapse
Affiliation(s)
- Charles N Rudick
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
303
|
Pedram A, Razandi M, Aitkenhead M, Hughes CCW, Levin ER. Integration of the non-genomic and genomic actions of estrogen. Membrane-initiated signaling by steroid to transcription and cell biology. J Biol Chem 2002; 277:50768-75. [PMID: 12372818 DOI: 10.1074/jbc.m210106200] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen binds to receptors that translocate to the plasma membrane and to the nucleus. The rapid, non-genomic actions of this sex steroid are attributed to membrane action, while gene transcription occurs through nuclear receptor function. However, gene transcription can also result from estrogen signaling initiated at the membrane, but the relative importance of this mechanism is not known. In vascular endothelial cells (EC), estradiol (E(2)) activates several kinase cascades, including phosphatidylinositol 3-phosphate (PI3K)/Akt, a signaling pathway that impacts EC biology. We determined here by DNA microarray that 40-min exposure to E(2) significantly increased 250 genes in EC, up-regulation that was substantially prevented by the PI3K inhibitor, LY294002. This coincided with maximum E(2)-induced PI3K activity at 15-30 min. An important vascular gene strongly up-regulated by E(2) in our array produces cyclooxygenase-2 (Cox-2). In cultured EC, E(2) induced both Cox-2 gene expression and new Cox-2 protein synthesis by 40 and 60 min, respectively, and rapidly stimulated the secretion of prostaglandins PGI(2) and PGE(2). The up-regulation of gene expression reflected transcriptional transactivation, shown using Cox-2 promoter/luciferase reporters in the EC. Soluble inhibitors or dominant negative constructs for PI3K and Akt prevented all these actions of E(2). Functionally, EC migration was induced by the sex steroid, and this was significantly reversed by NS-398, a Cox-2 inhibitor. Gene transcription and cell biological effects of estrogen emanate from rapid and specific signaling, integrating cell surface and nuclear actions of this steroid.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, Long Beach, California 90822, USA
| | | | | | | | | |
Collapse
|
304
|
Chen S, Itoh T, Wu K, Zhou D, Yang C. Transcriptional regulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol 2002; 83:93-9. [PMID: 12650705 DOI: 10.1016/s0960-0760(02)00276-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aromatase (CYP19) is the estrogen synthetase that converts androgen to estrogen. The expression of aromatase in breast cancer cells and surrounding stromal cells is up regulated compared to non-cancerous cells. In situ estrogen synthesis is thought to stimulate breast cancer growth in both an autocrine and a paracrine manner. A complex mechanism is involved in the control of human aromatase expression, in that seven promoters have been identified and found to be utilized in a tissue-selective manner. Increased aromatase expression in breast tumors is, in part, attributed to changes in the transcriptional control of aromatase expression. While promoter I.4 is the main promoter that controls aromatase expression in non-cancer breast tissue, promoters II and I.3 are the dominant promoters that drive aromatase expression in breast cancer tissue. During the last several years, our laboratory performed a series of studies to examine the transcription regulatory mechanism of aromatase expression in breast cancer cells. We functionally characterized promoters II and I.3, and carried out DNase 1 footprinting analysis that identified two regulatory elements, S1 and CREaro. Using the yeast one-hybrid approach to screen a human breast tissue hybrid cDNA expression library, we found that four orphan/nuclear receptors, ERR alpha-1, EAR-2, COUP-TFI and RAR gamma, bind to the S1 element, and that CREB1, Snail (SnaH) and Slug proteins bind to the CREaro element. Studies from this and other laboratories have revealed that in cancer tissue versus normal tissue, several positive regulatory proteins (e.g. ERR alpha-1 and CREB1) are present at higher levels and several negative regulatory proteins (e.g. EAR-2, COUP-TFI, RAR gamma, Snail and Slug proteins) are present at lower levels. This may explain why the activity of promoters II and I.3 is up regulated in cancer tissue. An understanding of the molecular mechanisms of aromatase expression between non-cancerous and cancerous breast tissue, at the transcriptional level, may help in the design of a therapy based on the suppression of aromatase expression in breast cancer tissue.
Collapse
Affiliation(s)
- Shiuan Chen
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | |
Collapse
|
305
|
Driggers PH, Segars JH. Estrogen action and cytoplasmic signaling pathways. Part II: the role of growth factors and phosphorylation in estrogen signaling. Trends Endocrinol Metab 2002; 13:422-7. [PMID: 12431838 PMCID: PMC4152897 DOI: 10.1016/s1043-2760(02)00634-3] [Citation(s) in RCA: 185] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In recent years, distinct signaling pathways involving specific complexes of cytoplasmic proteins have been shown to orchestrate estrogen action. These pathways might supplement or augment genomic effects of estrogen that are attributable to transcriptional activation by liganded receptor. Signals might be transduced through phosphorylation of the estrogen receptors (ERs), or indirectly through effects upon transcriptional coactivators or cell receptors. Estrogen signaling is coupled to growth factor signaling with feedback mechanisms directly impacting function of growth factor receptors. These signaling pathways regulate important physiological processes, such as cell growth and apoptosis. Here, we focus on cytoplasmic signaling pathways leading to activation of ERs.
Collapse
Affiliation(s)
- Paul H Driggers
- Dept of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD, USA.
| | | |
Collapse
|
306
|
Speert DB, MCClennen SJ, Seasholtz AF. Sexually dimorphic expression of corticotropin-releasing hormone-binding protein in the mouse pituitary. Endocrinology 2002; 143:4730-41. [PMID: 12446601 DOI: 10.1210/en.2002-220556] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the pituitary, CRH-binding protein (CRH-BP) neutralizes the ACTH-releasing activity of CRH. Because sexual dimorphisms exist at multiple levels of the hypothalamic-pituitary-adrenal axis, these studies examined expression of pituitary CRH-BP in the male and female mouse pituitary. Ribonuclease protection assays and (125)I-CRH cross-linking assays demonstrate greater expression of pituitary CRH-BP in female than male mice. Normalized CRH-BP mRNA levels in female mice are 2.58 times greater at proestrus than diestrus. Ovariectomy reduces pituitary CRH-BP mRNA levels to 11% of sham-ovariectomy control levels, and estradiol benzoate treatment restores CRH-BP mRNA to control levels. These data suggest that estrogen positively regulates pituitary CRH-BP. Dual in situ hybridization analysis reveals that CRH-BP expression increases significantly in proopiomelanocortin-expressing cells at proestrus, compared with metestrus (P = 0.003), suggesting that CRH-BP expression is estrogen regulated in corticotropes. Further studies reveal that approximately 80% of the CRH-BP transcripts in the proestrus mouse pituitary localize to prolactin-expressing cells, a novel site for CRH-BP expression. CRH-BP mRNA levels increase significantly at proestrus, compared with metestrus in prolactin-positive cells (P < 0.0001). This robust, estrogen-regulated expression of CRH-BP in lactotropes in female mice suggests that the pituitary is an important site for interactions between the hypothalamic-pituitary-adrenal axis and other endocrine systems.
Collapse
Affiliation(s)
- Debra B Speert
- Neuroscience Graduate Program, Mental Health Research Institute, Ann Arbor, Michigan 48109-0720, USA
| | | | | |
Collapse
|
307
|
Harvey BJ, Alzamora R, Healy V, Renard C, Doolan CM. Rapid responses to steroid hormones: from frog skin to human colon. A homage to Hans Ussing. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1566:116-28. [PMID: 12421543 DOI: 10.1016/s0005-2736(02)00589-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fifty years ago, Hans Ussing described the mechanism by which ions are actively transported across frog skin. Since then, an enormous amount of effort has been invested in determining the cellular and molecular specifics of the transport mechanisms and their regulatory pathways. Ion transport in high-resistance epithelia is regulated by a variety of hormonal and non-hormonal factors. In vertebrates, steroid hormones such as mineralocorticoids, glucocorticoids and estrogens are major regulators of ion and water transport and hence are central to the control of extracellular fluid volume and blood pressure. Steroid hormones act through nuclear receptors to control the transcriptional activity of specific target genes, such as ion channels, ion transporters and ion pumps. These effects are observed after a latency of several hours and can last for days leading to cellular differentiation that allows a higher transport activity. This pathway is the so-called genomic phase. However, in the past 10 years, it has become apparent that steroid hormones can regulate electrolyte and water transport in tight epithelia independently of the transcription of these ion channels and transporters by regulating ion transporter activity in a non-genomic fashion via modulation of various signal transduction pathways. The molecular mechanisms underlying the steroid hormone-induced activation of signal transduction pathways such as protein kinase C (PKC), protein kinase A (PKA), intracellular calcium, intracellular pH and mitogen-activated protein kinases (MAPKs) and how non-genomic activation of these pathways influences epithelial ion transport will be discussed in this review.
Collapse
Affiliation(s)
- Brian J Harvey
- Molecular Medicine, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland.
| | | | | | | | | |
Collapse
|
308
|
Wong CW, McNally C, Nickbarg E, Komm BS, Cheskis BJ. Estrogen receptor-interacting protein that modulates its nongenomic activity-crosstalk with Src/Erk phosphorylation cascade. Proc Natl Acad Sci U S A 2002; 99:14783-8. [PMID: 12415108 PMCID: PMC137496 DOI: 10.1073/pnas.192569699] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have demonstrated that estrogens induce rapid and transient activation of the Src/Erk phosphorylation cascade. Activation of this cascade triggers vital cellular functions including cell proliferation and differentiation. However, the details of the molecular mechanism of this process remain to be elucidated. We have identified a previously uncharacterized nuclear receptor-interacting protein designated as modulator of nongenomic activity of estrogen receptor (MNAR). Here we show that MNAR modulates estrogen-receptor (ER) interaction with members of the Src family of tyrosine kinases, which leads to a stimulation of Src enzymatic activity and activation of Erk1 and Erk2 kinases. We also show that MNAR, through activation of the Src/Erk phosphorylation cascade, affects ER transcriptional activity and ultimately ER-mediated gene expression. These data reveal that MNAR mediates the crosstalk between two important classes of signal transducing molecules and suggest that ER "genomic" and "nongenomic" activities are interrelated.
Collapse
Affiliation(s)
- Chi-Wai Wong
- Department of Cell Biology, Women's Health Research Institute, Wyeth Pharmaceuticals, 500 Arcolla Road, Collegeville, PA 19426, USA
| | | | | | | | | |
Collapse
|
309
|
Simoncini T, Fornari L, Mannella P, Varone G, Caruso A, Liao JK, Genazzani AR. Novel non-transcriptional mechanisms for estrogen receptor signaling in the cardiovascular system. Interaction of estrogen receptor alpha with phosphatidylinositol 3-OH kinase. Steroids 2002; 67:935-9. [PMID: 12398989 DOI: 10.1016/s0039-128x(02)00040-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Estrogen receptor (ER) signaling has been, for a long time, associated with transcriptional processes involving nuclear translocation and binding on specific response elements, leading to regulation of target gene expression. However, rapid, non-transcriptional mechanisms of signal transduction through steroid hormone receptors have been identified. These so-called 'non-genomic' effects are independent from gene transcription or protein synthesis and involve steroid-induced modulation of cytoplasmic or cell membrane-bound regulatory proteins. Several biological actions of estrogen have been associated with this type of signaling, and intracellular regulatory cascades such as extracellular signal-regulated kinase/mitogen-activated protein kinases (ERK/MAPK) and tyrosine kinases or the modulation of G-protein-coupled receptors have been shown to be non-transcriptionally recruited by estrogen in diverse tissues. The vascular wall is one of these sites, where estrogen triggers rapid vasodilatation mainly due to increased nitric oxide (NO) release. We have recently described a novel, non-transcriptional mechanism for ER signaling in human as well as in animal endothelial cells, showing that ER alpha can physically and functionally couple to the lipid kinase phosphatidylinositol 3-OH kinase (PI3K). This interaction leads to activation of PI3K signaling cascade to Ser/Thr kinase Akt, which mediates several PI3K-dependent intracellular effects, including endothelial isoform of NO synthase (eNOS) phosphorylation and activation. This original non-transcriptional mechanism for ER signaling may play an important role in the generation of some of the rapid 'non-genomic' effects of estrogen.
Collapse
Affiliation(s)
- Tommaso Simoncini
- Division of Obstetrics and Gynecology, University of Pisa, Via Roma, 67, 56100, Pisa, Italy.
| | | | | | | | | | | | | |
Collapse
|
310
|
Björnström L, Sjöberg M. Signal transducers and activators of transcription as downstream targets of nongenomic estrogen receptor actions. Mol Endocrinol 2002; 16:2202-14. [PMID: 12351686 DOI: 10.1210/me.2002-0072] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
17Beta-estradiol-activated estrogen receptor alpha (ERalpha) and beta (ERbeta) are able to induce transcriptional activation of signal transducer and activator of transcription (Stat)-regulated promoters via cytoplasmic signal transduction pathways. Stat5 and Stat3 are required for promoter induction, which correlates with cytoplasmic sublocalization of ERs and is independent of intact coactivator binding sites and DNA-binding domains. In endothelial cells, Stat5 and Stat3 are rapidly phosphorylated on both tyrosine and serine residues in response to 17beta-estradiol, and nuclear translocation is subsequently induced. 17Beta-estradiol-induced transactivation of a Stat-regulated promoter requires at least three different signal transduction pathways, including MAPK, Src-kinase, and phosphatidylinositol-3-kinase activities. In conclusion, this work identifies a novel pathway involving an agonist-bound ER-activated phosphorylation cascade, resulting in nuclear transcriptional activation of target transcription factors. These findings reveal novel targets for the development of drugs that modulate a nongenomic-to-genomic ER-dependent mechanism.
Collapse
Affiliation(s)
- Linda Björnström
- Department of Cell and Molecular Biology, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | |
Collapse
|
311
|
Segars JH, Driggers PH. Estrogen action and cytoplasmic signaling cascades. Part I: membrane-associated signaling complexes. Trends Endocrinol Metab 2002; 13:349-54. [PMID: 12217492 PMCID: PMC4137481 DOI: 10.1016/s1043-2760(02)00633-1] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Remarkable progress in recent years has suggested that estrogen action in vivo is complex and often involves activation of cytoplasmic signaling cascades in addition to genomic actions mediated directly through estrogen receptors alpha and beta. Rather than a linear response mediated solely through estrogen-responsive DNA elements, in vivo estrogen might simultaneously activate distinct signaling cascades that function as networks to coordinate tissue responses to estrogen. This complex signaling system provides for exquisite control and plasticity of response to estrogen at the tissue level, and undoubtedly contributes to the remarkable tissue-specific responses to estrogens. In part I of this series, we summarize cytoplasmic signaling modules involving estrogen or estrogen receptors, with particular focus on recently described membrane-associated signaling complexes.
Collapse
Affiliation(s)
- James H. Segars
- Dept of Obstetrics and Gynecology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Rd, Bethesda, MD 20814, USA
| | | |
Collapse
|
312
|
Akula SM, Hurley DJ, Wixon RL, Wang C, Chase CCL. Effect of genistein on replication of bovine herpesvirus type 1. Am J Vet Res 2002; 63:1124-8. [PMID: 12171165 DOI: 10.2460/ajvr.2002.63.1124] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To study the antiviral activity of genistein, a soya isoflavone, on in vitro replication of bovine herpesvirus type 1 (BHV-1). SAMPLE POPULATION Madin-Darby bovine kidney (MDBK) cells. PROCEDURE Effects of genistein on the magnitude and kinetics of inhibition of BHV-1 phosphorylation of glycoprotein E (gE) and in vitro replication of BHV-1 in MDBK cells were evaluated. Antiviral activity of genistein was compared with 2 compounds, estradiol-17beta (EST) and tamoxifen (TAM), that have estrogenic and antiestrogenic activity, respectively. High-performance liquid chromatography (HPLC) was used to determine the concentration of genistein in medium from infected and uninfected MDBK cultures. RESULTS Genistein reduced BHV-1, but not gE-deleted BHV-1 (BHV-1gEdelta3.1), replication by 90% at 18 hours after inoculation. This inhibition was not sustained through 24 hours after inoculation. The genistein concentration in media from MDBK cells was decreased by 40% during BHV-1 infection, compared with 16% for uninfected cells, at 24 hours after inoculation. Genistein inhibited gE phosphorylation and BHV-1 replication in a dose-dependent manner. Dosing with 25 microM genistein at 0 and 12 hours after inoculation of BHV-1 was optimal for decreasing BHV-1 replication. Estradiol-17beta EST and TAM did not affect BHV-1 replication. CONCLUSIONS AND CLINICAL RELEVANCE The decrease in genistein concentration was a viral infection-dependent event. Genistein is an inhibitor of BHV-1 replication because of its ability to inhibit tyrosine kinase activity. A possible application may be for the control of BHV-1 infection in cattle by feeding soya products rich in genistein prior to or during periods of stress.
Collapse
Affiliation(s)
- Shaw M Akula
- Department of Veterinary Science, South Dakota State University, Brookings 57007, USA
| | | | | | | | | |
Collapse
|
313
|
Saberwal GS, Sharma MK, Balasinor N, Choudhary J, Juneja HS. Estrogen receptor, calcium mobilization and rat sperm motility. Mol Cell Biochem 2002; 237:11-20. [PMID: 12236577 DOI: 10.1023/a:1016549922439] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oral treatment with 0.4 mg/kg/day of tamoxifen citrate, an antiestrogen, has been reported to reduce the fertility of adult male rat, presumably through estrogen receptors expressed throughout the male reproductive tract. During the course of these studies, tamoxifen was observed to gradually alter the pattern of sperm motility in the cauda epididymides without reducing sperm counts. Studies were carried out to understand the mechanism involved in tamoxifen induced change in the sperm motility pattern. In order to study the direct effects of tamoxifen on motility, biochemical levels/activities of sperm calcium, cAMP, phosphodiesterase and dynein ATPase, normally implicated in sperm motility were studied In view of the fact that tamoxifen is a ligand of estrogen receptor, estrogen receptor alpha protein and transcript were localized on rat sperm membrane and the effect of tamoxifen studied. The present study demonstrated presence of estrogen receptor protein and mRNA in the rat sperm by immunofluorescence, western blotting and in situ hybridization respectively. Specificity of sperm estrogen receptors was confirmed by conventional binding studies using [3H]-estradiol. There was no effect of tamoxifen treatment on estrogen receptors in rat sperms. Biochemical analysis of the sperms from tamoxifen treated cauda epididymides revealed a significant increase in the levels of calcium and cAMP. A significant reduction was also apparent in the activity of dynein ATPase. Tamoxifen treatment did not alter phosphodiesterase activity. Estrogen receptors could be identified both in the control as well as tamoxifen treated rat sperms. It was concluded that tamoxifen treatment mobilized calcium from the intra- or extra-cellular pools with a concomitant increase in cAMP and presumably activation of PKA (protein kinase A). Tamoxifen altered the pattern of sperm motility through a calcium induced block in the activity of dynein ATPase, presumably through the activation of sperm phosphatase. The putative estrogen receptor mediated signal transduction pathway appears to be directly affected in the tamoxifen treated, sub-motile rat sperm.
Collapse
|
314
|
Qin C, Nguyen T, Stewart J, Samudio I, Burghardt R, Safe S. Estrogen up-regulation of p53 gene expression in MCF-7 breast cancer cells is mediated by calmodulin kinase IV-dependent activation of a nuclear factor kappaB/CCAAT-binding transcription factor-1 complex. Mol Endocrinol 2002; 16:1793-809. [PMID: 12145335 DOI: 10.1210/me.2002-0006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
This study investigates the mechanism of hormonal regulation of p53 gene expression in MCF-7 human breast cancer cells. 17beta-Estradiol (E2) induced a 2-fold increase in p53 mRNA levels and a 2- to 3-fold increase in p53 protein. Analysis of the p53 gene promoter has identified a minimal E2-responsive region at -106 to -40, and mutation/deletion analysis of the promoter showed that motifs that bind CCAAT-binding transcription factor-1 (CTF-1) and nuclear factor kappaB (NFkappaB) proteins are required for hormone responsiveness. The p65 subunit of NFkappaB was identified in both nuclear and cytosolic fractions of untreated MCF-7 cells; however, formation of the nuclear NFkappaB complex was E2 independent. Hormonal activation of constructs containing p53 promoter inserts (-106 to -40) and the GAL4-p65 fusion proteins was inhibited by the intracellular Ca2+ ion chelator EGTA-AM and Ca2+/calmodulin-dependent protein kinase (CaMK) inhibitor KN-93. Constitutively active CaMKIV but not CaMKI activated p65, and treatment of MCF-7 cells with E2 induced phosphorylation of CaMKIV but not CaMKI. The results indicate that hormonal activation of p53 though nongenomic pathways was CaMKIV-dependent and involved cooperative p65-CTF-1 interactions.
Collapse
Affiliation(s)
- Chunhua Qin
- Department of Veterinary Physiology & Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA
| | | | | | | | | | | |
Collapse
|
315
|
Singh S, Shaul PW, Gupta PD. Conventional estrogen receptors are found in the plasma membrane of vaginal epithelial cells of the rat. Steroids 2002; 67:757-64. [PMID: 12123787 DOI: 10.1016/s0039-128x(02)00028-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Estrogens induce rapid (non-genomic) and delayed (genomic) effects on the target cells. The early effects include induction of signal transduction pathway within seconds, whereas the delayed responses require hours and involve transcription and translation. The rapid effects of estradiol (E) on the vaginal epithelial cells (VEC) involved calcium uptake within seconds via the induction of phosphoinositol lipid metabolism as reported in our earlier studies. In this study, we demonstrate the presence of classical estrogen receptors (ER) on the plasma membrane of VEC of the rats. Immunoreactive bands of 67, 56 and 35 kDa are detectable in the membrane fractions (mf) using antibodies recognizing different epitopes of ER alpha. We have also been able to purify a protein having a mass of 67 kDa from the detergent-soluble fraction of the plasma membrane of VEC, which shows properties identical to the classical receptor purified from the cytosolic fraction of the cells. The membrane receptors get dissociated upon binding to the ligand. Besides a role in signal transduction events induced by estradiol, the membrane estrogen receptors may have an important role to play in translocation of the steroid to the cytosolic compartment.
Collapse
Affiliation(s)
- Shashi Singh
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | | | | |
Collapse
|
316
|
Kanda N, Watanabe S. Ketoconazole suppresses prostaglandin E(2)-induced cyclooxygenase-2 expression in human epidermoid carcinoma A-431 cells. J Invest Dermatol 2002; 119:174-81. [PMID: 12164941 DOI: 10.1046/j.1523-1747.2002.01804.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cyclooxygenase-2 is a key enzyme in the conversion of arachidonic acid to prostaglandins. The overexpression of cyclooxygenase-2 has been reported in skin cancer cells, and may be involved in carcinogenesis. Prostaglandin E2, the end product of cyclooxygenase-2-induced catalysis, autoamplifies the cyclooxygenase-2 expression. It is suggested that an anti-mycotic drug, ketoconazole may inhibit carcinogenesis. We herein investigated if ketoconazole may inhibit prostaglandin E2-induced cyclooxygenase-2 expression in human epidermoid carcinoma A-431 cells. Ketoconazole suppressed prostaglandin E2-induced cyclooxygenase-2 protein and mRNA expression and promoter activation in A-431; the suppressive effects of ketoconazole were counteracted by cyclic adenosine monophosphate analog. Analyses using deleted or mutated cyclooxygenase-2 promoters revealed that cyclic adenosine monophosphate response element (- 59 to - 53 bp) on the promoter was involved in prostaglandin E2-induced stimulation and ketoconazole-induced inhibition of the promoter activity. Electrophoretic mobility shift assays indicated that cyclic adenosine monophosphate response element binding protein and activating transcription factor-1 may constitutively bind to cyclic adenosine monophosphate response element on cyclooxygenase-2 promoter. Prostaglandin E2 increased the proportion of phosphorylated forms among total bound cyclic adenosine monophosphate response element binding protein/activating transcription factor-1, and the effect was suppressed by ketoconazole. Prostaglandin E2 induced the phosphorylation of cyclic adenosine monophosphate response element binding protein and activating transcription factor-1, and the phosphorylation was suppressed by cyclic adenosine monophosphate-dependent protein kinase (protein kinase A) inhibitor, indicating protein kinase A-mediated phosphorylation. Ketoconazole suppressed the prostaglandin E2-induced phosphorylation of cyclic adenosine monophosphate response element binding protein/activating transcription factor-1. Prostaglandin E2 increased intracellular cyclic adenosine monophosphate level by activating adenylate cyclase in A-431, and the increase was suppressed by ketoconazole. These results suggest that ketoconazole may suppress prostaglandin E2-induced cyclooxygenase-2 expression by inhibiting the cyclic adenosine monophosphate signal in A-431, and stress its anti-cancer effect.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, 11-1 Kaga-2, Itabashi-Ku, Tokyo 173-8605, Japan.
| | | |
Collapse
|
317
|
Miettinen RA, Kalesnykas G, Koivisto EH. Estimation of the total number of cholinergic neurons containing estrogen receptor-alpha in the rat basal forebrain. J Histochem Cytochem 2002; 50:891-902. [PMID: 12070268 DOI: 10.1177/002215540205000703] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study was undertaken to estimate the total number of cholinergic cells and the percentage of cholinergic cells that contain estrogen receptor-alpha (ER alpha) in the rat basal forebrain. Double immunostaining for choline acetyltransferase (ChAT) and ER alpha was carried out on 50-microm-thick free-floating sections. Because routine mounting method causes considerable flattening of the sections, we embedded immunostained sections in Durcupan, an epoxy resin known to cause virtually no shrinkage. When this procedure was used the section thickness was well preserved, individual cells could be clearly identified, and subcellular localization of ER alpha immunoreactivity was easy to verify. Cell counting in these sections revealed that the rat basal forebrain contains 26,390 +/- 1097 (mean +/- SEM) cholinergic neurons. This comprises 9674 +/- 504 in the medial septum-vertical diagonal band of Broca, 9403 +/- 484 in the horizontal diagonal band of Broca, and 7312 +/- 281 in the nucleus basalis. In these nuclei, 60%, 46%, and 14% of the cholinergic neurons were co-localized with ER alpha, respectively. We believe that our results are an improvement on existing data because of the better distinction of individual neurons that the Durcupan embedding method brings.
Collapse
Affiliation(s)
- Riitta A Miettinen
- Department of Neuroscience and Neurology, University, Kuopio, Kuopio, Finland.
| | | | | |
Collapse
|
318
|
|
319
|
Cato ACB, Nestl A, Mink S. Rapid actions of steroid receptors in cellular signaling pathways. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re9. [PMID: 12084906 DOI: 10.1126/stke.2002.138.re9] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Steroid hormones regulate cellular processes by binding to intracellular receptors that, in turn, interact with discrete nucleotide sequences to alter gene expression. Because most steroid receptors in target cells are located in the cytoplasm, they need to get into the nucleus to alter gene expression. This process typically takes at least 30 to 60 minutes. In contrast, other regulatory actions of steroid hormones are manifested within seconds to a few minutes. These time periods are far too rapid to be due to changes at the genomic level and are therefore termed nongenomic or rapid actions, to distinguish them from the classical steroid hormone action of regulation of gene expression. The rapid effects of steroid hormones are manifold, ranging from activation of mitogen-activated protein kinases (MAPKs), adenylyl cyclase (AC), protein kinase C (PKC), and heterotrimeric guanosine triphosphate-binding proteins (G proteins). In some cases, these rapid actions of steroids are mediated through the classical steroid receptor that can also function as a ligand-activated transcription factor, whereas in other instances the evidence suggests that these rapid actions do not involve the classical steroid receptors. One candidate target for the nonclassical receptor-mediated effects are G protein-coupled receptors (GPCRs), which activate several signal transduction pathways. One characteristic of responses that are not mediated by the classical steroid receptors is insensitivity to steroid antagonists, which has contributed to the notion that a new class of steroid receptors may be responsible for part of the rapid action of steroids. Evidence suggests that the classical steroid receptors can be localized at the plasma membrane, where they may trigger a chain of reactions previously attributed only to growth factors. Identification of interaction domains on the classical steroid receptors involved in the rapid effects, and separation of this function from the genomic action of these receptors, should pave the way to a better understanding of the rapid action of steroid hormones.
Collapse
Affiliation(s)
- Andrew C B Cato
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, Post Office Box 3640, D-76021 Karlsruhe, Germany.
| | | | | |
Collapse
|
320
|
Thompson CJ, Tam NNC, Joyce JM, Leav I, Ho SM. Gene expression profiling of testosterone and estradiol-17 beta-induced prostatic dysplasia in Noble rats and response to the antiestrogen ICI 182,780. Endocrinology 2002; 143:2093-105. [PMID: 12021174 DOI: 10.1210/endo.143.6.8846] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that 1) treatment of Noble rats for 16 wk with testosterone (T) and estradiol-17 beta (E2) led to 100% incidence of dorsolateral prostate (DLP) dysplasia and hyperprolactinemia and 2) blockade of PRL release with bromocriptine cotreatment significantly lowered the incidence of DLP dysplasia. In the current study, we sought to determine whether E2 exerts direct effects, independent of PRL, in this model system. The pure antiestrogen ICI 182,780 (ICI), reported to have no effect on PRL release in female rats, was administered biweekly to T + E2-treated rats at 3 mg/kg body weight. ICI cotreatment completely prevented DLP dysplasia development but it also blocked hyperprolactinemia in the dual hormone-treated rats. Gene profiling with an 1185 gene rat cDNA array identified approximately 100 genes displaying > or = 3-fold changes in rat lateral prostates (LPs) following T + E2 treatment. Significantly more genes were up-regulated (77) than down-regulated (14), reflecting cellular/molecular changes associated with enhanced cell proliferation, DNA damage, heightened protein and RNA synthesis, increased energy metabolism, and activation of several proto-oncogenes and intracellular signaling pathways. Post hoc analyses, using quantitative real-time RT-PCR, corroborated differential expression of eight genes, exhibiting three different patterns of altered expression. Genes encoding the early growth response protein 1 and metalloendopeptidase meprin beta-subunit were similarly altered in T + E2- and T + E2 + ICI-treated animals when compared with untreated controls. In contrast, transcripts of fos-related antigen-2, growth arrest and DNA damage-inducible protein-45, and signal transducer and activator of transcription-3 were significantly increased in the LPs of T + E2-treated animals, but the increases were reversed by cotreatment with ICI. Differential expression of fos-related antigen-2 and growth arrest and DNA damage-inducible protein-45 were further confirmed at the protein level by immunohistochemistry. Lastly, levels of A-RAF, VIP-1 receptor, and calpastatin mRNA were distinctly lessen in rat LPs under T + E2 influence, but rebound with ICI cotreatment. In conclusion, our findings further implicated pituitary PRL in the induction of dysplasia in rat LP. Gene profiling provided clues that molecular events related to enhancement of cell proliferation, DNA damage, and activation of proto-oncogenes and transforming factors may be causally linked to the genesis of LP dysplasia in this rat model.
Collapse
Affiliation(s)
- Christopher J Thompson
- Department of Surgery-Division of Urology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | |
Collapse
|
321
|
Abstract
Estrogens exert important regulatory functions on vessel wall components, which may contribute to the increased prevalence and severity of certain chronic inflammatory and autoimmune diseases in females and the lower cardiovascular risk observed in premenopausal women. Endothelial cells have been recently identified as targets for estrogens, and estrogen receptors have been demonstrated in endothelial cells from various vascular beds. This review focuses on the regulatory function of estrogens in endothelial cell responses relevant to vessel inflammation, injury, and repair; estrogen effects on nitric oxide production and release; estrogen modulation of endothelial cell adhesion molecule expression; and estrogen regulation of angiogenesis. The mechanisms through which estrogen regulates endothelial cell functions are complex and involve both genomic and nongenomic mechanisms.
Collapse
MESH Headings
- Animals
- Arteriosclerosis/immunology
- Arteriosclerosis/physiopathology
- Autoimmune Diseases/immunology
- Autoimmune Diseases/physiopathology
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/genetics
- Connective Tissue Diseases/immunology
- Connective Tissue Diseases/physiopathology
- Disease Models, Animal
- Disease Susceptibility
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/injuries
- Endothelium, Vascular/metabolism
- Estrogens/pharmacology
- Estrogens/physiology
- Female
- Gene Expression Regulation/drug effects
- Growth Substances/metabolism
- Humans
- Inflammation/immunology
- Inflammation/physiopathology
- Integrins/metabolism
- Mice
- Mice, Inbred NZB
- Models, Biological
- Neovascularization, Pathologic/physiopathology
- Neovascularization, Physiologic/drug effects
- Nitric Oxide/metabolism
- Oxidative Stress/drug effects
- Premenopause/physiology
- Receptors, Estrogen/drug effects
- Receptors, Estrogen/physiology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Maria C Cid
- Department of Internal Medicine, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| | | | | |
Collapse
|
322
|
Abstract
Strong evidence now exists for the presence and importance of plasma membrane estrogen receptors (ER) in a variety of cells that are targets for steroid action. When estradiol (E2) binds cell surface proteins, the initiation of signal transduction triggers downstream signaling cascades that contribute to important functions. These functions include cell growth and survival, migration, and new blood vessel formation. In some instances these effects result from the initiation of gene transcription, upregulated through signaling from the membrane. The membrane ER probably originates from the same gene and transcript that produces the nuclear receptor. In the membrane, ER appear to localize mainly to discrete domains of the plasma membrane, known as caveolae, but the mechanisms by which this small pool of ER translocates to this site are currently unknown. At the caveolae, a cross talk with signaling molecules facilitates E2/ER cell biologic actions. This both includes direct stimulation of signaling via G protein activation, and a cross-activation of the epidermal growth factor receptor (EGFR). This review article highlights some of the important advances in understanding the cell biology of estrogen action that emanates from the membrane.
Collapse
Affiliation(s)
- Ellis R Levin
- Division of Endocrinology, Veterans Affairs Medical Center, 5901 E. 7th St., Long Beach, CA 90822, USA.
| |
Collapse
|
323
|
Kanda N, Watanabe S. 17beta-estradiol enhances vascular endothelial growth factor production and dihydrotestosterone antagonizes the enhancement via the regulation of adenylate cyclase in differentiated THP-1 cells. J Invest Dermatol 2002; 118:519-29. [PMID: 11874493 DOI: 10.1046/j.0022-202x.2002.01672.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We studied the in vitro effects of sex hormones on vascular endothelial growth factor (VEGF) production in differentiated THP-1 monocytic cells. Phorbol-12-myristate-13-acetate differentiated THP-1 into macrophage-like cells. 17beta-estradiol (10 (-9) M) increased VEGF secretion of controls 3.1-fold in differentiated THP-1 and this effect of 17beta-estradiol was antagonized by dihydrotestosterone, although dihydrotestosterone alone did not alter VEGF secretion. 17beta-estradiol increased steady-state mRNA level of VEGF and the increase was counteracted by dihydrotestosterone in differentiated THP-1, although dihydrotestosterone alone did not alter the VEGF mRNA level. Progesterone did not affect the constitutive and 17beta-estradiol-induced VEGF secretion and mRNA level. Transient transfection revealed that 17beta-estradiol enhanced chloramphenicol acetyl transferase expression driven by VEGF promoter and the enhancement was antagonized by dihydrotestosterone. Adenylate cyclase inhibitor suppressed 17beta-estradiol-induced enhancement of VEGF secretion, mRNA level, and promoter activity, whereas dihydrotestosterone-induced suppression on the effects of 17beta-estradiol was counteracted by 3',5'-adenosine cyclic monophosphate (cAMP) analog. 17beta-estradiol increased intracellular cAMP level by activating adenylate cyclase, while dihydrotestosterone reduced the basal and 17beta-estradiol-increased cAMP level by inhibiting adenylate cyclase. Transfection with 5'-deleted VEGF promoters demonstrated that the region between -88 and -66 bp may be involved in the transcriptional regulation by each hormone. The mutation within activator protein-2 element in this region abrogated the transcriptional stimulation and repression by the respective hormones. 17beta-estradiol activated transcription from activator protein-2-responsive reporter plasmid while dihydrotestosterone antagonized the effect of 17beta-estradiol. These results suggest that 17beta-estradiol enhances VEGF production while dihydrotestosterone antagonizes the effect of 17beta-estradiol via up- or downregulation of adenylate cyclase in differentiated THP-1.
Collapse
Affiliation(s)
- Naoko Kanda
- Department of Dermatology, Teikyo University, School of Medicine, Tokyo, Japan.
| | | |
Collapse
|
324
|
Velasco L, Sánchez M, Rubín JM, Hidalgo A, Bordallo C, Cantabrana B. Intracellular cAMP increases during the positive inotropism induced by androgens in isolated left atrium of rat. Eur J Pharmacol 2002; 438:45-52. [PMID: 11906709 DOI: 10.1016/s0014-2999(02)01300-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Molecular interactions of androgens with the plasma membrane may produce rapid cardiovascular effects that cannot be explained by the classic genomic mechanisms. In this sense, 5 alpha- and 5 beta-dihydrotestosterone-induced an acute positive inotropic effect in isolated left atrium of rat, an effect which may be due to cAMP-dependent mechanisms. To prove this, intracellular levels of cAMP, after exposure to androgens in the organ bath, and binding to beta(1)-adrenoceptors were evaluated. After a 4-min exposure, 5 alpha- and 5 beta-dihydrotestosterone increased cAMP levels from 3.83+/-0.61 to 6.15+/-1.1 and 11.18+/-2.4 pmol cAMP/mg of protein, respectively. These increases were inhibited by atenolol and not modified by treatment of the rats with reserpine. The androgen-induced cAMP increase seems to be produced via an extracellular interaction, because positive inotropism and raised levels of cAMP were produced by 5 alpha-dihydrotestosterone conjugated with bovine serum albumin (BSA). In addition, it is independent of beta(1)-adrenoceptor activation, because neither androgen displaced [(3)H]dihydroalprenolol binding. Therefore, the androgens induced a positive inotropic effect via a postsynaptic effect that increases intracellular levels of cAMP. This effect is modulated by transcriptional mechanisms or by a protein with a short half-life.
Collapse
Affiliation(s)
- Lucía Velasco
- Laboratorio de Farmacología, Departamento de Medicina, Facultad de Medicina, Universidad de Oviedo, Julián Clavería 6, Oviedo 33006, Spain
| | | | | | | | | | | |
Collapse
|
325
|
Sanchez R, Nguyen D, Rocha W, White JH, Mader S. Diversity in the mechanisms of gene regulation by estrogen receptors. Bioessays 2002; 24:244-54. [PMID: 11891761 DOI: 10.1002/bies.10066] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sequencing of the human genome has opened the way for using bioinformatics to identify sets of genes controlled by specific regulatory signals. Here, we review the unexpected diversity of DNA response elements mediating transcriptional regulation by estrogen receptors (ERs), which control the broad physiological effects of estrogens. Consensus palindromic estrogen response elements are found in only a few known estrogen target genes, whereas most responsive genes contain only low-affinity half palindromes, which may also control regulation by other nuclear receptors. ERs can also regulate gene expression in the absence of direct interaction with DNA, via protein-protein interactions with other transcription factors or by modulating the activity of upstream signaling components, thereby significantly expanding the repertoire of estrogen-responsive genes. These diverse mechanisms of action must be taken into account in screening for potential estrogen-responsive sequences in the genome or in regulatory regions of target genes identified by expression profiling.
Collapse
Affiliation(s)
- Rocio Sanchez
- Département de Biochimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
326
|
Christian HC, Morris JF. Rapid actions of 17beta-oestradiol on a subset of lactotrophs in the rat pituitary. J Physiol 2002; 539:557-66. [PMID: 11882687 PMCID: PMC2290152 DOI: 10.1113/jphysiol.2001.012947] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Increasingly the role of rapid mechanisms of steroid action in physiological regulation are being recognised. We have investigated rapid effects of 17beta-oestradiol (E) on prolactin (PRL) release in vitro. Pituitary segments from male rats were incubated for 5, 10 or 20 min in Earle's balanced salt solution containing 1.2 mM tannic acid (to enable visualisation of exocytosed secretory granules by electron microscopy) either alone (control) or containing 10(-10)-10(-8) M E conjugated to bovine serum albumin (E-BSA). PRL and leuteinising hormone (LH) release from pituitary segments were also determined in response to E and E-BSA by radioimmunoassay. Within 10 min E-BSA and E (10(-12)-10(-6) M) stimulated a significant (P < 0.05) concentration-dependent release of PRL but not LH. After exposure to experimental media for 5 min, only occasional exocytosis from type I lactotrophs (characterised by large polymorphic secretory granules) was observed in either control or E-BSA treated tissue. In contrast, E-BSA (10(-10)-10(-8) M) induced a significant (P < 0.05) increase in the number of exocytotic profiles from type II lactotrophs (characterized by smaller, spherical granules). This effect was not inhibited by removal of extracellular calcium, or by pre-treatment of cells with the RNA synthesis inhibitor actinomycin-D (0.5 microg ml(-1)), the protein synthesis inhibitor cycloheximide (1 microg ml(-1)) or the anti-oestrogen ICI 182,780 (1 microM). FACS analysis demonstrated binding of E-BSA-fluorescein isothiocyanate (FITC) (10(-10)-10(-7) M) to a subpopulation of anterior pituitary cells. The E-BSA-FITC binding sites assumed a patchy distribution across the cell surface. In conclusion, we report for the first time a rapid, non-genomic effect of E on PRL secretion in normal pituitary tissue.
Collapse
Affiliation(s)
- H C Christian
- Department of Human Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK.
| | | |
Collapse
|
327
|
Barletta F, Freedman LP, Christakos S. Enhancement of VDR-mediated transcription by phosphorylation: correlation with increased interaction between the VDR and DRIP205, a subunit of the VDR-interacting protein coactivator complex. Mol Endocrinol 2002; 16:301-14. [PMID: 11818502 DOI: 10.1210/mend.16.2.0764] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
When UMR-106 osteoblastic cells, LLCPK1 kidney cells, and VDR transfected COS-7 cells were transfected with the rat 24-hydroxylase [24(OH)ase] promoter (-1,367/+74) or the mouse osteopontin (OPN) promoter (-777/+79), we found that the response to 1,25dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] could be significantly enhanced 2- to 5-fold by the protein phosphatase inhibitor, okadaic acid (OA). Enhancement of 1,25-(OH)(2)D(3)-induced transcription by OA was also observed using a synthetic reporter gene containing either the proximal 24(OH)ase vitamin D response element (VDRE) or the OPN VDRE, suggesting that the VDRE is sufficient to mediate this effect. OA also enhanced the 1,25-(OH)(2)D(3)-induced levels of 24(OH)ase and OPN mRNA in UMR osteoblastic cells. The effect of OA was not due to an up-regulation of VDR or to an increase in VDR-RXR interaction with the VDRE. To determine whether phosphorylation regulates VDR-mediated transcription by modulating interactions with protein partners, we examined the effect of phosphorylation on the protein-protein interaction between VDR and DRIP205, a subunit of the vitamin D receptor-interacting protein (DRIP) coactivator complex, using glutathione-S-transferase pull-down assays. Similar to the functional studies, OA treatment was consistently found to enhance the interaction of VDR with DRIP205 3- to 4-fold above the interaction observed in the presence of 1,25-(OH)(2)D(3) alone. In addition, studies were done with the activation function-2 defective VDR mutant, L417S, which is unable to stimulate transcription in response to 1,25-(OH)(2)D(3) or to interact with DRIP205. However, in the presence of OA, the mutant VDR was able to activate 24(OH)ase and OPN transcription and to recruit DRIP205, suggesting that OA treatment may result in a conformational change in the activation function-2 defective mutant that creates an active interaction surface with DRIP205. Taken together, these findings suggest that increased interaction between VDR and coactivators such as DRIP205 may be a major mechanism that couples extracellular signals to vitamin D action.
Collapse
Affiliation(s)
- Frank Barletta
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School and Graduate School of Biomedical Sciences, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
328
|
Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng MH, Yue W. The role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid Biochem Mol Biol 2002; 80:239-56. [PMID: 11897507 DOI: 10.1016/s0960-0760(01)00189-3] [Citation(s) in RCA: 292] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mitogen-activated protein kinase (MAP kinase) cascades transmit and amplify signals involved in cell proliferation as well as cell death. These signal transduction pathways serve as an indicators of the intensity of trafficking induced by various growth factor, steroid hormone, and G protein receptor mediated ligands. Three major MAP kinase pathways exist in human tissues, but the one involving ERK-1 and -2 is most relevant to breast cancer. Peptide growth factors acting through tyrosine kinase containing receptors are the major regulators of ERK-1 and -2. Estradiol, progesterone, and testosterone can act non-genomically via membrane associated receptors to activate MAP kinase as can various other ligands acting through heterotrimeric G protein receptors. Recent studies demonstrate that breast cancers frequently contain an increased proportion of cells with the activated form of MAP kinase. In estrogen receptor positive breast tumors, MAP kinase pathways can exert "cross talk" effects at the level of ER induced transcription as well as at the level of the cell cycle. Estradiol stimulates cell proliferation by mechanisms which involve activation of MAP kinase, either through rapid, non-transcription effects or by increasing growth factor production and consequently MAP kinase. Progesterone and androgens also stimulate MAP kinase through both of these two mechanisms. Strategies used to treat hormone dependent breast cancer appear to result in upregulation of MAP kinase activation. Direct experimental data demonstrate that the pressure of estradiol deprivation results in the upregulation of MAP kinase in breast cancer cells growing in tissue culture and as xenografts. A number of investigators have now studied the expression of activated MAP kinase in human breast cancer tissues by enzymatic assay and by immunohistochemical techniques. Approximately half of breast tumors express more activated MAP kinase than does the surrounding benign tissue. Studies show a trend toward higher MAP kinase activity in primary tumors of node positive than in node negative patients. However, larger numbers of patients must be studied for these results to achieve statistical significance. The up-regulation of MAP kinase activity does not represent mutations of Ras, but appears to result from enhancement of growth factor pathway activation. No data are yet available on the relationship between MAP kinase activation and apoptosis. Additional studies are now needed to determine the precise relationship between MAP kinase activation and tumor proliferation, apoptosis, and degree of invasiveness as well as on disease free and overall survival.
Collapse
Affiliation(s)
- Richard J Santen
- Department of Medicine, Division of Endocrinology, University of Virginia Health System, P.O. Box 800379, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
329
|
Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol 2002; 80:231-8. [PMID: 11897506 DOI: 10.1016/s0960-0760(01)00190-x] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The biological and biochemical effects of estrogen have been ascribed to its known receptors, which function as ligand-inducible transcription factors. However, estrogen also triggers rapid activation of classical second messengers (cAMP, calcium, and inositol triphosphate) and stimulation of intracellular signaling cascades mitogen-activated protein kinase (MAP K), PI3K and eNOS. These latter events are commonly activated by membrane receptors that either possess intrinsic tyrosine kinase activity or couple to heterotrimeric G-proteins. We have shown that estrogen transactivates the epidermal growth factor receptor (EGFR) to MAP K signaling axis via the G-protein-coupled receptor (GPCR), GPR30, through the release of surface-bound proHB-EGF from estrogen receptor (ER)-negative human breast cancer cells [Molecular Endocrinology 14 (2000) 1649]. This finding is consistent with a growing body of evidence suggesting that transactivation of EGFRs by GPCRs is a recurrent theme in cell signaling. GPCR-mediated transactivation of EGFRs by estrogen provides a previously unappreciated mechanism of cross-talk between estrogen and serum growth factors, and explains prior data reporting the EGF-like effects of estrogen. This novel mechanism by which estrogen activates growth factor-dependent signaling and its implications for breast cancer biology are discussed further in this review.
Collapse
Affiliation(s)
- Edward J Filardo
- Department of Medicine, Division of Clinical Pharmacology, Rhode Island Hospital and Brown University, Aldrich Bldg Rm 718, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
330
|
Seo HS, Leclercq G. Evaluation of potential implication of membrane estrogen binding sites on ERE-dependent transcriptional activity and intracellular estrogen receptor-alpha regulation in MCF-7 breast cancer cells. J Steroid Biochem Mol Biol 2002; 80:109-23. [PMID: 11867270 DOI: 10.1016/s0960-0760(01)00175-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The potential involvement of membrane estrogen binding sites in the induction of ERE-dependent transcriptional activity as well as in the regulation of intracellular estrogen receptor alpha (ER-alpha) level under estradiol (E2) stimulation was investigated. Our approach relied upon the use of two DCC-treated E2-BSA (bovine serum albumin) solutions (E2-6-BSA and E2-17-BSA). The absence of detectable free E2 in these solutions was established. Both E2-BSA conjugates led to a transient dose-dependent stimulation of the expression of ERE-luciferase (LUC) reporter gene in MVLN cells (MCF-7 cells stably transfected with a pVit-tk-LUC reporter plasmid), a property not recorded with free E2, which maintained enhanced transcriptional activity during the whole experiment. A very low concentration of E2 (10 pM) synergistically acted with E2-BSA conjugates. Hence, ERE-dependent transcriptional activity induced by these conjugates appeared to result from their known interactions with membrane estrogen binding sites. Anti-estrogens (AEs: 4-OH-TAM and RU 58,668), which antagonize genomic ER responses, abrogated the luciferase activity induced by E2-BSA conjugates, confirming a potential relationship between membrane-related signals and intracellular ER. Moreover, induction of luciferase was recorded when the cells were exposed to IBMX (3-isobutyl-1-methylxanthine) and cyclic nucleotides (cAMP/cGMP), suggesting the implication of the latter in the signal transduction pathway leading to the expression of the reporter gene. Growth factors (IGF-I, EGF and TGF-alpha) also slightly stimulated luciferase and synergistically acted with 10 pM E2, or 1 microM E2-BSA conjugates, in agreement with the concept of a cross-talk between steroids and peptides acting on the cell membrane. Remarkably, E2-BSA conjugates, IBMX and all investigated growth factors failed to down-regulate intracellular ER in MCF-7 cells, indicating the need for a direct intracellular interaction of the ligand with the receptor to regulate its level. ER elimination was, however, found in the presence of conditioned media (CMs) prepared from cells pre-exposed to E2-BSA conjugates, suggesting that they may produce (a) modulator(s) that may enhance receptor down-regulation when released within the medium.
Collapse
Affiliation(s)
- Hye Sook Seo
- Laboratoire J.-C. Heuson de Cancérologie Mammaire, Service de Médecine Interne, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | | |
Collapse
|
331
|
Filardo EJ, Quinn JA, Frackelton AR, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: stimulation of adenylyl cyclase and cAMP-mediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol 2002; 16:70-84. [PMID: 11773440 DOI: 10.1210/mend.16.1.0758] [Citation(s) in RCA: 597] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Estrogen triggers rapid yet transient activation of the MAPKs, extracellular signal-regulated kinase (Erk)-1 and Erk-2. We have reported that this estrogen action requires the G protein-coupled receptor, GPR30, and occurs via Gbetagamma-subunit protein-dependent transactivation of the epidermal growth factor (EGF) receptor through the release of pro-heparan-bound EGF from the cell surface. Here we investigate the mechanism by which Erk-1/-2 activity is rapidly restored to basal levels after estrogen stimulation. Evidence is provided that attenuation of Erk-1/-2 activity by estrogen occurs via GPR30-dependent stimulation of adenylyl cyclase and cAMP-dependent signaling that results in Raf-1 inactivation. We show that 17beta-E2 represses EGF-induced activation of the Raf-to-Erk pathway in human breast carcinoma cells that express GPR30, including MCF-7 and SKBR3 cells which express both or neither, ER, respectively. MDA-MB-231 cells, which express ERbeta, but not ERalpha, and low levels of GPR30 protein, are unable to stimulate adenylyl cyclase or promote estrogen-mediated blockade of EGF-induced activation of Erk-1/-2. Pretreatment of MDA-MB-231 cells with cholera toxin, which ADP-ribosylates and activates Galphas subunit proteins, results in G protein-coupled receptor (GPCR)-independent adenylyl cyclase activity and suppression of EGF-induced Erk-1/-2 activity. Transfection of GPR30 into MDA-MB-231 cells restores their ability to stimulate adenylyl cyclase and attenuate EGF-induced activation of Erk-1/-2 by estrogen. Moreover, GPR30-dependent, cAMP-mediated attenuation of EGF-induced Erk-1/-2 activity was achieved by ER antagonists such as tamoxifen or ICI 182, 780; yet not by 17alpha-E2 or progesterone. Thus, our data delineate a novel mechanism, requiring GPR30 and estrogen, that acts to regulate Erk-1/-2 activity via an inhibitory signal mediated by cAMP. Coupled with our prior findings, these current data imply that estrogen balances Erk-1/-2 activity through a single GPCR via two distinct G protein-dependent signaling pathways that have opposing effects on the EGF receptor-to-MAPK pathway.
Collapse
Affiliation(s)
- Edward J Filardo
- Department of Surgery, Rhode Island Hospital, and Brown University, Providence, Rhode Island 02903, USA.
| | | | | | | |
Collapse
|
332
|
Hall JM, Couse JF, Korach KS. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J Biol Chem 2001; 276:36869-72. [PMID: 11459850 DOI: 10.1074/jbc.r100029200] [Citation(s) in RCA: 825] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- J M Hall
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
333
|
Diaz M, Bahamonde MI, Lock H, Muñoz FJ, Hardy SP, Posas F, Valverde MA. Okadaic acid-sensitive activation of Maxi Cl(-) channels by triphenylethylene antioestrogens in C1300 mouse neuroblastoma cells. J Physiol 2001; 536:79-88. [PMID: 11579158 PMCID: PMC2278843 DOI: 10.1111/j.1469-7793.2001.00079.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
1. The regulation of Maxi Cl(-) channels by 17beta-oestradiol and non-steroidal triphenylethylene antioestrogens represents a rapid, non-classical effect of these compounds. In the present study we have investigated the signalling pathways used for the regulation of Maxi Cl(-) channel activity by oestrogens and antioestrogens in C1300 neuroblastoma cells. 2. Whole-cell Maxi Cl(-) currents were readily and reversibly activated by tamoxifen, toremifene and the membrane-impermeant ethyl-bromide tamoxifen, only when applied to the extracellular medium. 3. Pre-treatment of C1300 cells with oestrogen or cAMP prevented the antioestrogen-induced activation of Maxi Cl(-) channels. The inhibitory effect of 17beta-oestradiol and cAMP was abolished by the kinase inhibitor staurosporine. 4. Current activation was unaffected by the removal of intracellular Ca(2+) and Mg(2+), but was completely abolished in the presence of okadaic acid. These results are consistent with the participation of an okadaic acid-sensitive serine/threonine protein phosphatase in the activation of Maxi Cl(-) channels. However, neither oestrogen or antioestrogen treatment modified the total activity of the two major serine/threonine phosphatases, PP1 and PP2A, in C1300 cells. 5. Although the role of these Maxi Cl(-) channels remains unknown, our findings suggest strongly that their modulation by oestrogens and antioestrogens is linked to intracellular signalling pathways.
Collapse
Affiliation(s)
- M Diaz
- Departamento de Biología Animal, Universidad de la Laguna, Tenerife, Spain
| | | | | | | | | | | | | |
Collapse
|
334
|
Abstract
The existence of binding proteins for the female sex steroid, 17beta-estradiol, has been known for almost 50 years. Presently, two estrogen receptors (ERs), ER-alpha and ER-beta, have been cloned in mammals, and they are expressed in many cell types of metazoans. ERs act primarily as nuclear transcription factors, and this effect is enhanced by ligand binding. Emerging data have identified a separate pool of receptors for this steroid in the plasma membrane, but the mechanisms of action and cellular functions of these proteins are just beginning to be defined. In this review, the known details of the nuclear and plasma membrane ER functions will be discussed. A particular focus will be to define the signaling pathways from the membrane that lead to important cell physiology effects of estrogen. The potential interactions of membrane ER with other local proteins will also be discussed, and the unique but often complementary roles of the receptor pools will be highlighted. These details may be of additional relevance to other steroid receptors, since there is evidence of their existence in the cell membrane.
Collapse
Affiliation(s)
- E R Levin
- Division of Endocrinology, Long Beach Veterans Affairs Medical Center, 5901 E. 7th St., Long Beach, CA 90822, USA.
| |
Collapse
|
335
|
Orihuela PA, Croxatto HB. Acceleration of oviductal transport of oocytes induced by estradiol in cycling rats is mediated by nongenomic stimulation of protein phosphorylation in the oviduct. Biol Reprod 2001; 65:1238-45. [PMID: 11566749 DOI: 10.1095/biolreprod65.4.1238] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In order to explore nongenomic actions of estradiol (E2) and progesterone (P4) in the oviduct, we determined the effect of E2 and P4 on oviductal protein phosphorylation. Rats on Day 1 of the cycle (C1) or pregnancy (P1) were treated with E2, P4, or E2 + P4, and 0.5 h or 2.5 h later their oviducts were incubated in medium with 32P-orthophosphate for 2 h. Oviducts were homogenized and proteins were separated by SDS-PAGE. Following autoradiography, protein bands were quantitated by densitometry. The phosphorylation of some proteins was increased by hormonal treatments, exhibiting steroid specificity and different individual time courses. Possible mediation of the E2 effect by mRNA synthesis or protein kinases A (PK-A) or C (PK-C) was then examined. Rats on C1 treated with E2 also received an intrabursal (i.b.) injection of alpha-amanitin (Am), or the PK inhibitors H-89 or GF 109203X, and 0.5 h later their oviducts were incubated as above plus the corresponding inhibitors in the medium. Increased incorporation of 32P into total oviductal protein induced by E2 was unchanged by Am, whereas it was completely suppressed by PK inhibitors. Local administration of H-89 was utilized to determine whether or not E2-induced egg transport acceleration requires protein phosphorylation. Rats on C1 or P1 were treated with E2 s.c. and H-89 i.b. The number and distribution of eggs in the genital tract assessed 24 h later showed that H-89 blocked the E2-induced oviductal egg loss in cyclic rats and had no effect in mated rats. It is concluded that E2 and P4 change the pattern of oviductal protein phosphorylation. Estradiol increases oviductal protein phosphorylation in cyclic rats due to a nongenomic action mediated by PK-A and PK-C. In the absence of mating, this action is essential for its oviductal transport accelerating effect. Mating changes the mechanism of action of E2 in the oviduct by waiving this nongenomic action as a requirement for E2-induced embryo transport acceleration.
Collapse
Affiliation(s)
- P A Orihuela
- Unidad de Reproducción y Desarrollo, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | |
Collapse
|
336
|
Márquez DC, Pietras RJ. Membrane-associated binding sites for estrogen contribute to growth regulation of human breast cancer cells. Oncogene 2001; 20:5420-30. [PMID: 11571639 DOI: 10.1038/sj.onc.1204729] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2001] [Revised: 06/12/2001] [Accepted: 06/14/2001] [Indexed: 11/09/2022]
Abstract
Membrane-associated binding sites for estrogen may mediate rapid effects of estradiol-17beta that contribute to proliferation of human breast cancers. After controlled homogenization and fractionation of MCF-7 breast cancer cells, the bulk of specific estradiol binding is found in nuclear fractions. However, a significant portion of specific, high-affinity estradiol-17beta binding-sites are also enriched in plasma membranes. These estradiol binding-sites co-purify with 5'-nucleotidase, a plasma membrane-marker enzyme, and are free from major contamination by cytosol or nuclei. Electrophoresis of membrane fractions allowed detection of a primary 67-kDa protein and a secondary 46-kDa protein recognized by estradiol-17beta and by a monoclonal antibody directed to the ligand-binding domain of the nuclear form of estrogen receptor. Estrogen-induced growth of MCF-7 breast cancer cells in vitro was blocked by treatment with the antibody to estrogen receptor and correlated closely with acute hormonal activation of mitogen-activated protein kinase and Akt kinase signaling. Estrogen-promoted growth of human breast cancer xenografts in nude mice was also significantly reduced by treatment in vivo with the estrogen receptor antibody. Thus, membrane-associated forms of estrogen receptor may play a role in promoting intracellular signaling for hormone-mediated proliferation and survival of breast cancers and offer a new target for antitumor therapy.
Collapse
Affiliation(s)
- D C Márquez
- Department of Medicine, Division of Hematology-Oncology, UCLA School of Medicine, Los Angeles, California, 90095-1678, USA
| | | |
Collapse
|
337
|
Maccioni RB, Muñoz JP, Barbeito L. The molecular bases of Alzheimer's disease and other neurodegenerative disorders. Arch Med Res 2001; 32:367-81. [PMID: 11578751 DOI: 10.1016/s0188-4409(01)00316-2] [Citation(s) in RCA: 285] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Alzheimer's disease, the cause of one of the most common types of dementia, is a brain disorder affecting the elderly and is characterized by the formation of two main protein aggregates: senile plaques and neurofibrillary tangles, which are involved in the process leading to progressive neuronal degeneration and death. Neurodegeneration in Alzheimer's disease is a pathologic condition of cells rather than an accelerated way of aging. The senile plaques are generated by a deposition in the human brain of fibrils of the beta-amyloid peptide (Abeta), a fragment derived from the proteolytic processing of the amyloid precursor protein (APP). Tau protein is the major component of paired helical filaments (PHFs), which form a compact filamentous network described as neurofibrillary tangles (NFTs). Experiments with hippocampal cells in culture have indicated a relationship between fibrillary amyloid and the cascade of molecular signals that trigger tau hyperphosphorylations. Two main protein kinases have been shown to be involved in anomalous tau phosphorylations: the cyclin-dependent kinase Cdk5 and glycogen synthase kinase GSK3beta. Cdk5 plays a critical role in brain development and is associated with neurogenesis as revealed by studies in brain cells in culture and neuroblastoma cells. Deregulation of this protein kinase as induced by extracellular amyloid loading results in tau hyperphosphorylations, thus triggering a sequence of molecular events that lead to neuronal degeneration. Inhibitors of Cdk5 and GSK3beta and antisense oligonucleotides exert protection against neuronal death. On the other hand, there is cumulative evidence from studies in cultured brain cells and on brains that oxidative stress constitutes a main factor in the modification of normal signaling pathways in neuronal cells, leading to biochemical and structural abnormalities and neurodegeneration as related to the pathogenesis of Alzheimer's disease. This review is focused on the main protein aggregates responsible for neuronal death in both sporadic and familial forms of Alzheimer's disease, as well as on the alterations in the normal signaling pathways of functional neurons directly involved in neurodegeneration. The analysis is extended to the action of neuroprotective factors including selective inhibitors of tau phosphorylating protein kinases, estrogens, and antioxidants among other molecules that apparently prevent neuronal degeneration.
Collapse
Affiliation(s)
- R B Maccioni
- Millennium Institute for Advanced Studies in Cell Biology and Biotechnology, Faculty of Sciences, University of Chile, Santiago, Chile.
| | | | | |
Collapse
|
338
|
Castro-Rivera E, Samudio I, Safe S. Estrogen regulation of cyclin D1 gene expression in ZR-75 breast cancer cells involves multiple enhancer elements. J Biol Chem 2001; 276:30853-61. [PMID: 11410592 DOI: 10.1074/jbc.m103339200] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclin D1 gene expression is induced by 17beta-estradiol (E2) in human breast cancer cells and is important for progression of cells through the G(1) phase of the cell cycle. The mechanism of activation of cyclin D1 is mitogen- and cell context-dependent, and this study describes the role of multiple promoter elements required for induction of cyclin D1 by E2 in estrogen receptor (ER)-positive ZR-75 breast cancer cells. Transcriptional activation of cyclin D1 by E2 was dependent, in part, on a proximal cAMP-response element at -66, and this was linked to induction of protein kinase A-dependent pathways. These results contrasted to a recent report showing that induction of cyclin D1 by E2 in ER-positive MCF-7 and HeLa cells was due to up-regulation of c-jun and subsequent interaction of c-Jun-ATF-2 with the CRE. Moreover, further examination of the proximal region of the cyclin D1 promoter showed that three GC-rich Sp1-binding sites at -143 to -110 were also E2-responsive, and interaction of ERalpha and Sp1 proteins at these sites was confirmed by electromobility shift and chromatin immunoprecipitation assays. Thus, induction of cyclin D1 by E2 in ZR-75 cells is regulated through nuclear ERalpha/Sp1 and epigenetic protein kinase A activation pathways, and our results suggest that this mechanism may be cell context-dependent even among ER-positive breast cancer cell lines.
Collapse
Affiliation(s)
- E Castro-Rivera
- Department of Veterinary Physiology and Pharmacology, Texas A & M University, College Station, Texas 77843-4466, USA
| | | | | |
Collapse
|
339
|
Zhuang YH, Sarca D, Weisz A, Altucci L, Cicatiello L, Rollerova E, Tuohimaa P, Ylikomi T. Cell type-specific induction of cyclin D and cyclin-dependent kinase inhibitor p27(kip1) expression by estrogen in rat endometrium. J Steroid Biochem Mol Biol 2001; 78:193-9. [PMID: 11566444 DOI: 10.1016/s0960-0760(01)00087-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cyclins, cyclin-dependent kinases (CDKs) and the CDK inhibitor p27(kip1) are known to be involved in the regulation of G(1)/S phase transition by estrogen in the rodent endometrium. Little is known, however, of the cell-specific location and regulation of these proteins during this process, or the way they mediate the differential effect of estrogen in the epithelium and stroma of the endometrium. Here we studied the cell-specific regulation of D-type cyclin (D(1-3)), of cyclin A and E, of CDK(2) and p27(kip1) by 17beta-estradiol in the endometrium of ovariectomized rats. Time-course changes in these proteins in the endometrium of ovariectomized rats were examined by immunohistochemistry at 2, 4, 8, 12, 20, 28 and 32 h after estrogen stimulation. The expression of proliferation cell nuclear antigen (PCNA) was also studied as a marker of proliferating cells. As expected from previous studies, all the proteins investigated were up-regulated by estrogen, with peak times from 8 to 32 h. The induction of cyclin D(1) is predominant in the glandular epithelium, whereas cyclin D(3) increases mainly in the luminal epithelium. The up-regulation of p27(kip1) is restricted to stromal cells with a 'gradient-like' expression pattern, in which the sub-epithelial (functional) layer showed stronger staining than the basal layer. The differential regulation of cyclins and p27(kip1) in the epithelium and stroma of the endometrium appear indicative of distinct actions of estrogen in different cell types in the uterus, as D-type cyclins mediate the proliferative effect of estrogen in epithelial cells while p27(kip1) might help prevent the same effect in the stroma.
Collapse
Affiliation(s)
- Y H Zhuang
- Department of Cell Biology, Tampere University Medical School, 33014, Tampere, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
340
|
Monje P, Zanello S, Holick M, Boland R. Differential cellular localization of estrogen receptor alpha in uterine and mammary cells. Mol Cell Endocrinol 2001; 181:117-29. [PMID: 11476946 DOI: 10.1016/s0303-7207(01)00526-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The classical alpha isoform of the estrogen receptor (ER) has been reported to localize almost exclusively in the nucleus. However, studies on non-genomic steroid effects have also suggested the existence of ERs residing at the cell surface. In this work, we present immunological data supporting extra-nuclear ERalpha localization in uterine (SHM) and mammary (MCF-7) cell lines. Immunocytological studies performed on SHM cells revealed that native ERs mainly localize as a perinuclear cytoplasmic ring. The receptors were rapidly translocated to the nucleus by 17beta-estradiol. In addition to nuclear ERs, a peripheral reservoir of ERalpha immunoreactivity, most probably associated with the plasma membrane, was detected in MCF-7 cells. These results were confirmed by the detection of membrane estrogen binding sites using fluorescent estrogen-BSA derivatives and ligand binding assays to intact cells, where [3H]-estradiol could be partly displaced by impeded estrogen conjugates. Partial inhibition of radioligand binding by an antibody against the steroid binding domain of the ERalpha suggests that the isoform faces the extracellular media in MCF-7 cells. Moreover, ERalpha-like proteins ( approximately 67 kDa) were found to be associated in isolated membrane subfractions from the cells. However, immunocytology of COS-1 (ER-negative) and SHM cells transfected with the complete cDNA coding for the cloned ERalpha and beta isoforms showed exclusive nuclear localization of the overexpressed ERs. The non-classical distribution of native ERalpha-like proteins in each cell line, suggests an alternative mode of ERalpha cellular localization/function. Cell type-dependent processing may account for the differential localization shown by native and expressed receptors in the systems considered.
Collapse
Affiliation(s)
- P Monje
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, 8000, Bahía Blanca, Argentina
| | | | | | | |
Collapse
|
341
|
Cecil KM, Schnall MD, Siegelman ES, Lenkinski RE. The evaluation of human breast lesions with magnetic resonance imaging and proton magnetic resonance spectroscopy. Breast Cancer Res Treat 2001; 68:45-54. [PMID: 11678308 DOI: 10.1023/a:1017911211090] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE MR spectroscopy (MRS) assists in lesion characterization and diagnosis when combined with magnetic resonance imaging (MRI). Cancerous lesions demonstrate elevated composite choline levels arising from increased cellular proliferation. Our study investigated if MR spectroscopy of the breast would be useful for characterizing benign and malignant lesions. MATERIALS AND METHODS Single voxel proton MR spectroscopy (MRS) was acquired as part of an MR imaging protocol in 38 patients referred upon surgical consultation. The MR spectra were read independently in a blinded fashion without the MR images by three spectroscopists. The MRI exam was interpreted in two settings: (a) as a clinical exam with detailed histories and results from previous imaging studies such as mammography or ultrasound included and (b) as a blinded study without prior histories or imaging results. RESULTS Elevated choline levels were demonstrated by MRS in 19 of the 23 confirmed cancer patients. The sensitivity and specificity for determining malignancy from benign breast disease with MRS alone were 83 and 87%, respectively, while a blinded MRI review reported 95 and 86%, respectively. CONCLUSIONS Proton MR spectroscopy provides a noninvasive, biochemical measure of metabolism. The technique can be performed in less than 10 min as part of an MRI examination. MRI in combination with MRS may improve the specificity of breast MR and thereby, influence patient treatment options. This may be particularly true with less experienced breast MRI readers. In exams where MRI and MRS agree, the additional confidence measure provided by MRS may influence the course of treatment.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Breast Neoplasms/diagnosis
- Breast Neoplasms/diagnostic imaging
- Breast Neoplasms/pathology
- Carcinoma, Ductal, Breast/diagnosis
- Carcinoma, Ductal, Breast/diagnostic imaging
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/diagnosis
- Carcinoma, Intraductal, Noninfiltrating/diagnostic imaging
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Choline/analysis
- Choline/metabolism
- Cohort Studies
- Diagnosis, Differential
- Female
- Fibrocystic Breast Disease/diagnosis
- Humans
- Magnetic Resonance Imaging/standards
- Magnetic Resonance Spectroscopy/standards
- Middle Aged
- Predictive Value of Tests
- Radionuclide Imaging
- Sensitivity and Specificity
- Single-Blind Method
Collapse
Affiliation(s)
- K M Cecil
- Department of Radiology, University of Pennsylvania Medical Center, Philadelphia, USA.
| | | | | | | |
Collapse
|
342
|
Lee SJ, McEwen BS. Neurotrophic and neuroprotective actions of estrogens and their therapeutic implications. Annu Rev Pharmacol Toxicol 2001; 41:569-91. [PMID: 11264469 DOI: 10.1146/annurev.pharmtox.41.1.569] [Citation(s) in RCA: 393] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Originally known for its regulation of reproductive functions, estradiol, a lipophilic hormone that can easily cross plasma membranes as well as the blood-brain barrier, maintains brain systems subserving arousal, attention, mood, and cognition. In addition, both synthetic and natural estrogens exert neurotrophic and neuroprotective effects. There is increasing evidence that estrogen actions are mediated by nongenomic as well as direct and indirect genomic pathways. Although in vitro models have provided the most extensive evidence for neurotrophic and neuroprotective actions to date, there are also in vivo studies that support these actions.
Collapse
Affiliation(s)
- S J Lee
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, New York 10021, USA.
| | | |
Collapse
|
343
|
Lundholt BK, Briand P, Lykkesfeldt AE. Growth inhibition and growth stimulation by estradiol of estrogen receptor transfected human breast epithelial cell lines involve different pathways. Breast Cancer Res Treat 2001; 67:199-214. [PMID: 11561766 DOI: 10.1023/a:1017977406429] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Epidermal growth factor (EGF) and estradiol (E2) are important mitogens in breast epithelial cells, and expression of epidermal growth factor receptor (EGFR) and estrogen receptor (ER) is often inversely correlated in human breast cancer cells. Stable transfection of ER-negative cells with ER cDNA is not sufficient to restore E2-mediated growth stimulation, on the contrary, E2 often inhibits growth of ER-transfected cell lines. In this study we used the ER-transfected human breast epithelial cell lines HMT-3522F9, growth inhibited by E2 in the presence of EGF, and HMT-3522F9/S3B, growth stimulated by E2 in the absence of EGF. In S3B cells, no active MAP kinase could be detected in response to E2, suggesting that signalling through the MAP kinase is not the major pathway in the E2-mediated growth stimulation. Interestingly, a decreased level of active MAP kinase was observed in HMT-3522F9 cells in response to E2, indicating that in these cells cross-talk between the ER and the MAP kinase signalling pathway could be due to the E2-mediated growth inhibition. Moreover, we found that EGF-induced signalling also could be reduced by E2 in S3B cells, suggesting a general mechanism of action by E2 in cells concomitantly expressing ER and EGFR.
Collapse
Affiliation(s)
- B K Lundholt
- Department of Tumor Endocrinology, Institute of Cancer Biology, Danish Cancer Society, Copenhagen
| | | | | |
Collapse
|
344
|
Wade CB, Robinson S, Shapiro RA, Dorsa DM. Estrogen receptor (ER)alpha and ERbeta exhibit unique pharmacologic properties when coupled to activation of the mitogen-activated protein kinase pathway. Endocrinology 2001; 142:2336-42. [PMID: 11356680 DOI: 10.1210/endo.142.6.8071] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rapid, nongenomic effects of estrogen are increasingly recognized as playing an important role in several aspects of estrogen action. Rapid activation of the mitogen-activated protein kinase (MAPK) signaling pathway by estrogen is among the more recently identified of these effects. To explore the role of estrogen receptors (ERs) in mediating these effects, we have transfected ER-negative Rat-2 fibroblasts with complementary DNA clones encoding either human ERalpha or rat ERbeta and examined their ability to couple to activation of MAPK in response to 17beta-estradiol (17beta-E(2)) and other ligands. For both receptors, addition of E(2) resulted in a rapid phosphorylation of MAPK. Activation of MAPK in ERalpha-transfected cells was partially and completely blocked by the antiestrogens tamoxifen and ICI 182,780, respectively. In ERbeta-transfected cells, MAPK activation was less sensitive to inhibition by tamoxifen and ICI 182,780. We have also observed that, in this model system, a membrane-impermeable estrogen (BSA-E(2)) and 17alpha-E(2) were both able to activate MAPK in a manner similar to E(2) alone. Here also, ICI 182,780 blocked the ability of BSA-E(2) to activate MAPK through ERalpha, but failed to block ERbeta-mediated effects. BSA-E(2) treatment, however, failed to activate nuclear estrogen-response-element-mediated gene transcription. These data show that these nuclear ERs are necessary for estrogen's effects at the membrane. This model system will be useful in identifying molecular interactions involved in the rapid effects mediated by the ERs.
Collapse
Affiliation(s)
- C B Wade
- Department of Pharmacology, University of Washington, School of Medicine, Seattle 98195, USA.
| | | | | | | |
Collapse
|
345
|
Abstract
Although it has been known for many years that estrogen administration has deleterious effects on male fertility, data from transgenic mice deficient in estrogen receptors or aromatase point to an essential physiological role for estrogen in male fertility. This review summarizes the current knowledge on the localization of estrogen receptors and aromatase in the testis in an effort to understand the likely sites of estrogen action. The review also discusses the many studies that have used models employing the administration of estrogenic substances to show that male fertility is responsive to estrogen, thus providing a mechanism by which inappropriate exposure to estrogenic substances may cause adverse effects on spermatogenesis and male fertility. The reproductive phenotypes of mice deficient in estrogen receptors alpha and/or beta and aromatase are also compared to evaluate the physiological role of estrogen in male fertility. The review focuses on the effects of estrogen administration or deprivation, primarily in rodents, on the hypothalamo-pituitary-testis axis, testicular function (including Leydig cell, Sertoli cell, and germ cell development and function), and in the development and function of the efferent ductules and epididymis. The requirement for estrogen in normal male sexual behavior is also reviewed, along with the somewhat limited data on the fertility of men who lack either the capacity to produce or respond to estrogen. This review highlights the ability of exogenous estrogen exposure to perturb spermatogenesis and male fertility, as well as the emerging physiological role of estrogens in male fertility, suggesting that, in this local context, estrogenic substances should also be considered "male hormones."
Collapse
Affiliation(s)
- L O'Donnell
- Prince Henry's Institute of Medical Research, Victoria, Australia.
| | | | | | | |
Collapse
|
346
|
Joe I, Ramirez VD. Binding of estrogen and progesterone-BSA conjugates to glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the effects of the free steroids on GAPDH enzyme activity: physiological implications. Steroids 2001; 66:529-38. [PMID: 11182142 DOI: 10.1016/s0039-128x(00)00220-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In this study rat brain solubilized plasmalemma-microsomal fractions (B-P3) or cytosolic fractions were applied to P-3-BSA (progesterone linked to BSA at C-3 position) and E-6-BSA (17beta-estradiol linked to BSA at C-6 position) affinity columns. It is interesting that a 37 kDa protein was retained by both columns which was identified as glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by N-terminal sequencing. The 37 kDa protein (GAPDH) was not retained by either a control BSA conjugated affinity column or a corticosterone-BSA affinity column. E-6-BSA bound to GAPDH with higher binding affinity than P-3-BSA or T-3-BSA (testosterone linked to BSA at C-3 position) affinity columns. In addition, the binding of 17beta-E-6-BSA to GAPDH was impeded by free estrogen (17beta-estradiol) completely. Binding studies of E-6-BSA and P-3-BSA to commercial GAPDH from rabbit skeletal muscle using radiolabeled ligand binding assays revealed that P-3-BSA had 10x lower GAPDH binding affinity than E-6-BSA. Next, the effects of estrogen and progesterone on GAPDH activity were studied. Rapid and significant increases in V(max) and changes in K(m) were observed by the addition of 10 nM estradiol, whereas 100 nM progesterone decreased only V(max) significantly. Testosterone, corticosterone, 17alpha-estradiol, and diethylstilbestrol did not affect the enzyme activity. The results indicate that GAPDH is a target site for 17beta-estradiol and progesterone and suggest possible roles in the regulation of cellular metabolism and synaptic remodeling in which GAPDH has been reported to be involved.
Collapse
Affiliation(s)
- I Joe
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 61801, USA.
| | | |
Collapse
|
347
|
Lazennec G, Thomas JA, Katzenellenbogen BS. Involvement of cyclic AMP response element binding protein (CREB) and estrogen receptor phosphorylation in the synergistic activation of the estrogen receptor by estradiol and protein kinase activators. J Steroid Biochem Mol Biol 2001; 77:193-203. [PMID: 11457657 DOI: 10.1016/s0960-0760(01)00060-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen receptor (ER) and cAMP signaling pathways interact in a number of estrogen target tissues including mammary and uterine tissues. One aspect of this interaction is that estradiol and protein kinase A (PKA) activators can cooperate synergistically to activate ER-mediated transcription of both endogenous genes and reporter genes containing only estrogen response elements. The purpose of this study was to investigate the molecular mechanism of this interaction between signaling pathways. Site-directed mutagenesis of the potential PKA phosphorylation sites in the ER indicated that phosphorylation of these sites was not necessary for the observed transcriptional synergy. In transient transfection assays in two different cell lines using reporter constructs containing either cAMP response elements, estrogen response elements or both types of elements, with the addition or absence of cAMP response element binding protein (CREB) expression plasmid, we observed that only one of these cell lines exhibited estrogen/PKA transcriptional synergy. Experiments demonstrated that CREB itself was involved in the transcriptional synergy, and that transfection of CREB restored transcriptional synergy in the cell line in which it was lacking. A functional interaction between ER and CREB was also demonstrated using a mammalian cell protein interaction assay; a dominant negative mutant of CREB did not exhibit this interaction. Therefore, these data indicate that CREB protein is required for the transcriptional synergy between cAMP and estrogen signaling pathways. Furthermore, CREB cooperated with the ER on genes that did not contain cAMP response elements, but contained only estrogen response elements. We propose that activated CREB is recruited to estrogen responsive genes by an ER--coactivator complex containing proteins such as CREB binding protein (CBP) and that the interaction of CREB with ER may assist in stabilizing its interaction with CBP and in promoting estrogen-ER and PKA transcriptional synergy.
Collapse
Affiliation(s)
- G Lazennec
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Ave, Urbana, IL 61801, USA
| | | | | |
Collapse
|
348
|
Brinton RD. Cellular and molecular mechanisms of estrogen regulation of memory function and neuroprotection against Alzheimer's disease: recent insights and remaining challenges. Learn Mem 2001; 8:121-33. [PMID: 11390632 DOI: 10.1101/lm.39601] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review focuses on recent advances in our knowledge of estrogen action in the brain. The greatest amount of attention was devoted to those studies that impact our understanding of estrogen regulation of memory function and prevention of degenerative diseases associated with memory systems, such as Alzheimer's disease. A review of recent advances in our understanding of estrogen receptors, both nuclear and membrane, is also presented. Finally, these data are considered in regard to their relevancy to the use of estrogen replacement therapy for cognitive health throughout menopause and the development of an estrogen replacement therapy designed for the unique requirements of the brain.
Collapse
Affiliation(s)
- R D Brinton
- Department of Molecular Pharmacology and Toxicology and the Program in Neuroscience, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California 90033, USA.
| |
Collapse
|
349
|
Powell CE, Soto AM, Sonnenschein C. Identification and characterization of membrane estrogen receptor from MCF7 estrogen-target cells. J Steroid Biochem Mol Biol 2001; 77:97-108. [PMID: 11377974 DOI: 10.1016/s0960-0760(01)00040-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Estrogens control the proliferation of estrogen-target cells through a receptor mediated pathway. We have recently presented evidence that estradiol cancels the proliferative inhibition exerted by albumin on estrogen-target cells (indirect-negative hypothesis). We postulate that this mechanism requires the presence of a membrane estrogen receptor (mER)-membrane albumin receptor complex. Confirmation for mERalpha in MCF7 cells is now made using both the C542 monoclonal and ER-21 polyclonal antibodies (Ab)s specific for ERalpha. Western blot analysis of purified membrane proteins with ERalpha Abs revealed multiple high M(r) mERs (92 k, 110 k, and 130 k M(r)), as well as a 67 k M(r) mER; immunoreactive proteins were competed by inclusion of 500-fold molar excess C542 peptide. Ligand blot analysis of similar extracts with estradiol-peroxidase identified several potential mERs as well; two of these proteins were also recognized by C542 and ER-21 Abs (110 and 67 k M(r)). Fluorescence, confocal and electron microscopy of MCF7 cells fixed in 2.0% paraformaldehyde/0.1% glutaraldehyde identified specific mERalpha sites by immunocytochemistry. Specific binding of 3H-17beta-estradiol was reduced by a 200-fold molar excess of unlabeled 17beta-estradiol, but not by testosterone and progesterone. These results suggest that the ER on the plasma membrane of MCF7 cells is similar, but not identical to its intracellular counterpart. We propose that the observed mER actively participates in the estrogen-mediated proliferation of MCF7 cells.
Collapse
Affiliation(s)
- C E Powell
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | | | | |
Collapse
|
350
|
Singletary KW, Frey RS, Yan W. Effect of ethanol on proliferation and estrogen receptor-alpha expression in human breast cancer cells. Cancer Lett 2001; 165:131-7. [PMID: 11275361 DOI: 10.1016/s0304-3835(01)00419-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
There is substantial epidemiological evidence suggesting that alcohol consumption is associated with increased risk for breast cancer. However, possible biological mechanisms have not been clearly established. In the present studies, a direct effect of ethanol on the proliferation and intracellular content of cyclic AMP (cAMP) in two estrogen receptor-positive (ER+) and two estrogen receptor-negative (ER-) human breast cancer cell lines was examined. Treatment of ER+ human breast cancer cells (MCF-7 and ZR75.1) with ethanol at concentrations between 10 and 100 mM was associated with increased cell numbers compared to controls. The ERalpha content and the amount of intracellular cAMP also increased in ER+ cells exposed to ethanol, compared to controls. On the other hand, ethanol treatment did not increase cell proliferation or cAMP levels in the ER- (BT-20 and MDA-MB-231) human breast cancer cells. Therefore, ethanol added at physiologically relevant concentrations to ER+ human breast cancer cell cultures can enhance cell proliferation and increase the content of ERalpha.
Collapse
Affiliation(s)
- K W Singletary
- Department of Food Science and Human Nutrition, University of Illinois, 467 Bevier Hall, 905 South Goodwin Avenue, Urbana-Champaign, IL 61801, USA.
| | | | | |
Collapse
|