301
|
Abstract
The retromer complex is a vital element of the endosomal protein sorting machinery that is conserved across all eukaryotes. Retromer is most closely associated with the endosome-to-Golgi retrieval pathway and is necessary to maintain an active pool of hydrolase receptors in the trans-Golgi network. Recent progress in studies of retromer have identified new retromer-interacting proteins, including the WASH complex and cargo such as the Wntless/MIG-14 protein, which now extends the role of retromer beyond the endosome-to-Golgi pathway and has revealed that retromer is required for aspects of endosome-to-plasma membrane sorting and regulation of signalling events. The interactions between the retromer complex and other macromolecular protein complexes now show how endosomal protein sorting is coordinated with actin assembly and movement along microtubules, and place retromer squarely at the centre of a complex set of protein machinery that governs endosomal protein sorting. Dysregulation of retromer-mediated endosomal protein sorting leads to various pathologies, including neurodegenerative diseases such as Alzheimer disease and spastic paraplegia and the mechanisms underlying these pathologies are starting to be understood. In this Commentary, I will highlight recent advances in the understanding of retromer-mediated endosomal protein sorting and discuss how retromer contributes to a diverse set of physiological processes.
Collapse
|
302
|
Wang CL, Tang FL, Peng Y, Shen CY, Mei L, Xiong WC. VPS35 regulates developing mouse hippocampal neuronal morphogenesis by promoting retrograde trafficking of BACE1. Biol Open 2012; 1:1248-57. [PMID: 23259059 PMCID: PMC3522886 DOI: 10.1242/bio.20122451] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/17/2012] [Indexed: 11/20/2022] Open
Abstract
VPS35, a major component of the retromer, plays an important role in the selective endosome-to-Golgi retrieval of membrane proteins. Dysfunction of retromer is a risk factor for neurodegenerative disorders, but its function in developing mouse brain remains poorly understood. Here we provide evidence for VPS35 promoting dendritic growth and maturation, and axonal protein transport in developing mouse hippocampal neurons. Embryonic hippocampal CA1 neurons suppressing Vps35 expression by in utero electroporation of its micro RNAs displayed shortened apical dendrites, reduced dendritic spines, and swollen commissural axons in the neonatal stage, those deficits reflecting a defective protein transport/trafficking in developing mouse neurons. Further mechanistic studies showed that Vps35 depletion in neurons resulted in an impaired retrograde trafficking of BACE1 (β1-secretase) and altered BACE1 distribution. Suppression of BACE1 expression in CA1 neurons partially rescued both dendritic and axonal deficits induced by Vps35-deficiency. These results thus demonstrate that BACE1 acts as a critical cargo of retromer in vitro and in vivo, and suggest that VPS35 plays an essential role in regulating apical dendritic maturation and in preventing axonal spheroid formation in developing hippocampal neurons.
Collapse
Affiliation(s)
- Chun-Lei Wang
- Institute of Molecular Medicine and Genetics, and Department of Neurology, Medical College of Georgia, Georgia Health Sciences University , Augusta, GA 30912 , USA
| | | | | | | | | | | |
Collapse
|
303
|
Pocha SM, Wassmer T. A novel role for retromer in the control of epithelial cell polarity. Commun Integr Biol 2012; 4:749-51. [PMID: 22446545 DOI: 10.4161/cib.17658] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The establishment and maintenance of epithelial cell polarity is essential throughout the development and adult life of all multicellular organisms. A key player in maintaining epithelial polarity is Crumbs (Crb), an evolutionarily conserved type-I transmembrane protein initially identified in Drosophila. Correct Crb levels and apical localization are imperative for its function. However, as is the case for many polarized proteins, the mechanisms of its trafficking and strict apical localization are poorly understood. To address these questions, we developed a liposome-based assay to identify trafficking coats and interaction partners of Crb in a native-like environment. Thereby, we demonstrated that Crb is a cargo for Retromer, a trafficking complex required for transport from endosomes to the trans-Golgi-network. The functional importance of this interaction was revealed by studies in Drosophila epithelia, which established Retromer as a novel regulator of epithelial cell polarity and verified the vast potential of this technique.
Collapse
|
304
|
Vardarajan BN, Bruesegem SY, Harbour ME, St. George-Hyslop P, Seaman MN, Farrer LA. Identification of Alzheimer disease-associated variants in genes that regulate retromer function. Neurobiol Aging 2012; 33:2231.e15-2231.e30. [PMID: 22673115 PMCID: PMC3391348 DOI: 10.1016/j.neurobiolaging.2012.04.020] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 03/13/2012] [Accepted: 04/30/2012] [Indexed: 12/18/2022]
Abstract
The proteolytic processing of amyloid precursor protein (APP) to generate the neurotoxic amyloid β (Aβ) peptide is central to the pathogenesis of Alzheimer disease (AD). The endocytic system mediates the processing of APP by controlling its access to secretases that cleave APP. A key mediator of APP localization is SorL1-a membrane protein that has been genetically linked to AD. The retromer complex is a conserved protein complex required for endosome-to-Golgi retrieval of a number of physiologically important membrane proteins including SorL1. Based on the prior suggestion that endocytosis and retromer sorting pathways might be involved, we hypothesized that variants in other genes in this pathway might also modulate AD risk. Genetic association of AD with 451 polymorphisms in 15 genes encoding retromer or retromer-associated proteins was tested in a Caucasian sample of 8309 AD cases and 7366 cognitively normal elders using individual single nucleotide polymorphism (SNP)- and gene-based tests. We obtained significant evidence of association with KIAA1033 (VEGAS p = 0.025), SNX1 (VEGAS p = 0.035), SNX3 (p = 0.0057), and RAB7A (VEGAS p = 0.018). Ten KIAA1033 SNPs were also significantly associated with AD in a group of African Americans (513 AD cases, 504 control subjects). Findings with four significant SNX3 SNPs in the discovery sample were replicated in a community-based sample of Israeli-Arabs (124 AD cases, 142 control subjects). We show that Snx3 and Rab7A proteins interact with the cargo-selective retromer complex through independent mechanisms to regulate the membrane association of retromer and thereby are key mediators of retromer function. These data implicate additional AD risk genes in the retromer pathway and formally demonstrate a direct link between the activity of the retromer complex and the pathogenesis of AD.
Collapse
Affiliation(s)
- Badri N. Vardarajan
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118
| | - Sophia Y. Bruesegem
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Michael E. Harbour
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Peter St. George-Hyslop
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
- Tanz Centre for Research in Neurodegenerative Diseases, Department of Medicine, University of Toronto, 1 King’s College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Matthew N.J. Seaman
- University of Cambridge, Departments of Clinical Biochemistry and Clinical Neurosciences, Cambridge Institute for Medical Research, Addenbrookes Hospital, Cambridge, CB2 0XY, UK
| | - Lindsay A. Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118
- Departments of Neurology, Ophthalmology, Genetics & Genomics, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, 72 East Concord Street, Boston, MA 02118
| |
Collapse
|
305
|
Cuartero Y, Mellado M, Capell A, Álvarez-Dolado M, Verges M. Retromer Regulates Postendocytic Sorting of β-Secretase in Polarized Madin-Darby Canine Kidney Cells. Traffic 2012; 13:1393-410. [DOI: 10.1111/j.1600-0854.2012.01392.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 06/28/2012] [Accepted: 07/03/2012] [Indexed: 01/24/2023]
Affiliation(s)
- Yasmina Cuartero
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Maravillas Mellado
- Laboratory of Epithelial Cell Biology; Centro de Investigación Príncipe Felipe; Valencia; Spain
| | - Anja Capell
- German Center for Neurodegenerative Diseases & Adolf Butenandt Institute - Biochemistry; Ludwig Maximilians University; Munich; Germany
| | - Manuel Álvarez-Dolado
- Department of Cell Therapy and Regenerative Medicine; Andalusian Center for Molecular Biology and Regenerative Medicine; Seville; Spain
| | | |
Collapse
|
306
|
Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin. PLoS One 2012; 7:e40429. [PMID: 22792315 PMCID: PMC3391278 DOI: 10.1371/journal.pone.0040429] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Accepted: 06/06/2012] [Indexed: 01/05/2023] Open
Abstract
Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA2), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA2.
Collapse
|
307
|
Robinson DG, Pimpl P, Scheuring D, Stierhof YD, Sturm S, Viotti C. Trying to make sense of retromer. TRENDS IN PLANT SCIENCE 2012; 17:431-9. [PMID: 22502774 DOI: 10.1016/j.tplants.2012.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/13/2012] [Accepted: 03/15/2012] [Indexed: 05/08/2023]
Abstract
Retromer is a cytosolic protein complex which binds to post-Golgi organelles involved in the trafficking of proteins to the lytic compartment of the cell. In non-plant organisms, retromer mediates the recycling of acid hydrolase receptors from early endosomal (EE) compartments. In plants, retromer components are required for the targeting of vacuolar storage proteins, and for the recycling of endocytosed PIN proteins. However, there are contradictory reports as to the localization of the sorting nexins and the core subunit of retromer. There is also uncertainty as to the identity of the organelles from which vacuolar sorting receptors (VSRs) and endocytosed plasma membrane (PM) proteins are recycled. In this review we try to resolve some of these conflicting observations.
Collapse
Affiliation(s)
- David G Robinson
- Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
308
|
Liu TT, Gomez TS, Sackey BK, Billadeau DD, Burd CG. Rab GTPase regulation of retromer-mediated cargo export during endosome maturation. Mol Biol Cell 2012; 23:2505-15. [PMID: 22593205 PMCID: PMC3386214 DOI: 10.1091/mbc.e11-11-0915] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 04/25/2012] [Accepted: 05/07/2012] [Indexed: 11/11/2022] Open
Abstract
The retromer complex, composed of sorting nexin subunits and a Vps26/Vps29/Vps35 trimer, mediates sorting of retrograde cargo from the endosome to the trans-Golgi network. The retromer trimer subcomplex is an effector of Rab7 (Ypt7 in yeast). Whereas endosome targeting of human retromer has been shown to require Rab7-GTP, targeting of yeast retromer to the endosome is independent of Ypt7-GTP and requires the Vps5 and Vps17 retromer sorting nexin subunits. An evolutionarily conserved amino acid segment within Vps35 is required for Ypt7/Rab7 recognition in vivo by both yeast and human retromer, establishing that Rab recognition is a conserved feature of this subunit. Recognition of Ypt7 by retromer is required for its function in retrograde sorting, and in yeast cells lacking the guanine nucleotide exchange factor for Ypt7, retrograde cargo accumulates in endosomes that are decorated with retromer, revealing an additional role for Rab recognition at the cargo export stage of the retromer functional cycle. In addition, yeast retromer trimer antagonizes Ypt7-regulated organelle tethering and fusion of endosomes/vacuoles via recognition of Ypt7. Thus retromer has dual roles in retrograde cargo export and in controlling the fusion dynamics of the late endovacuolar system.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Timothy S. Gomez
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Bridget K. Sackey
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Daniel D. Billadeau
- Department of Immunology, Division of Oncology Research and Schulze Center for Novel Therapeutics, College of Medicine, Mayo Clinic, Rochester, MN 55905
| | - Christopher G. Burd
- Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
309
|
Gomez TS, Gorman JA, de Narvajas AAM, Koenig AO, Billadeau DD. Trafficking defects in WASH-knockout fibroblasts originate from collapsed endosomal and lysosomal networks. Mol Biol Cell 2012; 23:3215-28. [PMID: 22718907 PMCID: PMC3418315 DOI: 10.1091/mbc.e12-02-0101] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
WASH regulates endosomal sorting, but its roles are ill defined. WASH-knockout MEFs display enlarged yet ordered endosomes without aberrant tubulation and a collapsed lysosomal network. Without WASH, EGFR is basally degraded, whereas TfnR is not, which supports discrete receptor trafficking via WASH-dependent and WASH-independent mechanisms. The Arp2/3-activator Wiskott–Aldrich syndrome protein and Scar homologue (WASH) is suggested to regulate actin-dependent membrane scission during endosomal sorting, but its cellular roles have not been fully elucidated. To investigate WASH function, we generated tamoxifen-inducible WASH-knockout mouse embryonic fibroblasts (WASHout MEFs). Of interest, although EEA1+ endosomes were enlarged, collapsed, and devoid of filamentous-actin and Arp2/3 in WASHout MEFs, we did not observe elongated membrane tubules emanating from these disorganized endomembranes. However, collapsed WASHout endosomes harbored segregated subdomains, containing either retromer cargo recognition complex–associated proteins or EEA1. In addition, we observed global collapse of LAMP1+ lysosomes, with some lysosomal membrane domains associated with endosomes. Both epidermal growth factor receptor (EGFR) and transferrin receptor (TfnR) exhibited changes in steady-state cellular localization. EGFR was directed to the lysosomal compartment and exhibited reduced basal levels in WASHout MEFs. However, although TfnR was accumulated with collapsed endosomes, it recycled normally. Moreover, EGF stimulation led to efficient EGFR degradation within enlarged lysosomal structures. These results are consistent with the idea that discrete receptors differentially traffic via WASH-dependent and WASH-independent mechanisms and demonstrate that WASH-mediated F-actin is requisite for the integrity of both endosomal and lysosomal networks in mammalian cells.
Collapse
Affiliation(s)
- Timothy S Gomez
- Department of Immunology, Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|
310
|
McKenzie JE, Raisley B, Zhou X, Naslavsky N, Taguchi T, Caplan S, Sheff D. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi. Traffic 2012; 13:1140-59. [PMID: 22540229 DOI: 10.1111/j.1600-0854.2012.01374.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 04/25/2012] [Accepted: 04/27/2012] [Indexed: 12/23/2022]
Abstract
Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and endoplasmic reticulum (ER). To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes (EE), recycling endosomes, late endosomes and lysosomes. All cargos pass through EE, but may take different routes to the Golgi. Retromer-dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer-dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-mannose-6-phosphate receptor (CI-M6PR), which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CI-M6PR was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the EE, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer-dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB.
Collapse
Affiliation(s)
- Jenna E McKenzie
- Howard Hughes Medical Research Institute, Department of Molecular and Cellular Biology, University of California, Berkley, Berkley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
311
|
Nakada-Tsukui K, Tsuboi K, Furukawa A, Yamada Y, Nozaki T. A novel class of cysteine protease receptors that mediate lysosomal transport. Cell Microbiol 2012; 14:1299-317. [PMID: 22486861 PMCID: PMC3465781 DOI: 10.1111/j.1462-5822.2012.01800.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transport of lysosomal proteins is, in general, mediated by mannose 6-phosphate receptors via carbohydrate modifications. Here, we describe a novel class of receptors that regulate the transport of lysosomal hydrolases in the enteric protozoan Entamoeba histolytica, which is a good model organism to investigate membrane traffic. A novel 110 kDa cysteine protease (CP) receptor (CP-binding protein family 1, CPBF1) was initially discovered by affinity co-precipitation of the major CP (EhCP-A5), which plays a pivotal role in the pathogenesis of E. histolytica. We demonstrated that CPBF1 regulates EhCP-A5 transport from the endoplasmic reticulum to lysosomes and its binding to EhCP-A5 is independent of carbohydrate modifications. Repression of CPBF1 by gene silencing led to the accumulation of the unprocessed form of EhCP-A5 in the non-acidic compartment and the mis-secretion of EhCP-A5, suggesting that CPBF1 is involved in the trafficking and processing of EhCP-A5. The CPBF represents a new class of transporters that bind to lysosomal hydrolases in a carbohydrate-independent fashion and regulate their trafficking, processing and activation and, thus, regulate the physiology and pathogenesis of E. histolytica.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku, Tokyo 162-8640, Japan
| | | | | | | | | |
Collapse
|
312
|
De Marcos Lousa C, Gershlick DC, Denecke J. Mechanisms and concepts paving the way towards a complete transport cycle of plant vacuolar sorting receptors. THE PLANT CELL 2012; 24:1714-32. [PMID: 22570446 PMCID: PMC3442565 DOI: 10.1105/tpc.112.095679] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Delivery of proteins to the lytic vacuole in plants is a complex cascade of selective interactions that specifically excludes residents of the endoplasmic reticulum and secreted proteins. Vacuolar transport must be highly efficient to avoid mistargeting of hydrolytic enzymes to locations where they could be harmful. While plant vacuolar sorting signals have been well described for two decades, it is only during the last 5 years that a critical mass of data was gathered that begins to reveal how vacuolar sorting receptors (VSRs) may complete a full transport cycle. Yet, the field is far from reaching a consensus regarding the organelles that could be involved in vacuolar sorting, their potential biogenesis, and the ultimate recycling of membranes and protein machinery that maintain this pathway. This review will highlight the important landmarks in our understanding of VSR function and compare recent transport models that have been proposed so that an emerging picture of plant vacuolar sorting mechanisms can be drawn.
Collapse
|
313
|
Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol 2012; 13:323-8. [PMID: 22498832 DOI: 10.1038/nrm3332] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Endocytic recycling returns proteins to the plasma membrane in many physiological contexts. Studies of these events have helped to elucidate fundamental mechanisms that underlie recycling. Recycling was for some time considered to be the exception to a general mechanism of active cargo sorting in multiple intracellular pathways. In recent years, studies have begun to reconcile this seeming disparity and also suggest explanations for why early recycling studies did not detect active sorting. Further articulation of this emerging trend has far-reaching implications for a deeper understanding of many physiological and pathological events that require recycling.
Collapse
Affiliation(s)
- Victor W Hsu
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, Massachsuetts 02115, USA.
| | | | | |
Collapse
|
314
|
Finnigan GC, Cronan GE, Park HJ, Srinivasan S, Quiocho FA, Stevens TH. Sorting of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase): identification of a necessary and sufficient Golgi/endosomal retention signal in Stv1p. J Biol Chem 2012; 287:19487-500. [PMID: 22496448 DOI: 10.1074/jbc.m112.343814] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit a of the yeast vacuolar-type, proton-translocating ATPase enzyme complex (V-ATPase) is responsible for both proton translocation and subcellular localization of this highly conserved molecular machine. Inclusion of the Vph1p isoform causes the V-ATPase complex to traffic to the vacuolar membrane, whereas incorporation of Stv1p causes continued cycling between the trans-Golgi and endosome. We previously demonstrated that this targeting information is contained within the cytosolic, N-terminal portion of V-ATPase subunit a (Stv1p). To identify residues responsible for sorting of the Golgi isoform of the V-ATPase, a random mutagenesis was performed on the N terminus of Stv1p. Subsequent characterization of mutant alleles led to the identification of a short peptide sequence, W(83)KY, that is necessary for proper Stv1p localization. Based on three-dimensional homology modeling to the Meiothermus ruber subunit I, we propose a structural model of the intact Stv1p-containing V-ATPase demonstrating the accessibility of the W(83)KY sequence to retrograde sorting machinery. Finally, we characterized the sorting signal within the context of a reconstructed Stv1p ancestor (Anc.Stv1). This evolutionary intermediate includes an endogenous W(83)KY sorting motif and is sufficient to compete with sorting of the native yeast Stv1p V-ATPase isoform. These data define a novel sorting signal that is both necessary and sufficient for trafficking of the V-ATPase within the Golgi/endosomal network.
Collapse
Affiliation(s)
- Gregory C Finnigan
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403, USA
| | | | | | | | | | | |
Collapse
|
315
|
Steinberg F, Heesom KJ, Bass MD, Cullen PJ. SNX17 protects integrins from degradation by sorting between lysosomal and recycling pathways. ACTA ACUST UNITED AC 2012; 197:219-30. [PMID: 22492727 PMCID: PMC3328392 DOI: 10.1083/jcb.201111121] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Retrieval of β integrins from the lysosomal degradation pathway mediated by sorting nexin-17 is important for integrin recycling and regulation of cell migration. The FERM-like domain–containing sorting nexins of the SNX17/SNX27/SNX31 family have been proposed to mediate retrieval of transmembrane proteins from the lysosomal pathway. In this paper, we describe a stable isotope labeling with amino acids in culture–based quantitative proteomic approach that allows an unbiased, global identification of transmembrane cargoes that are rescued from lysosomal degradation by SNX17. This screen revealed that several integrins required SNX17 for their stability, as depletion of SNX17 led to a loss of β1 and β5 integrins and associated a subunits from HeLa cells as a result of increased lysosomal degradation. SNX17 bound to the membrane distal NPXY motif in β integrin cytoplasmic tails, thereby preventing lysosomal degradation of β integrins and their associated a subunits. Furthermore, SNX17-dependent retrieval of integrins did not depend on the retromer complex. Consistent with an effect on integrin recycling, depletion of SNX17 also caused alterations in cell migration. Our data provide mechanistic insight into the retrieval of internalized integrins from the lysosomal degradation pathway, a prerequisite for subsequent recycling of these matrix receptors.
Collapse
Affiliation(s)
- Florian Steinberg
- The Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, England, UK
| | | | | | | |
Collapse
|
316
|
Bhalla A, Vetanovetz CP, Morel E, Chamoun Z, Di Paolo G, Small SA. The location and trafficking routes of the neuronal retromer and its role in amyloid precursor protein transport. Neurobiol Dis 2012; 47:126-34. [PMID: 22516235 DOI: 10.1016/j.nbd.2012.03.030] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/09/2012] [Accepted: 03/24/2012] [Indexed: 01/16/2023] Open
Abstract
The retromer complex plays an important role in intracellular transport, is highly expressed in the hippocampus, and has been implicated in the trafficking of the amyloid precursor protein (APP). Nevertheless, the trafficking routes of the neuronal retromer and the role it plays in APP transport in neuronal processes remain unknown. Here we use hippocampal neuronal cultures to address these issues. Using fluorescence microscopy, we find that Vps35, the core element of the retromer complex, is in dendrites and axons, is enriched in endosomes and trans-Golgi network, and is found in APP-positive vesicles. Next, to identify the role the neuronal retromer plays in cargo transport, we infected hippocampal neurons with a lentivirus expressing shRNA to silence Vps35. By live fluorescence imaging, Vps35 deficiency was found to reduce the frequency, but not the kinetics, of long-range APP transport within neuronal processes. Supporting the interpretation that retromer promotes long-range transport, Vps35 deficiency led to increased APP in the early endosomes, in processes but not the soma. Finally, Vps35 deficiency was associated with increased levels of Aβ, a cleaved product of APP, increased colocalization of APP with its cleaving enzyme BACE1 in processes, and caused an enlargement of early endosomes. Taken together, our studies clarify the function of the neuronal retromer, and suggest specific mechanisms for how retromer dysfunction observed in Alzheimer's disease affects APP transport and processing.
Collapse
Affiliation(s)
- Akhil Bhalla
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York NY10032, USA
| | | | | | | | | | | |
Collapse
|
317
|
Sheerin UM, Charlesworth G, Bras J, Guerreiro R, Bhatia K, Foltynie T, Limousin P, Silveira-Moriyama L, Lees A, Wood N. Screening for VPS35 mutations in Parkinson's disease. Neurobiol Aging 2012; 33:838.e1-5. [PMID: 22154191 PMCID: PMC3629567 DOI: 10.1016/j.neurobiolaging.2011.10.032] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/24/2011] [Accepted: 10/26/2011] [Indexed: 11/27/2022]
Abstract
Recently 2 groups have independently identified a mutation in the gene 'vacuolar protein sorting 35 homolog' (VPS35 c.1858G>A; p.Asp620Asn) as a possible cause of autosomal dominant Parkinson's disease (PD). In order to assess the frequency of the reported mutation and to search for other possible disease-causing variants in this gene, we sequenced all 17 exons of VPS35 in 96 familial PD cases, and exon 15 (in which the reported mutation is found) in an additional 64 familial PD cases, 175 young-onset PD cases, and 262 sporadic, neuropathologically confirmed PD cases. We identified 1 individual with the p.Asp620Asn mutation and an autosomal dominant family history of PD. Subsequent follow-up of the family confirmed an affected sibling and cousin who also carried the same mutation. No other potentially disease-causing mutations were identified. We conclude that the VPS35 c.1858G>A mutation is an uncommon cause of familial Parkinson's disease in our population.
Collapse
Affiliation(s)
- Una-Marie Sheerin
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Gavin Charlesworth
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Kailash Bhatia
- Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Thomas Foltynie
- Department of Motor Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Patricia Limousin
- Sobell Department, Unit of Functional Neurosurgery, UCL Institute of Neurology, Queen Square, London, UK
| | - Laura Silveira-Moriyama
- Reta Lila Weston Trust for Medical Research, UCL Institute of Neurology, Queen Square, London, UK
| | - Andrew Lees
- Queen Square Brain Bank for Neurological Disorders, UCL Institute of Neurology, Queen Square, London, UK
| | - Nicholas Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
- UCL Genetics Institute, University College London, London, UK
| |
Collapse
|
318
|
Recruitment of the endosomal WASH complex is mediated by the extended 'tail' of Fam21 binding to the retromer protein Vps35. Biochem J 2012; 442:209-20. [PMID: 22070227 DOI: 10.1042/bj20111761] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The retromer complex is a conserved endosomal protein sorting complex that sorts membrane proteins into nascent endosomal tubules. The recognition of membrane proteins is mediated by the cargo-selective retromer complex, a stable trimer of the Vps35 (vacuolar protein sorting 35), Vps29 and Vps26 proteins. We have recently reported that the cargo-selective retromer complex associates with the WASH (Wiskott-Aldrich syndrome homologue) complex, a multimeric protein complex that regulates tubule dynamics at endosomes. In the present study, we show that the retromer-WASH complex interaction occurs through the long unstructured 'tail' domain of the WASH complex-Fam21 protein binding to Vps35, an interaction that is necessary and sufficient to target the WASH complex to endosomes. The Fam21-tail also binds to FKBP15 (FK506-binding protein 15), a protein associated with ulcerative colitis, to mediate the membrane association of FKBP15. Elevated Fam21-tail expression inhibits the association of the WASH complex with retromer, resulting in increased cytoplasmic WASH complex. Additionally, overexpression of the Fam21-tail results in cell-spreading defects, implicating the activity of the WASH complex in regulating the mobilization of membrane into the endosome-to-cell surface pathway.
Collapse
|
319
|
The role of ceroid lipofuscinosis neuronal protein 5 (CLN5) in endosomal sorting. Mol Cell Biol 2012; 32:1855-66. [PMID: 22431521 DOI: 10.1128/mcb.06726-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mutations in the gene encoding CLN5 are the cause of Finnish variant late infantile Neuronal Ceroid Lipofuscinosis (NCL), and the gene encoding CLN5 is 1 of 10 genes (encoding CLN1 to CLN9 and cathepsin D) whose germ line mutations result in a group of recessive disorders of childhood. Although CLN5 localizes to the lysosomal compartment, its function remains unknown. We have uncovered an interaction between CLN5 and sortilin, the lysosomal sorting receptor. However, CLN5, unlike prosaposin, does not require sortilin to localize to the lysosomal compartment. We demonstrate that in CLN5-depleted HeLa cells, the lysosomal sorting receptors sortilin and cation-independent mannose 6-phosphate receptor (CI-MPR) are degraded in lysosomes due to a defect in recruitment of the retromer (an endosome-to-Golgi compartment trafficking component). In addition, we show that the retromer recruitment machinery is also affected by CLN5 depletion, as we found less loaded Rab7, which is required to recruit retromer. Taken together, our results support a role for CLN5 in controlling the itinerary of the lysosomal sorting receptors by regulating retromer recruitment at the endosome.
Collapse
|
320
|
Retromer binds the FANSHY sorting motif in SorLA to regulate amyloid precursor protein sorting and processing. J Neurosci 2012; 32:1467-80. [PMID: 22279231 DOI: 10.1523/jneurosci.2272-11.2012] [Citation(s) in RCA: 212] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
sorLA is a sorting receptor for amyloid precursor protein (APP) genetically linked to Alzheimer's disease (AD). Retromer, an adaptor complex in the endosome-to-Golgi retrieval pathway, has been implicated in APP transport because retromer deficiency leads to aberrant APP sorting and processing and levels of retromer proteins are altered in AD. Here we report that sorLA and retromer functionally interact in neurons to control trafficking and amyloidogenic processing of APP. We have identified a sequence (FANSHY) in the cytoplasmic domain of sorLA that is recognized by the VPS26 subunit of the retromer complex. Accordingly, we characterized the interaction between the retromer complex and sorLA and determined the role of retromer on sorLA-dependent sorting and processing of APP. Mutations in the VPS26 binding site resulted in receptor redistribution to the endosomal network, similar to the situation seen in cells with VPS26 knockdown. The sorLA mutant retained APP-binding activity but, as opposed to the wild-type receptor, misdirected APP into a distinct non-Golgi compartment, resulting in increased amyloid processing. In conclusion, our data provide a molecular link between reduced retromer expression and increased amyloidogenesis as seen in patients with sporadic AD.
Collapse
|
321
|
Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 2012; 130:82-94. [PMID: 22425600 DOI: 10.1016/j.mod.2012.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/10/2012] [Indexed: 11/23/2022]
Abstract
Cell-to-cell communication is absolutely essential for multicellular organisms. Both animals and plants use chemicals called hormones for intercellular signaling. However, multicellularity of plants and animals has evolved independently, which led to establishment of distinct strategies in order to cope with variations in an ever-changing environment. The phytohormone auxin is crucial to plant development and patterning. PIN auxin efflux carrier-driven polar auxin transport regulates plant development as it controls asymmetric auxin distribution (auxin gradients), which in turn modulates a wide range of developmental processes. Internal and external cues trigger a number of posttranslational PIN auxin carrier modifications that were demonstrated to decisively influence variations in adaptive growth responses. In this review, we highlight recent advances in the analysis of posttranslational modification of PIN auxin efflux carriers, such as phosphorylation and ubiquitylation, and discuss their eminent role in directional vesicle trafficking, PIN protein de-/stabilization and auxin transport activity. We conclude with updated models, in which we attempt to integrate the mechanistic relevance of posttranslational modifications of PIN auxin carriers for the dynamic nature of plant development.
Collapse
|
322
|
Flannagan RS, Jaumouillé V, Grinstein S. The Cell Biology of Phagocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 7:61-98. [PMID: 21910624 DOI: 10.1146/annurev-pathol-011811-132445] [Citation(s) in RCA: 685] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
323
|
Rab GTPase-activating proteins in autophagy: regulation of endocytic and autophagy pathways by direct binding to human ATG8 modifiers. Mol Cell Biol 2012; 32:1733-44. [PMID: 22354992 DOI: 10.1128/mcb.06717-11] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autophagy is an evolutionarily conserved degradation pathway characterized by dynamic rearrangement of membranes that sequester cytoplasm, protein aggregates, organelles, and pathogens for delivery to the vacuole and lysosome, respectively. The ability of autophagosomal membranes to act selectively toward specific cargo is dependent on the small ubiquitin-like modifier ATG8/LC3 and the LC3-interacting region (LIR) present in autophagy receptors. Here, we describe a comprehensive protein-protein interaction analysis of TBC (Tre2, Bub2, and Cdc16) domain-containing Rab GTPase-activating proteins (GAPs) as potential autophagy adaptors. We identified 14 TBC domain-containing Rab GAPs that bind directly to ATG8 modifiers and that colocalize with LC3-positive autophagy membranes in cells. Intriguingly, one of our screening hits, TBC1D5, contains two LIR motifs. The N-terminal LIR was critical for interaction with the retromer complex and transport of cargo. Direct binding of the retromer component VPS29 to TBC1D5 could be titrated out by LC3, indicating a molecular switch between endosomes and autophagy. Moreover, TBC1D5 could bridge the endosome and autophagosome via its C-terminal LIR motif. During starvation-induced autophagy, TBC1D5 was relocalized from endosomal localization to the LC3-positive autophagosomes. We propose that LC3-interacting Rab GAPs are implicated in the reprogramming of the endocytic trafficking events under starvation-induced autophagy.
Collapse
|
324
|
Zhang J, Reiling C, Reinecke JB, Prislan I, Marky LA, Sorgen PL, Naslavsky N, Caplan S. Rabankyrin-5 interacts with EHD1 and Vps26 to regulate endocytic trafficking and retromer function. Traffic 2012; 13:745-57. [PMID: 22284051 DOI: 10.1111/j.1600-0854.2012.01334.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/24/2012] [Accepted: 01/27/2012] [Indexed: 12/13/2022]
Abstract
Rabankyrin-5 (Rank-5) has been implicated as an effector of the small GTPase Rab5 and plays an important role in macropinocytosis. We have now identified Rank-5 as an interaction partner for the recycling regulatory protein, Eps15 homology domain 1 (EHD1). We have demonstrated this interaction by glutathione S-transferase-pulldown, yeast two-hybrid assay, isothermal calorimetry and co-immunoprecipitation, and found that the binding occurs between the EH domain of EHD1 and the NPFED motif of Rank-5. Similar to EHD1, we found that Rank-5 colocalizes and interacts with components of the retromer complex such as vacuolar protein sorting 26 (Vps26), suggesting a role for Rank-5 in retromer-based transport. Indeed, depletion of Rank-5 causes mislocalization of Vps26 and affects both the retrieval of mannose 6-phosphate receptor transport to the Golgi from endosomes and biosynthetic transport. Moreover, Rank-5 is required for normal retromer distribution, as overexpression of a wild-type Rank-5-small interfering RNA-resistant construct rescues retromer mislocalization. Finally, we show that depletion of either Rank-5 or EHD1 impairs secretion of vesicular stomatitis virus glycoprotein. Overall, our data identify a new interaction between Rank-5 and EHD1, and novel endocytic regulatory roles that include retromer-based transport and secretion.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Oikonomou G, Perens EA, Lu Y, Shaham S. Some, but not all, retromer components promote morphogenesis of C. elegans sensory compartments. Dev Biol 2012; 362:42-9. [PMID: 22138055 PMCID: PMC3254776 DOI: 10.1016/j.ydbio.2011.11.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/31/2011] [Accepted: 11/12/2011] [Indexed: 12/26/2022]
Abstract
The endings of sensory receptor cells often lie within specialized compartments formed by glial cells. The main sensory organ of Caenorhabditis elegans, the amphid, provides a powerful setting for studying glial compartment morphogenesis. Our previous studies showed that amphid compartment size is controlled by opposing activities of the Nemo-like kinase LIT-1, which promotes compartment expansion, and the Patched-related protein DAF-6, which restricts compartment growth. From a genetic screen for mutations able to suppress the bloated sensory compartments of daf-6 mutants, we identified an allele of the sorting nexin gene snx-1. SNX-1 protein is a component of the retromer, a protein complex that facilitates recycling of transmembrane proteins from the endosome to the Golgi network. We find that snx-1 functions cell autonomously within glia to promote sensory compartment growth, and that SNX-1 protein is enriched near the surface of the sensory compartment. snx-1 interacts genetically with lit-1 and another regulator of compartment size, the Dispatched-related gene che-14. Mutations in snx-3 and vps-29, also retromer genes, can suppress daf-6 defects. Surprisingly, however, remaining retromer components seem not to be involved. Our results suggest that a novel assembly of retromer components is important for determining sensory compartment dimensions.
Collapse
Affiliation(s)
- Grigorios Oikonomou
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Elliot A. Perens
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065 USA
| |
Collapse
|
326
|
Zhang D, Isack NR, Glodowski DR, Liu J, Chen CCH, Xu XZS, Grant BD, Rongo C. RAB-6.2 and the retromer regulate glutamate receptor recycling through a retrograde pathway. ACTA ACUST UNITED AC 2012; 196:85-101. [PMID: 22213799 PMCID: PMC3255976 DOI: 10.1083/jcb.201104141] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
RAB-6.2, its effector LIN-10, and the retromer complex maintain synaptic strength by recycling postsynaptic glutamate receptors along the retrograde transport pathway. Regulated membrane trafficking of AMPA-type glutamate receptors (AMPARs) is a key mechanism underlying synaptic plasticity, yet the pathways used by AMPARs are not well understood. In this paper, we show that the AMPAR subunit GLR-1 in Caenorhabditis elegans utilizes the retrograde transport pathway to regulate AMPAR synaptic abundance. Mutants for rab-6.2, the retromer genes vps-35 and snx-1, and rme-8 failed to recycle GLR-1 receptors, resulting in GLR-1 turnover and behavioral defects indicative of diminished GLR-1 function. In contrast, expression of constitutively active RAB-6.2 drove the retrograde transport of GLR-1 from dendrites back to cell body Golgi. We also find that activated RAB-6.2 bound to and colocalized with the PDZ/phosphotyrosine binding domain protein LIN-10. RAB-6.2 recruited LIN-10. Moreover, the regulation of GLR-1 transport by RAB-6.2 required LIN-10 activity. Our results demonstrate a novel role for RAB-6.2, its effector LIN-10, and the retromer complex in maintaining synaptic strength by recycling AMPARs along the retrograde transport pathway.
Collapse
Affiliation(s)
- Donglei Zhang
- The Waksman Institute, Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
327
|
Kametaka S, Waguri S. Visualization of TGN-Endosome Trafficking in Mammalian and Drosophila Cells. Methods Enzymol 2012; 504:255-71. [DOI: 10.1016/b978-0-12-391857-4.00013-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
328
|
Abstract
The endo-lysosomal system is an interconnected tubulo-vesicular network that acts as a sorting station to process and distribute internalised cargo. This network accepts cargoes from both the plasma membrane and the biosynthetic pathway, and directs these cargos either towards the lysosome for degradation, the peri-nuclear recycling endosome for return to the cell surface, or to the trans-Golgi network. These intracellular membranes are variously enriched in different phosphoinositides that help to shape compartmental identity. These lipids act to localise a number of phosphoinositide-binding proteins that function as sorting machineries to regulate endosomal cargo sorting. Herein we discuss regulation of these machineries by phosphoinositides and explore how phosphoinositide-switching contributes toward sorting decisions made at this platform.
Collapse
Affiliation(s)
- Peter J Cullen
- Henry Wellcome Integrated Signaling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, BS8 1TD, Bristol, United Kingdom,
| | | |
Collapse
|
329
|
Touz MC, Rivero MR, Miras SL, Bonifacino JS. Lysosomal protein trafficking in Giardia lamblia: common and distinct features. Front Biosci (Elite Ed) 2012; 4:1898-909. [PMID: 22202006 DOI: 10.2741/511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Giardia is a flagellated protozoan parasite that has to face different microenvironments during its life cycle in order to survive. All cells exchange materials with the extracellular medium through the reciprocal processes of endocytosis and secretion. Unlike more evolved cells, Giardia lacks a defined endosomal/lysosomal system, but instead possesses peripheral vacuoles that play roles in endocytosis, degradation, recycling, and secretion of proteins during growth and differentiation of the parasite. This review focuses on recent reports defining the role of different molecules involved in protein trafficking to the peripheral vacuoles, and discusses possible mechanisms of receptor recycling. Since Giardia is an early-branching protist, the study of this parasite may lead to a clearer understanding of the minimal machinery required for protein transport in eukaryotic cells.
Collapse
Affiliation(s)
- Maria C Touz
- Instituto de Investigacion Medica Mercedes y Martin Ferreyra, INIMEC - CONICET, Friuli 2434, Cordoba, Argentina.
| | | | | | | |
Collapse
|
330
|
An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking. Cell Rep 2012; 1:29-35. [DOI: 10.1016/j.celrep.2011.10.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 09/27/2011] [Accepted: 10/25/2011] [Indexed: 11/22/2022] Open
|
331
|
Cullen PJ, Korswagen HC. Sorting nexins provide diversity for retromer-dependent trafficking events. Nat Cell Biol 2011; 14:29-37. [PMID: 22193161 PMCID: PMC3613977 DOI: 10.1038/ncb2374] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sorting nexins are a large family of evolutionarily conserved phosphoinositide-binding proteins that have fundamental roles in orchestrating cargo sorting through the membranous maze that is the endosomal network. One ancient group of complexes that contain sorting nexins is the retromer. Here we discuss how retromer complexes regulate endosomal sorting, and describe how this is generating exciting new insight into the central role played by endosomal sorting in development and homeostasis of normal tissues.
Collapse
Affiliation(s)
- Peter J. Cullen
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, U.K
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
332
|
Zhang P, Wu Y, Belenkaya TY, Lin X. SNX3 controls Wingless/Wnt secretion through regulating retromer-dependent recycling of Wntless. Cell Res 2011; 21:1677-90. [PMID: 22041890 PMCID: PMC3357989 DOI: 10.1038/cr.2011.167] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 09/19/2011] [Accepted: 09/26/2011] [Indexed: 11/25/2022] Open
Abstract
Drosophila Wingless (Wg) acts as a morphogen during development. Wg secretion is controlled by a seven-pass transmembrane cargo Wntless (Wls). We have recently identified retromer as a key regulator involved in Wls trafficking. As sorting nexin (SNX) molecules are essential components of the retromer complex, we hypothesized that specific SNX(s) is required for retromer-mediated Wnt secretion. Here, we generated Drosophila mutants for all of the eight snx members, and identified Drosophila SNX3 (DSNX3) as an essential molecule required for Wg secretion. We show that Wg secretion and its signaling activity are defective in Dsnx3 mutant clones in wing discs. Wg levels in the culture medium of Dsnx3-depleted S2 cells are also markedly reduced. Importantly, Wls levels are strikingly reduced in Dsnx3 mutant cells, and overexpression of Wls can rescue the Wg secretion defect observed in Dsnx3 mutant cells. Moreover, DSNX3 can interact with the retromer component Vps35, and co-localize with Vps35 in early endosomes. These data indicate that DSNX3 regulates Wg secretion via retromer-dependent Wls recycling. In contrast, we found that Wg secretion is not defective in cells mutant for Drosophila snx1 and snx6, two components of the classical retromer complex. Ectopic expression of DSNX1 or DSNX6 fails to rescue the Wg secretion defect in Dsnx3 mutant wing discs and in Dsnx3 dsRNA-treated S2 cells. These data demonstrate the specificity of the DSNX3-retromer complex in Wls recycling. Together, our findings suggest that DSNX3 acts as a cargo-specific component of retromer, which is required for endocytic recycling of Wls and Wg/Wnt secretion.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tatyana Y Belenkaya
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, and Key Laboratory of Stem Cell and Developmental Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|
333
|
Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, Shen C, Jung JU, Xiong F, Lee DH, Zhang QG, Brann D, Kim TW, Yan R, Mei L, Xiong WC. VPS35 haploinsufficiency increases Alzheimer's disease neuropathology. ACTA ACUST UNITED AC 2011; 195:765-79. [PMID: 22105352 PMCID: PMC3257571 DOI: 10.1083/jcb.201105109] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The retromer complex component VPS35 prevents activation of the BACE1 and Aβ production and thus plays an essential role in limiting Alzheimer’s disease neuropathology. VPS35, a major component of the retromer complex, is important for endosome-to-Golgi retrieval of membrane proteins. Although implicated in Alzheimer’s disease (AD), how VPS35 regulates AD-associated pathology is unknown. In this paper, we show that hemizygous deletion of Vps35 in the Tg2576 mouse model of AD led to earlier-onset AD-like phenotypes, including cognitive memory deficits, defective long-term potentiation, and impaired postsynaptic glutamatergic neurotransmission in young adult age. These deficits correlated well with an increase of β-amyloid peptide (Aβ) level in the mutant hippocampus. We further demonstrate that VPS35 is predominantly expressed in pyramidal neurons of young adult hippocampus and interacts with BACE1, a protease responsible for Aβ production. Loss of VPS35 function in the mouse hippocampus increased BACE1 activity. Suppression of VPS35 expression in culture decreased BACE1 trans-Golgi localization but enriched it in endosomes. These results demonstrate an essential role for VPS35 in suppression of AD neuropathology and in inhibition of BACE1 activation and Aβ production by promoting BACE1 endosome-to-Golgi retrieval.
Collapse
Affiliation(s)
- Lei Wen
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
334
|
Lumb JH, Leung KF, DuBois KN, Field MC. Rab28 function in trypanosomes: interactions with retromer and ESCRT pathways. J Cell Sci 2011; 124:3771-83. [PMID: 22100919 PMCID: PMC3225266 DOI: 10.1242/jcs.079178] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2011] [Indexed: 01/31/2023] Open
Abstract
Early endosomal cargo is typically targeted to either a degradative or recycling pathway. Despite established functions for the retromer and ESCRT complexes at late endosomes/multivesicular bodies, the mechanisms integrating and coordinating these functions remain largely unknown. Rab family GTPases are key membrane trafficking organizers and could contribute. Here, in the unicellular organism Trypanosoma brucei, we demonstrate that Rab28 locates to the endosomal pathway and partially colocalizes with Vps23, an ESCRT I component. Rab28 is required for turnover of endocytosed proteins and for lysosomal delivery of protein cargo. Using RNA interference we find that in Rab28-depleted cells, protein levels of ESCRT I (Vps23/28) and retromer (Vps26) are also decreased, suggesting that Rab28 is an important regulator of these factors. We suggest that Rab28 coordinates the activity of retromer-dependent trafficking and ESCRT-mediated degradative pathways.
Collapse
Affiliation(s)
| | - Ka Fai Leung
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Kelly N. DuBois
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Mark C. Field
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
335
|
van Weering JRT, Verkade P, Cullen PJ. SNX-BAR-mediated endosome tubulation is co-ordinated with endosome maturation. Traffic 2011; 13:94-107. [PMID: 21973056 DOI: 10.1111/j.1600-0854.2011.01297.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endosomal sorting is essential for cell homeostasis. Proteins targeted for degradation are retained in the maturing endosome vacuole while others are recycled to the cell surface or sorted to the biosynthetic pathway via tubular transport carriers. Sorting nexin (SNX) proteins containing a BAR (for Bin-Amphiphysin-Rvs) domain are key regulators of phosphoinositide-mediated, tubular-based endosomal sorting, but how such sorting is co-ordinated with endosomal maturation is not known. Here, using well-defined Rab GTPases as endosomal compartment markers, we have analyzed the localization of SNX1 [endosome-to-trans-Golgi network (TGN) transport as part of the SNX-BAR-retromer complex], SNX4 (cargo-recycling from endosomes to the plasma membrane) and SNX8 (endosomes-to-TGN trafficking in a retromer-independent manner). We show that these SNX-BARs are primarily localized to early endosomes, but display the highest frequency of tubule formation at the moment of early-to-late endosome transition: the Rab5-to-Rab7 switch. Perturbing this switch shifts SNX-BAR tubulation to early endosomes, resulting in SNX1-decorated tubules that lack retromer components VPS26 and VPS35, suggesting that both early and late endosomal characteristics of the endosome are important for SNX-BAR-retromer-tubule formation. We also establish that SNX4, but not SNX1 and SNX8, is associated with the Rab11-recycling endosomes and that a high frequency of SNX4-mediated tubule formation is observed as endosomes undergo Rab4-to-Rab11 transition. Our study therefore provides evidence for fine-tuning between the processes of endosomal maturation and the formation of endosomal tubules. As tubulation is required for SNX1-, SNX4- and SNX8-mediated sorting, these data reveal a previously unrecognized co-ordination between maturation and tubular-based sorting.
Collapse
Affiliation(s)
- Jan R T van Weering
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
336
|
Bugarcic A, Zhe Y, Kerr MC, Griffin J, Collins BM, Teasdale RD. Vps26A and Vps26B Subunits Define Distinct Retromer Complexes. Traffic 2011; 12:1759-73. [DOI: 10.1111/j.1600-0854.2011.01284.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
337
|
Identification and characterization of full-length vps29 gene in five mammalian species. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
338
|
Kingston D, Chang H, Ensser A, Lee HR, Lee J, Lee SH, Jung JU, Cho NH. Inhibition of retromer activity by herpesvirus saimiri tip leads to CD4 downregulation and efficient T cell transformation. J Virol 2011; 85:10627-38. [PMID: 21849449 PMCID: PMC3187508 DOI: 10.1128/jvi.00757-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 08/08/2011] [Indexed: 11/20/2022] Open
Abstract
The mammalian retromer is an evolutionally conserved protein complex composed of a vacuolar protein sorting trimer (Vps 26/29/35) that participates in cargo recognition and a sorting nexin (SNX) dimer that binds to endosomal membranes. The retromer plays an important role in efficient retrograde transport for endosome-to-Golgi retrieval of the cation-independent mannose-6-phosphate receptor (CI-MPR), a receptor for lysosomal hydrolases, and other endosomal proteins. This ultimately contributes to the control of cell growth, cell adhesion, and cell migration. The herpesvirus saimiri (HVS) tyrosine kinase-interacting protein (Tip), required for the immortalization of primary T lymphocytes, targets cellular signaling molecules, including Lck tyrosine kinases and the p80 endosomal trafficking protein. Despite the pronounced effects of HVS Tip on T cell signal transduction, the details of its activity on T cell immortalization remain elusive. Here, we report that the amino-terminal conserved, glutamate-rich sequence of Tip specifically interacts with the retromer subunit Vps35 and that this interaction not only causes the redistribution of Vps35 from the early endosome to the lysosome but also drastically inhibits retromer activity, as measured by decreased levels of CI-MPR and lower activities of cellular lysosomal hydrolases. Physiologically, the inhibition of intracellular retromer activity by Tip is ultimately linked to the downregulation of CD4 surface expression and to the efficient in vitro immortalization of primary human T cells to interleukin-2 (IL-2)-independent permanent growth. Therefore, HVS Tip uniquely targets the retromer complex to impair the intracellular trafficking functions of infected cells, ultimately contributing to efficient T cell transformation.
Collapse
Affiliation(s)
- Dior Kingston
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Institute for Research in Biomedicine, Via Vincenzo Vela 6, 6500 Bellinzona, Switzerland
| | - Heesoon Chang
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Armin Ensser
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany
| | - Hye-Ra Lee
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Jongsoo Lee
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Sun-Hwa Lee
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Jae Ung Jung
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Molecular Microbiology & Immunology, University of Southern California, School of Medicine, 2011 Zonal Avenue, HMR401, Los Angeles, California 90033
| | - Nam-Hyuk Cho
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102
- Department of Microbiology and Immunology, Seoul National University College of Medicine, and Institute of Endemic Disease, Seoul National University Medical Research Center and Bundang Hospital, Jongno-Gu, Seoul 110-799, Republic of Korea
| |
Collapse
|
339
|
Koumandou VL, Klute MJ, Herman EK, Nunez-Miguel R, Dacks JB, Field MC. Evolutionary reconstruction of the retromer complex and its function in Trypanosoma brucei. J Cell Sci 2011; 124:1496-509. [PMID: 21502137 DOI: 10.1242/jcs.081596] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Intracellular trafficking and protein sorting are mediated by various protein complexes, with the retromer complex being primarily involved in retrograde traffic from the endosome or lysosome to the Golgi complex. Here, comparative genomics, cell biology and phylogenetics were used to probe the early evolution of retromer and its function. Retromer subunits Vps26, Vps29 and Vps35 are near universal, and, by inference, the complex was an ancient feature of eukaryotic cells. Surprisingly, we found DSCR3, a Vps26 paralogue in humans associated with Down's syndrome, in at least four eukaryotic supergroups, implying a more ancient origin than previously suspected. By contrast, retromer cargo proteins showed considerable interlineage variability, with lineage-specific and broadly conserved examples found. Vps10 trafficking probably represents an ancestral role for the complex. Vps5, the BAR-domain-containing membrane-deformation subunit, was found in diverse eukaryotes, including in the divergent eukaryote Trypanosoma brucei, where it is the first example of a BAR-domain protein. To determine functional conservation, an initial characterisation of retromer was performed in T. brucei; the endosomal localisation and its role in endosomal targeting are conserved. Therefore retromer is identified as a further feature of the sophisticated intracellular trafficking machinery of the last eukaryotic common ancestor, with BAR domains representing a possible third independent mechanism of membrane-deformation arising in early eukaryotes.
Collapse
Affiliation(s)
- V Lila Koumandou
- Department of Pathology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
340
|
Zhou B, Wu Y, Lin X. Retromer regulates apical-basal polarity through recycling Crumbs. Dev Biol 2011; 360:87-95. [PMID: 21958744 DOI: 10.1016/j.ydbio.2011.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 01/15/2023]
Abstract
Epithelial cells are characterized by an "apical-basal" polarization. The transmembrane protein Crumbs (Crb) is an essential apical determinant which confers apical membrane identity. Previous studies indicated that Crb did not constantly reside on the apical membrane, but was actively recycled. However, the cellular mechanism(s) underlying this process was unclear. Here we showed that in Drosophila, retromer, which was a retrograde complex recycling certain transmembrane proteins from endosomes to trans-Golgi network (TGN), regulated Crb in epithelial cells. In the absence of retromer, Crb was mis-targeted into lysosomes and degraded, causing a disruption of the apical-basal polarity. We further showed that Crb co-localized and interacted with retromer, suggesting that retromer regulated the retrograde recycling of Crb. Our data presented here uncover the role of retromer in regulating apical-basal polarity in epithelial cells and identify retromer as a novel regulator of Crb recycling.
Collapse
Affiliation(s)
- Bo Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and the Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
341
|
Zhi P, Chia PZC, Chia C, Gleeson PA. Intracellular trafficking of the β-secretase and processing of amyloid precursor protein. IUBMB Life 2011; 63:721-9. [PMID: 21834057 DOI: 10.1002/iub.512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
The main component of the amyloid plaques found in the brains of those with Alzheimer's disease (AD) is a polymerized form of the β-amyloid peptide (Aβ) and is considered to play a central role in the pathogenesis of this neurodegenerative disorder. Aβ is derived from the proteolytic processing of the amyloid precursor protein (APP). Beta site APP-cleaving enzyme, BACE1 (also known as β-secretase) is a membrane-bound aspartyl protease responsible for the initial step in the generation of Aβ peptide and is thus a prime target for therapeutic intervention. Substantive evidence now indicates that the processing of APP by BACE1 is regulated by the intracellular sorting of the enzyme and, moreover, perturbations in these intracellular trafficking pathways have been linked to late-onset AD. In this review, we highlight the recent advances in the understanding of the regulation of the intracellular sorting of BACE1 and APP and illustrate why the trafficking of these cargos represent a key issue for understanding the membrane-mediated events associated with the generation of the neurotoxic Aβ products in AD.
Collapse
Affiliation(s)
- Pei Zhi
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
342
|
Sullivan CP, Jay AG, Stack EC, Pakaluk M, Wadlinger E, Fine RE, Wells JM, Morin PJ. Retromer disruption promotes amyloidogenic APP processing. Neurobiol Dis 2011; 43:338-45. [PMID: 21515373 PMCID: PMC3114192 DOI: 10.1016/j.nbd.2011.04.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 03/03/2011] [Accepted: 04/07/2011] [Indexed: 12/26/2022] Open
Abstract
Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
Collapse
Affiliation(s)
- Christopher P Sullivan
- Geriatric Research, Education, and Clinical Center, Edith Nourse Rogers Memorial Veteran's Administration Hospital, Bedford, MA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
343
|
Dang H, Klokk TI, Schaheen B, McLaughlin BM, Thomas AJ, Durns TA, Bitler BG, Sandvig K, Fares H. Derlin-dependent retrograde transport from endosomes to the Golgi apparatus. Traffic 2011; 12:1417-31. [PMID: 21722281 DOI: 10.1111/j.1600-0854.2011.01243.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cells have to maintain stable plasma membrane protein and lipid compositions under normal conditions and to remodel their plasma membranes in response to stimuli. This maintenance and remodeling require that integral membrane proteins at the plasma membrane that become misfolded, because of the relatively harsher extracellular milieu or carbohydrate and amino acid sequence changes, are degraded. We had previously shown that Derlin proteins, required for quality control mechanisms in the endoplasmic reticulum, also localize to endosomes and function in the degradation of misfolded integral membrane proteins at the plasma membrane. In this study, we show that Derlin proteins physically associate with sorting nexins that function in retrograde membrane transport from endosomes to the Golgi apparatus. Using genetic studies in Caenorhabditis elegans and ricin pulse-chase analyses in murine RAW264.7 macrophages, we show that the Derlin-sorting nexin interaction is physiologically relevant. Our studies suggest that at least some integral membrane proteins that are misfolded at the plasma membrane are retrogradely transported to the Golgi apparatus and ultimately to the endoplasmic reticulum for degradation via resident quality control mechanisms.
Collapse
Affiliation(s)
- Hope Dang
- Department of Molecular and Cellular Biology, Life Sciences South Room 531, University of Arizona, Tucson, AZ 85721, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, Soto-Ortolaza AI, Cobb SA, Wilhoite GJ, Bacon JA, Behrouz B, Melrose HL, Hentati E, Puschmann A, Evans DM, Conibear E, Wasserman WW, Aasly JO, Burkhard PR, Djaldetti R, Ghika J, Hentati F, Krygowska-Wajs A, Lynch T, Melamed E, Rajput A, Rajput AH, Solida A, Wu RM, Uitti RJ, Wszolek ZK, Vingerhoets F, Farrer MJ. VPS35 mutations in Parkinson disease. Am J Hum Genet 2011; 89:162-7. [PMID: 21763482 PMCID: PMC3135796 DOI: 10.1016/j.ajhg.2011.06.001] [Citation(s) in RCA: 663] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 05/28/2011] [Accepted: 06/01/2011] [Indexed: 01/23/2023] Open
Abstract
The identification of genetic causes for Mendelian disorders has been based on the collection of multi-incident families, linkage analysis, and sequencing of genes in candidate intervals. This study describes the application of next-generation sequencing technologies to a Swiss kindred presenting with autosomal-dominant, late-onset Parkinson disease (PD). The family has tremor-predominant dopa-responsive parkinsonism with a mean onset of 50.6 ± 7.3 years. Exome analysis suggests that an aspartic-acid-to-asparagine mutation within vacuolar protein sorting 35 (VPS35 c.1858G>A; p.Asp620Asn) is the genetic determinant of disease. VPS35 is a central component of the retromer cargo-recognition complex, is critical for endosome-trans-golgi trafficking and membrane-protein recycling, and is evolutionarily highly conserved. VPS35 c.1858G>A was found in all affected members of the Swiss kindred and in three more families and one patient with sporadic PD, but it was not observed in 3,309 controls. Further sequencing of familial affected probands revealed only one other missense variant, VPS35 c.946C>T; (p.Pro316Ser), in a pedigree with one unaffected and two affected carriers, and thus the pathogenicity of this mutation remains uncertain. Retromer-mediated sorting and transport is best characterized for acid hydrolase receptors. However, the complex has many types of cargo and is involved in a diverse array of biologic pathways from developmental Wnt signaling to lysosome biogenesis. Our study implicates disruption of VPS35 and retromer-mediated trans-membrane protein sorting, rescue, and recycling in the neurodegenerative process leading to PD.
Collapse
|
345
|
Harterink M, Port F, Lorenowicz MJ, McGough IJ, Silhankova M, Betist MC, van Weering JRT, van Heesbeen RGHP, Middelkoop TC, Basler K, Cullen PJ, Korswagen HC. A SNX3-dependent retromer pathway mediates retrograde transport of the Wnt sorting receptor Wntless and is required for Wnt secretion. Nat Cell Biol 2011; 13:914-923. [PMID: 21725319 PMCID: PMC4052212 DOI: 10.1038/ncb2281] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 05/17/2011] [Indexed: 02/08/2023]
Abstract
Wnt proteins are lipid-modified glycoproteins that play a central role in development, adult tissue homeostasis and disease. Secretion of Wnt proteins is mediated by the Wnt-binding protein Wntless (Wls), which transports Wnt from the Golgi network to the cell surface for release. It has recently been shown that recycling of Wls through a retromer-dependent endosome-to-Golgi trafficking pathway is required for efficient Wnt secretion, but the mechanism of this retrograde transport pathway is poorly understood. Here, we report that Wls recycling is mediated through a retromer pathway that is independent of the retromer sorting nexins SNX1-SNX2 and SNX5-SNX6. We have found that the unrelated sorting nexin, SNX3, has an evolutionarily conserved function in Wls recycling and Wnt secretion and show that SNX3 interacts directly with the cargo-selective subcomplex of the retromer to sort Wls into a morphologically distinct retrieval pathway. These results demonstrate that SNX3 is part of an alternative retromer pathway that functionally separates the retrograde transport of Wls from other retromer cargo.
Collapse
Affiliation(s)
- Martin Harterink
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Fillip Port
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Magdalena J. Lorenowicz
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Ian J. McGough
- Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Marie Silhankova
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Marco C. Betist
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Jan R. T. van Weering
- Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Roy G. H. P. van Heesbeen
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Teije C. Middelkoop
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter J. Cullen
- Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Hendrik C. Korswagen
- Hubrecht Institute, Royal Academy of Arts and Sciences and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| |
Collapse
|
346
|
Retromer controls epithelial cell polarity by trafficking the apical determinant Crumbs. Curr Biol 2011; 21:1111-7. [PMID: 21700461 DOI: 10.1016/j.cub.2011.05.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 04/20/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022]
Abstract
The evolutionarily conserved apical determinant Crumbs (Crb) is essential for maintaining apicobasal polarity and integrity of many epithelial tissues [1]. Crb levels are crucial for cell polarity and homeostasis, yet strikingly little is known about its trafficking or the mechanism of its apical localization. Using a newly established, liposome-based system described here, we determined Crb to be an interaction partner and cargo of the retromer complex. Retromer is essential for the retrograde transport of numerous transmembrane proteins from endosomes to the trans-Golgi network (TGN) and is conserved between plants, fungi, and animals [2]. We show that loss of retromer function results in a substantial reduction of Crb in Drosophila larvae, wing discs, and the follicle epithelium. Moreover, loss of retromer phenocopies loss of crb by preventing apical localization of key polarity molecules, such as atypical protein kinase C (aPKC) and Par6 in the follicular epithelium, an effect that can be rescued by overexpression of Crb. Additionally, loss of retromer results in multilayering of the follicular epithelium, indicating that epithelial integrity is severely compromised. Our data reveal a mechanism for Crb trafficking by retromer that is vital for maintaining Crb levels and localization. We also show a novel function for retromer in maintaining epithelial cell polarity.
Collapse
|
347
|
Chia PZC, Gasnereau I, Lieu ZZ, Gleeson PA. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 2011; 124:2401-13. [PMID: 21693586 DOI: 10.1242/jcs.083782] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin-TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail.
Collapse
Affiliation(s)
- Pei Zhi Cheryl Chia
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
348
|
Temkin P, Lauffer B, Jäger S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule entry and endosome-to-plasma membrane trafficking of signalling receptors. Nat Cell Biol 2011; 13:715-21. [PMID: 21602791 PMCID: PMC3113693 DOI: 10.1038/ncb2252] [Citation(s) in RCA: 386] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 04/05/2011] [Indexed: 01/02/2023]
Abstract
Endocytic sorting of signalling receptors between recycling and degradative pathways is a key cellular process controlling the surface complement of receptors and, accordingly, the cell's ability to respond to specific extracellular stimuli. The β2 adrenergic receptor (β2AR) is a prototypical seven-transmembrane signalling receptor that recycles rapidly and efficiently to the plasma membrane after ligand-induced endocytosis. β2AR recycling is dependent on the receptor's carboxy-terminal PDZ ligand and Rab4. This active sorting process is required for functional resensitization of β2AR-mediated signalling. Here we show that sequence-directed sorting occurs at the level of entry into retromer tubules and that retromer tubules are associated with Rab4. Furthermore, we show that sorting nexin 27 (SNX27) serves as an essential adaptor protein linking β2ARs to the retromer tubule. SNX27 does not seem to directly interact with the retromer core complex, but does interact with the retromer-associated Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex. The present results identify a role for retromer in endocytic trafficking of signalling receptors, in regulating a receptor-linked signalling pathway, and in mediating direct endosome-to-plasma membrane traffic.
Collapse
Affiliation(s)
- Paul Temkin
- Department of Psychiatry, University of California at San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
349
|
Swarbrick JD, Shaw DJ, Chhabra S, Ghai R, Valkov E, Norwood SJ, Seaman MNJ, Collins BM. VPS29 is not an active metallo-phosphatase but is a rigid scaffold required for retromer interaction with accessory proteins. PLoS One 2011; 6:e20420. [PMID: 21629666 PMCID: PMC3101248 DOI: 10.1371/journal.pone.0020420] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/02/2011] [Indexed: 11/19/2022] Open
Abstract
VPS29 is a key component of the cargo-binding core complex of retromer, a protein assembly with diverse roles in transport of receptors within the endosomal system. VPS29 has a fold related to metal-binding phosphatases and mediates interactions between retromer and other regulatory proteins. In this study we examine the functional interactions of mammalian VPS29, using X-ray crystallography and NMR spectroscopy. We find that although VPS29 can coordinate metal ions Mn(2+) and Zn(2+) in both the putative active site and at other locations, the affinity for metals is low, and lack of activity in phosphatase assays using a putative peptide substrate support the conclusion that VPS29 is not a functional metalloenzyme. There is evidence that structural elements of VPS29 critical for binding the retromer subunit VPS35 may undergo both metal-dependent and independent conformational changes regulating complex formation, however studies using ITC and NMR residual dipolar coupling (RDC) measurements show that this is not the case. Finally, NMR chemical shift mapping indicates that VPS29 is able to associate with SNX1 via a conserved hydrophobic surface, but with a low affinity that suggests additional interactions will be required to stabilise the complex in vivo. Our conclusion is that VPS29 is a metal ion-independent, rigid scaffolding domain, which is essential but not sufficient for incorporation of retromer into functional endosomal transport assemblies.
Collapse
Affiliation(s)
- James D. Swarbrick
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Daniel J. Shaw
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Sandeep Chhabra
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rajesh Ghai
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Eugene Valkov
- School of Chemistry and Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Suzanne J. Norwood
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Matthew N. J. Seaman
- Department of Clinical Biochemistry, Cambridge Institute for Medical Research, Cambridge University, Cambridge, United Kingdom
| | - Brett M. Collins
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
350
|
Abstract
The endosomal network is an organized array of intracellular, membranous compartments that function as sorting sites for endosomal and biosynthetic cargo. The fate of endocytic cargo is reliant upon interactions with a number of molecularly distinct sorting complexes, which tightly control the relationship between sorting of their respective cargo and the physical process of membrane re-scuplturing required for the formation of transport carries. One such complex, retromer, mediates retrograde transport from endosomes to the trans-Golgi network (TGN). Disregulation of retromer has been implicated in a host of disease states including late-onset Alzheimer's. Rather than give a broad overview of retromer biology, here we aim to outline the recent advances in understanding this complex, focussing on the involvement of both clathrin and the cytoskeleton in retromer function.
Collapse
Affiliation(s)
- Ian J McGough
- Henry Wellcome Integrated Signalling Laboratories, School of Biochemistry, Medical Sciences Building, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | | |
Collapse
|