301
|
Liu K, Li S, Wang L, Ye Y, Tang H. Full-Spectrum Prediction of Peptides Tandem Mass Spectra using Deep Neural Network. Anal Chem 2020; 92:4275-4283. [PMID: 32053352 DOI: 10.1021/acs.analchem.9b04867] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The ability to predict tandem mass (MS/MS) spectra from peptide sequences can significantly enhance our understanding of the peptide fragmentation process and could improve peptide identification in proteomics. However, current approaches for predicting high-energy collisional dissociation (HCD) spectra are limited to predict the intensities of expected ion types, that is, the a/b/c/x/y/z ions and their neutral loss derivatives (referred to as backbone ions). In practice, backbone ions only account for <70% of total ion intensities in HCD spectra, indicating many intense ions are ignored by current predictors. In this paper, we present a deep learning approach that can predict the complete spectra (both backbone and nonbackbone ions) directly from peptide sequences. We made no assumptions or expectations on which kind of ions to predict but instead predicting the intensities for all possible m/z. Training this model needs no annotations of fragment ion nor any prior knowledge of the fragmentation rules. Our analyses show that the predicted 2+ and 3+ HCD spectra are highly similar to the experimental spectra, with average full-spectrum cosine similarities of 0.820 (±0.088) and 0.786 (±0.085), respectively, very close to the similarities between the experimental replicated spectra. In contrast, the best-performed backbone only models can only achieve an average similarity below 0.75 and 0.70 for 2+ and 3+ spectra, respectively. Furthermore, we developed a multitask learning (MTL) approach for predicting spectra of insufficient training samples, which allows our model to make accurate predictions for electron transfer dissociation (ETD) spectra and HCD spectra of less abundant charges (1+ and 4+).
Collapse
Affiliation(s)
- Kaiyuan Liu
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Sujun Li
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Lei Wang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Yuzhen Ye
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405, United States
| | - Haixu Tang
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
302
|
Turco AE, Thomas S, Crawford LK, Tang W, Peterson RE, Li L, Ricke WA, Vezina CM. In utero and lactational 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) exposure exacerbates urinary dysfunction in hormone-treated C57BL/6J mice through a non-malignant mechanism involving proteomic changes in the prostate that differ from those elicited by testosterone and estradiol. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2020; 8:59-72. [PMID: 32211455 PMCID: PMC7076297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
A recent study directed new focus on the fetal and neonatal environment as a risk factor for urinary dysfunction in aging males. Male mice were exposed in utero and via lactation (IUL) to the persistent environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and then administered slow-release, subcutaneous implants of testosterone and estradiol (T+E2) as adults to mimic the hormonal environment of aging men. IUL TCDD exposure worsened T+E2-induced voiding dysfunction. Mice in the previous study were genetically prone to prostatic neoplasia and it was therefore unclear whether TCDD exacerbates voiding dysfunction through a malignant or non-malignant mechanism. We demonstrate here that IUL TCDD exposure acts via a non-malignant mechanism to exacerbate T+E2-mediated male mouse voiding dysfunction characterized by a progressive increase in spontaneous void spotting. We deployed a proteomic approach to narrow the possible mechanisms. We specifically tested whether IUL TCDD exacerbates urinary dysfunction by acting through the same prostatic signaling pathways as T+E2. The prostatic protein signature of TCDD/T+E2-exposed mice differed from that of mice exposed to T+E2 alone, indicating that the mechanism of action of TCDD differs from that of T+E2. We identified 3641 prostatic proteins in total and determined that IUL TCDD exposure significantly changed the abundance of 102 proteins linked to diverse molecular and physiological processes. We shed new light on the mechanism of IUL TCDD-mediated voiding dysfunction by demonstrating that the mechanism is independent of tumorigenesis and involves molecular pathways distinct from those affected by T+E2.
Collapse
Affiliation(s)
- Anne E Turco
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
| | - Samuel Thomas
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - LaTasha K Crawford
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI, USA
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Richard E Peterson
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
| | - Lingjun Li
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
- Department of Chemistry, University of Wisconsin-MadisonMadison, WI, USA
| | - William A Ricke
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Pharmacy, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| | - Chad M Vezina
- Molecular and Environmental Toxicology Center, University of Wisconsin-MadisonMadison, WI, USA
- School of Veterinary Medicine, University of Wisconsin-MadisonMadison, WI, USA
- George M. O’Brien Center of Research Excellence, University of Wisconsin-MadisonMadison, WI, USA
- Department of Urology, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|
303
|
Pittalà MGG, Saletti R, Reina S, Cunsolo V, De Pinto V, Foti S. A High Resolution Mass Spectrometry Study Reveals the Potential of Disulfide Formation in Human Mitochondrial Voltage-Dependent Anion Selective Channel Isoforms (hVDACs). Int J Mol Sci 2020; 21:E1468. [PMID: 32098132 PMCID: PMC7073118 DOI: 10.3390/ijms21041468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/13/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
The voltage-dependent anion-selective channels (VDACs), which are also known as eukaryotic porins, are pore-forming proteins, which allow for the passage of ions and small molecules across the outer mitochondrial membrane (OMM). They are involved in complex interactions that regulate organelle and cellular metabolism. We have recently reported the post-translational modifications (PTMs) of the three VDAC isoforms purified from rat liver mitochondria (rVDACs), showing, for the first time, the over-oxidation of the cysteine residues as an exclusive feature of VDACs. Noteworthy, this peculiar PTM is not detectable in other integral membrane mitochondrial proteins, as defined by their elution at low salt concentration by a hydroxyapatite column. In this study, the association of tryptic and chymotryptic proteolysis with UHPLC/High Resolution nESI-MS/MS, allowed for us to extend the investigation to the human VDACs. The over-oxidation of the cysteine residues, essentially irreversible in cell conditions, was as also certained in VDAC isoforms from human cells. In human VDAC2 and 3 isoforms the permanently reduced state of a cluster of close cysteines indicates the possibility that disulfide bridges are formed in the proteins. Importantly, the detailed oxidative PTMs that are found in human VDACs confirm and sustain our previous findings in rat tissues, claiming for a predictable characterization that has to be conveyed in the functional role of VDAC proteins within the cell. Data are available via ProteomeXchange with identifier PXD017482.
Collapse
Affiliation(s)
- Maria G. G. Pittalà
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Rosaria Saletti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (V.C.); (S.F.)
| | - Simona Reina
- Department of Biological, Geological and Environmental Sciences, Section of Molecular Biology, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Vincenzo Cunsolo
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (V.C.); (S.F.)
| | - Vito De Pinto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 64, 95123 Catania, Italy;
| | - Salvatore Foti
- Department of Chemical Sciences, Organic Mass Spectrometry Laboratory, University of Catania, Viale A. Doria 6, 95125 Catania, Italy; (V.C.); (S.F.)
| |
Collapse
|
304
|
Kjell J, Götz M. Filling the Gaps - A Call for Comprehensive Analysis of Extracellular Matrix of the Glial Scar in Region- and Injury-Specific Contexts. Front Cell Neurosci 2020; 14:32. [PMID: 32153367 PMCID: PMC7050652 DOI: 10.3389/fncel.2020.00032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/04/2020] [Indexed: 01/09/2023] Open
Abstract
Central nervous system (CNS) injury results in chronic scar formation that interferes with function and inhibits repair. Extracellular matrix (ECM) is prominent in the scar and potently regulates cell behavior. However, comprehensive information about the ECM proteome is largely lacking, and region- as well as injury-specific differences are often not taken into account. These aspects are the focus of our perspective on injury and scar formation. To highlight the importance of such comprehensive proteome analysis we include data obtained with novel analysis tools of the ECM composition in the scar and show the contribution of monocytes to the ECM composition after traumatic brain injury (TBI). Monocyte invasion was reduced using the CCR2-/- mouse line and step-wise de-cellularization and proteomics allowed determining monocyte-dependent ECM composition and architecture of the glial scar. We find significant reduction in the ECM proteins Tgm1, Itih (1,2, and 3), and Ftl in the absence of monocyte invasion. We also describe the scar ECM comprising zones with distinctive composition and show a subacute signature upon comparison to proteome obtained at earlier times after TBI. These results are discussed in light of injury-, region- and time-specific regulation of scar formation highlighting the urgent need to differentiate injury conditions and CNS-regions using comprehensive ECM analysis.
Collapse
Affiliation(s)
- Jacob Kjell
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,Department of Clinical Neuroscience, Karolinska Institutet, Solna, Sweden.,Departments of Neurology and Neurosurgery, Karolinska University Hospital, Solna, Sweden
| | - Magdalena Götz
- Division of Physiological Genomics, Biomedical Center, Ludwig Maximilian University of Munich, Munich, Germany.,Institute for Stem Cell Research, Helmholtz Zentrum München, Munich, Germany.,SYNERGY, Excellence Cluster Systems Neurology, University of Munich, Munich, Germany
| |
Collapse
|
305
|
Kessler T, Latzer P, Schmid D, Warnken U, Saffari A, Ziegler A, Kollmer J, Möhlenbruch M, Ulfert C, Herweh C, Wildemann B, Wick W, Weiler M. Cerebrospinal fluid proteomic profiling in nusinersen-treated patients with spinal muscular atrophy. J Neurochem 2020; 153:650-661. [PMID: 31903607 DOI: 10.1111/jnc.14953] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
Promising results from recent clinical trials on the approved antisense oligonucleotide nusinersen in pediatric patients with 5q-linked spinal muscular atrophy (SMA) still have to be confirmed in adult patients but are hindered by a lack of sensitive biomarkers that indicate an early therapeutic response. Changes in the overall neurochemical composition of cerebrospinal fluid (CSF) under therapy may yield additive diagnostic and predictive information. With this prospective proof-of-concept and feasibility study, we evaluated non-targeted CSF proteomic profiles by mass spectrometry along with basic CSF parameters of 10 adult patients with SMA types 2 or 3 before and after 10 months of nusinersen therapy, in comparison with 10 age- and gender-matched controls. These data were analyzed by bioinformatics and correlated with clinical outcomes assessed by the Hammersmith Functional Rating Scale Expanded (HFMSE). CSF proteomic profiles of SMA patients differed from controls. Two groups of SMA patients were identified based on unsupervised clustering. These groups differed in age and expression of proteins related to neurodegeneration and neuroregeneration. Intraindividual CSF differences in response to nusinersen treatment varied between patients who clinically improved and those who did not. Data are available via ProteomeXchange with identifier PXD016757. Comparative CSF proteomic analysis in adult SMA patients before and after treatment with nusinersen-identified subgroups and treatment-related changes and may therefore be suitable for diagnostic and predictive analyses.
Collapse
Affiliation(s)
- Tobias Kessler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pauline Latzer
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schmid
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteomic Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Afshin Saffari
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Ziegler
- Division of Child Neurology and Metabolic Medicine, Center for Child and Adolescent Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Jennifer Kollmer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Markus Möhlenbruch
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Ulfert
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Herweh
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Brigitte Wildemann
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Markus Weiler
- Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
306
|
Hashimoto T, Mustafa G, Nishiuchi T, Komatsu S. Comparative Analysis of the Effect of Inorganic and Organic Chemicals with Silver Nanoparticles on Soybean under Flooding Stress. Int J Mol Sci 2020; 21:E1300. [PMID: 32075105 PMCID: PMC7072913 DOI: 10.3390/ijms21041300] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Extensive utilization of silver nanoparticles (NPs) in agricultural products results in their interaction with other chemicals in the environment. To study the combined effects of silver NPs with nicotinic acid and potassium nitrate (KNO3), a gel-free/label-free proteomic technique was used. Root length/weight and hypocotyl length/weight of soybean were enhanced by silver NPs mixed with nicotinic acid and KNO3. Out of a total 6340 identified proteins, 351 proteins were significantly changed, out of which 247 and 104 proteins increased and decreased, respectively. Differentially changed proteins were predominantly associated with protein degradation and synthesis according to the functional categorization. Protein-degradation-related proteins mainly consisted of the proteasome degradation pathway. The cell death was significantly higher in the root tips of soybean under the combined treatment compared to flooding stress. Accumulation of calnexin/calreticulin and glycoproteins was significantly increased under flooding with silver NPs, nicotinic acid, and KNO3. Growth of soybean seedlings with silver NPs, nicotinic acid, and KNO3 was improved under flooding stress. These results suggest that the combined mixture of silver NPs, nicotinic acid, and KNO3 causes positive effects on soybean seedling by regulating the protein quality control for the mis-folded proteins in the endoplasmic reticulum. Therefore, it might improve the growth of soybean under flooding stress.
Collapse
Affiliation(s)
- Takuya Hashimoto
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| | - Ghazala Mustafa
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa 920-8640, Japan;
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (T.H.); (G.M.)
| |
Collapse
|
307
|
Olaya-Abril A, Pérez MD, Cabello P, Martignetti D, Sáez LP, Luque-Almagro VM, Moreno-Vivián C, Roldán MD. Role of the Dihydrodipicolinate Synthase DapA1 on Iron Homeostasis During Cyanide Assimilation by the Alkaliphilic Bacterium Pseudomonas pseudoalcaligenes CECT5344. Front Microbiol 2020; 11:28. [PMID: 32038602 PMCID: PMC6989483 DOI: 10.3389/fmicb.2020.00028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
Cyanide is a toxic compound widely used in mining and jewelry industries, as well as in the synthesis of many different chemicals. Cyanide toxicity derives from its high affinity for metals, which causes inhibition of relevant metalloenzymes. However, some cyanide-degrading microorganisms like the alkaliphilic bacterium Pseudomonas pseudoalcaligenes CECT5344 may detoxify hazardous industrial wastewaters that contain elevated cyanide and metal concentrations. Considering that iron availability is strongly reduced in the presence of cyanide, mechanisms for iron homeostasis should be required for cyanide biodegradation. Previous omic studies revealed that in the presence of a cyanide-containing jewelry residue the strain CECT5344 overproduced the dihydrodipicolinate synthase DapA1, a protein involved in lysine metabolism that also participates in the synthesis of dipicolinates, which are excellent metal chelators. In this work, a dapA1 - mutant of P. pseudoalcaligenes CECT5344 has been generated and characterized. This mutant showed reduced growth and cyanide consumption in media with the cyanide-containing wastewater. Intracellular levels of metals like iron, copper and zinc were increased in the dapA1 - mutant, especially in cells grown with the jewelry residue. In addition, a differential quantitative proteomic analysis by LC-MS/MS was carried out between the wild-type and the dapA1 - mutant strains in media with jewelry residue. The mutation in the dapA1 gene altered the expression of several proteins related to urea cycle and metabolism of arginine and other amino acids. Additionally, the dapA1 - mutant showed increased levels of the global nitrogen regulator PII and the glutamine synthetase. This proteomic study has also highlighted that the DapA1 protein is relevant for cyanide resistance, oxidative stress and iron homeostasis response, which is mediated by the ferric uptake regulator Fur. DapA1 is required to produce dipicolinates that could act as iron chelators, conferring protection against oxidative stress and allowing the regeneration of Fe-S centers to reactivate cyanide-damaged metalloproteins.
Collapse
Affiliation(s)
- Alfonso Olaya-Abril
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Pérez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Purificación Cabello
- Departamento de Botánica, Ecología y Fisiología Vegetal, Edificio Celestino Mutis, Campus de Rabanales, Universidad de Córdoba, Córdoba, Spain
| | - Diego Martignetti
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Lara Paloma Sáez
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | | | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - María Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
308
|
Hartenian E, Gilbertson S, Federspiel JD, Cristea IM, Glaunsinger BA. RNA decay during gammaherpesvirus infection reduces RNA polymerase II occupancy of host promoters but spares viral promoters. PLoS Pathog 2020; 16:e1008269. [PMID: 32032393 PMCID: PMC7032723 DOI: 10.1371/journal.ppat.1008269] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 02/20/2020] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
In mammalian cells, widespread acceleration of cytoplasmic mRNA degradation is linked to impaired RNA polymerase II (Pol II) transcription. This mRNA decay-induced transcriptional repression occurs during infection with gammaherpesviruses including Kaposi’s sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), which encode an mRNA endonuclease that initiates widespread RNA decay. Here, we show that MHV68-induced mRNA decay leads to a genome-wide reduction of Pol II occupancy at mammalian promoters. This reduced Pol II occupancy is accompanied by down-regulation of multiple Pol II subunits and TFIIB in the nucleus of infected cells, as revealed by mass spectrometry-based global measurements of protein abundance. Viral genes, despite the fact that they require Pol II for transcription, escape transcriptional repression. Protection is not governed by viral promoter sequences; instead, location on the viral genome is both necessary and sufficient to escape the transcriptional repression effects of mRNA decay. We propose a model in which the ability to escape from transcriptional repression is linked to the localization of viral DNA within replication compartments, providing a means for these viruses to counteract decay-induced transcript loss. While transcription and messenger RNA (mRNA) decay are often considered to be the unlinked beginning and end of gene expression, recent data indicate that alterations to either stage can impact the other. Here we study this connection in the context of lytic gammaherpesvirus infection, which accelerates mRNA degradation through the expression of the viral endonuclease muSOX. We show that RNA polymerase II promoter occupancy is broadly reduced across mammalian promoters in response to infection-induced mRNA decay, and that this phenotype correlates with a reduction in the abundance of several proteins involved in transcription. Notably, gammaherpesviral promoters are resistant to the ensuing transcriptional repression. We show that viral transcriptional escape is conferred by localization of the viral DNA within the protective environment of replication compartments, which are sites of viral genome replication and transcription during infection. Collectively, these findings clarify how mRNA degradation by gammaherpesviruses reshapes the cellular environment and selectively dampens host gene transcription.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
| | - Sarah Gilbertson
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
| | - Joel D. Federspiel
- Department of Molecular Biology, Princeton University, Princeton, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, United States of America
| | - Britt A. Glaunsinger
- Department of Molecular and Cell Biology, University of California Berkeley, CA, United States of America
- Department of Plant and Microbial Biology, University of California Berkeley, CA, United States of America
- Howard Hughes Medical Institute, University of California Berkeley, CA, United States of America
- * E-mail:
| |
Collapse
|
309
|
Semmler S, Gagné M, Garg P, Pickles SR, Baudouin C, Hamon-Keromen E, Destroismaisons L, Khalfallah Y, Chaineau M, Caron E, Bayne AN, Trempe JF, Cashman NR, Star AT, Haqqani AS, Durcan TM, Meiering EM, Robertson J, Grandvaux N, Plotkin SS, McBride HM, Vande Velde C. TNF receptor-associated factor 6 interacts with ALS-linked misfolded superoxide dismutase 1 and promotes aggregation. J Biol Chem 2020; 295:3808-3825. [PMID: 32029478 DOI: 10.1074/jbc.ra119.011215] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease, characterized by the selective loss of motor neurons leading to paralysis. Mutations in the gene encoding superoxide dismutase 1 (SOD1) are the second most common cause of familial ALS, and considerable evidence suggests that these mutations result in an increase in toxicity due to protein misfolding. We previously demonstrated in the SOD1G93A rat model that misfolded SOD1 exists as distinct conformers and forms deposits on mitochondrial subpopulations. Here, using SOD1G93A rats and conformation-restricted antibodies specific for misfolded SOD1 (B8H10 and AMF7-63), we identified the interactomes of the mitochondrial pools of misfolded SOD1. This strategy identified binding proteins that uniquely interacted with either AMF7-63 or B8H10-reactive SOD1 conformers as well as a high proportion of interactors common to both conformers. Of this latter set, we identified the E3 ubiquitin ligase TNF receptor-associated factor 6 (TRAF6) as a SOD1 interactor, and we determined that exposure of the SOD1 functional loops facilitates this interaction. Of note, this conformational change was not universally fulfilled by all SOD1 variants and differentiated TRAF6 interacting from TRAF6 noninteracting SOD1 variants. Functionally, TRAF6 stimulated polyubiquitination and aggregation of the interacting SOD1 variants. TRAF6 E3 ubiquitin ligase activity was required for the former but was dispensable for the latter, indicating that TRAF6-mediated polyubiquitination and aggregation of the SOD1 variants are independent events. We propose that the interaction between misfolded SOD1 and TRAF6 may be relevant to the etiology of ALS.
Collapse
Affiliation(s)
- Sabrina Semmler
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Myriam Gagné
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Pranav Garg
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Sarah R Pickles
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Charlotte Baudouin
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Emeline Hamon-Keromen
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Université Pierre et Marie Curie, 75005 Paris, France
| | - Laurie Destroismaisons
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Yousra Khalfallah
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elise Caron
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada
| | - Andrew N Bayne
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Jean-François Trempe
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Neil R Cashman
- Department of Medicine (Neurology), University of British Columbia and Vancouver Coastal Health Research Institute, Brain Research Centre, Vancouver, British Columbia V6T 2B5, Canada
| | - Alexandra T Star
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Portfolio, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, Guelph-Waterloo Centre for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 0S8, Canada
| | - Nathalie Grandvaux
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Steven S Plotkin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H3A 2B4, Canada.,Montreal Neurological Institute, McGill University, Montréal, Quebec H3A 2B4, Canada
| | - Christine Vande Velde
- Centre de Recherche du Centre Hospitalier de Université de Montréal, Montréal, Quebec H2X 0A9, Canada .,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec H3T 1J4, Canada.,Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| |
Collapse
|
310
|
A Global Screen for Assembly State Changes of the Mitotic Proteome by SEC-SWATH-MS. Cell Syst 2020; 10:133-155.e6. [PMID: 32027860 PMCID: PMC7042714 DOI: 10.1016/j.cels.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/08/2019] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Living systems integrate biochemical reactions that determine the functional state of each cell. Reactions are primarily mediated by proteins. In proteomic studies, these have been treated as independent entities, disregarding their higher-level organization into complexes that affects their activity and/or function and is thus of great interest for biological research. Here, we describe the implementation of an integrated technique to quantify cell-state-specific changes in the physical arrangement of protein complexes concurrently for thousands of proteins and hundreds of complexes. Applying this technique to a comparison of human cells in interphase and mitosis, we provide a systematic overview of mitotic proteome reorganization. The results recall key hallmarks of mitotic complex remodeling and suggest a model of nuclear pore complex disassembly, which we validate by orthogonal methods. To support the interpretation of quantitative SEC-SWATH-MS datasets, we extend the software CCprofiler and provide an interactive exploration tool, SECexplorer-cc. Global quantification of assembly state changes in the mitotic proteome Improved performance over thermostability measurement of proteome states Discovery of a mitotic disassembly intermediate of the nuclear pore complex Introduction of SECexplorer-cc, a publicly available online platform
Collapse
|
311
|
Xu F, Wang Y, Xiao K, Hu Y, Tian Z, Chen Y. Quantitative site- and structure-specific N-glycoproteomics characterization of differential N-glycosylation in MCF-7/ADR cancer stem cells. Clin Proteomics 2020; 17:3. [PMID: 32042278 PMCID: PMC7001331 DOI: 10.1186/s12014-020-9268-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/25/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cancer stem cells (CSCs) are reported to be responsible for tumor initiation, progression, metastasis, and therapy resistance where P-glycoprotein (P-gp) as well as other glycoproteins are involved. Identification of these glycoprotein markers is critical for understanding the resistance mechanism and developing therapeutics. Methods In this study, we report our comparative and quantitative site- and structure-specific N-glycoproteomics study of MCF-7/ADR cancer stem cells (CSCs) vs. MCF-7/ADR cells. With zic-HILIC enrichment, isotopic diethyl labeling, RPLC–MS/MS (HCD) analysis and GPSeeker DB search, differentially expressed N-glycosylation was quantitatively characterized at the intact N-glycopeptide level. Results 4016 intact N-glycopeptides were identified with spectrum-level FDR ≤ 1%. With the criteria of ≥ 1.5 fold change and p value < 0.05, 247 intact N-glycopeptides were found differentially expressed in MCF-7/ADR CSCs as putative markers. Raw data are available via ProteomeXchange with identifier PXD013836. Conclusions Quantitative site- and structure-specific N-glycoproteomics characterization may help illustrate the cell stemness property.
Collapse
Affiliation(s)
- Feifei Xu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Yue Wang
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Kaijie Xiao
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yechen Hu
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| | - Zhixin Tian
- 2School of Chemical Science & Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai, 200092 China
| | - Yun Chen
- 1School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China
| |
Collapse
|
312
|
Li H, Mercer R, Behr J, Heinzlmeir S, McMullen LM, Vogel RF, Gänzle MG. Heat and Pressure Resistance in Escherichia coli Relates to Protein Folding and Aggregation. Front Microbiol 2020; 11:111. [PMID: 32117137 PMCID: PMC7010813 DOI: 10.3389/fmicb.2020.00111] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/17/2020] [Indexed: 01/16/2023] Open
Abstract
The locus of heat resistance (LHR) confers extreme heat resistance in Escherichia coli. This study explored the role of the LHR in heat and pressure resistance of E. coli, as well as its relationship with protein folding and aggregation in vivo. The role of LHR was investigated in E. coli MG1655 and the pressure resistant E. coli LMM1010 expressing an ibpA-yfp fusion protein to visualize inclusion bodies by fluorescence microscopy. The expression of proteins by the LHR was determined by proteomic analysis; inclusion bodies of untreated and treated cells were also analyzed by proteomics, and by fluorescent microscopy. In total, 11 proteins of LHR were expressed: sHSP20, ClpKGI, sHSP, YdfX1 and YdfX2, HdeD, KefB, Trx, PsiE, DegP, and a hypothetical protein. The proteomic analysis of inclusion bodies revealed a differential abundance of proteins related to oxidative stress in strains carrying the LHR. The LHR reduced the presence of inclusion bodies after heat or pressure treatment, indicating that proteins expressed by the LHR prevent protein aggregation, or disaggregate proteins. This phenotype of the LHR was also conferred by expression of a fragment containing only sHSP20, ClpKGI, and sHSP. The LHR and the fragment encoding only sHSP20, ClpKGI, and sHSP also enhanced pressure resistance in E. coli MG1655 but had no effect on pressure resistance of E. coli LMM1010. In conclusion, the LHR confers pressure resistance to some strains of E. coli, and reduces protein aggregation. Pressure and heat resistance are also dependent on additional LHR-encoded functions.
Collapse
Affiliation(s)
- Hui Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-food Quality and Safety, Ministry of Agriculture, Beijing, China
| | - Ryan Mercer
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jürgen Behr
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany.,Leibniz-Institute for Food Systems Biology, Technical University of Munich, Freising, Germany
| | - Stephanie Heinzlmeir
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, Freising, Germany
| | - Lynn M McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Rudi F Vogel
- Technical University of Munich - Lehrstuhl fär Technische Mikrobiologie, Freising, Germany
| | - Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,College of Bioengineering and Food Science, Hubei University of Technology, Wuhan, China
| |
Collapse
|
313
|
Karyolaimos A, Dolata KM, Antelo-Varela M, Mestre Borras A, Elfageih R, Sievers S, Becher D, Riedel K, de Gier JW. Escherichia coli Can Adapt Its Protein Translocation Machinery for Enhanced Periplasmic Recombinant Protein Production. Front Bioeng Biotechnol 2020; 7:465. [PMID: 32064253 PMCID: PMC7000420 DOI: 10.3389/fbioe.2019.00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Recently, we engineered a tunable rhamnose promoter-based setup for the production of recombinant proteins in E. coli. This setup enabled us to show that being able to precisely set the production rate of a secretory recombinant protein is critical to enhance protein production yields in the periplasm. It is assumed that precisely setting the production rate of a secretory recombinant protein is required to harmonize its production rate with the protein translocation capacity of the cell. Here, using proteome analysis we show that enhancing periplasmic production of human Growth Hormone (hGH) using the tunable rhamnose promoter-based setup is accompanied by increased accumulation levels of at least three key players in protein translocation; the peripheral motor of the Sec-translocon (SecA), leader peptidase (LepB), and the cytoplasmic membrane protein integrase/chaperone (YidC). Thus, enhancing periplasmic hGH production leads to increased Sec-translocon capacity, increased capacity to cleave signal peptides from secretory proteins and an increased capacity of an alternative membrane protein biogenesis pathway, which frees up Sec-translocon capacity for protein secretion. When cells with enhanced periplasmic hGH production yields were harvested and subsequently cultured in the absence of inducer, SecA, LepB, and YidC levels went down again. This indicates that when using the tunable rhamnose-promoter system to enhance the production of a protein in the periplasm, E. coli can adapt its protein translocation machinery for enhanced recombinant protein production in the periplasm.
Collapse
Affiliation(s)
- Alexandros Karyolaimos
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | | | | | - Anna Mestre Borras
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Rageia Elfageih
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| | - Susanne Sievers
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Jan-Willem de Gier
- Department of Biochemistry and Biophysics, Center for Biomembrane Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
314
|
Proteomic Analysis of Brain Region and Sex-Specific Synaptic Protein Expression in the Adult Mouse Brain. Cells 2020; 9:cells9020313. [PMID: 32012899 PMCID: PMC7072627 DOI: 10.3390/cells9020313] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 12/19/2022] Open
Abstract
Genetic disruption of synaptic proteins results in a whole variety of human neuropsychiatric disorders including intellectual disability, schizophrenia or autism spectrum disorder (ASD). In a wide range of these so-called synaptopathies a sex bias in prevalence and clinical course has been reported. Using an unbiased proteomic approach, we analyzed the proteome at the interaction site of the pre- and postsynaptic compartment, in the prefrontal cortex, hippocampus, striatum and cerebellum of male and female adult C57BL/6J mice. We were able to reveal a specific repertoire of synaptic proteins in different brain areas as it has been implied before. Additionally, we found a region-specific set of novel synaptic proteins differentially expressed between male and female individuals including the strong ASD candidates DDX3X, KMT2C, MYH10 and SET. Being the first comprehensive analysis of brain region-specific synaptic proteomes from male and female mice, our study provides crucial information on sex-specific differences in the molecular anatomy of the synapse. Our efforts should serve as a neurobiological framework to better understand the influence of sex on synapse biology in both health and disease.
Collapse
|
315
|
Arike L, Seiman A, van der Post S, Rodriguez Piñeiro AM, Ermund A, Schütte A, Bäckhed F, Johansson MEV, Hansson GC. Protein Turnover in Epithelial Cells and Mucus along the Gastrointestinal Tract Is Coordinated by the Spatial Location and Microbiota. Cell Rep 2020; 30:1077-1087.e3. [PMID: 31995731 PMCID: PMC6996021 DOI: 10.1016/j.celrep.2019.12.068] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 12/17/2019] [Indexed: 02/07/2023] Open
Abstract
The gastrointestinal tract is covered by a single layer of epithelial cells that, together with the mucus layers, protect the underlying tissue from microbial invasion. The epithelium has one of the highest turnover rates in the body. Using stable isotope labeling, high-resolution mass spectrometry, and computational analysis, we report a comprehensive dataset of the turnover of more than 3,000 and the expression of more than 5,000 intestinal epithelial cell proteins, analyzed under conventional and germ-free conditions across five different segments in mouse intestine. The median protein half-life is shorter in the small intestine than in the colon. Differences in protein turnover rates along the intestinal tract can be explained by distinct physiological and immune-related functions between the small and large intestine. An absence of microbiota results in an approximately 1 day longer protein half-life in germ-free animals. Dataset of protein turnover rate and expression along the mice intestinal tract Protein turnover rate is slower in colon than in small intestine Median protein half-life is 1 day longer in germ-free mice
Collapse
Affiliation(s)
- Liisa Arike
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Andrus Seiman
- Centre of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia
| | - Sjoerd van der Post
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | | | - Anna Ermund
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - André Schütte
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fredrik Bäckhed
- Department of Molecular and Clinical Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden.
| |
Collapse
|
316
|
Larsen SC, Hendriks IA, Lyon D, Jensen LJ, Nielsen ML. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation. Cell Rep 2020; 24:2493-2505.e4. [PMID: 30157440 DOI: 10.1016/j.celrep.2018.07.083] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/31/2018] [Accepted: 07/25/2018] [Indexed: 01/02/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible posttranslational modification involved in a range of cellular processes. Here, we report system-wide identification of serine ADPr in human cells upon oxidative stress. High-resolution mass spectrometry and unrestricted data processing confirm that serine residues are the major target of ADPr in HeLa cells. Proteome-wide analysis identifies 3,090 serine ADPr sites, with 97% of acceptor sites modulating more than 2-fold upon oxidative stress, while treatment with the poly (ADP-ribose) polymerase (PARP) inhibitor olaparib abrogates this induction. Serine ADPr predominantly targets nuclear proteins, while structural-predictive analyses reveal that serine ADPr preferentially targets disordered protein regions. The identified ADP-ribosylated serines significantly overlap with known phosphorylated serines, and large-scale phosphoproteomics analysis provides evidence for site-specific crosstalk between serine ADPr and phosphorylation. Collectively, we demonstrate that serine ADPr is a widespread modification and a major nuclear signaling response to oxidative stress, with a regulatory scope comparable to other extensive posttranslational modifications.
Collapse
Affiliation(s)
- Sara C Larsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Ivo A Hendriks
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Lyon
- Disease Systems Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lars J Jensen
- Disease Systems Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Michael L Nielsen
- Proteomics Program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
317
|
Loo LSW, Vethe H, Soetedjo AAP, Paulo JA, Jasmen J, Jackson N, Bjørlykke Y, Valdez IA, Vaudel M, Barsnes H, Gygi SP, Raeder H, Teo AKK, Kulkarni RN. Dynamic proteome profiling of human pluripotent stem cell-derived pancreatic progenitors. Stem Cells 2020; 38:542-555. [PMID: 31828876 DOI: 10.1002/stem.3135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/15/2019] [Indexed: 12/25/2022]
Abstract
A comprehensive characterization of the molecular processes controlling cell fate decisions is essential to derive stable progenitors and terminally differentiated cells that are functional from human pluripotent stem cells (hPSCs). Here, we report the use of quantitative proteomics to describe early proteome adaptations during hPSC differentiation toward pancreatic progenitors. We report that the use of unbiased quantitative proteomics allows the simultaneous profiling of numerous proteins at multiple time points, and is a valuable tool to guide the discovery of signaling events and molecular signatures underlying cellular differentiation. We also monitored the activity level of pathways whose roles are pivotal in the early pancreas differentiation, including the Hippo signaling pathway. The quantitative proteomics data set provides insights into the dynamics of the global proteome during the transition of hPSCs from a pluripotent state toward pancreatic differentiation.
Collapse
Affiliation(s)
- Larry Sai Weng Loo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University (NTU), Singapore
| | - Heidrun Vethe
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts.,KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Joanita Jasmen
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore
| | - Nicholas Jackson
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Yngvild Bjørlykke
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ivan A Valdez
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| | - Marc Vaudel
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Harald Barsnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | - Helge Raeder
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway.,Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Adrian Kee Keong Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), A*STAR, Singapore.,School of Biological Sciences, Nanyang Technological University (NTU), Singapore.,Departments of Biochemistry and Medicine, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore
| | - Rohit N Kulkarni
- Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
318
|
Chin EL, Ramsey JS, Mishchuk DO, Saha S, Foster E, Chavez JD, Howe K, Zhong X, Polek M, Godfrey KE, Mueller LA, Bruce JE, Heck M, Slupsky CM. Longitudinal Transcriptomic, Proteomic, and Metabolomic Analyses of Citrus sinensis (L.) Osbeck Graft-Inoculated with " Candidatus Liberibacter asiaticus". J Proteome Res 2020; 19:719-732. [PMID: 31885275 DOI: 10.1021/acs.jproteome.9b00616] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
"Candidatus Liberibacter asiaticus" (CLas) is the bacterium associated with the citrus disease Huanglongbing (HLB). Current CLas detection methods are unreliable during presymptomatic infection, and understanding CLas pathogenicity to help develop new detection techniques is challenging because CLas has yet to be isolated in pure culture. To understand how CLas affects citrus metabolism and whether infected plants produce systemic signals that can be used to develop improved detection techniques, leaves from Washington Navel orange (Citrus sinensis (L.) Osbeck) plants were graft-inoculated with CLas and longitudinally studied using transcriptomics (RNA sequencing), proteomics (liquid chromatography-tandem mass spectrometry), and metabolomics (proton nuclear magnetic resonance). Photosynthesis gene expression and protein levels were lower in infected plants compared to controls during late infection, and lower levels of photosynthesis proteins were identified as early as 8 weeks post-grafting. These changes coordinated with higher sugar concentrations, which have been shown to accumulate during HLB. Cell wall modification and degradation gene expression and proteins were higher in infected plants during late infection. Changes in gene expression and proteins related to plant defense were observed in infected plants as early as 8 weeks post-grafting. These results reveal coordinated changes in greenhouse navel leaves during CLas infection at the transcript, protein, and metabolite levels, which can inform of biomarkers of early infection.
Collapse
Affiliation(s)
- Elizabeth L Chin
- Department of Food Science and Technology , University of California, Davis , Davis , California 95616 , United States
| | - John S Ramsey
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health , USDA Agricultural Research Service , Ithaca , New York 14853 , United States.,Boyce Thompson Institute for Plant Research , Ithaca , New York 14853 , United States
| | - Darya O Mishchuk
- Department of Food Science and Technology , University of California, Davis , Davis , California 95616 , United States
| | - Surya Saha
- Boyce Thompson Institute for Plant Research , Ithaca , New York 14853 , United States
| | - Elizabeth Foster
- Contained Research Facility , University of California, Davis , Davis , California 95616 , United States
| | - Juan D Chavez
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - Kevin Howe
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health , USDA Agricultural Research Service , Ithaca , New York 14853 , United States.,Boyce Thompson Institute for Plant Research , Ithaca , New York 14853 , United States
| | - Xuefei Zhong
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - MaryLou Polek
- National Clonal Germplasm Repository for Citrus & Dates , Riverside , California 92507 , United States
| | - Kris E Godfrey
- Contained Research Facility , University of California, Davis , Davis , California 95616 , United States
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research , Ithaca , New York 14853 , United States
| | - James E Bruce
- Department of Genome Sciences , University of Washington , Seattle , Washington 98195 , United States
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health , USDA Agricultural Research Service , Ithaca , New York 14853 , United States.,Boyce Thompson Institute for Plant Research , Ithaca , New York 14853 , United States.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science , Cornell University , Ithaca , New York 14853 , United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology , University of California, Davis , Davis , California 95616 , United States
| |
Collapse
|
319
|
Oltmanns A, Hoepfner L, Scholz M, Zinzius K, Schulze S, Hippler M. Novel Insights Into N-Glycan Fucosylation and Core Xylosylation in C. reinhardtii. FRONTIERS IN PLANT SCIENCE 2020; 10:1686. [PMID: 32010168 PMCID: PMC6974686 DOI: 10.3389/fpls.2019.01686] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/29/2019] [Indexed: 05/28/2023]
Abstract
Chlamydomonas reinhardtii (C. reinhardtii) N-glycans carry plant typical β1,2-core xylose, α1,3-fucose residues, as well as plant atypical terminal β1,4-xylose and methylated mannoses. In a recent study, XylT1A was shown to act as core xylosyltransferase, whereby its action was of importance for an inhibition of excessive Man1A dependent trimming. N-Glycans found in a XylT1A/Man1A double mutant carried core xylose residues, suggesting the existence of a second core xylosyltransferase in C. reinhardtii. To further elucidate enzymes important for N-glycosylation, novel single knockdown mutants of candidate genes involved in the N-glycosylation pathway were characterized. In addition, double, triple, and quadruple mutants affecting already known N-glycosylation pathway genes were generated. By characterizing N-glycan compositions of intact N-glycopeptides from these mutant strains by mass spectrometry, a candidate gene encoding for a second putative core xylosyltransferase (XylT1B) was identified. Additionally, the role of a putative fucosyltransferase was revealed. Mutant strains with knockdown of both xylosyltransferases and the fucosyltransferase resulted in the formation of N-glycans with strongly diminished core modifications. Thus, the mutant strains generated will pave the way for further investigations on how single N-glycan core epitopes modulate protein function in C. reinhardtii.
Collapse
Affiliation(s)
- Anne Oltmanns
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Lara Hoepfner
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Martin Scholz
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Karen Zinzius
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
| | - Stefan Schulze
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster, Germany
- Institute of Plant Science and Resources, Okayama University, Okayama, Japan
| |
Collapse
|
320
|
Zhong Z, Furuya T, Ueno K, Yamaguchi H, Hitachi K, Tsuchida K, Tani M, Tian J, Komatsu S. Proteomic Analysis of Irradiation with Millimeter Waves on Soybean Growth under Flooding Conditions. Int J Mol Sci 2020; 21:E486. [PMID: 31940953 PMCID: PMC7013696 DOI: 10.3390/ijms21020486] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/01/2023] Open
Abstract
Improving soybean growth and tolerance under environmental stress is crucial for sustainable development. Millimeter waves are a radio-frequency band with a wavelength range of 1-10 mm that has dynamic effects on organisms. To investigate the potential effects of millimeter-waves irradiation on soybean seedlings, morphological and proteomic analyses were performed. Millimeter-waves irradiation improved the growth of roots/hypocotyl and the tolerance of soybean to flooding stress. Proteomic analysis indicated that the irradiated soybean seedlings recovered under oxidative stress during growth, whereas proteins related to glycolysis and ascorbate/glutathione metabolism were not affected. Immunoblot analysis confirmed the promotive effect of millimeter waves to glycolysis- and redox-related pathways under flooding conditions. Sugar metabolism was suppressed under flooding in unirradiated soybean seedlings, whereas it was activated in the irradiated ones, especially trehalose synthesis. These results suggest that millimeter-waves irradiation on soybean seeds promotes the recovery of soybean seedlings under oxidative stress, which positively regulates soybean growth through the regulation of glycolysis and redox related pathways.
Collapse
Affiliation(s)
- Zhuoheng Zhong
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
| | - Takashi Furuya
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; (T.F.); (M.T.)
| | - Kimitaka Ueno
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
| | - Hisateru Yamaguchi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Keisuke Hitachi
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Kunihiro Tsuchida
- Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan; (H.Y.); (K.H.); (K.T.)
| | - Masahiko Tani
- Research Center for Development of Far-Infrared Region, University of Fukui, Fukui 910-8507, Japan; (T.F.); (M.T.)
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China;
| | - Setsuko Komatsu
- Faculty of Environment and Information Sciences, Fukui University of Technology, Fukui 910-8505, Japan; (Z.Z.); (K.U.)
| |
Collapse
|
321
|
Hu GM, Secario MK, Chen CM. SeQuery: an interactive graph database for visualizing the GPCR superfamily. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2019:5522636. [PMID: 31236561 PMCID: PMC6591535 DOI: 10.1093/database/baz073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/28/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023]
Abstract
The rate at which new protein and gene sequences are being discovered has grown explosively in the omics era, which has increasingly complicated the efficient characterization and analysis of their biological properties. In this study, we propose a web-based graphical database tool, SeQuery, for intuitively visualizing proteome/genome networks by integrating the sequential, structural and functional information of sequences. As a demonstration of our tool’s effectiveness, we constructed a graph database of G protein-coupled receptor (GPCR) sequences by integrating data from the UniProt, GPCRdb and RCSB PDB databases. Our tool attempts to achieve two goals: (i) given the sequence of a query protein, correctly and efficiently identify whether the protein is a GPCR, and, if so, define its sequential and functional roles in the GPCR superfamily; and (ii) present a panoramic view of the GPCR superfamily and its network centralities that allows users to explore the superfamily at various resolutions. Such a bottom-up-to-top-down view can provide the users with a comprehensive understanding of the GPCR superfamily through interactive navigation of the graph database. A test of SeQuery with the GPCR2841 dataset shows that it correctly identifies 99 out of 100 queried protein sequences. The developed tool is readily applicable to other biological networks, and we aim to expand SeQuery by including additional biological databases in the near future.
Collapse
Affiliation(s)
- Geng-Ming Hu
- Department of Physics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Rd., Taipei 11677, Taiwan
| | - M K Secario
- Department of Physics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Rd., Taipei 11677, Taiwan.,Department of Applied Chemistry, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
| | - Chi-Ming Chen
- Department of Physics, National Taiwan Normal University, 88 Sec. 4 Ting-Chou Rd., Taipei 11677, Taiwan
| |
Collapse
|
322
|
Bhagwat AR, Le Sage V, Nturibi E, Kulej K, Jones J, Guo M, Tae Kim E, Garcia BA, Weitzman MD, Shroff H, Lakdawala SS. Quantitative live cell imaging reveals influenza virus manipulation of Rab11A transport through reduced dynein association. Nat Commun 2020; 11:23. [PMID: 31911620 PMCID: PMC6946661 DOI: 10.1038/s41467-019-13838-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/20/2019] [Indexed: 11/10/2022] Open
Abstract
Assembly of infectious influenza A viruses (IAV) is a complex process involving transport from the nucleus to the plasma membrane. Rab11A-containing recycling endosomes have been identified as a platform for intracellular transport of viral RNA (vRNA). Here, using high spatiotemporal resolution light-sheet microscopy (~1.4 volumes/second, 330 nm isotropic resolution), we quantify Rab11A and vRNA movement in live cells during IAV infection and report that IAV infection decreases speed and increases arrest of Rab11A. Unexpectedly, infection with respiratory syncytial virus alters Rab11A motion in a manner opposite to IAV, suggesting that Rab11A is a common host component that is differentially manipulated by respiratory RNA viruses. Using two-color imaging we demonstrate co-transport of Rab11A and IAV vRNA in infected cells and provide direct evidence that vRNA-associated Rab11A have altered transport. The mechanism of altered Rab11A movement is likely related to a decrease in dynein motors bound to Rab11A vesicles during IAV infection.
Collapse
Affiliation(s)
- Amar R Bhagwat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Valerie Le Sage
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Eric Nturibi
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Katarzyna Kulej
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Jennifer Jones
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Min Guo
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Eui Tae Kim
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, 3400 Civic Center Blvd, Building 421, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
| | - Matthew D Weitzman
- The Children's Hospital of Philadelphia Research Institute, 3501 Civic Center Dr., Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, 3400, Civic Center Blvd, Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hari Shroff
- Section on High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, 13 South Drive, Building 13, Bethesda, MD, 20892, USA
| | - Seema S Lakdawala
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
323
|
Vargas RE, Duong VT, Han H, Ta AP, Chen Y, Zhao S, Yang B, Seo G, Chuc K, Oh S, El Ali A, Razorenova OV, Chen J, Luo R, Li X, Wang W. Elucidation of WW domain ligand binding specificities in the Hippo pathway reveals STXBP4 as YAP inhibitor. EMBO J 2020; 39:e102406. [PMID: 31782549 PMCID: PMC6939200 DOI: 10.15252/embj.2019102406] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 12/20/2022] Open
Abstract
The Hippo pathway, which plays a critical role in organ size control and cancer, features numerous WW domain-based protein-protein interactions. However, ~100 WW domains and 2,000 PY motif-containing peptide ligands are found in the human proteome, raising a "WW-PY" binding specificity issue in the Hippo pathway. In this study, we have established the WW domain binding specificity for Hippo pathway components and uncovered a unique amino acid sequence required for it. By using this criterion, we have identified a WW domain-containing protein, STXBP4, as a negative regulator of YAP. Mechanistically, STXBP4 assembles a protein complex comprising α-catenin and a group of Hippo PY motif-containing components/regulators to inhibit YAP, a process that is regulated by actin cytoskeleton tension. Interestingly, STXBP4 is a potential tumor suppressor for human kidney cancer, whose downregulation is correlated with YAP activation in clear cell renal cell carcinoma. Taken together, our study not only elucidates the WW domain binding specificity for the Hippo pathway, but also reveals STXBP4 as a player in actin cytoskeleton tension-mediated Hippo pathway regulation.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Hippo Signaling Pathway
- Humans
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Prognosis
- Protein Binding
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction
- Survival Rate
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Vesicular Transport Proteins/genetics
- Vesicular Transport Proteins/metabolism
- WW Domains
- Xenograft Model Antitumor Assays
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Rebecca E Vargas
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Vy Thuy Duong
- Department of ChemistryUniversity of California, IrvineIrvineCAUSA
| | - Han Han
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Albert Paul Ta
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Yuxuan Chen
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Shiji Zhao
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Bing Yang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Gayoung Seo
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Kimberly Chuc
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Sunwoo Oh
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| | - Amal El Ali
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Olga V Razorenova
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
| | - Junjie Chen
- Department of Experimental Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTXUSA
| | - Ray Luo
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCAUSA
- Department of Chemical and Biomolecular EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Materials Science and EngineeringUniversity of California, IrvineIrvineCAUSA
- Department of Biomedical EngineeringUniversity of California, IrvineIrvineCAUSA
| | - Xu Li
- School of Life SciencesWestlake UniversityHangzhouZhejiangChina
| | - Wenqi Wang
- Department of Developmental and Cell BiologyUniversity of California, IrvineIrvineCAUSA
| |
Collapse
|
324
|
McGarrity S, Karvelsson ST, Sigurjónsson ÓE, Rolfsson Ó. Comparative Metabolic Network Flux Analysis to Identify Differences in Cellular Metabolism. Methods Mol Biol 2020; 2088:223-269. [PMID: 31893377 DOI: 10.1007/978-1-0716-0159-4_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metabolic network flux analysis uses genome-scale metabolic reconstructions to integrate transcriptomics, proteomics, and/or metabolomics data to allow for comprehensive interpretation of genotype to metabolic phenotype relationships. The compilation of many Constraint-based model analysis methods into one MATLAB package, the COBRAtoolbox, has opened the possibility of using these methods to the many biologists with some knowledge of the commonly used statistical program, MATLAB. Here we outline the steps required to take a published genome-scale metabolic reconstruction and interrogate its consistency and biological feasibility. Subsequently, we demonstrate how mRNA expression data and metabolomics data, relating to one or more cell types or biological contexts, can be applied to constrain and generate metabolic models descriptive of metabolic flux phenotypes. Finally, we describe the comparison of the resulting models and model outputs with the aim of identifying metabolic biomarkers and changes in cellular metabolism.
Collapse
Affiliation(s)
- Sarah McGarrity
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Sigurður T Karvelsson
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Ólafur E Sigurjónsson
- School of Science and Engineering, Reykjavik University, Reykjavik, Iceland
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Óttar Rolfsson
- Center for Systems Biology, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
325
|
Abstract
Shotgun proteomics is the method of choice for large-scale protein identification. However, the use of a robust statistical workflow to validate such identification is mandatory to minimize false matches, ambiguities, and amplification of error rates from spectra to proteins. In this chapter we emphasize the key concepts to take into account when processing the output of a search engine to obtain reliable peptide or protein identifications. We assume that the reader is already familiar with tandem mass spectrometry so we can focus on the use of statistical confidence methods. After introducing the key concepts we present different software tools and how to use them with an example dataset.
Collapse
Affiliation(s)
- Gorka Prieto
- Department of Communications Engineering, Faculty of Engineering of Bilbao, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| | - Jesús Vázquez
- Laboratory of Cardiovascular Proteomics, Centro Nacional de Investigaciones Cardiovasculares (CNIC) and CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| |
Collapse
|
326
|
Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Am J Cancer Res 2020; 10:1213-1229. [PMID: 31938061 PMCID: PMC6956802 DOI: 10.7150/thno.38900] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The merits of nanomedicines are significantly impacted by the surrounding biological environment. Similar to the protein corona generated on the surface of nanoparticles in the circulation system, the intracellular protein corona (IPC) might be formed on nanoparticles when transported inside the cells. However, little is known currently about the formation of IPC and its possible biological influence. Methods: Caco-2 cells, a classical epithelial cell line, were cultured in Transwell plates to form a monolayer. Gold nanoparticles (AuNPs) were prepared as the model nanomedicine due to their excellent stability. Here we focused on identifying IPC formed on the surface of AuNPs during cell transport. The nanoparticles in the basolateral side of the Caco-2 monolayer were collected and analyzed by multiple techniques to verify IPC formation. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics was utilized to analyze the composition of IPC proteins. In particular, we established a dual-filtration strategy to exclude various interference in IPC identification. Based on the subcellular localization of specific IPC proteins, we elicited the nano-trafficking network of AuNPs. The transport pathways of AuNPs identified by proteomic analysis were also verified by various conventional technologies. Finally, we explored the influence of IPC on the uptake and stress response of endothelium. Results: The existence of IPC was demonstrated on the surface of AuNPs, in which 227 proteins were identified. Among them, 40 proteins were finally ascertained as the specific IPC proteins. The subcellular location analysis indicated that these “specific” IPC proteins could back-track the transport pathways of nanoparticles in the epithelial cell monolayer. According to the subcellular distribution of IPC proteins and co-localization, we discovered a new pathway of nanoparticles from endosomes to secretory vesicles which was dominant during the transcytosis. After employing conventional imageology and pharmacology strategies to verify the result of proteomic analysis, we mapped a comprehensive intracellular transport network. Our study also revealed the merits of IPC analysis, which could readily elucidate the molecular mechanisms of transcytosis. Besides, the IPC proteins increased the uptake and stress response of endothelium, which was likely mediated by extracellular matrix and mitochondrion-related IPC proteins. Conclusion: The comprehensive proteomic analysis of IPC enabled tracing of transport pathways in epithelial cells as well as revealing the biological impact of nanoparticles on endothelium.
Collapse
|
327
|
Ford MM, Lawrence SR, Werth EG, McConnell EW, Hicks LM. Label-Free Quantitative Phosphoproteomics for Algae. Methods Mol Biol 2020; 2139:197-211. [PMID: 32462588 DOI: 10.1007/978-1-0716-0528-8_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The unicellular alga Chlamydomonas reinhardtii is a model photosynthetic organism for the study of microalgal processes. Along with genomic and transcriptomic studies, proteomic analysis of Chlamydomonas has led to an increased understanding of its metabolic signaling as well as a growing interest in the elucidation of its phosphorylation networks. To this end, mass spectrometry-based proteomics has made great strides in large-scale protein quantitation as well as analysis of posttranslational modifications (PTMs) in a high-throughput manner. An accurate quantification of dynamic PTMs, such as phosphorylation, requires high reproducibility and sensitivity due to the substoichiometric levels of modified peptides, which can make depth of coverage challenging. Here we present a method using TiO2-based phosphopeptide enrichment paired with label-free LC-MS/MS for phosphoproteome quantification. Three technical replicate samples in Chlamydomonas were processed and analyzed using this approach, quantifying a total of 1775 phosphoproteins with a total of 3595 phosphosites. With a median CV of 21% across quantified phosphopeptides, implementation of this method for differential studies provides highly reproducible analysis of phosphorylation events. While the culturing and extraction methods used are specific to facilitate coverage in algal species, this approach is widely applicable and can easily extend beyond algae to other photosynthetic organisms with minor modifications.
Collapse
Affiliation(s)
- Megan M Ford
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheldon R Lawrence
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily G Werth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Evan W McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
328
|
Trolle Jensen TZ, Mackie M, Taurozzi AJ, Lanigan LT, Gundelach C, Olsen J, Sørensen SA, Collins MJ, Sørensen M, Schroeder H. The biomolecular characterization of a finger ring contextually dated to the emergence of the Early Neolithic from Syltholm, Denmark. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191172. [PMID: 32218948 PMCID: PMC7029941 DOI: 10.1098/rsos.191172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
We present the analysis of an osseous finger ring from a predominantly early Neolithic context in Denmark. To characterize the artefact and identify the raw material used for its manufacture, we performed micro-computed tomography scanning, zooarchaeology by mass spectrometry (ZooMS) peptide mass fingerprinting, as well as protein sequencing by liquid chromatography tandem mass spectrometry (LC-MS/MS). We conclude that the ring was made from long bone or antler due to the presence of osteons (Haversian canals). Subsequent ZooMS analysis of collagen I and II indicated that it was made from Alces alces or Cervus elaphus material. We then used LC-MS/MS analysis to refine our species identification, confirming that the ring was made from Cervus elaphus, and to examine the rest of the proteome. This study demonstrates the potential of ancient proteomics for species identification of prehistoric artefacts made from osseous material.
Collapse
Affiliation(s)
- Theis Zetner Trolle Jensen
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- BioArCh, Department of Archaeology, Environment Building, Wentworth Way, University of York, York YO10 5NG, UK
| | - Meaghan Mackie
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, 2200 Copenhagen, Denmark
| | - Alberto John Taurozzi
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Liam Thomas Lanigan
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Carsten Gundelach
- Department of Physics, NEXMAP, Technical University of Denmark, Fysikvej 311, 2800 Kgs Lyngby, Denmark
| | - Jesper Olsen
- Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark
| | | | - Matthew James Collins
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
- McDonald Institute for Archaeological Research, University of Cambridge, West Tower, Downing Street, Cambridge CB2 3ER, UK
| | - Mikkel Sørensen
- The Saxo Institute, Department of Archaeology, University of Copenhagen, Karen Blixens vej 4, 2300 København S, Denmark
| | - Hannes Schroeder
- Section for Evolutionary Genomics, The Globe Institute, Faculty of Health, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| |
Collapse
|
329
|
Fuchs P, Rugen N, Carrie C, Elsässer M, Finkemeier I, Giese J, Hildebrandt TM, Kühn K, Maurino VG, Ruberti C, Schallenberg-Rüdinger M, Steinbeck J, Braun HP, Eubel H, Meyer EH, Müller-Schüssele SJ, Schwarzländer M. Single organelle function and organization as estimated from Arabidopsis mitochondrial proteomics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:420-441. [PMID: 31520498 DOI: 10.1111/tpj.14534] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/23/2019] [Accepted: 08/28/2019] [Indexed: 05/14/2023]
Abstract
Mitochondria host vital cellular functions, including oxidative phosphorylation and co-factor biosynthesis, which are reflected in their proteome. At the cellular level plant mitochondria are organized into hundreds of discrete functional entities, which undergo dynamic fission and fusion. It is the individual organelle that operates in the living cell, yet biochemical and physiological assessments have exclusively focused on the characteristics of large populations of mitochondria. Here, we explore the protein composition of an individual average plant mitochondrion to deduce principles of functional and structural organisation. We perform proteomics on purified mitochondria from cultured heterotrophic Arabidopsis cells with intensity-based absolute quantification and scale the dataset to the single organelle based on criteria that are justified by experimental evidence and theoretical considerations. We estimate that a total of 1.4 million protein molecules make up a single Arabidopsis mitochondrion on average. Copy numbers of the individual proteins span five orders of magnitude, ranging from >40 000 for Voltage-Dependent Anion Channel 1 to sub-stoichiometric copy numbers, i.e. less than a single copy per single mitochondrion, for several pentatricopeptide repeat proteins that modify mitochondrial transcripts. For our analysis, we consider the physical and chemical constraints of the single organelle and discuss prominent features of mitochondrial architecture, protein biogenesis, oxidative phosphorylation, metabolism, antioxidant defence, genome maintenance, gene expression, and dynamics. While assessing the limitations of our considerations, we exemplify how our understanding of biochemical function and structural organization of plant mitochondria can be connected in order to obtain global and specific insights into how organelles work.
Collapse
Affiliation(s)
- Philippe Fuchs
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Nils Rugen
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Chris Carrie
- Department Biologie I - Botanik, Ludwig-Maximilians-Universität München, Grosshadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Marlene Elsässer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Iris Finkemeier
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Jonas Giese
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Tatjana M Hildebrandt
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Kristina Kühn
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, and Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Cristina Ruberti
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Mareike Schallenberg-Rüdinger
- Institut für Zelluläre und Molekulare Botanik (IZMB), Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Janina Steinbeck
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| | - Hans-Peter Braun
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Holger Eubel
- Institut für Pflanzengenetik, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Etienne H Meyer
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Weinbergweg 10, 06120, Halle/Saale, Germany
| | - Stefanie J Müller-Schüssele
- Institut für Nutzpflanzenforschung und Ressourcenschutz (INRES), Rheinische Friedrich-Wilhelms-Universität Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany
| | - Markus Schwarzländer
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität, Schlossplatz 7-8, 48143, Münster, Germany
| |
Collapse
|
330
|
Abstract
Mass spectrometry based proteomics approaches are routinely used to discover candidate biomarkers. These studies often use small number of samples to discover candidate proteins that are later validated on a large cohort of samples. Targeted proteomics has emerged as a powerful method for quantification of multiple proteins in complex biological matrix. Parallel reaction monitoring (PRM) and selected reaction monitoring (SRM) are two main methods of choice for quantifying and validating proteins across hundreds to thousands of samples. Over the years, many software tools have become available that enable the users to carry out the analysis. In this chapter, we describe selection of proteotypic peptides, sample preparation, generating a response curve, data acquisition and analysis of PRM data using Skyline software for targeted proteomics to quantify candidate markers in urine.
Collapse
|
331
|
Captur G, Heywood WE, Coats C, Rosmini S, Patel V, Lopes LR, Collis R, Patel N, Syrris P, Bassett P, O'Brien B, Moon JC, Elliott PM, Mills K. Identification of a Multiplex Biomarker Panel for Hypertrophic Cardiomyopathy Using Quantitative Proteomics and Machine Learning. Mol Cell Proteomics 2020; 19:114-127. [PMID: 31243064 PMCID: PMC6944230 DOI: 10.1074/mcp.ra119.001586] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 12/22/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by pathological left ventricular hypertrophy (LVH). It is the commonest inherited cardiac condition and a significant number of high risk cases still go undetected until a sudden cardiac death (SCD) event. Plasma biomarkers do not currently feature in the assessment of HCM disease progression, which is tracked by serial imaging, or in SCD risk stratification, which is based on imaging parameters and patient/family history. There is a need for new HCM plasma biomarkers to refine disease monitoring and improve patient risk stratification. To identify new plasma biomarkers for patients with HCM, we performed exploratory myocardial and plasma proteomics screens and subsequently developed a multiplexed targeted liquid chromatography-tandem/mass spectrometry-based assay to validate the 26 peptide biomarkers that were identified. The association of discovered biomarkers with clinical phenotypes was prospectively tested in plasma from 110 HCM patients with LVH (LVH+ HCM), 97 controls, and 16 HCM sarcomere gene mutation carriers before the development of LVH (subclinical HCM). Six peptides (aldolase fructose-bisphosphate A, complement C3, glutathione S-transferase omega 1, Ras suppressor protein 1, talin 1, and thrombospondin 1) were increased significantly in the plasma of LVH+ HCM compared with controls and correlated with imaging markers of phenotype severity: LV wall thickness, mass, and percentage myocardial scar on cardiovascular magnetic resonance imaging. Using supervised machine learning (ML), this six-biomarker panel differentiated between LVH+ HCM and controls, with an area under the curve of ≥ 0.87. Five of these peptides were also significantly increased in subclinical HCM compared with controls. In LVH+ HCM, the six-marker panel correlated with the presence of nonsustained ventricular tachycardia and the estimated five-year risk of sudden cardiac death. Using quantitative proteomic approaches, we have discovered six potentially useful circulating plasma biomarkers related to myocardial substrate changes in HCM, which correlate with the estimated sudden cardiac death risk.
Collapse
Affiliation(s)
- Gabriella Captur
- UCL MRC Unit for Lifelong Health and Ageing, 1-19 Torrington Place, Fitzrovia, London WC1E 7HB, UK; Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Wendy E Heywood
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Caroline Coats
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Stefania Rosmini
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK
| | - Vimal Patel
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis R Lopes
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Richard Collis
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Nina Patel
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Petros Syrris
- Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Paul Bassett
- Biostatistics Joint Research Office, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ben O'Brien
- Department of Perioperative Medicine, St. Bartholomew's Hospital and Barts Heart Center, West Smithfield, London, EC1A 7BE, UK; William Harvey Research Institute, Charterhouse Square, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - James C Moon
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Perry M Elliott
- Barts Heart Center, The Cardiovascular Magnetic Resonance Imaging Unit and The Inherited Cardiovascular Diseases Unit, St. Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, UK; Institute of Cardiovascular Science, University College London, Gower Street, London, WC1E 6BT, UK
| | - Kevin Mills
- Translational Mass Spectrometry Research Group, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London WC1N 1EH, UK; Institute of Child Health, University College London, London, WC1N 1EH, UK.
| |
Collapse
|
332
|
Mikhalchik E, Balabushevich N, Vakhrusheva T, Sokolov A, Baykova J, Rakitina D, Scherbakov P, Gusev S, Gusev A, Kharaeva Z, Bukato O, Pobeguts O. Mucin adsorbed by E. coli can affect neutrophil activation in vitro. FEBS Open Bio 2019; 10:180-196. [PMID: 31785127 PMCID: PMC6996330 DOI: 10.1002/2211-5463.12770] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022] Open
Abstract
Bacteria colonizing human intestine adhere to the gut mucosa and avoid the innate immune system. We previously demonstrated that Escherichia coli isolates can adsorb mucin from a diluted solution in vitro. Here, we evaluated the effect of mucin adsorption by E. coli cells on neutrophil activation in vitro. Activation was evaluated based on the detection of reactive oxygen species production by a chemiluminescent reaction (ChL), observation of morphological alterations in neutrophils and detection of exocytosis of myeloperoxidase and lactoferrin. We report that mucin adsorbed by cells of SharL1 isolate from Crohn's disease patient's inflamed ileum suppressed the potential for the activation of neutrophils in whole blood. Also, the binding of plasma complement proteins and immunoglobulins to the bacteria was reduced. Desialylated mucin, despite having the same adsorption efficiency to bacteria, had no effect on the blood ChL response. The effect of mucin suggests that it shields epitopes that interact with neutrophils and plasma proteins on the bacterial outer membrane. Potential candidates for these epitopes were identified among the proteins within the bacterial outer membrane fraction by 2D‐PAGE, fluorescent mucin binding on a blot and HPLC‐MS/MS. In vitro, the following proteins demonstrated mucin adsorption: outer membrane porins (OmpA, OmpC, OmpD and OmpF), adhesin OmpX, the membrane assembly factor OmpW, cobalamine transporter, ferrum uptake protein and the elongation factor Ef Tu‐1. In addition to their other functions, these proteins are known to be bacterial surface antigens. Therefore, the shielding of epitopes by mucin may affect the dynamics and intensity of an immune response.
Collapse
Affiliation(s)
- Elena Mikhalchik
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Tatiana Vakhrusheva
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexey Sokolov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia.,Institute of Experimental Medicine, St. Petersburg, Russia
| | - Julia Baykova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Daria Rakitina
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Petr Scherbakov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | | | - Olga Bukato
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
333
|
Jourdan J, Walz A, Matile H, Schmidt A, Wu J, Wang X, Dong Y, Vennerstrom JL, Schmidt RS, Wittlin S, Mäser P. Stochastic Protein Alkylation by Antimalarial Peroxides. ACS Infect Dis 2019; 5:2067-2075. [PMID: 31626733 DOI: 10.1021/acsinfecdis.9b00264] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antimalarial peroxides such as the phytochemical artemisinin or the synthetic ozonides arterolane and artefenomel undergo reductive cleavage of the pharmacophoric peroxide bond by ferrous heme, released by parasite hemoglobin digestion. The generated carbon-centered radicals alkylate heme in an intramolecular reaction and proteins in an intermolecular reaction. Here, we determine the proteinaceous alkylation signatures of artemisinin and synthetic ozonides in Plasmodium falciparum using alkyne click chemistry probes to identify target proteins by affinity purification and mass spectrometry-based proteomics. Using stringent controls and purification procedures, we identified 25 P. falciparum proteins that were alkylated by the antimalarial peroxides in a peroxide-dependent manner, but the alkylation patterns were more random than we had anticipated. Moreover, there was little overlap in the alkylation signatures identified in this work and those disclosed in previous studies. Our findings suggest that alkylation of parasite proteins by antimalarial peroxides is likely to be a nonspecific, stochastic process.
Collapse
Affiliation(s)
- Joëlle Jourdan
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Annabelle Walz
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Hugues Matile
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Jianbo Wu
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Xiaofang Wang
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Yuxiang Dong
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Jonathan L. Vennerstrom
- College of Pharmacy, University of Nebraska Medical Center, 42nd and Emile, Omaha, Nebraska 68198-6125, United States
| | - Remo S. Schmidt
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| |
Collapse
|
334
|
Jain AP, Patel K, Pinto S, Radhakrishnan A, Nanjappa V, Kumar M, Raja R, Patil AH, Kumari A, Manoharan M, Karunakaran C, Murugan S, Keshava Prasad TS, Chang X, Mathur PP, Kumar P, Gupta R, Gupta R, Khanna-Gupta A, Sidransky D, Chatterjee A, Gowda H. MAP2K1 is a potential therapeutic target in erlotinib resistant head and neck squamous cell carcinoma. Sci Rep 2019; 9:18793. [PMID: 31827134 PMCID: PMC6906491 DOI: 10.1038/s41598-019-55208-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/11/2019] [Indexed: 11/09/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) targeted therapies have shown limited efficacy in head and neck squamous cell carcinoma (HNSCC) patients despite its overexpression. Identifying molecular mechanisms associated with acquired resistance to EGFR-TKIs such as erlotinib remains an unmet need and a therapeutic challenge. In this study, we employed an integrated multi-omics approach to delineate mechanisms associated with acquired resistance to erlotinib by carrying out whole exome sequencing, quantitative proteomic and phosphoproteomic profiling. We observed amplification of several genes including AXL kinase and transcription factor YAP1 resulting in protein overexpression. We also observed expression of constitutively active mutant MAP2K1 (p.K57E) in erlotinib resistant SCC-R cells. An integrated analysis of genomic, proteomic and phosphoproteomic data revealed alterations in MAPK pathway and its downstream targets in SCC-R cells. We demonstrate that erlotinib-resistant cells are sensitive to MAPK pathway inhibition. This study revealed multiple genetic, proteomic and phosphoproteomic alterations associated with erlotinib resistant SCC-R cells. Our data indicates that therapeutic targeting of MAPK pathway is an effective strategy for treating erlotinib-resistant HNSCC tumors.
Collapse
Affiliation(s)
- Ankit P Jain
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Odisha, 751024, India
| | - Krishna Patel
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690525, India
| | - Sneha Pinto
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Aneesha Radhakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Vishalakshi Nanjappa
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Remya Raja
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
| | - Arun H Patil
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Odisha, 751024, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | | | | | | | | | - T S Keshava Prasad
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India
| | - Xiaofei Chang
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Premendu Prakash Mathur
- School of Biotechnology, Kalinga Institute of Industrial Technology, Odisha, 751024, India.,Dept. of Biochemistry & Molecular Biology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | - Prashant Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
| | - Ravi Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, 560099, India
| | - Rohit Gupta
- Medgenome Labs Pvt. Ltd., Bangalore, 560099, India
| | | | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, 21231, MD, USA
| | - Aditi Chatterjee
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India.
| | - Harsha Gowda
- Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India. .,School of Biotechnology, Kalinga Institute of Industrial Technology, Odisha, 751024, India. .,Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India. .,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, India. .,QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
335
|
Potjewyd F, Turner AMW, Beri J, Rectenwald JM, Norris-Drouin JL, Cholensky SH, Margolis DM, Pearce KH, Herring LE, James LI. Degradation of Polycomb Repressive Complex 2 with an EED-Targeted Bivalent Chemical Degrader. Cell Chem Biol 2019; 27:47-56.e15. [PMID: 31831267 DOI: 10.1016/j.chembiol.2019.11.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/04/2019] [Accepted: 11/12/2019] [Indexed: 12/18/2022]
Abstract
Protein degradation via the use of bivalent chemical degraders provides an alternative strategy to block protein function and assess the biological roles of putative drug targets. This approach capitalizes on the advantages of small-molecule inhibitors while moving beyond the restrictions of traditional pharmacology. Here, we report a chemical degrader (UNC6852) that targets polycomb repressive complex 2 (PRC2). UNC6852 contains an EED226-derived ligand and a ligand for VHL which bind to the WD40 aromatic cage of EED and CRL2VHL, respectively, to induce proteasomal degradation of PRC2 components, EED, EZH2, and SUZ12. Degradation of PRC2 with UNC6852 blocks the histone methyltransferase activity of EZH2, decreasing H3K27me3 levels in HeLa cells and diffuse large B cell lymphoma (DLBCL) cells containing EZH2 gain-of-function mutations. UNC6852 degrades both wild-type and mutant EZH2, and additionally displays anti-proliferative effects in this cancer model system.
Collapse
Affiliation(s)
- Frances Potjewyd
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Anne-Marie W Turner
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Joshua Beri
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Justin M Rectenwald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline L Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephanie H Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - David M Margolis
- UNC HIV Cure Center, Institute of Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Medicine, School Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kenneth H Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura E Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lindsey I James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
336
|
Khan S, Zhang X, Lv D, Zhang Q, He Y, Zhang P, Liu X, Thummuri D, Yuan Y, Wiegand JS, Pei J, Zhang W, Sharma A, McCurdy CR, Kuruvilla VM, Baran N, Ferrando AA, Kim YM, Rogojina A, Houghton PJ, Huang G, Hromas R, Konopleva M, Zheng G, Zhou D. A selective BCL-X L PROTAC degrader achieves safe and potent antitumor activity. Nat Med 2019; 25:1938-1947. [PMID: 31792461 PMCID: PMC6898785 DOI: 10.1038/s41591-019-0668-z] [Citation(s) in RCA: 416] [Impact Index Per Article: 69.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
BCL-XL is a well-validated cancer target. However, the on-target and dose-limiting thrombocytopenia limits the use of BCL-XL inhibitors such as ABT263 as safe and effective anticancer agents. To reduce the toxicity of ABT263, we converted it into DT2216, a BCL-XL proteolysis targeting chimera (PROTAC), that targets BCL-XL to the Von Hippel-Lindau (VHL) E3 ligase for degradation. We found that DT2216 was more potent against various BCL-XL-dependent leukemia and cancer cells but significantly less toxic to platelets than ABT263 in vitro because VHL is poorly expressed in platelets. In vivo, DT2216 effectively inhibits the growth of several xenograft tumors as a single agent or in combination with other chemotherapeutic agents, without causing significant thrombocytopenia. These findings demonstrate the potential to use PROTAC technology to reduce on-target drug toxicities and rescue the therapeutic potential of previously undruggable targets. Furthermore, DT2216 may be developed as a safe first-in-class anticancer agent targeting BCL-XL.
Collapse
Affiliation(s)
- Sajid Khan
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Xuan Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Dongwen Lv
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Qi Zhang
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Yonghan He
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Peiyi Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Xingui Liu
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Dinesh Thummuri
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Yaxia Yuan
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Janet S Wiegand
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Jing Pei
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Vinitha M Kuruvilla
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Natalia Baran
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Adolfo A Ferrando
- Department of Pediatrics, Pathology, Cell Biology and Systems of Biology and Institute for Cancer Genetics, Columbia University, New York, NY, USA
| | - Yong-Mi Kim
- Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Anna Rogojina
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Guangcun Huang
- Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Robert Hromas
- Department of Medicine, the Long School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Marina Konopleva
- Department of Leukemia, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Guangrong Zheng
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, USA.
| | - Daohong Zhou
- Department of Pharmacodynamics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
337
|
Benz C, Urbaniak MD. Organising the cell cycle in the absence of transcriptional control: Dynamic phosphorylation co-ordinates the Trypanosoma brucei cell cycle post-transcriptionally. PLoS Pathog 2019; 15:e1008129. [PMID: 31830130 PMCID: PMC6907760 DOI: 10.1371/journal.ppat.1008129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022] Open
Abstract
The cell division cycle of the unicellular eukaryote Trypanosome brucei is tightly regulated despite the paucity of transcriptional control that results from the arrangement of genes in polycistronic units and lack of dynamically regulated transcription factors. To identify the contribution of dynamic phosphorylation to T. brucei cell cycle control we have combined cell cycle synchronisation by centrifugal elutriation with quantitative phosphoproteomic analysis. Cell cycle regulated changes in phosphorylation site abundance (917 sites, average 5-fold change) were more widespread and of a larger magnitude than changes in protein abundance (443 proteins, average 2-fold change) and were mostly independent of each other. Hierarchical clustering of co-regulated phosphorylation sites according to their cell cycle profile revealed that a bulk increase in phosphorylation occurs across the cell cycle, with a significant enrichment of known cell cycle regulators and RNA binding proteins (RBPs) within the largest clusters. Cell cycle regulated changes in essential cell cycle kinases are temporally co-ordinated with differential phosphorylation of components of the kinetochore and eukaryotic initiation factors, along with many RBPs not previously linked to the cell cycle such as eight PSP1-C terminal domain containing proteins. The temporal profiles demonstrate the importance of dynamic phosphorylation in co-ordinating progression through the cell cycle, and provide evidence that RBPs play a central role in post-transcriptional regulation of the T. brucei cell cycle. Data are available via ProteomeXchange with identifier PXD013488.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Michael D. Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
338
|
Monteiro F, Hubmann G, Takhaveev V, Vedelaar SR, Norder J, Hekelaar J, Saldida J, Litsios A, Wijma HJ, Schmidt A, Heinemann M. Measuring glycolytic flux in single yeast cells with an orthogonal synthetic biosensor. Mol Syst Biol 2019; 15:e9071. [PMID: 31885198 PMCID: PMC6920703 DOI: 10.15252/msb.20199071] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic heterogeneity between individual cells of a population harbors significant challenges for fundamental and applied research. Identifying metabolic heterogeneity and investigating its emergence require tools to zoom into metabolism of individual cells. While methods exist to measure metabolite levels in single cells, we lack capability to measure metabolic flux, i.e., the ultimate functional output of metabolic activity, on the single-cell level. Here, combining promoter engineering, computational protein design, biochemical methods, proteomics, and metabolomics, we developed a biosensor to measure glycolytic flux in single yeast cells. Therefore, drawing on the robust cell-intrinsic correlation between glycolytic flux and levels of fructose-1,6-bisphosphate (FBP), we transplanted the B. subtilis FBP-binding transcription factor CggR into yeast. With the developed biosensor, we robustly identified cell subpopulations with different FBP levels in mixed cultures, when subjected to flow cytometry and microscopy. Employing microfluidics, we were also able to assess the temporal FBP/glycolytic flux dynamics during the cell cycle. We anticipate that our biosensor will become a valuable tool to identify and study metabolic heterogeneity in cell populations.
Collapse
Affiliation(s)
- Francisca Monteiro
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
cE3c‐Centre for Ecology, Evolution and Environmental ChangesFaculdade de CiênciasUniversidade de LisboaLisboaPortugal
| | - Georg Hubmann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Present address:
Laboratory of Molecular Cell BiologyDepartment of BiologyInstitute of Botany and MicrobiologyKU Leuven, & Center for Microbiology, VIBHeverlee, FlandersBelgium
| | - Vakil Takhaveev
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Silke R Vedelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Justin Norder
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Johan Hekelaar
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Joana Saldida
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Athanasios Litsios
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | - Hein J Wijma
- Biotechnology, Groningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| | | | - Matthias Heinemann
- Molecular Systems BiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
339
|
Berman HM, Adams PD, Bonvin AA, Burley SK, Carragher B, Chiu W, DiMaio F, Ferrin TE, Gabanyi MJ, Goddard TD, Griffin PR, Haas J, Hanke CA, Hoch JC, Hummer G, Kurisu G, Lawson CL, Leitner A, Markley JL, Meiler J, Montelione GT, Phillips GN, Prisner T, Rappsilber J, Schriemer DC, Schwede T, Seidel CAM, Strutzenberg TS, Svergun DI, Tajkhorshid E, Trewhella J, Vallat B, Velankar S, Vuister GW, Webb B, Westbrook JD, White KL, Sali A. Federating Structural Models and Data: Outcomes from A Workshop on Archiving Integrative Structures. Structure 2019; 27:1745-1759. [PMID: 31780431 DOI: 10.1016/j.str.2019.11.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/06/2019] [Indexed: 12/23/2022]
Abstract
Structures of biomolecular systems are increasingly computed by integrative modeling. In this approach, a structural model is constructed by combining information from multiple sources, including varied experimental methods and prior models. In 2019, a Workshop was held as a Biophysical Society Satellite Meeting to assess progress and discuss further requirements for archiving integrative structures. The primary goal of the Workshop was to build consensus for addressing the challenges involved in creating common data standards, building methods for federated data exchange, and developing mechanisms for validating integrative structures. The summary of the Workshop and the recommendations that emerged are presented here.
Collapse
Affiliation(s)
- Helen M Berman
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA.
| | - Paul D Adams
- Physical Biosciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720-8235, USA; Department of Bioengineering, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Alexandre A Bonvin
- Bijvoet Center for Biomolecular Research, Faculty of Science - Chemistry, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| | - Stephen K Burley
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA; Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Wah Chiu
- Department of Bioengineering, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305-5447, USA; SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Frank DiMaio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Thomas E Ferrin
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | - Margaret J Gabanyi
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Thomas D Goddard
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA
| | | | - Juergen Haas
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Christian A Hanke
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jeffrey C Hoch
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT 06030, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany; Institute for Biophysics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Genji Kurisu
- Protein Data Bank Japan (PDBj), Institute for Protein Research, Osaka University, Osaka 565-0871, Japan
| | - Catherine L Lawson
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - John L Markley
- BioMagResBank (BMRB), Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, 465 21st Avenue South, Nashville, TN 37221, USA
| | - Gaetano T Montelione
- Center for Advanced Biotechnology and Medicine, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Department of Biochemistry, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytech Institute, Troy, NY 12180, USA
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry, Rice University, Houston, TX 77251, USA
| | - Thomas Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, Edinburgh EH9 3JR, Scotland
| | - David C Schriemer
- Department of Biochemistry & Molecular Biology, Robson DNA Science Centre, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Torsten Schwede
- Swiss Institute of Bioinformatics and Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Claus A M Seidel
- Molecular Physical Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, Notkestrasse 85, 22607 Hamburg, Germany
| | - Emad Tajkhorshid
- Department of Biochemistry, NIH Center for Macromolecular Modeling and Bioinformatics, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jill Trewhella
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Brinda Vallat
- Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sameer Velankar
- Protein Data Bank in Europe (PDBe), European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, Cambridgeshire CB10 1SD, UK
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester LE1 9HN, UK
| | - Benjamin Webb
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - John D Westbrook
- Research Collaboratory for Structural Bioinformatics Protein Data Bank, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Kate L White
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA; Bridge Institute, Michelson Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrej Sali
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
340
|
Bauer N, Škiljaica A, Malenica N, Razdorov G, Klasić M, Juranić M, Močibob M, Sprunck S, Dresselhaus T, Leljak Levanić D. The MATH-BTB Protein TaMAB2 Accumulates in Ubiquitin-Containing Foci and Interacts With the Translation Initiation Machinery in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:1469. [PMID: 31824527 PMCID: PMC6883508 DOI: 10.3389/fpls.2019.01469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
MATH-BTB proteins are known to act as substrate-specific adaptors of CUL3-based E3 ligases in the ubiquitin proteasome pathway. Their BTB domain binds to CUL3 scaffold proteins and the less conserved MATH domain targets a highly diverse collection of substrate proteins to promote their ubiquitination and subsequent degradation. In plants, a significant expansion of the MATH-BTB family occurred in the grasses. Here, we report analysis of TaMAB2, a MATH-BTB protein transiently expressed at the onset of embryogenesis in wheat. Due to difficulties in studying its role in zygotes and early embryos, we have overexpressed TaMAB2 in Arabidopsis to generate gain-of-function mutants and to elucidate interaction partners and substrates. Overexpression plants showed severe growth defects as well as disorganization of microtubule bundles indicating that TaMAB2 interacts with substrates in Arabidopsis. In tobacco BY-2 cells, TaMAB2 showed a microtubule and ubiquitin-associated cytoplasmic localization pattern in form of foci. Its direct interaction with CUL3 suggests functions in targeting specific substrates for ubiquitin-dependent degradation. Although direct interactions with tubulin could not be confimed, tandem affinity purification of TaMAB2 interactors point towards cytoskeletal proteins including tubulin and actin as well as the translation initiation machinery. The idenification of various subunits of eucaryotic translation initiation factors eIF3 and eIF4 as TaMAB2 interactors indicate regulation of translation initiation as a major function during onset of embryogenesis in plants.
Collapse
Affiliation(s)
- Nataša Bauer
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Andreja Škiljaica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Nenad Malenica
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | - Marija Klasić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Martina Juranić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Marko Močibob
- Division of Biochemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Stefanie Sprunck
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Dunja Leljak Levanić
- Division of Molecular Biology, Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
341
|
Košec A, Novak R, Konjevoda P, Trkulja V, Bedeković V, Grgurević L. Tumor tissue hnRNP M and HSP 90α as potential predictors of disease-specific mortality in patients with early-stage cutaneous head and neck melanoma: A proteomics-based study. Oncotarget 2019; 10:6713-6722. [PMID: 31803364 PMCID: PMC6877100 DOI: 10.18632/oncotarget.27333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Breslow tumor thickness and mitotic rate are standardly used for risk stratification of patients with malignant melanoma. However, their prognostic value is relatively limited and a need for improved prognostication has been advocated. We aimed to screen the tumor tissue proteome in a search for potentially useful prognostic factors in early-stage cutaneous head and neck melanoma. METHODOLOGY AND FINDINGS Proteomic profiles of archival formalin-fixed tissue samples of 31 patients (age 23-90 years) with early-stage head and neck cutaneous malignant melanoma (American Joint Committee on Cancer, AJCC, stage I/II) were determined and expression intensities were compared to those of melanocytic nevi, yielding ratios used in data analysis. Medical charts were retrospectively reviewed to determine time elapsed since diagnosis to disease-specific death or censoring. In a multivariate recursive partitioning analysis (as per AJCC guidelines), higher expression levels of heterogeneous nuclear ribonucleoprotein M (hnRNP M) [n = 18, HR = 1.94 vs. the entire cohort; HR = 5.95 (95%CI 2.43-14.5) for "high" vs. "low" (n = 13)] and of heat shock protein 90 alpha (HSP 90α) [n = 17, HR = 2.09 vs. the entire cohort; HR = 4.59 (95%CI 1.87-11.2) for "high" vs. "low" (n = 14)] were each independently strongly associated with higher mortality (accounting for clinical and standard pathohistological features). Higher Breslow thickness and mitotic rate were associated with higher mortality only when proteomic data were disregarded. CONCLUSIONS AND SIGNIFICANCE Data suggest that tumor tissue expression of hnRNP M and/or of HSP 90α deserve further investigation and clinical validation as potential novel risk stratification aids in patients with stage I-II cutaneous head and neck malignant melanoma.
Collapse
Affiliation(s)
- Andro Košec
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
- These authors contributed equally to this work
| | - Ruđer Novak
- Department for Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- These authors contributed equally to this work
| | - Paško Konjevoda
- Division of Molecular Medicine, Laboratory for Epigenomics, Rudjer Boskovic Institute, Zagreb, Croatia
| | - Vladimir Trkulja
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Bedeković
- Department of Otorhinolaryngology and Head and Neck Surgery, University Hospital Centre Sestre Milosrdnice, Zagreb, Croatia
| | - Lovorka Grgurević
- Department for Proteomics, Center for Translational and Clinical Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy “Drago Perović”, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
342
|
Magomedova L, Tiefenbach J, Zilberman E, Le Billan F, Voisin V, Saikali M, Boivin V, Robitaille M, Gueroussov S, Irimia M, Ray D, Patel R, Xu C, Jeyasuria P, Bader GD, Hughes TR, Morris QD, Scott MS, Krause H, Angers S, Blencowe BJ, Cummins CL. ARGLU1 is a transcriptional coactivator and splicing regulator important for stress hormone signaling and development. Nucleic Acids Res 2019; 47:2856-2870. [PMID: 30698747 PMCID: PMC6451108 DOI: 10.1093/nar/gkz010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022] Open
Abstract
Stress hormones bind and activate the glucocorticoid receptor (GR) in many tissues including the brain. We identified arginine and glutamate rich 1 (ARGLU1) in a screen for new modulators of glucocorticoid signaling in the CNS. Biochemical studies show that the glutamate rich C-terminus of ARGLU1 coactivates multiple nuclear receptors including the glucocorticoid receptor (GR) and the arginine rich N-terminus interacts with splicing factors and binds to RNA. RNA-seq of neural cells depleted of ARGLU1 revealed significant changes in the expression and alternative splicing of distinct genes involved in neurogenesis. Loss of ARGLU1 is embryonic lethal in mice, and knockdown in zebrafish causes neurodevelopmental and heart defects. Treatment with dexamethasone, a GR activator, also induces changes in the pattern of alternatively spliced genes, many of which were lost when ARGLU1 was absent. Importantly, the genes found to be alternatively spliced in response to glucocorticoid treatment were distinct from those under transcriptional control by GR, suggesting an additional mechanism of glucocorticoid action is present in neural cells. Our results thus show that ARGLU1 is a novel factor for embryonic development that modulates basal transcription and alternative splicing in neural cells with consequences for glucocorticoid signaling.
Collapse
Affiliation(s)
- Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Jens Tiefenbach
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Emma Zilberman
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Florian Le Billan
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Michael Saikali
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Vincent Boivin
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Melanie Robitaille
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - Serge Gueroussov
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Manuel Irimia
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Debashish Ray
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Rucha Patel
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| | - ChangJiang Xu
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Pancharatnam Jeyasuria
- Department of Obstetrics and Gynecology, Wayne State University Perinatal Initiative, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Gary D Bader
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Timothy R Hughes
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Quaid D Morris
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Michelle S Scott
- Département de biochimie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Henry Krause
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada.,Department of Biochemistry,University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Benjamin J Blencowe
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
343
|
Zhang W, Cochet F, Ponnaiah M, Lebreton S, Matheron L, Pionneau C, Boudsocq M, Resentini F, Huguet S, Blázquez MÁ, Bailly C, Puyaubert J, Baudouin E. The MPK8-TCP14 pathway promotes seed germination in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:677-692. [PMID: 31325184 DOI: 10.1111/tpj.14461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 05/25/2023]
Abstract
The accurate control of dormancy release and germination is critical for successful plantlet establishment. Investigations in cereals hypothesized a crucial role for specific MAP kinase (MPK) pathways in promoting dormancy release, although the identity of the MPK involved and the downstream events remain unclear. In this work, we characterized mutants for Arabidopsis thaliana MAP kinase 8 (MPK8). Mpk8 seeds presented a deeper dormancy than wild-type (WT) at harvest that was less efficiently alleviated by after-ripening and gibberellic acid treatment. We identified Teosinte Branched1/Cycloidea/Proliferating cell factor 14 (TCP14), a transcription factor regulating germination, as a partner of MPK8. Mpk8 tcp14 double-mutant seeds presented a deeper dormancy at harvest than WT and mpk8, but similar to that of tcp14 seeds. MPK8 interacted with TCP14 in the nucleus in vivo and phosphorylated TCP14 in vitro. Furthermore, MPK8 enhanced TCP14 transcriptional activity when co-expressed in tobacco leaves. Nevertheless, the stimulation of TCP14 transcriptional activity by MPK8 could occur independently of TCP14 phosphorylation. The comparison of WT, mpk8 and tcp14 transcriptomes evidenced that whereas no effect was observed in dry seeds, mpk8 and tcp14 mutants presented dramatic transcriptomic alterations after imbibition with a sustained expression of genes related to seed maturation. Moreover, both mutants exhibited repression of genes involved in cell wall remodeling and cell cycle G1/S transition. As a whole, this study unraveled a role for MPK8 in promoting seed germination, and suggested that its interaction with TCP14 was critical for regulating key processes required for germination completion.
Collapse
Affiliation(s)
- Wei Zhang
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Françoise Cochet
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Maharajah Ponnaiah
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Sandrine Lebreton
- Sorbonne Université, Université Paris Est Créteil, Université Paris Diderot, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris (iEES), Paris, 75005, France
| | - Lucrèce Matheron
- Sorbonne Université, Institut de Biologie Paris-Seine, Paris, 75005, France
| | - Cédric Pionneau
- Sorbonne Université, INSERM, UMS 37 PASS, Plateforme Post-génomique de la Pitié-Salpêtrière (P3S), F-75013, Paris, France
| | - Marie Boudsocq
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Francesca Resentini
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Stéphanie Huguet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Univ Paris Sud, Univ Evry, Université Paris-Saclay, Univ Paris-Diderot, Sorbonne Paris-Cite, Rue de Noetzlin, 91190, Gif-sur-Yvette, France
| | - Miguel Á Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-U Politécnica de Valencia, 46022, Valencia, Spain
| | - Christophe Bailly
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Juliette Puyaubert
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| | - Emmanuel Baudouin
- Sorbonne Université, CNRS UMR7622, Institut de Biologie Paris-Seine-Laboratoire de Biologie du Développement (IBPS-LBD), 75005, Paris, France
| |
Collapse
|
344
|
Darracq A, Pak H, Bourgoin V, Zmiri F, Dellaire G, Affar EB, Milot E. NPM and NPM-MLF1 interact with chromatin remodeling complexes and influence their recruitment to specific genes. PLoS Genet 2019; 15:e1008463. [PMID: 31675375 PMCID: PMC6853375 DOI: 10.1371/journal.pgen.1008463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 11/13/2019] [Accepted: 10/04/2019] [Indexed: 11/18/2022] Open
Abstract
Nucleophosmin (NPM1) is frequently mutated or subjected to chromosomal translocation in acute myeloid leukemia (AML). NPM protein is primarily located in the nucleus, but the recurrent NPMc+ mutation, which creates a nuclear export signal, is characterized by cytoplasmic localization and leukemogenic properties. Similarly, the NPM-MLF1 translocation product favors the partial cytoplasmic retention of NPM. Regardless of their common cellular distribution, NPM-MLF1 malignancies engender different effects on hematopoiesis compared to NPMc+ counterparts, highlighting possible aberrant nuclear function(s) of NPM in NPMc+ and NPM-MLF1 AML. We performed a proteomic analysis and found that NPM and NPM-MLF1 interact with various nuclear proteins including subunits of the chromatin remodeling complexes ISWI, NuRD and P/BAF. Accordingly, NPM and NPM-MLF1 are recruited to transcriptionally active or repressed genes along with NuRD subunits. Although the overall gene expression program in NPM knockdown cells is similar to that resulting from NPMc+, NPM-MLF1 expression differentially altered gene transcription regulated by NPM. The abnormal gene regulation imposed by NPM-MLF1 can be characterized by the enhanced recruitment of NuRD to gene regulatory regions. Thus, different mechanisms would orchestrate the dysregulation of NPM function in NPMc+- versus NPM1-MLF1-associated leukemia. NPMc+ mutation is the most common mutation in acute myeloid leukemia (AML) with prevalence in one third of all AML cases. NPM can also be involved in leukemogenic translocation including the t(3;5)(q25;q34) NPM-MLF1 translocation, which is associated to bad clinical course but remains poorly defined. We are reporting that NPM and the leukemogenic NPM-MLF1 play central role in chromatin organization and gene regulation in hematopoietic cells. A proteomic analysis provided the evidence that NPM and NPM-MLF1 are interacting with the chromatin remodeling complexes NuRD, P/BAF and ISWI in hematopoietic cells. The NPM nuclear depletion, such as imposed by the leukemogenic NPMc+ mutation, or the expression of NPM-MLF1 favors the uncontrolled recruitment of the CHD4/NuRD to chromatin and the abnormal regulation of NPM-target genes. Our results suggest that the abnormal gene regulation forced by NPM-MLF1 is different than the loss of nuclear function imposed by NPMc+, and it can be characterized by the enhanced recruitment of CHD4/NuRD to genes. Thus, NPM-MLF1 is likely to promote hematopoietic malignancies by disruption of gene regulation imposed by the NuRD activity.
Collapse
Affiliation(s)
- Anaïs Darracq
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Molecular Biology Program, University of Montreal, Montreal, Quebec, Canada
| | - Helen Pak
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Vincent Bourgoin
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Farah Zmiri
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
| | - Graham Dellaire
- Departments of Pathology and Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - El Bachir Affar
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
| | - Eric Milot
- Maisonneuve Rosemont Hospital Research Center, CIUSSS Est de l’Île de Montréal, boulevard l’Assomption, Montreal, Quebec, Canada
- Department of Medicine, University of Montreal, Boulevard Edouard-Montpetit, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
345
|
Bunch TA, Kanassatega RS, Lepak VC, Colson BA. Human cardiac myosin-binding protein C restricts actin structural dynamics in a cooperative and phosphorylation-sensitive manner. J Biol Chem 2019; 294:16228-16240. [PMID: 31519753 PMCID: PMC6827302 DOI: 10.1074/jbc.ra119.009543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/11/2019] [Indexed: 11/20/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein that influences actin-myosin interactions. cMyBP-C alters myofilament structure and contractile properties in a protein kinase A (PKA) phosphorylation-dependent manner. To determine the effects of cMyBP-C and its phosphorylation on the microsecond rotational dynamics of actin filaments, we attached a phosphorescent probe to F-actin at Cys-374 and performed transient phosphorescence anisotropy (TPA) experiments. Binding of cMyBP-C N-terminal domains (C0-C2) to labeled F-actin reduced rotational flexibility by 20-25°, indicated by increased final anisotropy of the TPA decay. The effects of C0-C2 on actin TPA were highly cooperative (n = ∼8), suggesting that the cMyBP-C N terminus impacts the rotational dynamics of actin spanning seven monomers (i.e. the length of tropomyosin). PKA-mediated phosphorylation of C0-C2 eliminated the cooperative effects on actin flexibility and modestly increased actin rotational rates. Effects of Ser to Asp phosphomimetic substitutions in the M-domain of C0-C2 on actin dynamics only partially recapitulated the phosphorylation effects. C0-C1 (lacking M-domain/C2) similarly exhibited reduced cooperativity, but not as reduced as by phosphorylated C0-C2. These results suggest an important regulatory role of the M-domain in cMyBP-C effects on actin structural dynamics. In contrast, phosphomimetic substitution of the glycogen synthase kinase (GSK3β) site in the Pro/Ala-rich linker of C0-C2 did not significantly affect the TPA results. We conclude that cMyBP-C binding and PKA-mediated phosphorylation can modulate actin dynamics. We propose that these N-terminal cMyBP-C-induced changes in actin dynamics help explain the functional effects of cMyBP-C phosphorylation on actin-myosin interactions.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | | | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona 85724
| |
Collapse
|
346
|
Mucha S, Heinzlmeir S, Kriechbaumer V, Strickland B, Kirchhelle C, Choudhary M, Kowalski N, Eichmann R, Hückelhoven R, Grill E, Kuster B, Glawischnig E. The Formation of a Camalexin Biosynthetic Metabolon. THE PLANT CELL 2019; 31:2697-2710. [PMID: 31511315 PMCID: PMC6881122 DOI: 10.1105/tpc.19.00403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/31/2019] [Accepted: 09/06/2019] [Indexed: 05/09/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) efficiently synthesizes the antifungal phytoalexin camalexin without the apparent release of bioactive intermediates, such as indole-3-acetaldoxime, suggesting that the biosynthetic pathway of this compound is channeled by the formation of an enzyme complex. To identify such protein interactions, we used two independent untargeted coimmunoprecipitation (co-IP) approaches with the biosynthetic enzymes CYP71B15 and CYP71A13 as baits and determined that the camalexin biosynthetic P450 enzymes copurified with these enzymes. These interactions were confirmed by targeted co-IP and Förster resonance energy transfer measurements based on fluorescence lifetime microscopy (FRET-FLIM). Furthermore, the interaction of CYP71A13 and Arabidopsis P450 Reductase1 was observed. We detected increased substrate affinity of CYP79B2 in the presence of CYP71A13, indicating an allosteric interaction. Camalexin biosynthesis involves glutathionylation of the intermediary indole-3-cyanohydrin, which is synthesized by CYP71A12 and especially CYP71A13. FRET-FLIM and co-IP demonstrated that the glutathione transferase GSTU4, which is coexpressed with Trp- and camalexin-specific enzymes, is physically recruited to the complex. Surprisingly, camalexin concentrations were elevated in knockout and reduced in GSTU4-overexpressing plants. This shows that GSTU4 is not directly involved in camalexin biosynthesis but rather plays a role in a competing mechanism.
Collapse
Affiliation(s)
- Stefanie Mucha
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Stephanie Heinzlmeir
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Verena Kriechbaumer
- Plant Cell Biology, Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, United Kingdom
| | - Benjamin Strickland
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Charlotte Kirchhelle
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Manisha Choudhary
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Natalie Kowalski
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ruth Eichmann
- Chair of Phytopathology, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Erwin Grill
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Erich Glawischnig
- Chair of Botany, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Chair of Genetics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
- Microbial Biotechnology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Schulgasse 22, 94315 Straubing, Germany
| |
Collapse
|
347
|
Tracking genome-editing and associated molecular perturbations by SWATH mass spectrometry. Sci Rep 2019; 9:15240. [PMID: 31645615 PMCID: PMC6811567 DOI: 10.1038/s41598-019-51612-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/02/2019] [Indexed: 12/19/2022] Open
Abstract
Advances in gene editing now allow reverse genetics to be applied to a broad range of biological systems. Ultimately, any modification to coding sequences requires confirmation at the protein level, although immunoblotting is often hampered by antibody quality or availability especially in non-model species. Sequential Window Acquisition of All Theoretical Spectra (SWATH), a mass spectrometry (MS) technology with exceptional quantitative reproducibility and accuracy, offers an ideal alternative for protein-based confirmation. Here, using genome edits in mouse, zebrafish and Bicyclus anynana butterflies produced using either homologous recombination or targeted nucleases, we demonstrate absence of the targeted proteins using SWATH, thus confirming successful editing. We show that SWATH is a robust antibody-independent alternative for monitoring gene editing at the protein level and broadly applicable across diverse organisms and targeted genome manipulation techniques. Moreover, SWATH concomitantly defines the global proteome response in the edited organism, which may provide pertinent biological insights.
Collapse
|
348
|
Israel S, Casser E, Drexler HCA, Fuellen G, Boiani M. A framework for TRIM21-mediated protein depletion in early mouse embryos: recapitulation of Tead4 null phenotype over three days. BMC Genomics 2019; 20:755. [PMID: 31638890 PMCID: PMC6805607 DOI: 10.1186/s12864-019-6106-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022] Open
Abstract
Background While DNA and RNA methods are routine to disrupt the expression of specific genes, complete understanding of developmental processes requires also protein methods, because: oocytes and early embryos accumulate proteins and these are not directly affected by DNA and RNA methods. When proteins in the oocyte encounter a specific antibody and the TRIpartite Motiv-containing 21 (TRIM21) ubiquitin-protein ligase, they can be committed to degradation in the proteasome, producing a transient functional knock-out that reveals the role of the protein. However, there are doubts about whether this targeted proteolysis could be successfully used to study mammalian development, because duration of the transient effect is unknown, and also because amounts of reagents delivered must be adequate in relation to the amount of target protein, which is unknown, too. Results We show that the mouse egg contains up to 1E-02 picomoles/protein, as estimated by mass spectrometry using the intensity-based absolute quantification (iBAQ) algorithm. However, the egg can only accommodate ≈1E-04 picomoles of antibody or TRIM21 without incurring toxic effects. Within this framework, we demonstrate that TRIM21-mediated protein depletion efficiently disrupts the embryonic process of trophectoderm formation, which critically depends on the TEA domain family member 4 (Tead4) gene. TEAD4 depletion starting at the 1-cell stage lasts for 3 days prior to a return of gene and protein expression to baseline. This time period is long enough to result in a phenotype entirely consistent with that of the published null mutation and RNA interference studies: significant underexpression of trophectodermal genes Cdx2 and Gata3 and strongly impaired ability of embryos to cavitate and implant in the uterus. Omics data are available via ProteomeXchange (PXD012613) and GEO (GSE124844). Conclusions TRIM21-mediated protein depletion can be an effective means to disrupt gene function in mouse development, provided the target gene is chosen carefully and the method is tuned accurately. The knowledge gathered in this study provides the basic know-how (prerequisites, requirements, limitations) to expedite the protein depletion of other genes besides Tead4.
Collapse
Affiliation(s)
- Steffen Israel
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Ellen Casser
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Hannes C A Drexler
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany
| | - Georg Fuellen
- Rostock University Medical Center, Institute for Biostatistics and Informatics in Medicine and Aging Research (IBIMA), Ernst-Heydemann-Strasse 8, 18057, Rostock, Germany
| | - Michele Boiani
- Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, 48149, Muenster, Germany.
| |
Collapse
|
349
|
Sanchez David RY, Combredet C, Najburg V, Millot GA, Beauclair G, Schwikowski B, Léger T, Camadro JM, Jacob Y, Bellalou J, Jouvenet N, Tangy F, Komarova AV. LGP2 binds to PACT to regulate RIG-I- and MDA5-mediated antiviral responses. Sci Signal 2019; 12:eaar3993. [PMID: 31575732 DOI: 10.1126/scisignal.aar3993] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) RIG-I, MDA5, and LGP2 stimulate inflammatory and antiviral responses by sensing nonself RNA molecules produced during viral replication. Here, we investigated how LGP2 regulates the RIG-I- and MDA5-dependent induction of type I interferon (IFN) signaling and showed that LGP2 interacted with different components of the RNA-silencing machinery. We identified a direct protein-protein interaction between LGP2 and the IFN-inducible, double-stranded RNA binding protein PACT. The LGP2-PACT interaction was mediated by the regulatory C-terminal domain of LGP2 and was necessary for inhibiting RIG-I-dependent responses and for amplifying MDA5-dependent responses. We described a point mutation within LGP2 that disrupted the LGP2-PACT interaction and led to the loss of LGP2-mediated regulation of RIG-I and MDA5 signaling. These results suggest a model in which the LGP2-PACT interaction regulates the inflammatory responses mediated by RIG-I and MDA5 and enables the cellular RNA-silencing machinery to coordinate with the innate immune response.
Collapse
Affiliation(s)
- Raul Y Sanchez David
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
- Ecole doctorale B3MI/Paris7, Paris, France
| | - Chantal Combredet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Valérie Najburg
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Gael A Millot
- Hub de Bioinformatique et Biostatistique-C3BI, Institut Pasteur, USR 3756 CNRS, Paris, France
| | - Guillaume Beauclair
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Benno Schwikowski
- Systems Biology Laboratory and USR 3756, Institut Pasteur and CNRS, Paris, France
| | - Thibaut Léger
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Jean-Michel Camadro
- Mass Spectrometry Laboratory, Institut Jacques Monod, UMR 7592, Univ Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
- Mitochondria, Metals, and Oxidative Stress Group, Institut Jacques Monod, UMR 7592, Université Paris Diderot, CNRS, Sorbonne Paris Cité, F-75205 Paris, France
| | - Yves Jacob
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Paris, France
| | - Jacques Bellalou
- Platform of Recombinant Proteins in Prokaryotic Cells, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Nolwenn Jouvenet
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France
| | - Frédéric Tangy
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| | - Anastassia V Komarova
- Unité de Génomique Virale et Vaccination, Institut Pasteur, CNRS UMR-3569, Paris, France.
| |
Collapse
|
350
|
Dataset of Nematostella vectensis Hsp70 isoform interactomes upon heat shock. Data Brief 2019; 27:104580. [PMID: 31673583 PMCID: PMC6817661 DOI: 10.1016/j.dib.2019.104580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/12/2019] [Accepted: 09/23/2019] [Indexed: 12/14/2022] Open
Abstract
Nematostella vectensis is an estuarine sea anemone that has emerged as a model species to characterize molecular responses to physiological stressors due to its exposure to diverse, extreme abiotic conditions. In marine cnidarians, Hsp70 proteins can be effective biomarkers to determine mechanisms of physiological acclimation and evolutionary adaptations to environmental stress: a pressing issue as concerns about climate change grow. Here we show the results of affinity purification mass spectrometry of three Nematostella vectensis Hsp70 isoforms, NvHsp70A, B and D when expressed in untreated and heat shocked yeast cells lacking their native Hsp70s. We identified a total of 1031 interactors for the three NvHsp70 isoforms, 549 or which were shared. NvHsp70 isoform interactions altered substantially under heat stress with 17% of NvHsp70A, 51% of NvHsp70B and 20% of NvHsp70D interactions increasing after exposure to 39 °C for 2 hours. For further interpretation of the data presented in this article, please see the research article “Dynamic remodeling of the interactomes of Nematostella vectensis Hsp70 isoforms under heat shock”.
Collapse
|