301
|
Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci (Lond) 2017; 130:1711-25. [PMID: 27555614 PMCID: PMC4994139 DOI: 10.1042/cs20160004] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/27/2016] [Indexed: 12/25/2022]
Abstract
Data showing a remarkable gender difference in life expectancy and mortality, including survival to extreme age, are reviewed starting from clinical and demographic data and stressing the importance of a comprehensive historical perspective and a gene–environment/lifestyle interaction. Gender difference regarding prevalence and incidence of the most important age-related diseases, such as cardiovascular and neurodegenerative diseases, cancer, Type 2 diabetes, disability, autoimmunity and infections, are reviewed and updated with particular attention to the role of the immune system and immunosenescence. On the whole, gender differences appear to be pervasive and still poorly considered and investigated despite their biomedical relevance. The basic biological mechanisms responsible for gender differences in aging and longevity are quite complex and still poorly understood. The present review focuses on centenarians and their offspring as a model of healthy aging and summarizes available knowledge on three basic biological phenomena, i.e. age-related X chromosome inactivation skewing, gut microbiome changes and maternally inherited mitochondrial DNA genetic variants. In conclusion, an appropriate gender-specific medicine approach is urgently needed and should be systematically pursued in studies on healthy aging, longevity and age-related diseases, in a globalized world characterized by great gender differences which have a high impact on health and diseases.
Collapse
|
302
|
Balasubramanian P, Howell PR, Anderson RM. Aging and Caloric Restriction Research: A Biological Perspective With Translational Potential. EBioMedicine 2017; 21:37-44. [PMID: 28648985 PMCID: PMC5514430 DOI: 10.1016/j.ebiom.2017.06.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/14/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Aging as a research pursuit is fairly new compared with traditional lines of medical research. A growing field of investigators is focused on understanding how changes in tissue biology, physiology, and systemic homeostasis, conspire to create increased vulnerability to disease as a function of age. Aging research as a discipline is necessarily broad; in part because aging itself is multi-faceted and in part because different model systems are employed to define the underlying biology. In this review we outline aspects of aging research that are likely to uncover the pivotal events leading to age-related disease vulnerability. We focus on studies of human aging and discuss the value of research on caloric restriction, an intervention with proven efficacy in delaying aging. We propose that studies such as these will deliver target factors and processes that create vulnerability in human aging, an advance that would potentially be transformative in clinical care.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Porsha R Howell
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States
| | - Rozalyn M Anderson
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin Madison, WI 53792, United States; Geriatric Research, Education, and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, United States.
| |
Collapse
|
303
|
Centenarians as a 21st century healthy aging model: A legacy of humanity and the need for a world-wide consortium (WWC100+). Mech Ageing Dev 2017; 165:55-58. [DOI: 10.1016/j.mad.2017.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
304
|
François JC, Aïd S, Chaker Z, Lacube P, Xu J, Fayad R, Côté F, Even P, Holzenberger M. Disrupting IGF Signaling in Adult Mice Conditions Leanness, Resilient Energy Metabolism, and High Growth Hormone Pulses. Endocrinology 2017; 158:2269-2283. [PMID: 28881863 DOI: 10.1210/en.2017-00261] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/05/2017] [Indexed: 12/26/2022]
Abstract
Growth hormone (GH) and insulinlike growth factor (IGF) promote aging and age-related pathologies. Inhibiting this pathway by targeting IGF receptor (IGF-1R) is a promising strategy to extend life span, alleviate age-related diseases, and reduce tumor growth. Although anti-IGF-1R agents are being developed, long-term effects of IGF-1R blockade remain unknown. In this study, we used ubiquitous inducible IGF-1R knockout (UBIKOR) to suppress signaling in all adult tissues and screened health extensively. Surprisingly, UBIKOR mice showed no overt defects and presented with rather inconspicuous health, including normal cognition. Endocrine GH and IGF-1 were strongly upregulated without causing acromegaly. UBIKOR mice were strikingly lean with coordinate changes in body composition and organ size. They were insulin resistant but preserved physiological energy expenditure and displayed enhanced fasting metabolic flexibility. Thus, long-term IGF-1R blockade generated beneficial effects on aging-relevant metabolism, but exposed to high GH. This needs to be considered when targeting IGF-1R to protect from neurodegeneration, retard aging, or fight cancer.
Collapse
Affiliation(s)
| | - Saba Aïd
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Zayna Chaker
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | | | - Jie Xu
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| | - Racha Fayad
- INSERM Research Center Unité 938, 75012 Paris, France
- Faculty of Medicine, University Paris Descartes, 75006 Paris, France
| | - Francine Côté
- Institut Imagine INSERM Unité 1163/CNRS Equipe 8254, Necker Enfants Malades Hospital, 75015 Paris, France
| | - Patrick Even
- AgroParisTech, INRA, Université Paris Saclay, Nutrition Physiology and Ingestive Behavior Unité 914, 75005 Paris, France
| | - Martin Holzenberger
- INSERM Research Center Unité 938, 75012 Paris, France
- Sorbonne University, 75005 Paris, France
| |
Collapse
|
305
|
Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 2017; 165:147-155. [DOI: 10.1016/j.mad.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/04/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
306
|
Biphasic Modeling of Mitochondrial Metabolism Dysregulation during Aging. Trends Biochem Sci 2017; 42:702-711. [PMID: 28669456 DOI: 10.1016/j.tibs.2017.06.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 11/21/2022]
Abstract
Organismal aging is classically viewed as a gradual decline of cellular functions and a systemic deterioration of tissues that leads to an increased mortality rate in older individuals. According to the prevailing theory, aging is accompanied by a continuous and progressive decline in mitochondrial metabolic activity in cells. However, the most robust approaches to extending healthy lifespan are frequently linked with reduced energy intake or with lowering of mitochondrial activity. While these observations appear contradictory, recent work and technological advances demonstrate that metabolic deregulation during aging is potentially biphasic. In this Opinion we propose a novel framework where middle-age is accompanied by increased mitochondrial activity that subsequently declines at advanced ages.
Collapse
|
307
|
Heiss C, Spyridopoulos I, Haendeler J. Interventions to slow cardiovascular aging: Dietary restriction, drugs and novel molecules. Exp Gerontol 2017; 109:108-118. [PMID: 28658611 DOI: 10.1016/j.exger.2017.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/16/2017] [Accepted: 06/21/2017] [Indexed: 02/05/2023]
Abstract
Cardiovascular aging is a highly dynamic process. Despite the fact that cardiovascular function and structure change with age, they can still be modulated even in aged humans. The most prominent approaches to improve age-dependent vascular changes include dietary restriction and pharmacologic agents interacting with signaling pathways implicated in this context. These include inhibition of TOR, glycolysis, and GH/IGF-1, activation of sirtuins, and AMPK, as well as modulators of inflammation, epigenetic pathways, and telomeres. Promising nutritional approaches include Mediterranean diet and novel dietary bioactives including flavanols, anthocyanins, and lignins. Many plant bioactives improve cardiovascular parameters implied in vascular healthy aging including endothelial function, arterial stiffness, blood pressure, cholesterol, and glycemic control. However, the mechanism of action of most bioactives is not established and it remains to be elucidated whether they act as dietary restriction mimetics or via other modes of action. Even more importantly, whether these interventions can slow or even reverses components of cardiovascular aging itself and can increase healthspan or longevity in humans needs to be determined.
Collapse
Affiliation(s)
- Christian Heiss
- Division of Cardiology, Pulmonology and Vascular Medicine, Medical Faculty, University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| | - Ioakim Spyridopoulos
- Institute of Genetic Medicine, Medical Faculty, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK.
| | - Judith Haendeler
- Central Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, University of Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany.
| |
Collapse
|
308
|
Farina F, Lambert E, Commeau L, Lejeune FX, Roudier N, Fonte C, Parker JA, Boddaert J, Verny M, Baulieu EE, Neri C. The stress response factor daf-16/FOXO is required for multiple compound families to prolong the function of neurons with Huntington's disease. Sci Rep 2017. [PMID: 28638078 PMCID: PMC5479833 DOI: 10.1038/s41598-017-04256-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Helping neurons to compensate for proteotoxic stress and maintain function over time (neuronal compensation) has therapeutic potential in aging and neurodegenerative disease. The stress response factor FOXO3 is neuroprotective in models of Huntington’s disease (HD), Parkinson’s disease and motor-neuron diseases. Neuroprotective compounds acting in a FOXO-dependent manner could thus constitute bona fide drugs for promoting neuronal compensation. However, whether FOXO-dependent neuroprotection is a common feature of several compound families remains unknown. Using drug screening in C. elegans nematodes with neuronal expression of human exon-1 huntingtin (128Q), we found that 3ß-Methoxy-Pregnenolone (MAP4343), 17ß-oestradiol (17ßE2) and 12 flavonoids including isoquercitrin promote neuronal function in 128Q nematodes. MAP4343, 17ßE2 and isoquercitrin also promote stress resistance in mutant Htt striatal cells derived from knock-in HD mice. Interestingly, daf-16/FOXO is required for MAP4343, 17ßE2 and isoquercitrin to sustain neuronal function in 128Q nematodes. This similarly applies to the GSK3 inhibitor lithium chloride (LiCl) and, as previously described, to resveratrol and the AMPK activator metformin. Daf-16/FOXO and the targets engaged by these compounds define a sub-network enriched for stress-response and neuronally-active pathways. Collectively, these data highlights the dependence on a daf-16/FOXO-interaction network as a common feature of several compound families for prolonging neuronal function in HD.
Collapse
Affiliation(s)
- Francesca Farina
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Emmanuel Lambert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - Lucie Commeau
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | - François-Xavier Lejeune
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France
| | | | - Cosima Fonte
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France
| | - J Alex Parker
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,CRCHUM, Montréal, Canada and Department de Neurosciences, Faculté de médecine, Université de Montréal, Montréal, Canada
| | - Jacques Boddaert
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Marc Verny
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France.,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.,Department of Geriatrics, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris (APHP), 75013, Paris, France
| | - Etienne-Emile Baulieu
- Inserm, UMR 1195, 94276, Le Kremlin-Bicêtre, Cedex, France. .,MAPREG, 94276, Le Kremlin-Bicêtre, Cedex, France.
| | - Christian Neri
- CNRS, Laboratory of Neuronal Cell Biology & Pathology and University Hospital Department Fight Aging and Stress (DHU FAST), UMR 8256, Paris, France. .,Sorbonne Universités, University Pierre and Marie Curie (UPMC) Univ Paris 06, Paris, France.
| |
Collapse
|
309
|
Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 2017; 164:127-138. [DOI: 10.1016/j.mad.2017.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
|
310
|
Affiliation(s)
- Anne B Newman
- Epidemiology.,Medicine.,Clinical and Translational Science, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| |
Collapse
|
311
|
Alfaras I, Di Germanio C, Bernier M, Csiszar A, Ungvari Z, Lakatta EG, de Cabo R. Pharmacological Strategies to Retard Cardiovascular Aging. Circ Res 2017; 118:1626-42. [PMID: 27174954 DOI: 10.1161/circresaha.116.307475] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/08/2016] [Indexed: 01/10/2023]
Abstract
Aging is the major risk factor for cardiovascular diseases, which are the leading cause of death in the United States. Traditionally, the effort to prevent cardiovascular disease has been focused on addressing the conventional risk factors, including hypertension, hyperglycemia, hypercholesterolemia, and high circulating levels of triglycerides. However, recent preclinical studies have identified new approaches to combat cardiovascular disease. Calorie restriction has been reproducibly shown to prolong lifespan in various experimental model animals. This has led to the development of calorie restriction mimetics and other pharmacological interventions capable to delay age-related diseases. In this review, we will address the mechanistic effects of aging per se on the cardiovascular system and focus on the prolongevity benefits of various therapeutic strategies that support cardiovascular health.
Collapse
Affiliation(s)
- Irene Alfaras
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Clara Di Germanio
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Michel Bernier
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Anna Csiszar
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Zoltan Ungvari
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Edward G Lakatta
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.)
| | - Rafael de Cabo
- From the Experimental Gerontology Section, Translational Gerontology Branch (I.A., C.D.G., M.B., R.d.C.) and Laboratory of Cardiovascular Science (E.G.L.), National Institute on Aging, National Institutes of Health, Baltimore, MD; Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy (C.D.G.); and Reynolds Oklahoma Center on Aging, Department of Geriatric Medicine, University of Oklahoma Health Science Center, Oklahoma City, OK (A.C., Z.U.).
| |
Collapse
|
312
|
Micó V, Berninches L, Tapia J, Daimiel L. NutrimiRAging: Micromanaging Nutrient Sensing Pathways through Nutrition to Promote Healthy Aging. Int J Mol Sci 2017; 18:E915. [PMID: 28445443 PMCID: PMC5454828 DOI: 10.3390/ijms18050915] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 04/10/2017] [Accepted: 04/24/2017] [Indexed: 01/09/2023] Open
Abstract
Current sociodemographic predictions point to a demographic shift in developed and developing countries that will result in an unprecedented increase of the elderly population. This will be accompanied by an increase in age-related conditions that will strongly impair human health and quality of life. For this reason, aging is a major concern worldwide. Healthy aging depends on a combination of individual genetic factors and external environmental factors. Diet has been proved to be a powerful tool to modulate aging and caloric restriction has emerged as a valuable intervention in this regard. However, many questions about how a controlled caloric restriction intervention affects aging-related processes are still unanswered. Nutrient sensing pathways become deregulated with age and lose effectiveness with age. These pathways are a link between diet and aging. Thus, fully understanding this link is a mandatory step before bringing caloric restriction into practice. MicroRNAs have emerged as important regulators of cellular functions and can be modified by diet. Some microRNAs target genes encoding proteins and enzymes belonging to the nutrient sensing pathways and, therefore, may play key roles in the modulation of the aging process. In this review, we aimed to show the relationship between diet, nutrient sensing pathways and microRNAs in the context of aging.
Collapse
Affiliation(s)
- Víctor Micó
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Laura Berninches
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Javier Tapia
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
| | - Lidia Daimiel
- Nutritional Genomics of Cardiovascular Disease and Obesity Fundation IMDEA Food, CEI UAM + CSIC, 28049 Madrid, Spain.
- Department of Nutrition and Bromatology, CEU San Pablo University, Boadilla del Monte, 28668 Madrid, Spain.
| |
Collapse
|
313
|
Fang EF, Waltz TB, Kassahun H, Lu Q, Kerr JS, Morevati M, Fivenson EM, Wollman BN, Marosi K, Wilson MA, Iser WB, Eckley DM, Zhang Y, Lehrmann E, Goldberg IG, Scheibye-Knudsen M, Mattson MP, Nilsen H, Bohr VA, Becker KG. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci Rep 2017; 7:46208. [PMID: 28397803 PMCID: PMC5387417 DOI: 10.1038/srep46208] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/10/2017] [Indexed: 12/17/2022] Open
Abstract
Aging is a major international concern that brings formidable socioeconomic and healthcare challenges. Small molecules capable of improving the health of older individuals are being explored. Small molecules that enhance cellular stress resistance are a promising avenue to alleviate declines seen in human aging. Tomatidine, a natural compound abundant in unripe tomatoes, inhibits age-related skeletal muscle atrophy in mice. Here we show that tomatidine extends lifespan and healthspan in C. elegans, an animal model of aging which shares many major longevity pathways with mammals. Tomatidine improves many C. elegans behaviors related to healthspan and muscle health, including increased pharyngeal pumping, swimming movement, and reduced percentage of severely damaged muscle cells. Microarray, imaging, and behavioral analyses reveal that tomatidine maintains mitochondrial homeostasis by modulating mitochondrial biogenesis and PINK-1/DCT-1-dependent mitophagy. Mechanistically, tomatidine induces mitochondrial hormesis by mildly inducing ROS production, which in turn activates the SKN-1/Nrf2 pathway and possibly other cellular antioxidant response pathways, followed by increased mitophagy. This mechanism occurs in C. elegans, primary rat neurons, and human cells. Our data suggest that tomatidine may delay some physiological aspects of aging, and points to new approaches for pharmacological interventions for diseases of aging.
Collapse
Affiliation(s)
- Evandro F. Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Tyler B. Waltz
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Henok Kassahun
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Qiping Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jesse S. Kerr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Marya Morevati
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Elayne M. Fivenson
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Bradley N. Wollman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Krisztina Marosi
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mark A. Wilson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Wendy B. Iser
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - D. Mark Eckley
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Elin Lehrmann
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ilya G. Goldberg
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Hilde Nilsen
- Institute of Clinical Medicine, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
314
|
Senotherapy: growing old and staying young? Pflugers Arch 2017; 469:1051-1059. [PMID: 28389776 DOI: 10.1007/s00424-017-1972-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/29/2017] [Indexed: 12/16/2022]
Abstract
Cellular senescence, which has been linked to age-related diseases, occurs during normal aging or as a result of pathological cell stress. Due to their incapacity to proliferate, senescent cells cannot contribute to normal tissue maintenance and tissue repair. Instead, senescent cells disturb the microenvironment by secreting a plethora of bioactive factors that may lead to inflammation, regenerative dysfunction and tumor progression. Recent understanding of stimuli and pathways that induce and maintain cellular senescence offers the possibility to selectively eliminate senescent cells. This novel strategy, which so far has not been tested in humans, has been coined senotherapy or senolysis. In mice, senotherapy proofed to be effective in models of accelerated aging and also during normal chronological aging. Senotherapy prolonged lifespan, rejuvenated the function of bone marrow, muscle and skin progenitor cells, improved vasomotor function and slowed down atherosclerosis progression. While initial studies used genetic approaches for the killing of senescent cells, recent approaches showed similar effects with senolytic drugs. These observations open up exciting possibilities with a great potential for clinical development. However, before the integration of senotherapy into patient care can be considered, we need further research to improve our insight into the safety and efficacy of this strategy during short- and long-term use.
Collapse
|
315
|
Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 2017; 18:58. [PMID: 28351383 PMCID: PMC5370462 DOI: 10.1186/s13059-017-1185-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.
Collapse
Affiliation(s)
- John J Cole
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tony McBryan
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Brock
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Richard A Miller
- Department of Pathology and Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA.
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK.
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
316
|
Hahn O, Grönke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, Andrews S, Zhang Q, Wakelam MJ, Beyer A, Reik W, Partridge L. Dietary restriction protects from age-associated DNA methylation and induces epigenetic reprogramming of lipid metabolism. Genome Biol 2017; 18:56. [PMID: 28351387 PMCID: PMC5370449 DOI: 10.1186/s13059-017-1187-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/02/2017] [Indexed: 12/11/2022] Open
Abstract
Background Dietary restriction (DR), a reduction in food intake without malnutrition, increases most aspects of health during aging and extends lifespan in diverse species, including rodents. However, the mechanisms by which DR interacts with the aging process to improve health in old age are poorly understood. DNA methylation could play an important role in mediating the effects of DR because it is sensitive to the effects of nutrition and can affect gene expression memory over time. Results Here, we profile genome-wide changes in DNA methylation, gene expression and lipidomics in response to DR and aging in female mouse liver. DR is generally strongly protective against age-related changes in DNA methylation. During aging with DR, DNA methylation becomes targeted to gene bodies and is associated with reduced gene expression, particularly of genes involved in lipid metabolism. The lipid profile of the livers of DR mice is correspondingly shifted towards lowered triglyceride content and shorter chain length of triglyceride-associated fatty acids, and these effects become more pronounced with age. Conclusions Our results indicate that DR remodels genome-wide patterns of DNA methylation so that age-related changes are profoundly delayed, while changes at loci involved in lipid metabolism affect gene expression and the resulting lipid profile. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1187-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany.,Cellular Networks and Systems Biology, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne, 50931, Germany
| | - Sebastian Grönke
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Thomas M Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gabriella Ficz
- Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Oliver Hendrich
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany
| | - Felix Krueger
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Simon Andrews
- Bioinformatics Group, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Qifeng Zhang
- Inositide Lab, The Babraham Institute, Cambridge, CB22 3AT, UK
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Joseph-Stelzmann-Str. 26, Cologne, 50931, Germany. .,Center for Molecular Medicine Cologne, University of Cologne, Cologne, 50931, Germany.
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK. .,The Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK.
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, 50931, Cologne, Germany. .,Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
317
|
Zhang N, Li Z, Mu W, Li L, Liang Y, Lu M, Wang Z, Qiu Y, Wang Z. Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-κB signaling. Cell Cycle 2017; 15:1009-18. [PMID: 26940461 DOI: 10.1080/15384101.2016.1152427] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Calorie restriction (CR) extends lifespan from yeast to mammals. SIRT6 is a member of the sirtuin family of NAD(+)-dependent histone deacetylases, which is responsible for mediating the effects of CR. The transcription factor NF-κB, which is involved in inflammation and aging, has been shown to be regulated by SIRT6. Here we describe the crucial role of SIRT6 in aging and inflammation. We show that CR had improved renal insufficiency and enhanced SIRT6 expression after 6-month treatment in aged mice. Culture cells in low glucose (LG) conditions also showed resistance to cell senescence and enhanced SIRT6 expression compared to normal glucose (NG) group, showing beneficial effects of the CR-mimic cultural conditions. Moreover, SIRT6 overexpression is sufficient to delay the replicative senescence of WI38 by attenuating NF-κB signaling, while SIRT6 knockdown results in accelerated cell senescence and overactive NF-κB signaling. These findings confirm the key status of CR and disclose the critical role of SIRT6 on aging and inflammation.
Collapse
Affiliation(s)
- Nannan Zhang
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Zhongchi Li
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Wei Mu
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Liyuan Li
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Yaru Liang
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Maoyang Lu
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Zhuoran Wang
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Ying Qiu
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| | - Zhao Wang
- a MOE Key Laboratory of Protein Sciences , Department of Pharmacology, School of Medicine, Tsinghua University , Beijing , P.R. China
| |
Collapse
|
318
|
Grabowska W, Sikora E, Bielak-Zmijewska A. Sirtuins, a promising target in slowing down the ageing process. Biogerontology 2017; 18:447-476. [PMID: 28258519 PMCID: PMC5514220 DOI: 10.1007/s10522-017-9685-9] [Citation(s) in RCA: 321] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 02/21/2017] [Indexed: 12/17/2022]
Abstract
Ageing is a plastic process and can be successfully modulated by some biomedical approaches or pharmaceutics. In this manner it is possible to delay or even prevent some age-related pathologies. There are some defined interventions, which give promising results in animal models or even in human studies, resulting in lifespan elongation or healthspan improvement. One of the most promising targets for anti-ageing approaches are proteins belonging to the sirtuin family. Sirtuins were originally discovered as transcription repressors in yeast, however, nowadays they are known to occur in bacteria and eukaryotes (including mammals). In humans the family consists of seven members (SIRT1-7) that possess either mono-ADP ribosyltransferase or deacetylase activity. It is believed that sirtuins play key role during cell response to a variety of stresses, such as oxidative or genotoxic stress and are crucial for cell metabolism. Although some data put in question direct involvement of sirtuins in extending human lifespan, it was documented that proper lifestyle including physical activity and diet can influence healthspan via increasing the level of sirtuins. The search for an activator of sirtuins is one of the most extensive and robust topic of research. Some hopes are put on natural compounds, including curcumin. In this review we summarize the involvement and usefulness of sirtuins in anti-ageing interventions and discuss the potential role of curcumin in sirtuins regulation.
Collapse
Affiliation(s)
- Wioleta Grabowska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Ewa Sikora
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland
| | - Anna Bielak-Zmijewska
- Laboratory of Molecular Bases of Aging, Department of Biochemistry, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Pasteur Str. 3, 02-093, Warsaw, Poland.
| |
Collapse
|
319
|
Sagara T, Fiechter G, Pachner M, Mayer HK, Vollmann J. Soybean spermidine concentration: Genetic and environmental variation of a potential ‘anti-aging’ constituent. J Food Compost Anal 2017. [DOI: 10.1016/j.jfca.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
320
|
Espeland MA, Crimmins EM, Grossardt BR, Crandall JP, Gelfond JAL, Harris TB, Kritchevsky SB, Manson JE, Robinson JG, Rocca WA, Temprosa M, Thomas F, Wallace R, Barzilai N, Multimorbidity Clinical Trials Consortium. Clinical Trials Targeting Aging and Age-Related Multimorbidity. J Gerontol A Biol Sci Med Sci 2017; 72:355-361. [PMID: 28364543 PMCID: PMC5777384 DOI: 10.1093/gerona/glw220] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/12/2016] [Indexed: 01/17/2023] Open
Abstract
Background There is growing interest in identifying interventions that may increase health span by targeting biological processes underlying aging. The design of efficient and rigorous clinical trials to assess these interventions requires careful consideration of eligibility criteria, outcomes, sample size, and monitoring plans. Methods Experienced geriatrics researchers and clinical trialists collaborated to provide advice on clinical trial design. Results Outcomes based on the accumulation and incidence of age-related chronic diseases are attractive for clinical trials targeting aging. Accumulation and incidence rates of multimorbidity outcomes were developed by selecting at-risk subsets of individuals from three large cohort studies of older individuals. These provide representative benchmark data for decisions on eligibility, duration, and assessment protocols. Monitoring rules should be sensitive to targeting aging-related, rather than disease-specific, outcomes. Conclusions Clinical trials targeting aging are feasible, but require careful design consideration and monitoring rules.
Collapse
Affiliation(s)
- Mark A Espeland
- Department of Biostatistical Sciences, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Eileen M Crimmins
- Davis School of Gerontology, University of Southern California, Los Angeles
| | - Brandon R Grossardt
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
| | - Jill P Crandall
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan A L Gelfond
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center, San Antonio
| | - Tamara B Harris
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland
| | - Stephen B Kritchevsky
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Walter A Rocca
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Marinella Temprosa
- The Biostatistics Center, The George Washington University, Rockville, Maryland
| | - Fridtjof Thomas
- Department of Preventive Medicine, University of Tennessee Health Science Center, Memphis
| | | | - Nir Barzilai
- The Institute for Aging Research, Albert Einstein College of Medicine, Bronx, New York
| | | |
Collapse
|
321
|
Raffaghello L, Longo V. Metabolic Alterations at the Crossroad of Aging and Oncogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:1-42. [PMID: 28526131 DOI: 10.1016/bs.ircmb.2017.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Aging represents the major risk factor for cancer. Cancer and aging are characterized by a similar dysregulated metabolism consisting in upregulation of glycolysis and downmodulation of oxidative phosphorylation. In this respect, metabolic interventions can be viewed as promising strategies to promote longevity and to prevent or delay age-related disorders including cancer. In this review, we discuss the most promising metabolic approaches including chronic calorie restriction, periodic fasting/fasting-mimicking diets, and pharmacological interventions mimicking calorie restriction. Metabolic interventions can also be viewed as adjuvant anticancer strategies to be combined to standard cancer therapy (chemotherapeutic agents, ionizing radiation, and drugs with specific molecular target), whose major limiting factors are represented by toxicity against healthy cells but also limited efficacy easily circumvented by tumor cells. In fact, conventional cancer therapy is unable to distinguish normal and cancerous cells and thus causes toxic side effects including secondary malignancies, cardiovascular and respiratory complications, endocrinopathies, and other chronic conditions, that resemble and, in some cases, accelerate the age-related disorders and profoundly affect the quality of life. In this scenario, geroscience contributes to the understanding of the mechanisms of protection of normal cells against a cytotoxic agent and finding strategies focused on the preserving healthy cells while enhancing the efficacy of the treatment against malignant cells.
Collapse
Affiliation(s)
- L Raffaghello
- Laboratory of Oncology, Istituto Giannina Gaslini, Genova, Italy
| | - V Longo
- Longevity Institute, Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States; IFOM, FIRC Institute of Molecular Oncology, Milano, Italy.
| |
Collapse
|
322
|
Barilari M, Bonfils G, Treins C, Koka V, De Villeneuve D, Fabrega S, Pende M. ZRF1 is a novel S6 kinase substrate that drives the senescence programme. EMBO J 2017; 36:736-750. [PMID: 28242756 PMCID: PMC5350561 DOI: 10.15252/embj.201694966] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/26/2022] Open
Abstract
The inactivation of S6 kinases mimics several aspects of caloric restriction, including small body size, increased insulin sensitivity and longevity. However, the impact of S6 kinase activity on cellular senescence remains to be established. Here, we show that the constitutive activation of mammalian target of rapamycin complex 1 (mTORC1) by tuberous sclerosis complex (TSC) mutations induces a premature senescence programme in fibroblasts that relies on S6 kinases. To determine novel molecular targets linking S6 kinase activation to the control of senescence, we set up a chemical genetic screen, leading to the identification of the nuclear epigenetic factor ZRF1 (also known as DNAJC2, MIDA1, Mpp11). S6 kinases phosphorylate ZRF1 on Ser47 in cultured cells and in mammalian tissues in vivo. Knock‐down of ZRF1 or expression of a phosphorylation mutant is sufficient to blunt the S6 kinase‐dependent senescence programme. This is traced by a sharp alteration in p16 levels, the cell cycle inhibitor and a master regulator of senescence. Our findings reveal a mechanism by which nutrient sensing pathways impact on cell senescence through the activation of mTORC1‐S6 kinases and the phosphorylation of ZRF1.
Collapse
Affiliation(s)
- Manuela Barilari
- Institut Necker-Enfants Malades, Paris, France.,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Gregory Bonfils
- Institut Necker-Enfants Malades, Paris, France.,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, Paris, France.,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Vonda Koka
- Institut Necker-Enfants Malades, Paris, France.,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Delphine De Villeneuve
- Institut Necker-Enfants Malades, Paris, France.,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Sylvie Fabrega
- Plateforme Vecteurs Viraux et Transfert de Gènes, IFR94, Hôpital Necker Enfants-Malades, Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, Paris, France .,Inserm, U1151, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
323
|
Aiello A, Accardi G, Candore G, Gambino CM, Mirisola M, Taormina G, Virruso C, Caruso C. Nutrient sensing pathways as therapeutic targets for healthy ageing. Expert Opin Ther Targets 2017; 21:371-380. [PMID: 28281903 DOI: 10.1080/14728222.2017.1294684] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the present paper, the authors have discussed anti-aging strategies which aim to slow the aging process and to delay the onset of age-related diseases, focusing on nutrient sensing pathways (NSPs) as therapeutic targets. Indeed, several studies have already demonstrated that both in animal models and humans, dietary interventions might have a positive impact on the aging process through the modulation of these pathways. Areas covered: Achieving healthy aging is the main challenge of the twenty-first century because lifespan is increasing, but not in tandem with good health. The authors have illustrated different approaches that can act on NSPs, modulating the rate of the aging process. Expert opinion: Humanity's lasting dream is to reverse or, at least, postpone aging. In recent years, increasing attention has been devoted to anti-aging therapies. The subject is very popular among the general public, whose imagination runs wild with all the possible tools to delay aging and to gain immortality. Some approaches discussed in the present review should be able to substantially slow down the aging process, extending our productive, youthful lives, without frailty.
Collapse
Affiliation(s)
- Anna Aiello
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giulia Accardi
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Giuseppina Candore
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Caterina Maria Gambino
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| | - Mario Mirisola
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Giusi Taormina
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Claudia Virruso
- b Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology , University of Palermo , Palermo , Italy
| | - Calogero Caruso
- a Department of Pathobiology and Medical Biotechnologies , University of Palermo , Palermo , Italy
| |
Collapse
|
324
|
Moffitt TE, Belsky DW, Danese A, Poulton R, Caspi A. The Longitudinal Study of Aging in Human Young Adults: Knowledge Gaps and Research Agenda. J Gerontol A Biol Sci Med Sci 2017; 72:210-215. [PMID: 28087676 PMCID: PMC5233916 DOI: 10.1093/gerona/glw191] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/10/2016] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To prevent onset of age-related diseases and physical and cognitive decline, interventions to slow human aging and extend health span must eventually be applied to people while they are still young and healthy. Yet most human aging research examines older adults, many with chronic disease, and little is known about aging in healthy young humans. METHOD This article explains how this knowledge gap is a barrier to extending health span and puts forward the case that geroscience should invest in researching the pace of aging in young adults. As one illustrative example, we describe an initial effort to study the pace of aging in a young-adult birth cohort by using repeated waves of biomarkers collected across the third and fourth decades to quantify the pace of coordinated physiological deterioration across multiple organ systems (eg, pulmonary, periodontal, cardiovascular, renal, hepatic, metabolic, and immune function). RESULTS Findings provided proof of principle that it is possible to quantify individual variation in the pace of aging in young adults still free of age-related diseases. CONCLUSIONS This article articulates research needs to improve longitudinal measurement of the pace of aging in young people, to pinpoint factors that slow or speed the pace of aging, to compare pace of aging against genomic clocks, to explain slow-aging young adults, and to apply pace of aging in preventive clinical trials of antiaging therapies. This article puts forward a research agenda to fill the knowledge gap concerning lifelong causes of aging.
Collapse
Affiliation(s)
- Terrie E Moffitt
- Department of Psychology and Neuroscience and
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London
| | - Daniel W Belsky
- Department of Medicine, School of Medicine and
- Social Science Research Institute, Duke University, Durham, North Carolina
| | - Andrea Danese
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London
| | - Richie Poulton
- Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Avshalom Caspi
- Department of Psychology and Neuroscience and
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina
- Institute of Psychiatry, Psychology, and Neuroscience, King's College London
| |
Collapse
|
325
|
Mora AL, Bueno M, Rojas M. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis. J Clin Invest 2017; 127:405-414. [PMID: 28145905 DOI: 10.1172/jci87440] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic age-related lung disease with high mortality that is characterized by abnormal scarring of the lung parenchyma. There has been a recent attempt to define the age-associated changes predisposing individuals to develop IPF. Age-related perturbations that are increasingly found in epithelial cells and fibroblasts from IPF lungs compared with age-matched cells from normal lungs include defective autophagy, telomere attrition, altered proteostasis, and cell senescence. These divergent processes seem to converge in mitochondrial dysfunction and metabolic distress, which potentiate maladaptation to stress and susceptibility to age-related diseases such as IPF. Therapeutic approaches that target aging processes may be beneficial for halting the progression of disease and improving quality of life in IPF patients.
Collapse
|
326
|
Di Daniele N, Noce A, Vidiri MF, Moriconi E, Marrone G, Annicchiarico-Petruzzelli M, D’Urso G, Tesauro M, Rovella V, De Lorenzo A. Impact of Mediterranean diet on metabolic syndrome, cancer and longevity. Oncotarget 2017; 8:8947-8979. [PMID: 27894098 PMCID: PMC5352455 DOI: 10.18632/oncotarget.13553] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 02/07/2023] Open
Abstract
Obesity symbolizes a major public health problem. Overweight and obesity are associated to the occurrence of the metabolic syndrome and to adipose tissue dysfunction. The adipose tissue is metabolically active and an endocrine organ, whose dysregulation causes a low-grade inflammatory state and ectopic fat depositions. The Mediterranean Diet represents a possible therapy for metabolic syndrome, preventing adiposopathy or "sick fat" formation.The Mediterranean Diet exerts protective effects in elderly subjects with and without baseline of chronic diseases. Recent studies have demonstrated a relationship between cancer and obesity. In the US, diet represents amount 30-35% of death causes related to cancer. Currently, the cancer is the second cause of death after cardiovascular diseases worldwide. Furthermore, populations living in the Mediterranean area have a decreased incidence of cancer compared with populations living in Northern Europe or the US, likely due to healthier dietary habits. The bioactive food components have a potential preventive action on cancer. The aims of this review are to evaluate the impact of Mediterranean Diet on onset, progression and regression of metabolic syndrome, cancer and on longevity.
Collapse
Affiliation(s)
- Nicola Di Daniele
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Annalisa Noce
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Maria Francesca Vidiri
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Eleonora Moriconi
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| | - Giulia Marrone
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | | | - Gabriele D’Urso
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Manfredi Tesauro
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Valentina Rovella
- Department of Systems Medicine, Hypertension and Nephrology Unit, University of Rome “Tor Vergata”, Italy
| | - Antonino De Lorenzo
- Department of Biomedicine and Prevention, Division of Clinical Nutrition and Nutrigenomic, University of Rome “Tor Vergata”, Italy
| |
Collapse
|
327
|
Jongbloed F, Saat TC, Verweij M, Payan-Gomez C, Hoeijmakers JHJ, van den Engel S, van Oostrom CT, Ambagtsheer G, Imholz S, Pennings JLA, van Steeg H, IJzermans JNM, Dollé MET, de Bruin RWF. A signature of renal stress resistance induced by short-term dietary restriction, fasting, and protein restriction. Sci Rep 2017; 7:40901. [PMID: 28102354 PMCID: PMC5244361 DOI: 10.1038/srep40901] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 12/14/2016] [Indexed: 11/09/2022] Open
Abstract
During kidney transplantation, ischemia-reperfusion injury (IRI) induces oxidative stress. Short-term preoperative 30% dietary restriction (DR) and 3-day fasting protect against renal IRI. We investigated the contribution of macronutrients to this protection on both phenotypical and transcriptional levels. Male C57BL/6 mice were fed control food ad libitum, underwent two weeks of 30%DR, 3-day fasting, or received a protein-, carbohydrate- or fat-free diet for various periods of time. After completion of each diet, renal gene expression was investigated using microarrays. After induction of renal IRI by clamping the renal pedicles, animals were monitored seven days postoperatively for signs of IRI. In addition to 3-day fasting and two weeks 30%DR, three days of a protein-free diet protected against renal IRI as well, whereas the other diets did not. Gene expression patterns significantly overlapped between all diets except the fat-free diet. Detailed meta-analysis showed involvement of nuclear receptor signaling via transcription factors, including FOXO3, HNF4A and HMGA1. In conclusion, three days of a protein-free diet is sufficient to induce protection against renal IRI similar to 3-day fasting and two weeks of 30%DR. The elucidated network of common protective pathways and transcription factors further improves our mechanistic insight into the increased stress resistance induced by short-term DR.
Collapse
Affiliation(s)
- F Jongbloed
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands.,Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - T C Saat
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M Verweij
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C Payan-Gomez
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands.,Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá, Colombia
| | - J H J Hoeijmakers
- Department of Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S van den Engel
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - C T van Oostrom
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - G Ambagtsheer
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - S Imholz
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - J L A Pennings
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - H van Steeg
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands.,Department of Toxicogenetics, Leiden University Medical Center, Leiden, the Netherlands
| | - J N M IJzermans
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| | - M E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - R W F de Bruin
- Department of Surgery, Laboratory for Experimental Transplantation and Intestinal Surgery (LETIS), Erasmus University Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
328
|
Impact of Yoga and Meditation on Cellular Aging in Apparently Healthy Individuals: A Prospective, Open-Label Single-Arm Exploratory Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7928981. [PMID: 28191278 PMCID: PMC5278216 DOI: 10.1155/2017/7928981] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 12/17/2016] [Accepted: 12/22/2016] [Indexed: 12/31/2022]
Abstract
This study was designed to explore the impact of Yoga and Meditation based lifestyle intervention (YMLI) on cellular aging in apparently healthy individuals. During this 12-week prospective, open-label, single arm exploratory study, 96 apparently healthy individuals were enrolled to receive YMLI. The primary endpoints were assessment of the change in levels of cardinal biomarkers of cellular aging in blood from baseline to week 12, which included DNA damage marker 8-hydroxy-2'-deoxyguanosine (8-OH2dG), oxidative stress markers reactive oxygen species (ROS), and total antioxidant capacity (TAC), and telomere attrition markers telomere length and telomerase activity. The secondary endpoints were assessment of metabotrophic blood biomarkers associated with cellular aging, which included cortisol, β-endorphin, IL-6, BDNF, and sirtuin-1. After 12 weeks of YMLI, there were significant improvements in both the cardinal biomarkers of cellular aging and the metabotrophic biomarkers influencing cellular aging compared to baseline values. The mean levels of 8-OH2dG, ROS, cortisol, and IL-6 were significantly lower and mean levels of TAC, telomerase activity, β-endorphin, BDNF, and sirtuin-1 were significantly increased (all values p < 0.05) post-YMLI. The mean level of telomere length was increased but the finding was not significant (p = 0.069). YMLI significantly reduced the rate of cellular aging in apparently healthy population.
Collapse
|
329
|
Longchamp A, Harputlugil E, Corpataux JM, Ozaki CK, Mitchell JR. Is Overnight Fasting before Surgery Too Much or Not Enough? How Basic Aging Research Can Guide Preoperative Nutritional Recommendations to Improve Surgical Outcomes: A Mini-Review. Gerontology 2017; 63:228-237. [PMID: 28052287 DOI: 10.1159/000453109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 11/07/2016] [Indexed: 12/15/2022] Open
Abstract
Dietary restriction (DR) is best known for extending lifespan in experimental model organisms, but also increases resistance to a variety of clinically relevant stressors, including those associated with surgery. Extended periods of DR, lasting months to years, are required for optimal longevity benefits in rodents, but short-term dietary preconditioning (less than 1 week) remarkably protects from acute injury. Here, we discuss recent advances in our understanding of the mechanistic basis of short-term DR and fasting in the context of surgical stress resistance, including upstream amino acid sensing by the GCN2 and mTORC1 pathways, and downstream effector mechanisms including increased insulin-dependent prosurvival signaling and elevated endogenous hydrogen sulfide production. We also review the current trend in preoperative nutrition away from preoperative fasting and towards carbohydrate loading. Finally, we discuss the rationale for the nonmutually exclusive use of brief DR or pharmacological DR mimetics to precondition against the stress and potential complications of surgery.
Collapse
Affiliation(s)
- Alban Longchamp
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | | | | | | |
Collapse
|
330
|
Hsieh PN, Sweet DR, Fan L, Jain MK. Aging and the Krüppel-like factors. TRENDS IN CELL & MOLECULAR BIOLOGY 2017; 12:1-15. [PMID: 29416266 PMCID: PMC5798252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The mammalian Krüppel-like factors (KLFs) are a family of zinc-finger containing transcription factors with diverse patterns of expression and a wide array of cellular functions. While their roles in mammalian physiology are well known, there is a growing appreciation for their roles in modulating the fundamental progression of aging. Here we review the current knowledge of Krüppel-like factors with a focus on their roles in processes regulating aging and age-associated diseases.
Collapse
Affiliation(s)
- Paishiun N. Hsieh
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - David R. Sweet
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Liyan Fan
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Mukesh K. Jain
- Case Cardiovascular Research Institute, Case Western Reserve University, and Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
331
|
van de Rest O, Schutte BAM, Deelen J, Stassen SAM, van den Akker EB, van Heemst D, Dibbets-Schneider P, van Dipten-van der Veen RA, Kelderman M, Hankemeier T, Mooijaart SP, van der Grond J, Houwing-Duistermaat JJ, Beekman M, Feskens EJM, Slagboom PE. Metabolic effects of a 13-weeks lifestyle intervention in older adults: The Growing Old Together Study. Aging (Albany NY) 2016; 8:111-26. [PMID: 26824634 PMCID: PMC4761717 DOI: 10.18632/aging.100877] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
For people in their 40s and 50s, lifestyle programs have been shown to improve metabolic health. For older adults, however, it is not clear whether these programs are equally healthy. In the Growing Old Together study, we applied a 13-weeks lifestyle program, with a target of 12.5% caloric restriction and 12.5% increase in energy expenditure through an increase in physical activity, in 164 older adults (mean age=63.2 years; BMI=23-35 kg/m2). Mean weight loss was 4.2% (SE=2.8%) of baseline weight, which is comparable to a previous study in younger adults. Fasting insulin levels, however, showed a much smaller decrease (0.30 mU/L (SE=3.21)) and a more heterogeneous response (range=2.0-29.6 mU/L). Many other parameters of metabolic health, such as blood pressure, and thyroid, glucose and lipid metabolism improved significantly. Many 1H-NMR metabolites changed in a direction previously associated with a low risk of type 2 diabetes and cardiovascular disease and partially independently of weight loss. In conclusion, 25% reduction in energy balance for 13 weeks induced a metabolic health benefit in older adults, monitored by traditional and novel metabolic markers.
Collapse
Affiliation(s)
- Ondine van de Rest
- Division of Human Nutrition, Wageningen University, 6700 EV Wageningen, The Netherlands
| | - Bianca A M Schutte
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Joris Deelen
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Stephanie A M Stassen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik B van den Akker
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.,The Delft Bioinformatics Lab, Delft University of Technology, 2628 CD Delft, The Netherlands
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | - Milou Kelderman
- Division of Human Nutrition, Wageningen University, 6700 EV Wageningen, The Netherlands
| | - Thomas Hankemeier
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research, Leiden University, Leiden 2300 RA, The Netherlands
| | - Simon P Mooijaart
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Marian Beekman
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Edith J M Feskens
- Division of Human Nutrition, Wageningen University, 6700 EV Wageningen, The Netherlands
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
332
|
De Bandt JP. Leucine and Mammalian Target of Rapamycin-Dependent Activation of Muscle Protein Synthesis in Aging. J Nutr 2016; 146:2616S-2624S. [PMID: 27934653 DOI: 10.3945/jn.116.234518] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 05/11/2016] [Accepted: 06/15/2016] [Indexed: 12/17/2022] Open
Abstract
The preservation or restoration of muscle mass is of prime importance for healthy aging. However, aging has been repeatedly shown to be associated with resistance of muscle to the anabolic effects of feeding. Leucine supplementation has been proposed as a possible strategy because of its regulatory role on protein homeostasis. Indeed, it acts independently of growth factors and leads to enhanced cap-dependent mRNA translation initiation and increased protein synthesis. Leucine acts as a signaling molecule directly at the muscle level via the activation of mammalian/mechanistic target of rapamycin complex 1 (mTORC1). However, in aged muscle, mTORC1 activation seems to be impaired, with decreased sensitivity and responsiveness of muscle protein synthesis to amino acids, whereas the phosphorylation state of several components of this signaling pathway appears to be higher in the basal state. This may stem from specific age-related impairment of muscle signaling and from decreased nutrient and growth factor delivery to the muscle. Whether aging per se affects mTORC1 signaling remains to be established, because aging is frequently associated with inadequate protein intake, decreased insulin sensitivity, inactivity, inflammatory processes, etc. Whatever its origin, this anabolic resistance to feeding can be mitigated by quantitative and qualitative manipulation of protein supply, such as leucine supplementation; however, there remains the question of possible adverse effects of long-term, high-dose leucine supplementation in terms of insulin resistance and tumorigenesis.
Collapse
Affiliation(s)
- Jean-Pascal De Bandt
- EA4466 PRETRAM, Nutrition Biology Laboratory, Faculty of Pharmacy, Paris Descartes University, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
333
|
Kohanski RA, Deeks SG, Gravekamp C, Halter JB, High K, Hurria A, Fuldner R, Green P, Huebner R, Macchiarini F, Sierra F. Reverse geroscience: how does exposure to early diseases accelerate the age-related decline in health? Ann N Y Acad Sci 2016; 1386:30-44. [PMID: 27907230 DOI: 10.1111/nyas.13297] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 02/07/2023]
Abstract
Aging is the major risk factor for both the development of chronic diseases and loss of functional capacity. Geroscience provides links among the biology of aging, the biology of disease, and the physiology of frailty, three fields where enormous progress has been made in the last few decades. While, previously, the focus was on the role of aging in susceptibility to disease and disability, the other side of this relationship, which is the contribution of disease to aging, has been less explored at the molecular/cellular level. Indeed, the role of childhood or early adulthood exposure to chronic disease and/or treatment on accelerating aging phenotypes is well known in epidemiology, but the biological basis is poorly understood. A recent summit co-organized by the National Institutes of Health GeroScience Interest Group and the New York Academy of Sciences explored these relationships, using three chronic diseases as examples: cancer, HIV/AIDS, and diabetes. The epidemiological literature clearly indicates that early exposure to any of these diseases and/or their treatments results in an acceleration of the appearance of aging phenotypes, including loss of functional capacity and accelerated appearance of clinical symptoms of aging-related diseases not obviously related to the earlier event. The discussions at the summit focused on the molecular and cellular relationships between each of these diseases and the recently defined molecular and cellular pillars of aging. Two major conclusions from the meeting include the desire to refine an operational definition of aging and to concomitantly develop biomarkers of aging, in order to move from chronological to physiological age. The discussion also opened a dialogue on the possibility of improving late-life outcomes in patients affected by chronic disease by including age-delaying modalities along with the standard care for the disease in question.
Collapse
Affiliation(s)
- Ronald A Kohanski
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Claudia Gravekamp
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York
| | - Jeffrey B Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor, Michigan
| | - Kevin High
- Department of Internal Medicine, Section on Infectious Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Arti Hurria
- City of Hope Comprehensive Cancer Center and Beckman Research Institute, Duarte, California
| | - Rebecca Fuldner
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| | - Paige Green
- Biobehavioral and Psychologic Branch, National Cancer Institute, NIH, Bethesda, Maryland
| | - Robin Huebner
- Division of AIDS, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | | | - Felipe Sierra
- Division of Aging Biology, National Institute on Aging, NIH, Bethesda, Maryland
| |
Collapse
|
334
|
Cronise RJ, Sinclair DA, Bremer AA. Oxidative Priority, Meal Frequency, and the Energy Economy of Food and Activity: Implications for Longevity, Obesity, and Cardiometabolic Disease. Metab Syndr Relat Disord 2016; 15:6-17. [PMID: 27869525 PMCID: PMC5326984 DOI: 10.1089/met.2016.0108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In most modern societies, the relationship that many individuals have with food has fundamentally changed from previous generations. People have shifted away from viewing food as primarily sustenance, and rather now seek out foods based on pure palatability or specific nutrition. However, it is far from clear what optimal nutrition is for the general population or specific individuals. We previously described the Food Triangle as a way to organize food based on an increasing energy density paradigm, and now expand on this model to predict the impact of oxidative priority and both nutrient and fiber density in relation to caloric load. When combined with meal frequency, integrated energy expenditure, macronutrient oxidative priority, and fuel partitioning expressed by the respiratory quotient, our model also offers a novel explanation for chronic overnutrition and the cause of excess body fat accumulation. Herein, we not only review how metabolism is a dynamic process subject to many regulators that mediate the fate of ingested calories but also discuss how the Food Triangle predicts the oxidative priority of ingested foods and provides a conceptual paradigm for healthy eating supported by health and longevity research.
Collapse
Affiliation(s)
| | - David A Sinclair
- 2 Department of Genetics, Harvard Medical School , Boston, Massachusetts.,3 Department of Pharmacology, School of Medical Sciences, The University of New South Wales , Sydney, Australia
| | - Andrew A Bremer
- 4 Division of Diabetes, Endocrinology, and Metabolic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
335
|
|
336
|
Georgousopoulou EN, Panagiotakos DB, Mellor DD, Naumovski N. Tocotrienols, health and ageing: A systematic review. Maturitas 2016; 95:55-60. [PMID: 27889054 DOI: 10.1016/j.maturitas.2016.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 11/04/2016] [Indexed: 01/04/2023]
Abstract
OBJECTIVES A systematic review of studies was undertaken to evaluate the potential effect of intake of tocotrienols or circulating levels of tocotrienols on parameters associated with successful ageing, specifically in relation to cognitive function, osteoporosis and DNA damage. METHODS Following PRISMA guidelines a systematic review of epidemiological observational studies and clinical trials was undertaken. Inclusion criteria included all English language publications in the databases PubMed and Scopus, through to the end of July 2016. RESULTS Evidence from prospective and case-control studies suggested that increased blood levels of tocotrienols were associated with favorable cognitive function outcomes. A clinical trial of tocotrienol supplementation for 6 months suggested a beneficial effect of intake on DNA damage rates, but only in elderly people. Regarding osteoporosis, only in vitro studies with cultures of human bone cells were identified, and these demonstrated significant inhibition of osteoclast activity and promotion of osteoblast activity. CONCLUSIONS Research in middle-aged and elderly humans suggests that tocotrienols have a potential beneficial anti-ageing action with respect to cognitive impairment and DNA damage. Clinical trials are required to elucidate these effects.
Collapse
Affiliation(s)
- Ekavi N Georgousopoulou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece; University of Canberra, Faculty of Health, Canberra, Australia
| | - Demosthenes B Panagiotakos
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, Athens, Greece.
| | - Duane D Mellor
- University of Canberra, Faculty of Health, Canberra, Australia
| | - Nenad Naumovski
- University of Canberra, Faculty of Health, Canberra, Australia
| |
Collapse
|
337
|
The mTOR Conundrum: Essential for Muscle Function, but Dangerous for Survival. J Am Med Dir Assoc 2016; 17:963-966. [DOI: 10.1016/j.jamda.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/01/2016] [Indexed: 02/06/2023]
|
338
|
Vaiserman AM, Lushchak OV, Koliada AK. Anti-aging pharmacology: Promises and pitfalls. Ageing Res Rev 2016; 31:9-35. [PMID: 27524412 DOI: 10.1016/j.arr.2016.08.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 08/06/2016] [Accepted: 08/09/2016] [Indexed: 12/12/2022]
Abstract
Life expectancy has grown dramatically in modern times. This increase, however, is not accompanied by the same increase in healthspan. Efforts to extend healthspan through pharmacological agents targeting aging-related pathological changes are now in the spotlight of geroscience, the main idea of which is that delaying of aging is far more effective than preventing the particular chronic disorders. Currently, anti-aging pharmacology is a rapidly developing discipline. It is a preventive field of health care, as opposed to conventional medicine which focuses on treating symptoms rather than root causes of illness. A number of pharmacological agents targeting basic aging pathways (i.e., calorie restriction mimetics, autophagy inducers, senolytics etc.) are now under investigation. This review summarizes the literature related to advances, perspectives and challenges in the field of anti-aging pharmacology.
Collapse
Affiliation(s)
| | - Oleh V Lushchak
- Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | | |
Collapse
|
339
|
Gladyshev TV, Gladyshev VN. A Disease or Not a Disease? Aging As a Pathology. Trends Mol Med 2016; 22:995-996. [PMID: 27793599 DOI: 10.1016/j.molmed.2016.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/01/2022]
Abstract
The debate on the relationship between aging and disease is centered on whether aging is a normal/natural/physiological process or it represents a pathology. Considering this relationship from medical, molecular, social, and historical perspectives, we argue that aging is neither a disease, nor a non-disease. Instead, it combines all age-related diseases and their preclinical forms, in addition to other pathological changes.
Collapse
Affiliation(s)
| | - Vadim N Gladyshev
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
340
|
Fan X, Liang Q, Lian T, Wu Q, Gaur U, Li D, Yang D, Mao X, Jin Z, Li Y, Yang M. Rapamycin preserves gut homeostasis during Drosophila aging. Oncotarget 2016; 6:35274-83. [PMID: 26431326 PMCID: PMC4742104 DOI: 10.18632/oncotarget.5895] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 09/22/2015] [Indexed: 01/25/2023] Open
Abstract
Gut homeostasis plays an important role in maintaining the overall body health during aging. Rapamycin, a specific inhibitor of mTOR, exerts prolongevity effects in evolutionarily diverse species. However, its impact on the intestinal homeostasis remains poorly understood. Here, we demonstrate that rapamycin can slow down the proliferation rate of intestinal stem cells (ISCs) in the aging guts and induce autophagy in the intestinal epithelium in Drosophila. Rapamycin can also significantly affect the FOXO associated genes in intestine and up-regulate the negative regulators of IMD/Rel pathway, consequently delaying the microbial expansion in the aging guts. Collectively, these findings reveal that rapamycin can delay the intestinal aging by inhibiting mTOR and thus keeping stem cell proliferation in check. These results will further explain the mechanism of healthspan and lifespan extension by rapamycin in Drosophila.
Collapse
Affiliation(s)
- Xiaolan Fan
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qing Liang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Ting Lian
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Qi Wu
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Uma Gaur
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Diyan Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Deying Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Xueping Mao
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Zhihua Jin
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Zhejiang, P.R. China
| | - Ying Li
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| | - Mingyao Yang
- Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, P.R. China
| |
Collapse
|
341
|
Cutillas PR. Targeted In-Depth Quantification of Signaling Using Label-Free Mass Spectrometry. Methods Enzymol 2016; 585:245-268. [PMID: 28109432 DOI: 10.1016/bs.mie.2016.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein phosphorylation encodes information on the activity of kinase-driven signaling pathways that regulate cell biology. This chapter discusses an approach, named TIQUAS (targeted in-depth quantification of signaling), to quantify cell signaling comprehensively and without bias. The workflow-based on mass spectrometry (MS) and computational science-consists of targeting the analysis of phosphopeptides previously identified by shotgun liquid chromatography tandem MS (LC-MS/MS) across the samples that are being compared. TIQUAS therefore takes advantage of concepts derived from both targeted (data-independent) and data-dependent acquisition methods; phosphorylation sites are quantified in all experimental samples regardless of whether or not these phosphopeptides were identified by MS/MS in all runs. As a result, datasets are obtained containing quantitative information on several thousand phosphorylation sites in as many samples and replicates as required in the experimental design, and these rich datasets are devoid of a significant number of missing data points. This chapter discussed the biochemical, analytical, and computational procedures required to apply the approach and for obtaining a biological interpretation of the data in the context of our understanding of cell signaling regulation and kinase-substrate relationships.
Collapse
Affiliation(s)
- P R Cutillas
- Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, London, United Kingdom.
| |
Collapse
|
342
|
Dong X, Milholland B, Vijg J. Evidence for a limit to human lifespan. Nature 2016; 538:257-259. [PMID: 27706136 PMCID: PMC11673931 DOI: 10.1038/nature19793] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/25/2016] [Indexed: 12/25/2022]
Abstract
Driven by technological progress, human life expectancy has increased greatly since the nineteenth century. Demographic evidence has revealed an ongoing reduction in old-age mortality and a rise of the maximum age at death, which may gradually extend human longevity. Together with observations that lifespan in various animal species is flexible and can be increased by genetic or pharmaceutical intervention, these results have led to suggestions that longevity may not be subject to strict, species-specific genetic constraints. Here, by analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the world's oldest person has not increased since the 1990s. Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.
Collapse
Affiliation(s)
- Xiao Dong
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Brandon Milholland
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
- Department of Ophthalmology &Visual Sciences, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
343
|
Assessing Basal and Acute Autophagic Responses in the Adult Drosophila Nervous System: The Impact of Gender, Genetics and Diet on Endogenous Pathway Profiles. PLoS One 2016; 11:e0164239. [PMID: 27711219 PMCID: PMC5053599 DOI: 10.1371/journal.pone.0164239] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022] Open
Abstract
The autophagy pathway is critical for the long-term homeostasis of cells and adult organisms and is often activated during periods of stress. Reduced pathway efficacy plays a central role in several progressive neurological disorders that are associated with the accumulation of cytotoxic peptides and protein aggregates. Previous studies have shown that genetic and transgenic alterations to the autophagy pathway impacts longevity and neural aggregate profiles of adult Drosophila. In this study, we have identified methods to measure the acute in vivo induction of the autophagy pathway in the adult fly CNS. Our findings indicate that the genotype, age, and gender of adult flies can influence pathway responses. Further, we demonstrate that middle-aged male flies exposed to intermittent fasting (IF) had improved neuronal autophagic profiles. IF-treated flies also had lower neural aggregate profiles, maintained more youthful behaviors and longer lifespans, when compared to ad libitum controls. In summary, we present methodology to detect dynamic in vivo changes that occur to the autophagic profiles in the adult Drosophila CNS and that a novel IF-treatment protocol improves pathway response in the aging nervous system.
Collapse
|
344
|
Abstract
With the expected rapid growth of the aging population worldwide, there is a clear need to understand the complex process of aging to develop interventions that might extend the health span in this group of patients. Aging is associated with increased susceptibility to a variety of chronic diseases, and lung pathologies are no exception. The prevalence of lung diseases such as idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease has been found to increase considerably with age. In October 2014, the Division of Pulmonary, Allergy, and Critical Care of the University of Pittsburgh cohosted the Pittsburgh-Munich Lung Conference focused in aging and lung disease with the Comprehensive Pneumology Center, Institute of Lung Biology and Disease, Ludwig-Maximilians University and Helmholtz Zentrum Munich Germany. The purpose of the conference was to disseminate novel concepts in aging mechanisms that have an impact in lung physiology and pathogenesis of pulmonary diseases that commonly occur in older populations. The conference included 28 presentations on diverse topics, which are summarized in this report. The participants identified priorities for future basic and translational investigations that will assist in the identification of molecular insights involved in the pathogenesis of age-related pulmonary diseases and the design of therapeutic interventions for these lung conditions.
Collapse
|
345
|
Jueliger S, Lyons J, Cannito S, Pata I, Pata P, Shkolnaya M, Lo Re O, Peyrou M, Villarroya F, Pazienza V, Rappa F, Cappello F, Azab M, Taverna P, Vinciguerra M. Efficacy and epigenetic interactions of novel DNA hypomethylating agent guadecitabine (SGI-110) in preclinical models of hepatocellular carcinoma. Epigenetics 2016; 11:709-720. [PMID: 27646854 PMCID: PMC5094635 DOI: 10.1080/15592294.2016.1214781] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly malignancy characterized at the epigenetic level by global DNA hypomethylation and focal hypermethylation on the promoter of tumor suppressor genes. In most cases it develops on a background of liver steatohepatitis, fibrosis, and cirrhosis. Guadecitabine (SGI-110) is a second-generation hypomethylating agent, which inhibits DNA methyltransferases. Guadecitabine is formulated as a dinucleotide of decitabine and deoxyguanosine that is resistant to cytidine deaminase (CDA) degradation and results in prolonged in vivo exposure to decitabine following small volume subcutaneous administration of guadecitabine. Here we found that guadecitabine is an effective demethylating agent and is able to prevent HCC progression in pre-clinical models. In a xenograft HCC HepG2 model, guadecitabine impeded tumor growth and inhibited angiogenesis, while it could not prevent liver fibrosis and inflammation in a mouse model of steatohepatitis. Demethylating efficacy of guadecitabine on LINE-1 elements was found to be the highest 8 d post-infusion in blood samples of mice. Analysis of a panel of human HCC vs. normal tissue revealed a signature of hypermethylated tumor suppressor genes (CDKN1A, CDKN2A, DLEC1, E2F1, GSTP1, OPCML, E2F1, RASSF1, RUNX3, and SOCS1) as detected by methylation-specific PCR. A pronounced demethylating effect of guadecitabine was obtained also in the promoters of a subset of tumor suppressors genes (CDKN2A, DLEC1, and RUNX3) in HepG2 and Huh-7 HCC cells. Finally, we analyzed the role of macroH2A1, a variant of histone H2A, an oncogene upregulated in human cirrhosis/HCC that synergizes with DNA methylation in suppressing tumor suppressor genes, and it prevents the inhibition of cell growth triggered by decitabine in HCC cells. Guadecitabine, in contrast to decitabine, blocked growth in HCC cells overexpressing macroH2A1 histones and with high CDA levels, despite being unable to fully demethylate CDKN2A, RUNX3, and DLEC1 promoters altered by macroH2A1. Collectively, our findings in human and mice models reveal novel epigenetic anti-HCC effects of guadecitabine, which might be effective specifically in advanced states of the disease.
Collapse
Affiliation(s)
| | - John Lyons
- a Astex Pharmaceuticals , Cambridge , UK
| | - Sara Cannito
- b Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo , Italy.,c Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital , London , UK
| | - Illar Pata
- d Department of Gene Technology , Tallinn University of Technology (TTU), IVEX Lab , Tallinn , Estonia
| | - Pille Pata
- d Department of Gene Technology , Tallinn University of Technology (TTU), IVEX Lab , Tallinn , Estonia
| | - Marianna Shkolnaya
- d Department of Gene Technology , Tallinn University of Technology (TTU), IVEX Lab , Tallinn , Estonia
| | - Oriana Lo Re
- e Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital , Brno , Czech Republic
| | - Marion Peyrou
- f Departament de Bioquímica i Biologia Molecular , Institute of Biomedicine (IBUB), University of Barcelona , Barcelona , Spain
| | - Francesc Villarroya
- f Departament de Bioquímica i Biologia Molecular , Institute of Biomedicine (IBUB), University of Barcelona , Barcelona , Spain
| | - Valerio Pazienza
- b Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo , Italy
| | - Francesca Rappa
- g Department of Experimental Biomedicine and Clinical Neurosciences , Section of Human Anatomy, University of Palermo , Palermo , Italy.,h Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | - Francesco Cappello
- g Department of Experimental Biomedicine and Clinical Neurosciences , Section of Human Anatomy, University of Palermo , Palermo , Italy.,h Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | - Manlio Vinciguerra
- b Gastroenterology Unit, IRCCS "Casa Sollievo della Sofferenza" Hospital , San Giovanni Rotondo , Italy.,c Institute for Liver and Digestive Health, University College London (UCL), Royal Free Hospital , London , UK.,e Center for Translational Medicine (CTM), International Clinical Research Center (ICRC), St. Anne's University Hospital , Brno , Czech Republic.,h Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| |
Collapse
|
346
|
Bhadra AK, Das E, Roy I. Protein aggregation activates erratic stress response in dietary restricted yeast cells. Sci Rep 2016; 6:33433. [PMID: 27633120 PMCID: PMC5025734 DOI: 10.1038/srep33433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic stress and prolonged activation of defence pathways have deleterious consequences for the cell. Dietary restriction is believed to be beneficial as it induces the cellular stress response machinery. We report here that although the phenomenon is beneficial in a wild-type cell, dietary restriction leads to an inconsistent response in a cell that is already under proteotoxicity-induced stress. Using a yeast model of Huntington's disease, we show that contrary to expectation, aggregation of mutant huntingtin is exacerbated and activation of the unfolded protein response pathway is dampened under dietary restriction. Global proteomic analysis shows that when exposed to a single stress, either protein aggregation or dietary restriction, the expression of foldases like peptidyl-prolyl isomerase, is strongly upregulated. However, under combinatorial stress, this lead is lost, which results in enhanced protein aggregation and reduced cell survival. Successful designing of aggregation-targeted therapeutics will need to take additional stressors into account.
Collapse
Affiliation(s)
- Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Eshita Das
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| | - Ipsita Roy
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Punjab 160 062, India
| |
Collapse
|
347
|
Forman DE, Alexander KP. Frailty: A Vital Sign for Older Adults With Cardiovascular Disease. Can J Cardiol 2016; 32:1082-7. [DOI: 10.1016/j.cjca.2016.05.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/17/2016] [Accepted: 05/27/2016] [Indexed: 01/10/2023] Open
|
348
|
Imai SI, Guarente L. It takes two to tango: NAD + and sirtuins in aging/longevity control. NPJ Aging Mech Dis 2016; 2:16017. [PMID: 28721271 PMCID: PMC5514996 DOI: 10.1038/npjamd.2016.17] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/15/2016] [Accepted: 05/17/2016] [Indexed: 12/14/2022] Open
Abstract
The coupling of nicotinamide adenine dinucleotide (NAD+) breakdown and protein deacylation is a unique feature of the family of proteins called ‘sirtuins.’ This intimate connection between NAD+ and sirtuins has an ancient origin and provides a mechanistic foundation that translates the regulation of energy metabolism into aging and longevity control in diverse organisms. Although the field of sirtuin research went through intensive controversies, an increasing number of recent studies have put those controversies to rest and fully established the significance of sirtuins as an evolutionarily conserved aging/longevity regulator. The tight connection between NAD+ and sirtuins is regulated at several different levels, adding further complexity to their coordination in metabolic and aging/longevity control. Interestingly, it has been demonstrated that NAD+ availability decreases over age, reducing sirtuin activities and affecting the communication between the nucleus and mitochondria at a cellular level and also between the hypothalamus and adipose tissue at a systemic level. These dynamic cellular and systemic processes likely contribute to the development of age-associated functional decline and the pathogenesis of diseases of aging. To mitigate these age-associated problems, supplementation of key NAD+ intermediates is currently drawing significant attention. In this review article, we will summarize these important aspects of the intimate connection between NAD+ and sirtuins in aging/longevity control.
Collapse
Affiliation(s)
- Shin-Ichiro Imai
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Leonard Guarente
- Department of Biology and Glenn Laboratories for the Science of Aging, Massachusetts Institute of Technology, Cambridge, MA, USA.,Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
349
|
Justice J, Miller JD, Newman JC, Hashmi SK, Halter J, Austad SN, Barzilai N, Kirkland JL. Frameworks for Proof-of-Concept Clinical Trials of Interventions That Target Fundamental Aging Processes. J Gerontol A Biol Sci Med Sci 2016; 71:1415-1423. [PMID: 27535966 PMCID: PMC5055651 DOI: 10.1093/gerona/glw126] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 06/16/2016] [Indexed: 01/09/2023] Open
Abstract
Therapies targeted at fundamental processes of aging may hold great promise for enhancing the health of a wide population by delaying or preventing a range of age-related diseases and conditions—a concept dubbed the “geroscience hypothesis.” Early, proof-of-concept clinical trials will be a key step in the translation of therapies emerging from model organism and preclinical studies into clinical practice. This article summarizes the outcomes of an international meeting partly funded through the NIH R24 Geroscience Network, whose purpose was to generate concepts and frameworks for early, proof-of-concept clinical trials for therapeutic interventions that target fundamental processes of aging. The goals of proof-of-concept trials include generating preliminary signals of efficacy in an aging-related disease or outcome that will reduce the risk of conducting larger trials, contributing data and biological samples to support larger-scale research by strategic networks, and furthering a dialogue with regulatory agencies on appropriate registration indications. We describe three frameworks for proof-of-concept trials that target age-related chronic diseases, geriatric syndromes, or resilience to stressors. We propose strategic infrastructure and shared resources that could accelerate development of therapies that target fundamental aging processes.
Collapse
Affiliation(s)
- Jamie Justice
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston Salem, North Carolina
| | - Jordan D Miller
- Department of Surgery.,Department of Physiology and Biomedical Engineering and.,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| | - John C Newman
- Division of Geriatrics, University of California San Francisco
| | - Shahrukh K Hashmi
- Department of Hematology and Transplant Center, Mayo Clinic, Rochester, Minnesota
| | - Jeffrey Halter
- Geriatrics Center and Institute of Gerontology, University of Michigan, Ann Arbor
| | - Steve N Austad
- Department of Biology, University of Alabama at Birmingham
| | - Nir Barzilai
- Department of Medicine, Division of Endocrinology and.,Institute for Aging Research, Albert Einstein College of Medicine, New York
| | - James L Kirkland
- Department of Physiology and Biomedical Engineering and .,The Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
350
|
Gruber J, Yee Z, Tolwinski NS. Developmental Drift and the Role of Wnt Signaling in Aging. Cancers (Basel) 2016; 8:cancers8080073. [PMID: 27490570 PMCID: PMC4999782 DOI: 10.3390/cancers8080073] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 12/28/2022] Open
Abstract
Population aging is a public health problem affecting the majority of the developed world. As populations age, the incidence of degenerative diseases increases exponentially, leading to large increases in public spending on healthcare. Here we summarize recent findings on the developmental drift theory of aging, and the links that have been established between aging and the Wnt signaling pathways. We focus on insights derived from model organisms connecting the evolutionary basis of aging and the link to developmental programming.
Collapse
Affiliation(s)
- Jan Gruber
- Yale-NUS College, Singapore 138527, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Zhuangli Yee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Nicholas S Tolwinski
- Yale-NUS College, Singapore 138527, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 138615, Singapore.
| |
Collapse
|