301
|
Lourenço AP, Florecki MM, Simões ZLP, Evans JD. Silencing of Apis mellifera dorsal genes reveals their role in expression of the antimicrobial peptide defensin-1. INSECT MOLECULAR BIOLOGY 2018; 27:577-589. [PMID: 29663584 DOI: 10.1111/imb.12498] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Like all other insects, two key signalling pathways [Toll and immune deficiency (Imd)] regulate the induction of honey bee immune effectors that target microbial pathogens. Amongst these effectors are antimicrobial peptides (AMPs) that are presumed to be produced by the nuclear factors kappa B (NF-κB) Dorsal and Relish from the Toll and Imd pathways, respectively. Using in silico analysis, we previously proposed that the honey bee AMP defensin-1 was regulated by the Toll pathway, whereas hymenoptaecin was regulated by Imd and abaecin by both the Toll and Imd pathways. Here we use an RNA interference (RNAi) assay to determine the role of Dorsal in regulating abaecin and defensin-1. Honey bees have two dorsal genes (dorsal-1 and dorsal-2) and two splicing isoforms of dorsal-1 (dorsal-1A and dorsal-1B). Accordingly, we used both single and multiple (double or triple) isoform knockdown strategies to clarify the roles of dorsal proteins and their isoforms. Down-regulation of defensin-1 was observed for dorsal-1A and dorsal-2 knockdowns, but abaecin expression was not affected by dorsal RNAi. We conclude that defensin-1 is regulated by Dorsal (Toll pathway).
Collapse
Affiliation(s)
- A P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil
| | - M M Florecki
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Z L P Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - J D Evans
- Bee Research Lab, USDA-ARS, Beltsville, MD, USA
| |
Collapse
|
302
|
Calla B, MacLean M, Liao LH, Dhanjal I, Tittiger C, Blomquist GJ, Berenbaum MR. Functional characterization of CYP4G11-a highly conserved enzyme in the western honey bee Apis mellifera. INSECT MOLECULAR BIOLOGY 2018; 27:661-674. [PMID: 29896786 DOI: 10.1111/imb.12516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Determining the functionality of CYP4G11, the only CYP4G in the genome of the western honey bee Apis mellifera, can provide insight into its reduced CYP4 inventory. Toward this objective, CYP4G11 transcripts were quantified, and CYP4G11 was expressed as a fusion protein with housefly CPR in Sf9 cells. Transcript levels varied with age, task, and tissue type in a manner consistent with the need for cuticular hydrocarbon production to prevent desiccation or with comb wax production. Young larvae, with minimal need for desiccation protection, expressed CYP4G11 at very low levels. Higher levels were observed in nurses, and even higher levels in wax producers and foragers, the latter of which risk desiccation upon leaving the hive. Recombinant CYP4G11 readily converted octadecanal to n-heptadecane in a time-dependent manner, demonstrating its functions as an oxidative decarbonylase. CYP4G11 expression levels are high in antennae; heterologously expressed CYP4G11 converted tetradecanal to n-tridecane, demonstrating that it metabolizes shorter-chain aldehydes. Together, these findings confirm the involvement of CYP4G11 in cuticular hydrocarbon production and suggest a possible role in clearing pheromonal and phytochemical compounds from antennae. This possible dual functionality of CYP4G11, i.e., cuticular hydrocarbon and comb wax production and antennal odorant clearance, may explain how honey bees function with a reduced CYP4G inventory.
Collapse
Affiliation(s)
- B Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - M MacLean
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - L-H Liao
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - I Dhanjal
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - C Tittiger
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - G J Blomquist
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - M R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
303
|
Zeng Y, Hu XP, Cao G, Suh SJ. Hemolymph protein profiles of subterranean termite Reticulitermes flavipes challenged with methicillin resistant Staphylococcus aureus or Pseudomonas aeruginosa. Sci Rep 2018; 8:13251. [PMID: 30185933 PMCID: PMC6125296 DOI: 10.1038/s41598-018-31681-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
When the subterranean termite Reticulitermes flavipes is fed heat-killed methicillin resistant Staphylococcus aureus (MRSA) or Pseudomonas aeruginosa, the termite produces proteins with antibacterial activity against the inducer pathogen in its hemolymph. We used a proteomic approach to characterize the alterations in protein profiles caused by the inducer bacterium in the hemolymph of the termite. Nano-liquid chromatography-tandem mass spectrometry analysis identified a total of 221 proteins and approximately 70% of these proteins could be associated with biological processes and molecular functions. Challenges with these human pathogens induced a total of 57 proteins (35 in MRSA-challenged, 16 in P. aeruginosa-challenged, and 6 shared by both treatments) and suppressed 13 proteins by both pathogens. Quasi-Poisson likelihood modeling with false discovery rate adjustment identified a total of 18 and 40 proteins that were differentially expressed at least 2.5-fold in response to MRSA and P. aeruginosa-challenge, respectively. We selected 7 differentially expressed proteins and verified their gene expression levels via quantitative real-time RT-PCR. Our findings provide an initial insight into a putative termite immune response against MRSA and P. aeruginosa-challenge.
Collapse
Affiliation(s)
- Yuan Zeng
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA.,Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Xing Ping Hu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Guanqun Cao
- Department of Mathematics and Statistics, Auburn University, Auburn University, Auburn, AL, USA
| | - Sang-Jin Suh
- Department of Biological Sciences, Auburn University, Auburn University, Auburn, AL, USA.
| |
Collapse
|
304
|
Reeves AM, O’Neal ST, Fell RD, Brewster CC, Anderson TD. In-Hive Acaricides Alter Biochemical and Morphological Indicators of Honey Bee Nutrition, Immunity, and Development. JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5110836. [PMID: 30272218 PMCID: PMC6163029 DOI: 10.1093/jisesa/iey086] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 05/16/2023]
Abstract
The honey bee is a widely managed crop pollinator that provides the agricultural industry with the sustainability and economic viability needed to satisfy the food and fiber needs of our society. Excessive exposure to apicultural pesticides is one of many factors that has been implicated in the reduced number of managed bee colonies available for crop pollination services. The goal of this study was to assess the impact of exposure to commonly used, beekeeper-applied apicultural acaricides on established biochemical indicators of bee nutrition and immunity, as well as morphological indicators of growth and development. The results described here demonstrate that exposure to tau-fluvalinate and coumaphos has an impact on 1) macronutrient indicators of bee nutrition by reducing protein and carbohydrate levels, 2) a marker of social immunity, by increasing glucose oxidase activity, and 3) morphological indicators of growth and development, by altering body weight, head width, and wing length. While more work is necessary to fully understand the broader implications of these findings, the results suggest that reduced parasite stress due to chemical interventions may be offset by nutritional and immune stress.
Collapse
Affiliation(s)
- Alison M Reeves
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061
| | - Scott T O’Neal
- Department of Entomology, University of Nebraska, Lincoln, NE 68583
| | - Richard D Fell
- Department of Entomology, Virginia Tech, Blacksburg, VA 24061
| | | | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE 68583
- Corresponding author, e-mail:
| |
Collapse
|
305
|
Azzouz-Olden F, Hunt A, DeGrandi-Hoffman G. Transcriptional response of honey bee (Apis mellifera) to differential nutritional status and Nosema infection. BMC Genomics 2018; 19:628. [PMID: 30134827 PMCID: PMC6106827 DOI: 10.1186/s12864-018-5007-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/13/2018] [Indexed: 12/29/2022] Open
Abstract
Background Bees are confronting several environmental challenges, including the intermingled effects of malnutrition and disease. Intuitively, pollen is the healthiest nutritional choice, however, commercial substitutes, such as Bee-Pro and MegaBee, are widely used. Herein we examined how feeding natural and artificial diets shapes transcription in the abdomen of the honey bee, and how transcription shifts in combination with Nosema parasitism. Results Gene ontology enrichment revealed that, compared with poor diet (carbohydrates [C]), bees fed pollen (P > C), Bee-Pro (B > C), and MegaBee (M > C) showed a broad upregulation of metabolic processes, especially lipids; however, pollen feeding promoted more functions, and superior proteolysis. The superiority of the pollen diet was also evident through the remarkable overexpression of vitellogenin in bees fed pollen instead of MegaBee or Bee-Pro. Upregulation of bioprocesses under carbohydrates feeding compared to pollen (C > P) provided a clear poor nutritional status, uncovering stark expression changes that were slight or absent relatively to Bee-Pro (C > B) or MegaBee (C > M). Poor diet feeding (C > P) induced starvation response genes and hippo signaling pathway, while it repressed growth through different mechanisms. Carbohydrate feeding (C > P) also elicited ‘adult behavior’, and developmental processes suggesting transition to foraging. Finally, it altered the ‘circadian rhythm’, reflecting the role of this mechanism in the adaptation to nutritional stress in mammals. Nosema-infected bees fed pollen compared to carbohydrates (PN > CN) upheld certain bioprocesses of uninfected bees (P > C). Poor nutritional status was more apparent against pollen (CN > PN) than Bee-Pro (CN > BN) or MegaBee (CN > MN). Nosema accentuated the effects of malnutrition since more starvation-response genes and stress response mechanisms were upregulated in CN > PN compared to C > P. The bioprocess ‘Macromolecular complex assembly’ was also enriched in CN > PN, and involved genes associated with human HIV and/or influenza, thus providing potential candidates for bee-Nosema interactions. Finally, the enzyme Duox emerged as essential for guts defense in bees, similarly to Drosophila. Conclusions These results provide evidence of the superior nutritional status of bees fed pollen instead of artificial substitutes in terms of overall health, even in the presence of a pathogen. Electronic supplementary material The online version of this article (10.1186/s12864-018-5007-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Arthur Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | | |
Collapse
|
306
|
Zhou J, Yu HY, Zhang W, Ahmad F, Hu SN, Zhao LL, Zou Z, Sun JH. Comparative analysis of the Monochamus alternatus immune system. INSECT SCIENCE 2018; 25:581-603. [PMID: 28247970 DOI: 10.1111/1744-7917.12453] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 02/05/2017] [Accepted: 02/20/2017] [Indexed: 05/26/2023]
Abstract
The pine sawyer beetle, Monochamus alternatus, is regarded as a notorious forest pest in Asia, vectoring an invasive pathogenic nematode, Bursaphelenchus xylophilus, which is known to cause pine wilt disease. However, little sequence information is available for this vector beetle. This hampered the research on its immune system. Based on the transcriptome of M. alternatus, we have identified and characterized 194 immunity-related genes in M. alternatus, and compared them with homologues molecules from other species known to exhibit immune responses against invading microbes. The lower number of putative immunity-related genes in M. alternatus were attributed to fewer C-type lectin, serine protease (SP) and anti-microbial peptide (AMP) genes. Phylogenetic analysis revealed that M. alternatus had a unique recognition gene, galectin3, orthologues of which were not identified in Tribolium castaneum, Drosophila melanogastor, Anopheles gambiae and Apis mellifera. This suggested a lineage-specific gene evolution for coleopteran insects. Our study provides the comprehensive sequence resources of the immunity-related genes of M. alternatus, presenting valuable information for better understanding of the molecular mechanism of innate immunity processes in M. alternatus against B. xylophilus.
Collapse
Affiliation(s)
- Jiao Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hai-Ying Yu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Wei Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Faheem Ahmad
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Song-Nian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Li-Lin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiang-Hua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
307
|
Yang H, Peng Y, Shi Y, Tian J, Wang J, Song Q, Lv Z, Xie C, Wang Z. Transcriptome analysis provides insights into the immunity function of venom glands in Pardosa pseudoannulata in responses to cadmium toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:23875-23882. [PMID: 29881962 DOI: 10.1007/s11356-018-2468-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 06/01/2018] [Indexed: 06/08/2023]
Abstract
Due to some similarity of innate immunity between insects and mammals, the study of the molecular mechanism of innate immunity in insects has become a focus of research. However, the exact molecular and cellular basis of immune system in insect remains poorly understood. Characterization of the transcriptomic response to Cd of spider is an effective approach to understanding the innate immunity mechanisms. In this study, we carried out transcriptome sequencing and gene expression analyses to develop molecular resources for Pardosa pseudoannulata venom glands with and without Cd treatments. A total of 92,778 assembled unigenes and 237 Cd stress-associated differentially expressed genes between the Cd-treated and control groups were obtained. Expression profile analysis demonstrated that immunity-related genes involved in bacterial invasion of epithelial cells, leukocyte transendothelial migration, platelet activation, apoptosis, phagosome, and Rap1 signaling pathway were upregulated by Cd exposure, except the genes involved in PPAR signaling pathway were downregulated. Our results provide the first comprehensive transcriptome dataset of venom glands in P. pseudoannulata response to Cd, which is valuable for throws light on the immunotoxicity mechanism of Cd, and the innate immunity complexity.
Collapse
Affiliation(s)
- Huilin Yang
- College of Orient Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Yixue Shi
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Jianxiang Tian
- College of Continuing Education, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Juan Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, 410205, Hunan, China
| | - Zhi Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha, 410128, Hunan, China.
- College of Life Science, Hunan Normal University, Changsha, 410006, Hunan, China.
| |
Collapse
|
308
|
Van Meyel S, Körner M, Meunier J. Social immunity: why we should study its nature, evolution and functions across all social systems. CURRENT OPINION IN INSECT SCIENCE 2018; 28:1-7. [PMID: 30551759 DOI: 10.1016/j.cois.2018.03.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/09/2023]
Abstract
Mounting defences against pathogens is a necessity for all animals. Although these defences have long been known to rely on individual processes such as the immune system, recent studies have emphasized the importance of social defences for group-living hosts. These defences, called social immunity, have been mostly studied in eusocial insects such as bees, termites and ants, and include, for instance, mutual cleaning and waste management. Over the last few years, however, a growing number of works called for a broader exploration of social immunity in non-eusocial species. In this review, we summarize the rationales of this call and examine why it may provide major insights into our current understanding of the role of pathogens in social evolution. We start by presenting the original conceptual framework of social immunity developed in eusocial insects and shed light on its importance in highly derived social systems. We then clarify three major misconceptions possibly fostered by this original framework and demonstrate why they made necessary the shift towards a broader definition of social immunity. Because a broader definition still needs boundaries, we finally present three criteria to discriminate what is a form of social immunity, from what is not. Overall, we argue that studying social immunity across social systems does not only provide novel insights into how pathogens affect the evolution of eusociality, but also of the emergence and maintenance of social life from a solitary state. Moreover, this broader approach offers new scopes to disentangle the common and specific anti-pathogen defences developed by eusocial and non-eusocial hosts, and to better understand the dependent and independent evolutionary drivers of social and individual immunity.
Collapse
Affiliation(s)
- Sophie Van Meyel
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France
| | - Maximilian Körner
- Institute of Organismic and Molecular Evolutionary Biology, Johannes-Gutenberg University of Mainz, Mainz, Germany
| | - Joël Meunier
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261, CNRS, University of Tours, Tours, France.
| |
Collapse
|
309
|
McMenamin AJ, Daughenbaugh KF, Parekh F, Pizzorno MC, Flenniken ML. Honey Bee and Bumble Bee Antiviral Defense. Viruses 2018; 10:E395. [PMID: 30060518 PMCID: PMC6115922 DOI: 10.3390/v10080395] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
Bees are important plant pollinators in both natural and agricultural ecosystems. Managed and wild bees have experienced high average annual colony losses, population declines, and local extinctions in many geographic regions. Multiple factors, including virus infections, impact bee health and longevity. The majority of bee-infecting viruses are positive-sense single-stranded RNA viruses. Bee-infecting viruses often cause asymptomatic infections but may also cause paralysis, deformity or death. The severity of infection is governed by bee host immune responses and influenced by additional biotic and abiotic factors. Herein, we highlight studies that have contributed to the current understanding of antiviral defense in bees, including the Western honey bee (Apis mellifera), the Eastern honey bee (Apis cerana) and bumble bee species (Bombus spp.). Bee antiviral defense mechanisms include RNA interference (RNAi), endocytosis, melanization, encapsulation, autophagy and conserved immune pathways including Jak/STAT (Janus kinase/signal transducer and activator of transcription), JNK (c-Jun N-terminal kinase), MAPK (mitogen-activated protein kinases) and the NF-κB mediated Toll and Imd (immune deficiency) pathways. Studies in Dipteran insects, including the model organism Drosophila melanogaster and pathogen-transmitting mosquitos, provide the framework for understanding bee antiviral defense. However, there are notable differences such as the more prominent role of a non-sequence specific, dsRNA-triggered, virus limiting response in honey bees and bumble bees. This virus-limiting response in bees is akin to pathways in a range of organisms including other invertebrates (i.e., oysters, shrimp and sand flies), as well as the mammalian interferon response. Current and future research aimed at elucidating bee antiviral defense mechanisms may lead to development of strategies that mitigate bee losses, while expanding our understanding of insect antiviral defense and the potential evolutionary relationship between sociality and immune function.
Collapse
Affiliation(s)
- Alexander J McMenamin
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Katie F Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Fenali Parekh
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| | - Marie C Pizzorno
- Biology Department, Bucknell University, Lewisburg, PA 17837, USA.
| | - Michelle L Flenniken
- Department of Plant Sciences and Plant Pathology, Bozeman, MT 59717, USA.
- Department of Microbiology and Immunology, Bozeman, MT 59717, USA.
- Center for Pollinator Health, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
310
|
Does the Pollen Diet Influence the Production and Expression of Antimicrobial Peptides in Individual Honey Bees? INSECTS 2018; 9:insects9030079. [PMID: 29973559 PMCID: PMC6164669 DOI: 10.3390/insects9030079] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 11/23/2022]
Abstract
We investigated the importance of protein nutrition for honey bee immunity. Different protein diets (monofloral pollen of Helianthus spp., Sinapis spp., Asparagus spp., Castanea spp., a mixture of the four different pollen and the pollen substitute FeedbeeTM) were fed to honey bees in cages ad libitum. After 18 days of feeding, apidaecin 1 isoforms concentration in the thorax were measured using nanoflow liquid chromatography coupled with mass spectrometry. Expression levels of genes, coding for apidaecins and abaecin in the abdomen were determined using quantitative PCR. The results indicate that protein-containing nutrition in adult worker honey bees can trigger certain metabolic responses. Bees without dietary protein showed lower apidaecin 1 isoforms concentrations. The significantly lowest concentration of apidaecin 1 isoforms was found in the group that was fed no pollen diet when compared to Asparagus, Castanea, Helianthus, and Sinapis pollen or the pollen supplement FeedBeeTM. Expression levels of the respective genes were also affected by the protein diets and different expression levels of these two antimicrobial peptides were found. Positive correlation between concentration and gene expression of apidaecins was found. The significance of feeding bees with different protein diets, as well as the importance of pollen nutrition for honey bee immunity is demonstrated.
Collapse
|
311
|
Walderdorff L, Laval-Gilly P, Bonnefoy A, Falla-Angel J. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:17-24. [PMID: 29758240 DOI: 10.1016/j.jinsphys.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H2O2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H2O2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H2O2 and NO production.
Collapse
Affiliation(s)
- Louise Walderdorff
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France.
| | - Philippe Laval-Gilly
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Jaïro Falla-Angel
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| |
Collapse
|
312
|
Keehnen NL, Hill J, Nylin S, Wheat CW. Microevolutionary selection dynamics acting on immune genes of the green-veined white butterfly,Pieris napi. Mol Ecol 2018; 27:2807-2822. [DOI: 10.1111/mec.14722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Jason Hill
- Department of Zoology; Stockholm University; Stockholm Sweden
| | - Sören Nylin
- Department of Zoology; Stockholm University; Stockholm Sweden
| | | |
Collapse
|
313
|
Xia X, You M, Rao XJ, Yu XQ. Insect C-type lectins in innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 83:70-79. [PMID: 29198776 DOI: 10.1016/j.dci.2017.11.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 05/21/2023]
Abstract
C-type lectins (CTLs) are a family of proteins that contain characteristic modules of carbohydrate-recognition domains (CRDs) and they possess the binding activity to ligands in a calcium-dependent manner. CTLs play important roles in animal immune responses, and in insects, they are involved in opsonization, nodule formation, agglutination, encapsulation, melanization, and prophenoloxidase activation, as well as in maintaining gut microbiome homeostasis. In this review, we will summarize insect CTLs, compare the properties of insect CTLs with vertebrate CTLs, and focus mainly on the domain organization and functions of insect CTLs in innate immunity.
Collapse
Affiliation(s)
- Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Control of Insect Pests (Fujian Agriculture and Forestry University), Fujian Province University, Fuzhou 350002, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiang-Jun Rao
- School of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Qiang Yu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Insect Science and Technology & School of Life Sciences, South China Normal University, Guangzhou 510631, China; Fujian-Taiwan Joint Centre for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; School of Biological Sciences, University of Missouri - Kansas City, Kansas City, MO 64110-2499, USA.
| |
Collapse
|
314
|
Li G, Zhao H, Liu Z, Wang H, Xu B, Guo X. The Wisdom of Honeybee Defenses Against Environmental Stresses. Front Microbiol 2018; 9:722. [PMID: 29765357 PMCID: PMC5938604 DOI: 10.3389/fmicb.2018.00722] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/27/2018] [Indexed: 12/27/2022] Open
Abstract
As one of the predominant pollinator, honeybees provide important ecosystem service to crops and wild plants, and generate great economic benefit for humans. Unfortunately, there is clear evidence of recent catastrophic honeybee colony failure in some areas, resulting in markedly negative environmental and economic effects. It has been demonstrated that various environmental stresses, including both abiotic and biotic stresses, functioning singly or synergistically, are the potential drivers of colony collapse. Honeybees can use many defense mechanisms to decrease the damage from environmental stress to some extent. Here, we synthesize and summarize recent advances regarding the effects of environmental stress on honeybees and the wisdom of honeybees to respond to external environmental stress. Furthermore, we provide possible future research directions about the response of honeybees to various form of stressors.
Collapse
Affiliation(s)
- Guilin Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an, China
| | - Xingqi Guo
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
315
|
Immune-cognitive system connectivity reduces bumblebee foraging success in complex multisensory floral environments. Sci Rep 2018; 8:5953. [PMID: 29654316 PMCID: PMC5899130 DOI: 10.1038/s41598-018-24372-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
Bumblebees are declining at alarming rate worldwide, posing a significant threat to the function and diversity of temperate ecosystems. These declines have been attributed, in part, to the direct effect of specific pathogens on bumblebee survival. However, pathogens may also have a negative impact on host populations indirectly through immune-induced cognitive deficits in infected individuals. To gain greater insight into mechanisms and potential conservation implications of such 'immune-brain crosstalk' in bumblebees, we non-pathogenetically activated humoral and cellular immune pathways in individuals and then tested for long-term reductions in cognitive performance and foraging proficiency. We show that chronic activation of humoral, but not a cellular, immune pathways and effectors in foragers significantly reduces their ability to flexibly and efficiently harvest resources in multi-sensory floral environments for at least 7 days post-treatment. Humoral defense responses thus have the potential to confer significant foraging costs to bumblebee foragers over timeframes that would negatively impact colony growth and reproductive output under natural conditions. Our findings indicate that fitness effects of immune-brain crosstalk should be considered before attributing wild bumblebee decline to a particular pathogen species.
Collapse
|
316
|
Traver BE, Feazel-Orr HK, Catalfamo KM, Brewster CC, Fell RD. Seasonal Effects and the Impact of In-Hive Pesticide Treatments on Parasite, Pathogens, and Health of Honey Bees. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:517-527. [PMID: 29471479 DOI: 10.1093/jee/toy026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Honey bee, Apis mellifera (L.; Hymenoptera: Apidae), populations are in decline and their losses pose a serious threat for crop pollination and food production. The specific causes of these losses are believed to be multifactorial. Pesticides, parasites and pathogens, and nutritional deficiencies have been implicated in the losses due to their ability to exert energetic stress on bees. While our understanding of the role of these factors in honey bee colony losses has improved, there is still a lack of knowledge of how they impact the immune system of the honey bee. In this study, honey bee colonies were exposed to Fumagilin-B, Apistan (tau-fluvalinate), and chlorothalonil at field realistic levels. No significant effects of the antibiotic and two pesticides were observed on the levels of varroa mite, Nosema ceranae (Fries; Microsporidia: Nosematidae), black queen cell virus, deformed wing virus, or immunity as measured by phenoloxidase and glucose oxidase activity. Any effects on the parasites, pathogens, and immunity we observed appear to be due mainly to seasonal changes within the honey bee colonies. The results suggest that Fumagilin-B, Apistan, and chlorothalonil do not significantly impact the health of honey bee colonies, based on the factors analyzed and the concentration of chemicals tested.
Collapse
Affiliation(s)
- Brenna E Traver
- Department of Biology, Penn State Schuylkill, Schuylkill Haven, PA
| | | | | | | | | |
Collapse
|
317
|
Li H, Smigocki AC. Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host. INSECT SCIENCE 2018; 25:222-234. [PMID: 27696738 DOI: 10.1111/1744-7917.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT-PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.
Collapse
Affiliation(s)
- Haiyan Li
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| | - Ann C Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
318
|
Honey Bee Antiviral Immune Barriers as Affected by Multiple Stress Factors: A Novel Paradigm to Interpret Colony Health Decline and Collapse. Viruses 2018; 10:v10040159. [PMID: 29601473 PMCID: PMC5923453 DOI: 10.3390/v10040159] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 11/16/2022] Open
Abstract
Any attempt to outline a logical framework in which to interpret the honey bee health decline and its contribution to elevated colony losses should recognize the importance of the multifactorial nature of the responsible syndrome and provide a functional model as a basis for defining and testing working hypotheses. We propose that covert infections by deformed wing virus (DWV) represent a sword of Damocles permanently threatening the survival of honey bee colonies and suggest that any factor affecting the honey bee’s antiviral defenses can turn this pathogen into a killer. Here we discuss the available experimental evidence in the framework of a model based on honey bee immune competence as affected by multiple stress factors that is proposed as a conceptual tool for analyzing bee mortality and its underlying mechanisms.
Collapse
|
319
|
Liu Y, Zhao X, Naeem M, An J. Crystal structure of peptidoglycan recognition protein SA in Apis mellifera (Hymenoptera: Apidae). Protein Sci 2018; 27:893-897. [PMID: 29396863 DOI: 10.1002/pro.3383] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/31/2018] [Accepted: 01/31/2018] [Indexed: 11/10/2022]
Abstract
Peptidoglycan recognition protein SA (PGRP-SA) is a key pattern recognition receptor in the insect innate immune system. PGRP-SA can bind to bacterial PGN and activate the Toll pathway, which triggers the expression and release of antimicrobial peptides to prevent bacterial infection. Here, we report the first structure of Apis mellifera PGRP-SA from Hymenoptera at 1.86 Å resolution. The overall architecture of Am-PGRP-SA was similar to the Drosophila PGRP-SA; however, the residues involved in PGN binding groove were not conserved, and the binding pocket was narrower. This structure gives insight into PGN binding characteristics in honeybees.
Collapse
Affiliation(s)
- Yanjie Liu
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaomeng Zhao
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Muhammad Naeem
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Jiandong An
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| |
Collapse
|
320
|
Bordier C, Klein S, Le Conte Y, Barron AB, Alaux C. Stress decreases pollen foraging performance in honeybees. ACTA ACUST UNITED AC 2018; 221:jeb.171470. [PMID: 29361592 DOI: 10.1242/jeb.171470] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/02/2018] [Indexed: 12/16/2022]
Abstract
Foraging in honeybees is energetically demanding. Here, we examined whether stressors, which generally increase metabolic demands, can impair foraging performance. A controlled non-pathogenic stressor (immune challenge) resulted in a change in the foraging preferences of bees. It reduced pollen foraging and increased the duration of trips in pollen foragers. Stress also reduced the amount of octopamine in the brain of pollen foragers (a biogenic amine involved in the regulation of foraging and flight behaviour in insects). According to the literature, flight metabolic rate is higher during pollen foraging than during nectar foraging, and nectar gives a higher energetic return relative to the foraging effort when compared with pollen. We thus propose that stress might be particularly detrimental to the performance of pollen foragers, and stressed bees prefer the energy-rich resource of nectar. In conclusion, stress, even at low levels, could have consequences for bee foraging behaviour and thereby the nutritional balance of the colony.
Collapse
Affiliation(s)
- Célia Bordier
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Simon Klein
- Research Center on Animal Cognition, Center for Integrative Biology, National Center for Scientific Research (CNRS), University Paul Sabatier (UPS), 31062 Toulouse, France.,Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yves Le Conte
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| | - Andrew B Barron
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Cédric Alaux
- INRA, UR 406 Abeilles et Environnement, 84914 Avignon, France
| |
Collapse
|
321
|
Sadekuzzaman M, Kim Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS One 2018; 13:e0193282. [PMID: 29466449 PMCID: PMC5821394 DOI: 10.1371/journal.pone.0193282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge.
Collapse
Affiliation(s)
- Md. Sadekuzzaman
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
322
|
Chronic Nosema ceranae infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host Apis mellifera honey bees. Int J Parasitol 2018; 48:433-444. [PMID: 29452081 DOI: 10.1016/j.ijpara.2017.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/31/2017] [Accepted: 11/07/2017] [Indexed: 01/05/2023]
Abstract
Nosema ceranae is an intracellular microsporidian parasite of the Asian honey bee Apis cerana and the European honey bee Apis mellifera. Until relatively recently, A. mellifera honey bees were naïve to N. ceranae infection. Symptoms of nosemosis, or Nosema disease, in the infected hosts include immunosuppression, damage to gut epithelium, nutrient and energetic stress, precocious foraging and reduced longevity of infected bees. Links remain unclear between immunosuppression, the symptoms of nutrient and energetic stress, and precocious foraging behavior of hosts. To clarify physiological connections, we inoculated newly emerged A. mellifera adult workers with N. ceranae spores, and over 21 days post inoculation (21 days pi), gauged infection intensity and quantified expression of genes representing two innate immune pathways, Toll and Imd. Additionally, we measured each host's whole-body protein, lipids, carbohydrates and quantified respirometric and activity levels. Results show sustained suppression of genes of both humorally regulated immune response pathways after 6 days pi. At 7 days pi, elevated protein levels of infected bees may reflect synthesis of antimicrobial peptides from an initial immune response, but the lack of protein gain compared with uninfected bees at 14 days pi may represent low de novo protein synthesis. Carbohydrate data do not indicate that hosts experience severe metabolic stress related to this nutrient. At 14 days pi infected honey bees show high respirometric and activity levels, and corresponding lipid loss, suggesting lipids may be used as fuel for increased metabolic demands resulting from infection. Accelerated lipid loss during nurse honey bee behavioral development can have cascading effects on downstream physiology that may lead to precocious foraging, which is a major factor driving colony collapse.
Collapse
|
323
|
Zhao L, Zhang X, Qiu Z, Huang Y. De Novo Assembly and Characterization of the Xenocatantops brachycerus Transcriptome. Int J Mol Sci 2018; 19:E520. [PMID: 29419810 PMCID: PMC5855742 DOI: 10.3390/ijms19020520] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 01/19/2023] Open
Abstract
Grasshoppers are common pests but also have high nutritional and commercial potential. Xenocatantops brachycerus Willemse (Orthoptera: Acrididae) is an economically important grasshopper species that is reared in China. Using the IlluminaHiSeqTM 4000 platform, three transcriptomes of the adult male, adult female, and nymph of X. brachycerus were sequenced. A total of 133,194,848 clean reads were obtained and de novo assembled into 43,187 unigenes with an average length of 964 bp (N50 of 1799 bp); of these, 24,717 (57.23%) unigenes matched known proteins. Based on these annotations, many putative transcripts related to X. brachycerus growth, development, environmental adaptability, and metabolism of nutritional components and bioactive components were identified. In addition, the expression profiles of all three transcriptome datasets were analyzed, and many differentially expressed genes were detected using RSEM and PossionDis. Unigenes. Unigenes with functions associated with growth and development exhibited higher transcript levels at the nymph stage, and unigenes associated with environmental adaptability showed increased transcription in the adults. These comprehensive X. brachycerus transcriptomic data will provide a useful molecular resource for gene prediction, molecular marker development, and studies on signaling pathways in this species and will serve as a reference for the efficient use of other grasshoppers.
Collapse
Affiliation(s)
- Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
- School of Biological Sciences and Engineering, Shaanxi University of Technology, Hanzhong 723001, Shaanxi, China.
| | - Xinmei Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| | - Zhongying Qiu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
- School of Basic Medical Sciences, Xi'an Medical University, Xi'an 710021, Shaanxi, China.
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, Shaanxi, China.
| |
Collapse
|
324
|
Santos-Matos G, Wybouw N, Martins NE, Zélé F, Riga M, Leitão AB, Vontas J, Grbić M, Van Leeuwen T, Magalhães S, Sucena É. Tetranychus urticae mites do not mount an induced immune response against bacteria. Proc Biol Sci 2018; 284:rspb.2017.0401. [PMID: 28592670 PMCID: PMC5474072 DOI: 10.1098/rspb.2017.0401] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022] Open
Abstract
The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response.
Collapse
Affiliation(s)
- Gonçalo Santos-Matos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 2780-156 Oeiras, Portugal.,cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Nicky Wybouw
- Laboratory for Agrozoology, Department of Crop Protection, University of Ghent, Coupure links 653, 9000 Ghent, Belgium.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nelson E Martins
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 2780-156 Oeiras, Portugal
| | - Flore Zélé
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Maria Riga
- Faculty of Applied Biotechnology and Biology, Department of Biology, University of Crete, Vasilika Vouton, PO Box 2208, 71409 Heraklion, Crete, Greece
| | - Alexandre B Leitão
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 2780-156 Oeiras, Portugal
| | - John Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, 100 N. Plastira Street, 70013 Heraklion, Crete, Greece.,Laboratory of Pesticide Science, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos Street, 11855 Athens, Greece
| | - Miodrag Grbić
- Department of Biology, University of Western Ontario, London, Canada N6A 5B7.,Instituto de Ciencias de la Vid y del Vino Consejo Superior de Investigaciones Cientificas, Universidad de la Rioja, 26006 Logroño, Spain
| | - Thomas Van Leeuwen
- Laboratory for Agrozoology, Department of Crop Protection, University of Ghent, Coupure links 653, 9000 Ghent, Belgium.,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sara Magalhães
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 2780-156 Oeiras, Portugal .,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Élio Sucena
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6 2780-156 Oeiras, Portugal .,Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
325
|
Zumaya-Estrada FA, Martínez-Barnetche J, Lavore A, Rivera-Pomar R, Rodríguez MH. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors 2018; 11:48. [PMID: 29357911 PMCID: PMC5778769 DOI: 10.1186/s13071-017-2561-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2561-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.,Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México.
| |
Collapse
|
326
|
Balasubramaniam K, Beisner B, Guan J, Vandeleest J, Fushing H, Atwill E, McCowan B. Social network community structure and the contact-mediated sharing of commensal E. coli among captive rhesus macaques ( Macaca mulatta). PeerJ 2018; 6:e4271. [PMID: 29372120 PMCID: PMC5775753 DOI: 10.7717/peerj.4271] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
In group-living animals, heterogeneity in individuals' social connections may mediate the sharing of microbial infectious agents. In this regard, the genetic relatedness of individuals' commensal gut bacterium Escherichia coli may be ideal to assess the potential for pathogen transmission through animal social networks. Here we use microbial phylogenetics and population genetics approaches, as well as host social network reconstruction, to assess evidence for the contact-mediated sharing of E. coli among three groups of captively housed rhesus macaques (Macaca mulatta), at multiple organizational scales. For each group, behavioral data on grooming, huddling, and aggressive interactions collected for a six-week period were used to reconstruct social network communities via the Data Cloud Geometry (DCG) clustering algorithm. Further, an E. coli isolate was biochemically confirmed and genotypically fingerprinted from fecal swabs collected from each macaque. Population genetics approaches revealed that Group Membership, in comparison to intrinsic attributes like age, sex, and/or matriline membership of individuals, accounted for the highest proportion of variance in E. coli genotypic similarity. Social network approaches revealed that such sharing was evident at the community-level rather than the dyadic level. Specifically, although we found no links between dyadic E. coli similarity and social contact frequencies, similarity was significantly greater among macaques within the same social network communities compared to those across different communities. Moreover, tests for one of our study-groups confirmed that E. coli isolated from macaque rectal swabs were more genotypically similar to each other than they were to isolates from environmentally deposited feces. In summary, our results suggest that among frequently interacting, spatially constrained macaques with complex social relationships, microbial sharing via fecal-oral, social contact-mediated routes may depend on both individuals' direct connections and on secondary network pathways that define community structure. They lend support to the hypothesis that social network communities may act as bottlenecks to contain the spread of infectious agents, thereby encouraging disease control strategies to focus on multiple organizational scales. Future directions includeincreasing microbial sampling effort per individual to better-detect dyadic transmission events, and assessments of the co-evolutionary links between sociality, infectious agent risk, and host immune function.
Collapse
Affiliation(s)
- Krishna Balasubramaniam
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Brianne Beisner
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Jiahui Guan
- Department of Statistics, University of California, Davis, CA, United States of America
| | - Jessica Vandeleest
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| | - Hsieh Fushing
- Department of Statistics, University of California, Davis, CA, United States of America
| | - Edward Atwill
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
| | - Brenda McCowan
- Department of Population Health & Reproduction, School of Veterinary Medicine, University of California, Davis, CA, United States of America
- Brain, Mind & Behavior, California National Primate Research Center, University of California, Davis, CA, United States of America
| |
Collapse
|
327
|
Diao Q, Sun L, Zheng H, Zeng Z, Wang S, Xu S, Zheng H, Chen Y, Shi Y, Wang Y, Meng F, Sang Q, Cao L, Liu F, Zhu Y, Li W, Li Z, Dai C, Yang M, Chen S, Chen R, Zhang S, Evans JD, Huang Q, Liu J, Hu F, Su S, Wu J. Genomic and transcriptomic analysis of the Asian honeybee Apis cerana provides novel insights into honeybee biology. Sci Rep 2018; 8:822. [PMID: 29339745 PMCID: PMC5770391 DOI: 10.1038/s41598-017-17338-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 11/23/2017] [Indexed: 11/23/2022] Open
Abstract
The Asian honeybee Apis cerana is one of two bee species that have been commercially kept with immense economic value. Here we present the analysis of genomic sequence and transcriptomic exploration for A. cerana as well as the comparative genomic analysis of the Asian honeybee and the European honeybee A. mellifera. The genome and RNA-seq data yield new insights into the behavioral and physiological resistance to the parasitic mite Varroa the evolution of antimicrobial peptides, and the genetic basis for labor division in A. cerana. Comparison of genes between the two sister species revealed genes specific to A. cerana, 54.5% of which have no homology to any known proteins. The observation that A. cerana displayed significantly more vigilant grooming behaviors to the presence of Varroa than A. mellifera in conjunction with gene expression analysis suggests that parasite-defensive grooming in A. cerana is likely triggered not only by exogenous stimuli through visual and olfactory detection of the parasite, but also by genetically endogenous processes that periodically activates a bout of grooming to remove the ectoparasite. This information provides a valuable platform to facilitate the traits unique to A. cerana as well as those shared with other social bees for health improvement.
Collapse
Affiliation(s)
- Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Liangxian Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.,Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Shengyue Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Shufa Xu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanping Chen
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Yuanyuan Shi
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang, Jiangxi, 330045, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Fei Meng
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qingliang Sang
- Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Lianfei Cao
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fang Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongqiang Zhu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Wenfeng Li
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Zhiguo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Congjie Dai
- Molecular Biology and Pharmacology Key Laboratory of Fujian Advanced Education, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Minjun Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, China
| | - Shenglu Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Runsheng Chen
- Bioinformatics Laboratory and National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaowu Zhang
- ARC Centre of Excellence in Vision Science, Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT 2601, Australia
| | - Jay D Evans
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Qiang Huang
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Jie Liu
- USDA-ARS Beltsville Bee Research Laboratory, Beltsville, Maryland, 20705, USA
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Songkun Su
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China. .,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jie Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 10093, China.
| |
Collapse
|
328
|
de Mattos IM, Soares AEE, Tarpy DR. Mitigating effects of pollen during paraquat exposure on gene expression and pathogen prevalence in Apis mellifera L. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:32-44. [PMID: 29067534 DOI: 10.1007/s10646-017-1868-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Honey bee (Apis mellifera L.) populations have been experiencing notable mortality in Europe and North America. No single cause has been identified for these dramatic losses, but rather multiple interacting factors are likely responsible (such as pesticides, malnutrition, habitat loss, and pathogens). Paraquat is one of the most widely used non-selective herbicides, especially in developing countries. This herbicide is considered slightly toxic to honey bees, despite being reported as a highly effective inducer of oxidative stress in a wide range of living systems. Here, we test the effects of paraquat on the expression of detoxification and antioxidant-related genes, as well as on the dynamics of pathogen titers. Moreover, we tested the effects of pollen as mitigating factor to paraquat exposure. Our results show significant changes in the expression of several antioxidant-related and detoxification-related genes in the presence of paraquat, as well as an increase of pathogens titers. Finally, we demonstrate a mitigating effect of pollen through the up-regulation of specific genes and improvement of survival of bees exposed to paraquat. The presence of pollen in the diet was also correlated with a reduced prevalence of Nosema and viral pathogens. We discuss the importance of honey bees' nutrition, especially the availability of pollen, on colony losses chronically reported in the USA and Europe.
Collapse
Affiliation(s)
- Igor Medici de Mattos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil.
| | - Ademilson E E Soares
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14.049-900, Brazil
| | - David R Tarpy
- Department of Entomology & Plant Pathology, College of Agriculture and Life Science, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
329
|
Zaobidna EA, Żółtowska K, Łopieńska-Biernat E. Varroa destructor induces changes in the expression of immunity-related genes during the development of Apis mellifera worker and drone broods. Acta Parasitol 2017; 62:779-789. [PMID: 29035869 DOI: 10.1515/ap-2017-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/03/2017] [Indexed: 11/15/2022]
Abstract
The ectoparasitic mite Varroa destructor has emerged as the major pest of honeybees. Despite extensive research efforts, the pathogenesis of varroosis has not been fully explained. Earlier studies suggested that V. destructor infestation leads to the suppression of the host's immune system. The aim of this study was to analyze the immune responses of 14 genes in the Toll signal transduction pathways, including effector genes of antimicrobial peptides (AMPs), in developing Apis mellifera workers and drones infested with V. destructor. Four developmental stages (L5 larvae, prepupae, and 2 pupal stages) and newly emerged imagines were analyzed. In workers, the most significant changes were observed in L5 larvae in the initial stages of infestation. A significant increase in the relative expression of 10 of the 14 analyzed genes, including defensin-1 and defensin-2, was observed in infested bees relative to non-infested individuals. The immune response in drones developed at a slower rate. The expression of genes regulating cytoplasmic signal transduction increased in prepupae, whereas the expression of defensin-1 and defensin-2 effector genes increased in P3 pupae with red eyes. The expression of many immunity-related genes was silenced in successive life stages and in imagines, and it was more profound in workers than in drones. The results indicate that V. destructor significantly influences immune responses regulated by the Toll signal transduction pathway in bees. In infested bees, the observed changes in Toll pathway genes varied between life stages and the sexes.
Collapse
|
330
|
Levin S, Galbraith D, Sela N, Erez T, Grozinger CM, Chejanovsky N. Presence of Apis Rhabdovirus-1 in Populations of Pollinators and Their Parasites from Two Continents. Front Microbiol 2017; 8:2482. [PMID: 29312191 PMCID: PMC5732965 DOI: 10.3389/fmicb.2017.02482] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 01/05/2023] Open
Abstract
The viral ecology of bee communities is complex, where viruses are readily shared among co-foraging bee species. Additionally, in honey bees (Apis mellifera), many viruses are transmitted - and their impacts exacerbated - by the parasitic Varroa destructor mite. Thus far, the viruses found to be shared across bee species and transmitted by V. destructor mites are positive-sense single-stranded RNA viruses. Recently, a negative-sense RNA enveloped virus, Apis rhabdovirus-1 (ARV-1), was found in A. mellifera honey bees in Africa, Europe, and islands in the Pacific. Here, we describe the identification - using a metagenomics approach - of ARV-1 in two bee species (A. mellifera and Bombus impatiens) and in V. destructor mites from populations collected in the United States and Israel. We confirmed the presence of ARV-1 in pools of A. mellifera, B. impatiens, and V. destructor from Israeli and U.S. populations by RT-PCR and found that it can reach high titers in individual honey bees and mites (107-108 viral genomic copies per individual). To estimate the prevalence of ARV-1 in honey bee populations, we screened 104 honey bee colonies across Israel, with 21 testing ARV-1-positive. Tagged-primer-mediated RT-PCR analysis detected the presence of the positive-sense ARV-1 RNA in A. mellifera and V. destructor, indicating that ARV-1 replicates in both hosts. This is the first report of the presence of ARV-1 in B. impatiens and of the replication of a rhabdovirus in A. mellifera and V. destructor. Our data suggest that Varroa mites could act as an ARV-1 vector; however, the presence of ARV-1 in B. impatiens (which are not parasitized by Varroa) suggests that it may not require the mite for transmission and ARV-1 may be shared among co-foraging bee species. Given that ARV-1 is found in non-Apis bee species, and because "ARV" is used for the Adelaide River virus, we propose that this virus should be called bee rhabdovirus 1 and abbreviated BRV-1. These results greatly expand our understanding of the diversity of viruses that can infect bee communities, though further analysis is required to determine how infection with this virus impacts these different hosts.
Collapse
Affiliation(s)
- Sofia Levin
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
- Faculty of Agricultural, Food and the Environmental Quality Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Galbraith
- Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Noa Sela
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
| | - Tal Erez
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
| | - Christina M. Grozinger
- Department of Entomology – Center for Pollinator Research – Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Nor Chejanovsky
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon LeZion, Israel
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
331
|
Impact of colony size on survival and sanitary strategies in fungus-infected ant colonies. Behav Ecol Sociobiol 2017. [DOI: 10.1007/s00265-017-2415-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
332
|
Shi TF, Wang YF, Liu F, Qi L, Yu LS. Sublethal Effects of the Neonicotinoid Insecticide Thiamethoxam on the Transcriptome of the Honey Bees (Hymenoptera: Apidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2283-2289. [PMID: 29040619 DOI: 10.1093/jee/tox262] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Neonicotinoid insecticides are now the most widely used insecticides in the world. Previous studies have indicated that sublethal doses of neonicotinoids impair learning, memory capacity, foraging, and immunocompetence in honey bees (Apis mellifera, Linnaeus) (Hymenoptera: Apidae). Despite these, few studies have been carried out on the molecular effects of neonicotinoids. In this study, we focus on the second-generation neonicotinoid thiamethoxam, which is currently widely used in agriculture to protect crops. Using high-throughput RNA-Seq, we investigated the transcriptome profile of honey bees after subchronic exposure to 10 ppb thiamethoxam over 10 d. In total, 609 differentially expressed genes (DEGs) were identified, of which 225 were upregulated and 384 were downregulated. Several genes, including vitellogenin, CSP3, defensin-1, Mrjp1, and Cyp6as5 were selected and further validated using real-time quantitative polymerase chain reaction assays. The functions of some DEGs were identified, and Gene Ontology-enrichment analysis showed that the enriched DEGs were mainly linked to metabolism, biosynthesis, and translation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that thiamethoxam affected biological processes including ribosomes, the oxidative phosphorylation pathway, tyrosine metabolism pathway, pentose and glucuronate interconversions, and drug metabolism. Overall, our results provide a basis for understanding the molecular mechanisms of the complex interactions between neonicotinoid insecticides and honey bees.
Collapse
Affiliation(s)
- Teng-Fei Shi
- School of Plant Protection, Anhui Agricultural University, China
| | - Yu-Fei Wang
- School of Plant Protection, Anhui Agricultural University, China
| | - Fang Liu
- School of Animal Science and Technology, Anhui Agricultural University, China
| | - Lei Qi
- School of Animal Science and Technology, Anhui Agricultural University, China
| | - Lin-Sheng Yu
- School of Plant Protection, Anhui Agricultural University, China
- School of Animal Science and Technology, Anhui Agricultural University, China
| |
Collapse
|
333
|
Dhaygude K, Trontti K, Paviala J, Morandin C, Wheat C, Sundström L, Helanterä H. Transcriptome sequencing reveals high isoform diversity in the ant Formica exsecta. PeerJ 2017; 5:e3998. [PMID: 29177112 PMCID: PMC5701548 DOI: 10.7717/peerj.3998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Transcriptome resources for social insects have the potential to provide new insight into polyphenism, i.e., how divergent phenotypes arise from the same genome. Here we present a transcriptome based on paired-end RNA sequencing data for the ant Formica exsecta (Formicidae, Hymenoptera). The RNA sequencing libraries were constructed from samples of several life stages of both sexes and female castes of queens and workers, in order to maximize representation of expressed genes. We first compare the performance of common assembly and scaffolding software (Trinity, Velvet-Oases, and SOAPdenovo-trans), in producing de novo assemblies. Second, we annotate the resulting expressed contigs to the currently published genomes of ants, and other insects, including the honeybee, to filter genes that have annotation evidence of being true genes. Our pipeline resulted in a final assembly of altogether 39,262 mRNA transcripts, with an average coverage of >300X, belonging to 17,496 unique genes with annotation in the related ant species. From these genes, 536 genes were unique to one caste or sex only, highlighting the importance of comprehensive sampling. Our final assembly also showed expression of several splice variants in 6,975 genes, and we show that accounting for splice variants affects the outcome of downstream analyses such as gene ontologies. Our transcriptome provides an outstanding resource for future genetic studies on F. exsecta and other ant species, and the presented transcriptome assembly can be adapted to any non-model species that has genomic resources available from a related taxon.
Collapse
Affiliation(s)
- Kishor Dhaygude
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- Department of Biosciences, Neurogenomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Jenni Paviala
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Claire Morandin
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Christopher Wheat
- Department of Zoology Ecology, Stockholm University, Stockholm, Sweden
| | - Liselotte Sundström
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| | - Heikki Helanterä
- Centre of Excellence in Biological Interactions, Department of Biosciences, University of Helsinki, Helsinki, Finland
- Tvärminne Zoological Station, University of Helsinki, Hanko, Finland
| |
Collapse
|
334
|
Yang L, Mei Y, Fang Q, Wang J, Yan Z, Song Q, Lin Z, Ye G. Identification and characterization of serine protease inhibitors in a parasitic wasp, Pteromalus puparum. Sci Rep 2017; 7:15755. [PMID: 29147019 PMCID: PMC5691223 DOI: 10.1038/s41598-017-16000-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/03/2017] [Indexed: 11/08/2022] Open
Abstract
Serine protease inhibitors (SPIs) regulate protease-mediated activities by inactivating their cognate proteinases, and are involved in multiple physiological processes. SPIs have been extensively studied in vertebrates and invertebrates; however, little SPI information is available in parasitoids. Herein, we identified 57 SPI genes in total through the genome of a parasitoid wasp, Pteromalus puparum. Gene structure analyses revealed that these SPIs contain 7 SPI domains. Depending on their mode of action, these SPIs can be categorized into serpins, canonical inhibitors and alpha-2-macroglobulins (A2Ms). For serpins and canonical inhibitors, we predicted their putative inhibitory activities to trypsin/chymotrypsin/elastase-like enzymes based on the amino acids in cleaved reactive sites. Sequence alignment and phylogenetic tree indicated that some serpins similar to known functional inhibitory serpins may participate in immune responses. Transcriptome analysis also showed some canonical SPI genes displayed distinct expression patterns in the venom gland and this was confirmed by quantitative real-time PCR (qPCR) analysis, suggesting their specific physiological functions as venom proteins in suppressing host immune responses. The study provides valuable information to clarify the functions of SPIs in digestion, development, reproduction and innate immunity.
Collapse
Affiliation(s)
- Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yaotian Mei
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiale Wang
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
| | - Zhe Lin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
335
|
Li JH, Evans JD, Li WF, Zhao YZ, DeGrandi-Hoffman G, Huang SK, Li ZG, Hamilton M, Chen YP. New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. PLoS One 2017; 12:e0187505. [PMID: 29125851 PMCID: PMC5681286 DOI: 10.1371/journal.pone.0187505] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/20/2017] [Indexed: 12/19/2022] Open
Abstract
It has become increasingly clear that gut bacteria play vital roles in the development, nutrition, immunity, and overall fitness of their eukaryotic hosts. We conducted the present study to investigate the effects of gut microbiota disruption on the honey bee's immune responses to infection by the microsporidian parasite Nosema ceranae. Newly emerged adult workers were collected and divided into four groups: Group I-no treatment; Group II-inoculated with N. ceranae, Group III-antibiotic treatment, and Group IV-antibiotic treatment after inoculation with N. ceranae. Our study showed that Nosema infection did not cause obvious disruption of the gut bacterial community as there was no significant difference in the density and composition of gut bacteria between Group I and Group II. However, the elimination of gut bacteria by antibiotic (Groups III and IV) negatively impacted the functioning of the honey bees' immune system as evidenced by the expression of genes encoding antimicrobial peptides abaecin, defensin1, and hymenoptaecin that showed the following ranking: Group I > Group II > Group III > Group IV. In addition, significantly higher Nosema levels were observed in Group IV than in Group II, suggesting that eliminating gut bacteria weakened immune function and made honey bees more susceptible to Nosema infection. Based on Group IV having displayed the highest mortality rate among the four experimental groups indicates that antibiotic treatment in combination with stress, associated with Nosema infection, significantly and negatively impacts honey bee survival. The present study adds new evidence that antibiotic treatment not only leads to the complex problem of antibiotic resistance but can impact honey bee disease resistance. Further studies aimed at specific components of the gut bacterial community will provide new insights into the roles of specific bacteria and possibly new approaches to improving bee health.
Collapse
Affiliation(s)
- Jiang Hong Li
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jay D. Evans
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Wen Feng Li
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Ya Zhou Zhao
- Institute of Apicultural Research, Chinese Academy of Agriculture Sciences, Beijing, China
| | | | - Shao Kang Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhi Guo Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michele Hamilton
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
| | - Yan Ping Chen
- USDA-ARS Bee research Laboratory, Beltsville, MD, United States of America
- * E-mail:
| |
Collapse
|
336
|
Li R, Yan Z, Wang J, Song Q, Wang Z. De novo characterization of venom apparatus transcriptome of Pardosa pseudoannulata and analysis of its gene expression in response to Bt protein. BMC Biotechnol 2017; 17:73. [PMID: 29115956 PMCID: PMC5678584 DOI: 10.1186/s12896-017-0392-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 10/30/2017] [Indexed: 12/20/2022] Open
Abstract
Background Pardosa pseudoannulata is a prevailing spider species, and has been regarded as an important bio-control agent of insect pests in farmland of China. However, the available genomic and transcriptomic databases of P. pseudoannulata and their venom are limited, which severely hampers functional genomic analysis of P. pseudoannulata. Recently high-throughput sequencing technology has been proved to be an efficient tool for profiling the transcriptome of relevant non-target organisms exposed to Bacillus thuringiensis (Bt) protein through food webs. Results In this study, the transcriptome of the venom apparatus was analyzed. A total of 113,358 non-redundant unigenes were yielded, among which 34,041 unigenes with complete or various length encoding regions were assigned biological function annotations and annotated with gene ontology and karyotic orthologous group terms. In addition, 3726 unigenes involved in response to stimulus and 720 unigenes associated with immune-response pathways were identified. Furthermore, we investigated transcriptomic changes in the venom apparatus using tag-based DGE technique. A total of 1724 differentially expressed genes (DEGs) were detected, while 75 and 372 DEGs were functionally annotated with KEGG pathways and GO terms, respectively. qPCR analyses were performed to verify the DEGs directly or indirectly related to immune and stress responses, including genes encoding heat shock protein, toll-like receptor, GST and NADH dehydrogenase. Conclusion This is the first study conducted to specifically investigate the venom apparatus of P. pseudoannulata in response to Bt protein exposure through tritrophic chain. A substantial fraction of transcript sequences was generated by high-throughput sequencing of the venom apparatus of P. pseudoannulata. Then a comparative transcriptome analysis showing a large number of candidate genes involved in immune response were identified by the tag-based DGE technology. This transcriptome dataset will provide a comprehensive sequence resource for furture molecular genetic research of the venom apparatus of P. pseudoannulata. Electronic supplementary material The online version of this article (10.1186/s12896-017-0392-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rong Li
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.,Department of Biosciences, Hunan University of Arts and Science, Changde, 415000, China
| | - Zhenzhen Yan
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Juan Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Zhi Wang
- College of Bioscience & Biotechnology, Hunan Agriculture University, Changsha, 410128, China.
| |
Collapse
|
337
|
Li W, Evans JD, Li J, Su S, Hamilton M, Chen Y. Spore load and immune response of honey bees naturally infected by Nosema ceranae. Parasitol Res 2017; 116:3265-3274. [DOI: 10.1007/s00436-017-5630-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023]
|
338
|
Yang D, Zha G, Li X, Gao H, Yu H. Immune responses in the haemolymph and antimicrobial peptide expression in the abdomen of Apis mellifera challenged with Spiroplasma melliferum CH-1. Microb Pathog 2017; 112:279-287. [DOI: 10.1016/j.micpath.2017.10.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 09/29/2017] [Accepted: 10/04/2017] [Indexed: 12/01/2022]
|
339
|
Tesovnik T, Cizelj I, Zorc M, Čitar M, Božič J, Glavan G, Narat M. Immune related gene expression in worker honey bee (Apis mellifera carnica) pupae exposed to neonicotinoid thiamethoxam and Varroa mites (Varroa destructor). PLoS One 2017; 12:e0187079. [PMID: 29088251 PMCID: PMC5663428 DOI: 10.1371/journal.pone.0187079] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/25/2017] [Indexed: 11/18/2022] Open
Abstract
Varroa destructor is one of the most common parasites of honey bee colonies and is considered as a possible co-factor for honey bee decline. At the same time, the use of pesticides in intensive agriculture is still the most effective method of pest control. There is limited information about the effects of pesticide exposure on parasitized honey bees. Larval ingestion of certain pesticides could have effects on honey bee immune defense mechanisms, development and metabolic pathways. Europe and America face the disturbing phenomenon of the disappearance of honey bee colonies, termed Colony Collapse Disorder (CCD). One reason discussed is the possible suppression of honey bee immune system as a consequence of prolonged exposure to chemicals. In this study, the effects of the neonicotinoid thiamethoxam on honey bee, Apis mellifera carnica, pupae infested with Varroa destructor mites were analyzed at the molecular level. Varroa-infested and non-infested honey bee colonies received protein cakes with or without thiamethoxam. Nurse bees used these cakes as a feed for developing larvae. Samples of white-eyed and brown-eyed pupae were collected. Expression of 17 immune-related genes was analyzed by real-time PCR. Relative gene expression in samples exposed only to Varroa or to thiamethoxam or simultaneously to both Varroa and thiamethoxam was compared. The impact from the consumption of thiamethoxam during the larval stage on honey bee immune related gene expression in Varroa-infested white-eyed pupae was reflected as down-regulation of spaetzle, AMPs abaecin and defensin-1 and up-regulation of lysozyme-2. In brown-eyed pupae up-regulation of PPOact, spaetzle, hopscotch and basket genes was detected. Moreover, we observed a major difference in immune response to Varroa infestation between white-eyed pupae and brown-eyed pupae. The majority of tested immune-related genes were upregulated only in brown-eyed pupae, while in white-eyed pupae they were downregulated.
Collapse
Affiliation(s)
- Tanja Tesovnik
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Ivanka Cizelj
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Minja Zorc
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Manuela Čitar
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Janko Božič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Gordana Glavan
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mojca Narat
- Department of Animal Sciences, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
- * E-mail:
| |
Collapse
|
340
|
Chinese Sacbrood virus infection in Asian honey bees (Apis cerana cerana) and host immune responses to the virus infection. J Invertebr Pathol 2017; 150:63-69. [PMID: 28916146 DOI: 10.1016/j.jip.2017.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/21/2017] [Accepted: 09/05/2017] [Indexed: 11/20/2022]
Abstract
Chinese Sacbrood virus (CSBV) is a positive-stranded RNAvirus that infects both the European honey bee (Apis mellifera) and the Asian honey bee (A. cerana). However, CSBV has much more devastating effects on Asian honey bees than on European honey bees, posing a serious threat to the agricultural and natural ecosystems that rely on A. cerana for pollination service. Using quantitative RT-PCR method, we conducted studies to examine the CSBV infection in Asian honey bee colonies and immune responses of individual bees in response to CSBV infection. Our study showed that CSBV could cause infection in different developmental stages of workers including eggs, larvae, pupae, newly emerged workers, and foraging workers. In addition, evaluating the tissue tropism and transmission of CSBV in infected bees showed that CSBV was detected in the ovaries, spermatheca, and feces of queens as well as semen of drones of the same colonies, suggesting an existence of vertical transmission of CSBV in Asian honey bees. Further, the detection of CSBV in colony food suggests that healthy bees could pick the infection by the virus-contaminated food, and therefore, a possible existence of a food-borne transmission pathway of CSBV in Asian bee colonies. The expression analysis of transcripts (defensin, abaecin, apidaecin, and hymenoptaecin) involving innate antiviral immune pathways showed that CSBV infection could induce significant immune responses in infected bees. However, the immune responses to CSBV infection varied among different development stages with eggs exhibiting the lowest level of immune expression and forager workers exhibiting the highest level of immune gene expression. The results obtained in the study yield important insights into the mechanisms underlying disease pathogenesis of CSBV infections in Asian honey bees and provide valuable information for a rational design of disease control measures.
Collapse
|
341
|
Borba RS, Spivak M. Propolis envelope in Apis mellifera colonies supports honey bees against the pathogen, Paenibacillus larvae. Sci Rep 2017; 7:11429. [PMID: 28900241 PMCID: PMC5595881 DOI: 10.1038/s41598-017-11689-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022] Open
Abstract
Honey bees have immune defenses both as individuals and as a colony (e.g., individual and social immunity). One form of honey bee social immunity is the collection of antimicrobial plant resins and the deposition of the resins as a propolis envelope within the nest. In this study, we tested the effects of the propolis envelope as a natural defense against Paenibacillus larvae, the causative agent of American foulbrood (AFB) disease. Using colonies with and without a propolis envelope, we quantified: 1) the antimicrobial activity of larval food fed to 1-2 day old larvae; and 2) clinical signs of AFB. Our results show that the antimicrobial activity of larval food was significantly higher when challenged colonies had a propolis envelope compared to colonies without the envelope. In addition, colonies with a propolis envelope had significantly reduced levels of AFB clinical signs two months following challenge. Our results indicate that the propolis envelope serves as an antimicrobial layer around the colony that helps protect the brood from bacterial pathogen infection, resulting in a lower colony-level infection load.
Collapse
Affiliation(s)
- Renata S Borba
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Saint Paul, MN, 55108, USA.
| | - Marla Spivak
- Department of Entomology, University of Minnesota, 1980 Folwell Ave, Saint Paul, MN, 55108, USA
| |
Collapse
|
342
|
Shakeel M, Xu X, Xu J, Zhu X, Li S, Zhou X, Yu J, Xu X, Hu Q, Yu X, Jin F. Identification of immunity-related genes in Plutella xylostella in response to fungal peptide destruxin A: RNA-Seq and DGE analysis. Sci Rep 2017; 7:10966. [PMID: 28887550 PMCID: PMC5591186 DOI: 10.1038/s41598-017-11298-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/17/2017] [Indexed: 11/09/2022] Open
Abstract
Plutella xylostella has become the major lepidopteran pest of Brassica owing to its strong ability of resistance development to a wide range of insecticides. Destruxin A, a mycotoxin of entomopathogenic fungus, Metarhizium anisopliae, has broad-spectrum insecticidal effects. However, the interaction mechanism of destruxin A with the immune system of P. xylostella at genomic level is still not well understood. Here, we identified 129 immunity-related genes, including pattern recognition receptors, signal modulators, few members of main immune pathways (Toll, Imd, and JAK/STAT), and immune effectors in P. xylostella in response to destruxin A at three different time courses (2 h, 4 h, and 6 h). It is worthy to mention that the immunity-related differentially expressed genes (DEGs) analysis exhibited 30, 78, and 72 up-regulated and 17, 13, and 6 down-regulated genes in P. xylostella after destruxin A injection at 2 h, 4 h, and 6 h, respectively, compared to control. Interestingly, our results revealed that the expression of antimicrobial peptides that play a vital role in insect immune system was up-regulated after the injection of destruxin A. Our findings provide a detailed information on immunity-related DEGs and reveal the potential of P. xylostella to limit the infection of fungal peptide destruxin A by increasing the activity of antimicrobial peptides.
Collapse
Affiliation(s)
- Muhammad Shakeel
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoxia Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Jin Xu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xun Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuzhong Li
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | | | | | | | - Qiongbo Hu
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China
| | - Xiaoqiang Yu
- School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Fengliang Jin
- College of Agriculture, South China Agricultural University, Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, Guangzhou, P.R. China.
| |
Collapse
|
343
|
Arp AP, Martini X, Pelz-Stelinski KS. Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
344
|
McKinstry M, Chung C, Truong H, Johnston BA, Snow JW. The heat shock response and humoral immune response are mutually antagonistic in honey bees. Sci Rep 2017; 7:8850. [PMID: 28821863 PMCID: PMC5562734 DOI: 10.1038/s41598-017-09159-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/21/2017] [Indexed: 11/24/2022] Open
Abstract
The honey bee is of paramount importance to humans in both agricultural and ecological settings. Honey bee colonies have suffered from increased attrition in recent years, stemming from complex interacting stresses. Defining common cellular stress responses elicited by these stressors represents a key step in understanding potential synergies. The proteostasis network is a highly conserved network of cellular stress responses involved in maintaining the homeostasis of protein production and function. Here, we have characterized the Heat Shock Response (HSR), one branch of this network, and found that its core components are conserved. In addition, exposing bees to elevated temperatures normally encountered by honey bees during typical activities results in robust HSR induction with increased expression of specific heat shock proteins that was variable across tissues. Surprisingly, we found that heat shock represses multiple immune genes in the abdomen and additionally showed that wounding the cuticle of the abdomen results in decreased expression of multiple HSR genes in proximal and distal tissues. This mutually antagonistic relationship between the HSR and immune activation is unique among invertebrates studied to date and may promote understanding of potential synergistic effects of disparate stresses in this critical pollinator and social insects more broadly.
Collapse
Affiliation(s)
- Mia McKinstry
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Charlie Chung
- Natural Sciences Department, LaGuardia Community College-CUNY, Long Island City, NY, 11101, USA
| | - Henry Truong
- Biology Department, Barnard College, New York, NY, 10027, USA
| | - Brittany A Johnston
- Biology Department, The City College of New York-CUNY, New York, NY, 10031, USA
| | - Jonathan W Snow
- Biology Department, Barnard College, New York, NY, 10027, USA.
| |
Collapse
|
345
|
O'Neal ST, Swale DR, Anderson TD. ATP-sensitive inwardly rectifying potassium channel regulation of viral infections in honey bees. Sci Rep 2017; 7:8668. [PMID: 28819165 PMCID: PMC5561242 DOI: 10.1038/s41598-017-09448-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Honey bees are economically important pollinators of a wide variety of crops that have attracted the attention of both researchers and the public alike due to unusual declines in the numbers of managed colonies in some parts of the world. Viral infections are thought to be a significant factor contributing to these declines, but viruses have proven a challenging pathogen to study in a bee model and interactions between viruses and the bee antiviral immune response remain poorly understood. In the work described here, we have demonstrated the use of flock house virus (FHV) as a model system for virus infection in bees and revealed an important role for the regulation of the bee antiviral immune response by ATP-sensitive inwardly rectifying potassium (KATP) channels. We have shown that treatment with the KATP channel agonist pinacidil increases survival of bees while decreasing viral replication following infection with FHV, whereas treatment with the KATP channel antagonist tolbutamide decreases survival and increases viral replication. Our results suggest that KATP channels provide a significant link between cellular metabolism and the antiviral immune response in bees.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | - Daniel R Swale
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA.
| |
Collapse
|
346
|
Negri P, Ramirez L, Quintana S, Szawarski N, Maggi M, Le Conte Y, Lamattina L, Eguaras M. Dietary Supplementation of Honey Bee Larvae with Arginine and Abscisic Acid Enhances Nitric Oxide and Granulocyte Immune Responses after Trauma. INSECTS 2017; 8:insects8030085. [PMID: 28809782 PMCID: PMC5620705 DOI: 10.3390/insects8030085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/18/2017] [Accepted: 08/05/2017] [Indexed: 11/16/2022]
Abstract
Many biotic and abiotic stressors impact bees' health, acting as immunosupressors and contribute to colony losses. Thus, the importance of studying the immune response of honey bees is central to develop new strategies aiming to enhance bees' fitness to confront the threats affecting them. If a pathogen breaches the physical and chemical barriers, honey bees can protect themselves from infection with cellular and humoral immune responses which represent a second line of defense. Through a series of correlative studies we have previously reported that abscisic acid (ABA) and nitric oxide (NO) share roles in the same immune defenses of Apis mellifera (A. mellifera). Here we show results supporting that the supplementation of bee larvae's diet reared in vitro with l-Arginine (precursor of NO) or ABA enhanced the immune activation of the granulocytes in response to wounding and lipopolysaccharide (LPS) injection.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, Mar del Plata CP 7600, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
| | - Leonor Ramirez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina.
| | - Silvina Quintana
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
- Laboratorio de Biología Molecular, Farestaie, Mar del Plata CP 7600, Argentina.
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, Mar del Plata CP 7600, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, Mar del Plata CP 7600, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
| | - Yves Le Conte
- INRA Centre de Recherche Provence-Alpes-Côted'Azur, Unitè Abeilles et Environnement, UMR PrADE, Domaine Saint Paul, Site Agroparc, Avignon F-84914, France.
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina.
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Dean Funes 3350, Mar del Plata CP 7600, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Godoy Cruz 2290, Argentina.
| |
Collapse
|
347
|
O'Neal ST, Brewster CC, Bloomquist JR, Anderson TD. Amitraz and its metabolite modulate honey bee cardiac function and tolerance to viral infection. J Invertebr Pathol 2017; 149:119-126. [PMID: 28797906 DOI: 10.1016/j.jip.2017.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/28/2017] [Accepted: 08/05/2017] [Indexed: 12/11/2022]
Abstract
The health and survival of managed honey bee (Apis mellifera) colonies are affected by multiple factors, one of the most important being the interaction between viral pathogens and infestations of the ectoparasitic mite Varroa destructor. Currently, the only effective strategy available for mitigating the impact of viral infections is the chemical control of mite populations. Unfortunately, the use of in-hive acaricides comes at a price, as they can produce sublethal effects that are difficult to quantify, but may ultimately be as damaging as the mites they are used to treat. The goal of this study was to investigate the physiological and immunological effects of the formamidine acaricide amitraz and its primary metabolite in honey bees. Using flock house virus as a model for viral infection, this study found that exposure to a formamidine acaricide may have a negative impact on the ability of honey bees to tolerate viral infection. Furthermore, this work has demonstrated that amitraz and its metabolite significantly alter honey bee cardiac function, most likely through interaction with octopamine receptors. The results suggest a potential drawback to the in-hive use of amitraz and raise intriguing questions about the relationship between insect cardiac function and disease tolerance.
Collapse
Affiliation(s)
- Scott T O'Neal
- Department of Entomology, Virginia Tech, Blacksburg, VA, USA.
| | | | - Jeffrey R Bloomquist
- Department of Entomology and Nematology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Troy D Anderson
- Department of Entomology, University of Nebraska, Lincoln, NE, USA
| |
Collapse
|
348
|
Zanni V, Galbraith DA, Annoscia D, Grozinger CM, Nazzi F. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:1-13. [PMID: 28595898 DOI: 10.1016/j.ibmb.2017.06.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/28/2017] [Accepted: 06/02/2017] [Indexed: 06/07/2023]
Abstract
Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here.
Collapse
Affiliation(s)
- Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - David A Galbraith
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| | - Christina M Grozinger
- Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Via delle Scienze 206, 33100, Udine, Italy.
| |
Collapse
|
349
|
Fisher JJ, Castrillo LA, Donzelli BGG, Hajek AE. Starvation and Imidacloprid Exposure Influence Immune Response by Anoplophora glabripennis (Coleoptera: Cerambycidae) to a Fungal Pathogen. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1451-1459. [PMID: 28482047 DOI: 10.1093/jee/tox124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 06/07/2023]
Abstract
In several insect systems, fungal entomopathogens synergize with neonicotinoid insecticides which results in accelerated host death. Using the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky), an invasive woodborer inadvertently introduced into North America and Europe, we investigated potential mechanisms in the synergy between the entomopathogenic fungus Metarhizium brunneum Petch and the insecticide imidacloprid. A potential mechanism underlying this synergy could be imidacloprid's ability to prevent feeding shortly after administration. We investigated whether starvation would have an impact similar to imidacloprid exposure on the mortality of fungal-inoculated beetles. Using real-time PCR to quantify fungal load in inoculated beetles, we determined how starvation and pesticide exposure impacted beetles' ability to tolerate or resist a fungal infection. The effect of starvation and pesticide exposure on the encapsulation and melanization immune responses of the beetles was also quantified. Starvation had a similar impact on the survival of M. brunneum-inoculated beetles compared to imidacloprid exposure. The synergy, however, was not completely due to starvation, as imidacloprid reduced the beetles' melanotic encapsulation response and capsule area, while starvation did not significantly reduce these immune responses. Our results suggest that there are multiple interacting mechanisms involved in the synergy between M. brunneum and imidacloprid.
Collapse
Affiliation(s)
- Joanna J Fisher
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| | | | - Bruno G G Donzelli
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853-5904
| | - Ann E Hajek
- Department of Entomology, Cornell University, Ithaca, NY 14853-2601
| |
Collapse
|
350
|
Li Z, Li M, He J, Zhao X, Chaimanee V, Huang WF, Nie H, Zhao Y, Su S. Differential physiological effects of neonicotinoid insecticides on honey bees: A comparison between Apis mellifera and Apis cerana. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 140:1-8. [PMID: 28755688 DOI: 10.1016/j.pestbp.2017.06.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/19/2017] [Indexed: 05/25/2023]
Abstract
Acute toxicities (LD50s) of imidacloprid and clothianidin to Apis mellifera and A. cerana were investigated. Changing patterns of immune-related gene expressions and the activities of four enzymes between the two bee species were compared and analyzed after exposure to sublethal doses of insecticides. Results indicated that A. cerana was more sensitive to imidacloprid and clothianidin than A. mellifera. The acute oral LD50 values of imidacloprid and clothianidin for A. mellifera were 8.6 and 2.0ng/bee, respectively, whereas the corresponding values for A. cerana were 2.7 and 0.5ng/bee. The two bee species possessed distinct abilities to mount innate immune response against neonicotinoids. After 48h of imidacloprid treatment, carboxylesterase (CCE), prophenol oxidase (PPO), and acetylcholinesterase (AChE) activities were significantly downregulated in A. mellifera but were upregulated in A. cerana. Glutathione-S-transferase (GST) activity was significantly elevated in A. mellifera at 48h after exposure to imidacloprid, but no significant change was observed in A. cerana. AChE was downregulated in both bee species at three different time points during clothianidin exposure, and GST activities were upregulated in both species exposed to clothianidin. Different patterns of immune-related gene expression and enzymatic activities implied distinct detoxification and immune responses of A. cerana and A. mellifera to imidacloprid and clothianidin.
Collapse
Affiliation(s)
- Zhiguo Li
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Meng Li
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Jingfang He
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Xiaomeng Zhao
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Veeranan Chaimanee
- Department of Biotechnology, Maejo University Phrae Campus, Rong Kwang, Phrae 54140, Thailand
| | - Wei-Fone Huang
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Hongyi Nie
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Yazhou Zhao
- Institute of Apiculture Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China
| | - Songkun Su
- College of Bee Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, China.
| |
Collapse
|