301
|
Abstract
Three-dimensional structure determination of macromolecules and macromolecular complexes is an integral part of understanding biological functions. For large protein and macromolecular complexes structure determination is often performed using electron cryomicroscopy where projection images of individual macromolecular complexes are combined to produce a three-dimensional reconstruction. Single particle methods have been devised to perform this structure determination for macromolecular complexes with little or no underlying symmetry. These computational methods generally involve an iterative process of aligning unique views of the macromolecular images followed by determination of the angular components that define those views. In this review, this structure determination process is described with the aim of clarifying a seemingly complex structural method.
Collapse
|
302
|
Ruzheinikov SN, Burke J, Sedelnikova S, Baker PJ, Taylor R, Bullough PA, Muir NM, Gore MG, Rice DW. Glycerol dehydrogenase. structure, specificity, and mechanism of a family III polyol dehydrogenase. Structure 2001; 9:789-802. [PMID: 11566129 DOI: 10.1016/s0969-2126(01)00645-1] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Bacillus stearothermophilus glycerol dehydrogenase (GlyDH) (glycerol:NAD(+) 2-oxidoreductase, EC 1.1.1.6) catalyzes the oxidation of glycerol to dihydroxyacetone (1,3-dihydroxypropanone) with concomitant reduction of NAD(+) to NADH. Analysis of the sequence of this enzyme indicates that it is a member of the so-called iron-containing alcohol dehydrogenase family. Despite this sequence similarity, GlyDH shows a strict dependence on zinc for activity. On the basis of this, we propose to rename this group the family III metal-dependent polyol dehydrogenases. To date, no structural data have been reported for any enzyme in this group. RESULTS The crystal structure of B. stearothermophilus glycerol dehydrogenase has been determined at 1.7 A resolution to provide structural insights into the mechanistic features of this family. The enzyme has 370 amino acid residues, has a molecular mass of 39.5 kDa, and is a homooctamer in solution. CONCLUSIONS Analysis of the crystal structures of the free enzyme and of the binary complexes with NAD(+) and glycerol show that the active site of GlyDH lies in the cleft between the enzyme's two domains, with the catalytic zinc ion playing a role in stabilizing an alkoxide intermediate. In addition, the specificity of this enzyme for a range of diols can be understood, as both hydroxyls of the glycerol form ligands to the enzyme-bound Zn(2+) ion at the active site. The structure further reveals a previously unsuspected similarity to dehydroquinate synthase, an enzyme whose more complex chemistry shares a common chemical step with that catalyzed by glycerol dehydrogenase, providing a striking example of divergent evolution. Finally, the structure suggests that the NAD(+) binding domain of GlyDH may be related to that of the classical Rossmann fold by switching the sequence order of the two mononucleotide binding folds that make up this domain.
Collapse
Affiliation(s)
- S N Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
303
|
Abstract
Cryo-electron microscopy allows the visualization of macromolecules in their native state. Combined with techniques of three-dimensional reconstruction, cryo-EM images of single molecules can be used to study macromolecular interactions. The ribosome, a large RNA-protein complex with multiple binding interactions, is an excellent test case illustrating the power of these new techniques. Conformational changes during the binding of tRNA and protein factors to the ribosome can now be studied without the interference of crystal packing. Now that the first X-ray structures of ribosomal subunits have become available, conformational changes observed by cryo-EM in different functional states can be traced back to internal rearrangements of the underlying structural framework. Electron microscopy, X-ray crystallography, and modeling should be used together in the endeavor to understand the functioning of the translational machinery.
Collapse
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Health Research, Inc. at the Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, USA
| |
Collapse
|
304
|
Radermacher M, Ruiz T, Wieczorek H, Grüber G. The structure of the V(1)-ATPase determined by three-dimensional electron microscopy of single particles. J Struct Biol 2001; 135:26-37. [PMID: 11562163 DOI: 10.1006/jsbi.2001.4395] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the structure of the V(1)-ATPase from Manduca sexta to a resolution of 1.8 nm, which for the first time reveals internal features of the enzyme. The V(1)-ATPase consists of a headpiece of 13.5 nm in diameter, with six elongated subunits, A(3) and B(3), of approximately equal size, and a stalk of 6 nm in length that connects V(1) with the membrane-bound domain, V(O). At the center of the molecule is a cavity that extends throughout the length of the A(3)B(3) hexamer. Inside the cavity the central stalk can be seen connected to only two of the catalytic A subunits. The structure was obtained by a combination of the Random Conical Reconstruction Technique and angular refinements. Additional recently developed techniques that were used include methods for simultaneous translational rotational alignment of the 0 degrees images, contrast transfer function correction for tilt images, and the Two-Step Radon Inversion Algorithm.
Collapse
Affiliation(s)
- M Radermacher
- Max-Planck-Institut für Biophysik, Abt. Strukturbiologie, Heinrich Hoffmann Strasse 7, Frankfurt/M., D-60528, Germany.
| | | | | | | |
Collapse
|
305
|
Lindahl M. Strul--a method for 3D alignment of single-particle projections based on common line correlation in Fourier space. Ultramicroscopy 2001; 87:165-75. [PMID: 11334164 DOI: 10.1016/s0304-3991(00)00106-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A central problem of 3D reconstruction in single-particle electron microscopy is the determination of relative orientations of the individual projections contributing to the reconstruction. This article describes an implementation of the method of common lines correlation in Fourier space that allows generation of common lines between an arbitrary number of projections which might posses an arbitrary point group symmetry. Based on this method, it is possible to optimize rotational and translational alignment parameters for individual single-particle projections. The underlying philosophy and details of implementation are discussed, and as an illustration a 3D reconstruction in ice of peroxisomal alcohol oxidase from Pichia pastoris, an octameric assembly with 422-symmetry and a molecular weight of 592 kDa is presented.
Collapse
Affiliation(s)
- M Lindahl
- Department of Structural Biology, Max-Planck-Institut für Biophysik, Abt. Strukturbiologie, Frankfurt am Main, Germany.
| |
Collapse
|
306
|
Mouche F, Boisset N, Penczek PA. Lumbricus terrestris hemoglobin--the architecture of linker chains and structural variation of the central toroid. J Struct Biol 2001; 133:176-92. [PMID: 11472089 DOI: 10.1006/jsbi.2001.4362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The extracellular giant hemoglobin from the earthworm Lumbricus terrestris was reconstructed at 14.9-A resolution from cryo-electron microscope images, using a new procedure for estimating parameters of the contrast transfer (CTF) function. In this approach, two important CTF parameters, defocus and amplitude contrast ratio, can be refined iteratively within the framework of 3D projection alignment procedure, using minimization of sign disagreement between theoretical CTF and cross-resolution curves. The 3D cryo-EM map is in overall good agreement with the recent X-ray crystallography map of Royer et al. (2000, Proc. Natl. Acad. Sci. USA 97, 7107-7111), and it reveals the local threefold arrangement of the three linker chains present within each 1/12 of the complex. The 144 globin chains and 36 linker chains within the complex are clearly visible, and the interdigitation of the 12 coiled-coil helical spokes forming the central toroidal piece is confirmed. Based on these findings, two mechanisms of the dodecameric unit assembly are proposed and termed "zigzag" and "pairwise" polymerizations. However, the detection by cryo-EM of 12 additional rod-like bodies within the toroid raises the possibility that the architecture of the toroid is more complex than previously thought or that yet unknown ligands or allosteric effectors for this oxygen carrier are present.
Collapse
Affiliation(s)
- F Mouche
- Laboratoire de Minéralogie Cristallographie Paris, CNRS UMR 7590, Case courrier 115, Tour 16, 2ème Etage, 4 Place Jussieu, Paris Cedex 05, France
| | | | | |
Collapse
|
307
|
Jiang QX, Chester DW, Sigworth FJ. Spherical reconstruction: a method for structure determination of membrane proteins from cryo-EM images. J Struct Biol 2001; 133:119-31. [PMID: 11472084 DOI: 10.1006/jsbi.2001.4376] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We propose a new method for single-particle reconstruction, which should be generally applicable to structure determination for membrane proteins. After reconstitution into a small spherical vesicle, a membrane protein takes a particular orientation relative to the membrane normal, and its position in the projected image of the vesicle directly defines two of its three Euler angles of orientation. The spherical constraint imposed by the vesicle effectively reduces the dimensionality of the alignment search from 5 to 3 and simplifies the detection of the particle. Projection images of particles in vesicles collectively take all possible orientations and therefore cover the whole Fourier space. Analysis of images of vesicles in ice showed that the vesicle density is well described by a simple model for membrane electron scattering density. In fitting this model we found that osmotically swollen vesicles remain nearly spherical through the freezing process. These results satisfy the basic experimental requirements for spherical reconstruction. A computer simulation of particles in vesicles showed that this method provides good estimates of the two Euler angles and thus may improve single-particle reconstruction and extend it to smaller membrane proteins.
Collapse
Affiliation(s)
- Q X Jiang
- Department of Cellular and Molecular Physiology, Yale University, 333 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
308
|
Jouan L, Taveau JC, Marco S, Lallier FH, Lamy JN. Occurrence of two architectural types of hexagonal bilayer hemoglobin in annelids: comparison of 3D reconstruction volumes of Arenicola marina and Lumbricus terrestris hemoglobins. J Mol Biol 2001; 305:757-71. [PMID: 11162090 DOI: 10.1006/jmbi.2000.4344] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A 3D reconstruction at 25 A resolution of native hemoglobin of the polychaete worm Arenicola marina was carried out from frozen-hydrated specimens examined in the electron microscope. The reconstruction volume of this large extracellular multimeric respiratory pigment appears as a hexagonal bilayer structure with eclipsed vertices in its upper and lower hexagonal layers. Conversely, in hemoglobins of oligochaetes, achaetes, and vestimentiferans and in chlorocruorins of the Sabellidae (polychaete) family, the vertices of the upper layer are 16 degrees clockwise rotated with respect to those of the lower layer. The fact that two other polychaete hemoglobins (Alvinella pompejana and Tylorrhynchus heterochaetus) have the same architecture as Arenicola led us to define two types of hexagonal bilayer hemoglobins/chlorocruorins: (i) type-I present in oligochaete, achaete, and vestimentiferan hemoglobins and in Sabellidae chlorocruorins; and (ii) type-II present in polychaete hemoglobins. A comparative study of the hemoglobins of Lumbricus terrestris (type-I) and Arenicola marina (type-II) showed that only two small differences located in the c4 and c5 linking units are responsible of the important architectural difference present in oligomers. A likely scheme proposed to explain the phylogenic distribution of the two types suggests that Clitellata, Sabellida (polychaete), and vestimentiferan hemoglobins and chlorocruorins derive from a type-I ancestral molecule, while Terebellida (Alvinella), Phyllodocida (Tylorrhynchus), and Scolecida (Arenicola) and possibly other polychaetes derive from an ancestor molecule with type-II hemoglobin. The architectures of the hollow globular substructures are highly similar in Arenicola and Lumbricus hemoglobins, with 12 globin chains and three linking units (c3a, c3b, and c4). The central piece of Arenicola hemoglobin is an ellipsoid while that of Lumbricus is a toroid. No phylogenic correlation could be found between the structure of the central pieces and the architecture type.
Collapse
Affiliation(s)
- L Jouan
- Laboratoire des Protéines Complexes, Université de Tours, 2 bis Boulevard Tonnellé, F-37032 Tours Cedex, France
| | | | | | | | | |
Collapse
|
309
|
Frank J, Penczek P, Agrawal RK, Grassucci RA, Heagle AB. Three-dimensional cryoelectron microscopy of ribosomes. Methods Enzymol 2000; 317:276-91. [PMID: 10829286 DOI: 10.1016/s0076-6879(00)17020-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- J Frank
- Howard Hughes Medical Institute, Wadsworth Center, New York, USA
| | | | | | | | | |
Collapse
|
310
|
Grüber G, Radermacher M, Ruiz T, Godovac-Zimmermann J, Canas B, Kleine-Kohlbrecher D, Huss M, Harvey WR, Wieczorek H. Three-dimensional structure and subunit topology of the V(1) ATPase from Manduca sexta midgut. Biochemistry 2000; 39:8609-16. [PMID: 10913268 DOI: 10.1021/bi000103u] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three-dimensional structure of the Manduca sexta midgut V(1) ATPase has been determined at 3.2 nm resolution from electron micrographs of negatively stained specimens. The V(1) complex has a barrel-like structure 11 nm in height and 13.5 nm in diameter. It is hexagonal in the top view, whereas in the side view, the six large subunits A and B are interdigitated for most of their length (9 nm). The topology and importance of the individual subunits of the V(1) complex have been explored by protease digestion, resistance to chaotropic agents, MALDI-TOF mass spectrometry, and CuCl(2)-induced disulfide formation. Treatment of V(1) with trypsin or chaotropic iodide resulted in a rapid cleavage or release of subunit D from the enzyme, indicating that this subunit is exposed in the complex. Trypsin cleavage of V(1) decreased the ATPase activity with a time course that was in line with the cleavage of subunits B, C, G, and F. When CuCl(2) was added to V(1) in the presence of CaADP, the cross-linked products A-E-F and B-H were generated. In experiments where CuCl(2) was added after preincubation of CaATP, the cross-linked products E-F and E-G were formed. These changes in cross-linking of subunit E to near-neighbor subunits support the hypothesis that these are nucleotide-dependent conformational changes of the E subunit.
Collapse
Affiliation(s)
- G Grüber
- Universität Osnabrück, Fachbereich Biologie/Chemie, Osnabrück, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Yu X, Horiguchi T, Shigesada K, Egelman EH. Three-dimensional reconstruction of transcription termination factor rho: orientation of the N-terminal domain and visualization of an RNA-binding site. J Mol Biol 2000; 299:1279-87. [PMID: 10873452 DOI: 10.1006/jmbi.2000.3810] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli rho transcription termination protein is a hexameric helicase, and is believed to function by separating an RNA-DNA hybrid. Unlike hexameric DNA helicases, where a single strand of DNA passes through the central channel, it has been proposed that the RNA wraps around the outside of the ring. We have generated a three-dimensional reconstruction of rho, and localized a tRNA molecule bound to the primary RNA-binding site to the outside of the ring. An atomic structure of the N-terminal domain of rho fits into our reconstruction uniquely, with the residues involved in RNA-binding on the outside of the ring. Although rho shares a common structural core with the F1-ATPase and other hexameric helicases, there has been a divergence in function due to rho's N-terminal domain, which has no homology to other helicases.
Collapse
MESH Headings
- Binding Sites
- Escherichia coli/chemistry
- Escherichia coli/genetics
- Microscopy, Electron
- Models, Biological
- Models, Molecular
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Proton-Translocating ATPases/chemistry
- Proton-Translocating ATPases/ultrastructure
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/ultrastructure
- Rho Factor/chemistry
- Rho Factor/metabolism
- Rho Factor/ultrastructure
- Transcription, Genetic/genetics
Collapse
Affiliation(s)
- X Yu
- Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences, Charlottesville, VA, 22908-0733, USA
| | | | | | | |
Collapse
|
312
|
Lanzavecchia S, Bellon PL, Radermacher M. Fast and accurate three-dimensional reconstruction from projections with random orientations via radon transforms. J Struct Biol 1999; 128:152-64. [PMID: 10600569 DOI: 10.1006/jsbi.1999.4185] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new algorithm for three-dimensional reconstruction from randomly oriented projections has been developed. The algorithm recovers the 3D Radon transform from the 2D Radon transforms (sinograms) of the projections. The structure in direct space is obtained by an inversion of the 3D Radon transform. The mathematical properties of the Radon transform are exploited to design a special filter that can be used to correct inconsistencies in a data set and to fill the gaps in the Radon transform that originate from missing projections. Several versions of the algorithm have been implemented, with and without a filter and with different interpolation methods for merging the sinograms into the 3D Radon transform. The algorithms have been tested on analytical phantoms and experimental data and have been compared with a weighted back projection algorithm (WBP). A quantitative analysis of phantoms reconstructed from noise-free and noise-corrupted projections shows that the new algorithms are more accurate than WBP when the number of projections is small. Experimental structures obtained by the new methods are strictly comparable to those obtained by WBP. Moreover, the algorithm is more than 10 times faster than WPB when applied to a data set of 1000-5000 projections. Copyright 1999 Academic Press.
Collapse
Affiliation(s)
- S Lanzavecchia
- Dipartimento di Chimica Strutturale, Universita' degli Studi, via G. Venezian 21, Milan, 20133, Italy
| | | | | |
Collapse
|
313
|
Andel F, Ladurner AG, Inouye C, Tjian R, Nogales E. Three-dimensional structure of the human TFIID-IIA-IIB complex. Science 1999; 286:2153-6. [PMID: 10591646 DOI: 10.1126/science.286.5447.2153] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The multisubunit transcription factor IID (TFIID) is an essential component of the eukaryotic RNA polymerase II machinery that works in concert with TFIIA (IIA) and TFIIB (IIB) to assemble initiation complexes at core eukaryotic promoters. Here the structures of human TFIID and the TFIID-IIA-IIB complex that were obtained by electron microscopy and image analysis to 35 angstrom resolution are presented. TFIID is a trilobed, horseshoe-shaped structure, with TFIIA and TFIIB bound on opposite lobes and flanking a central cavity. Antibody studies locate the TATA-binding protein (TBP) between TFIIA and TFIIB at the top of the cavity that most likely encompasses the TATA DNA binding region of the supramolecular complex.
Collapse
Affiliation(s)
- F Andel
- Life Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | |
Collapse
|
314
|
Brand M, Leurent C, Mallouh V, Tora L, Schultz P. Three-dimensional structures of the TAFII-containing complexes TFIID and TFTC. Science 1999; 286:2151-3. [PMID: 10591645 DOI: 10.1126/science.286.5447.2151] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
TBP (TATA-binding protein)-associated factors (TAF(II)s) are components of large multiprotein complexes such as TFIID, TFTC, STAGA, PCAF/GCN5, and SAGA, which play a key role in the regulation of gene expression by RNA polymerase II. The structures of TFIID and TFTC have been determined at 3.5-nanometer resolution by electron microscopy and digital image analysis of single particles. Human TFIID resembles a macromolecular clamp that contains four globular domains organized around a solvent-accessible groove of a size suitable to bind DNA. TFTC is larger and contains five domains, four of which are similar to TFIID.
Collapse
Affiliation(s)
- M Brand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université Louis Pasteur, Boite Postale 163, F-67404 Illkirch cedex, Communauté Urbaine de Strasbourg, France
| | | | | | | | | |
Collapse
|
315
|
Baker TS, Olson NH, Fuller SD. Adding the third dimension to virus life cycles: three-dimensional reconstruction of icosahedral viruses from cryo-electron micrographs. Microbiol Mol Biol Rev 1999; 63:862-922, table of contents. [PMID: 10585969 PMCID: PMC98980 DOI: 10.1128/mmbr.63.4.862-922.1999] [Citation(s) in RCA: 374] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-A) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical.
Collapse
Affiliation(s)
- T S Baker
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA.
| | | | | |
Collapse
|
316
|
Mouche F, Boisset N, Lamy J, Zal F, Lamy JN. Structural comparison of cephalopod hemocyanins: phylogenetic significance. J Struct Biol 1999; 127:199-212. [PMID: 10544045 DOI: 10.1006/jsbi.1999.4154] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hemocyanins, the respiratory molecules of cephalopod mollusks, are hollow cylinders with five internal arches. Three hemocyanins representative of three orders of cephalopods (Benthoctopus species, Octopoda; Vampyroteuthis infernalis, Vampyromorpha; Sepia officinalis, Sepioidea) were subjected to cryoelectron microscopy and three-dimensional (3D) reconstruction. The structure of Benthoctopus hemocyanin, solved at 26.4-A resolution, possesses arches comprising two identical functional units. The similarity between these functional units and the structure recently observed in X-ray crystallography for Octopus by Cuff et al. (J. Mol. Biol., 1998, 232, 522-529) allows the identification of their N- and C-terminal domains in the 3D reconstruction volume. Conversely, arches present in the 3D reconstruction volume of Sepia hemocyanin (21.8 A resolution) contain four functional units that are disposed differently. The strong resemblance between the reconstruction volumes of Vampyroteuthis (21.4-A resolution) and Benthoctopus hemocyanins suggests that Sepioidea diverged from a group containing Octopoda and Vampyromorpha.
Collapse
Affiliation(s)
- F Mouche
- Laboratoire des Protéines Complexes, Université François Rabelais, Campus Médecine, 2 bis Boulevard Tonnellé, Tours Cedex, F-37032, France
| | | | | | | | | |
Collapse
|
317
|
Harms J, Tocilj A, Levin I, Agmon I, Stark H, Kölln I, van Heel M, Cuff M, Schlünzen F, Bashan A, Franceschi F, Yonath A. Elucidating the medium-resolution structure of ribosomal particles: an interplay between electron cryo-microscopy and X-ray crystallograhy. Structure 1999; 7:931-41. [PMID: 10467138 DOI: 10.1016/s0969-2126(99)80120-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Ribosomes are the universal cellular organelles that accomplish the translation of the genetic code into proteins. Electron cryo-microscopy (cryo-EM) has yielded fairly detailed three-dimensional reconstructions of ribosomes. These were used to assist in the determination of higher resolution structures by X-ray crystallography. RESULTS Molecular replacement studies using cryo-EM reconstructions provided feasible packing schemes for crystals of ribosomes and their two subunits from Thermus thermophilus, and of the large subunits from Haloarcula marismortui. For the large subunits, these studies also confirmed the major heavy-atom sites obtained by single isomorphous replacement combined with anomalous diffraction (SIRAS) and by multiple isomorphous replacement combined with anomalous diffraction (MIRAS) at approximately 10 A. Although adequate starting phases could not be obtained for the small subunits, the crystals of which diffract to 3.0 A, cryo-EM reconstructions were indispensable for analyzing their 7.2 A multiple isomorphous replacement (MIR) map. This work indicated that the conformation of the crystallized small subunits resembles that seen within the 70S ribosomes. Subsequently, crystals of particles trapped in their functionally active state were grown. CONCLUSIONS Single-particle cryo-EM can contribute to the progress of crystallography of non-symmetrical, large and flexible macromolecular assemblies. Besides confirming heavy-atom sites, obtained from flat or overcrowded difference Patterson maps, the cryo-EM reconstructions assisted in elucidating packing arrangements. They also provided tools for the identification of the conformation within the crystals and for the estimation of the level of inherent non-isomorphism.
Collapse
Affiliation(s)
- J Harms
- Max-Planck Research Unit for Ribosomal Structure, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
318
|
Lanzavecchia S, Wade RH, Ghiretti Magaldi A, Tognon G, Bellon PL. A two-exposure technique for ice-embedded samples successfully reconstructs the chlorocruorin pigment of Sabella spallanzanii at 2. 1 Nm resolution. J Struct Biol 1999; 127:53-63. [PMID: 10479617 DOI: 10.1006/jsbi.1999.4142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A technique for reconstructing ice-embedded macromolecules from electron micrographs taken at two specimen tilts (+/-23 degrees ) has been used to determine the structure of chlorocruorin isolated from the Polychaete annelid Sabella spallanzanii. Images of individual molecules were extracted in couples from two micrographs of the same field of view so each couple consists of two projections of the same molecule. One couple was used as a fixed reference for alignment. Different references yielded reconstructions with different orientations. These were merged to give a model against which the orientation of 1624 first-exposure images was refined to give a final reconstruction at 2.1 nm resolution. The structure of this hematic pigment, essentially the same as that for Lumbricus terrestris, is a bilayer structure with overall symmetry D6, containing six hollow groups per layer. A hollow group is formed by six globular masses and has approximate threefold symmetry. Other structural elements connect the two layers and the hollow groups in a layer. This non-globin material occupies about 15% of the total molecular volume. The results show that the double-exposure strategy, previously described by some of the authors and tested in computer simulations, performs well in real experiments and could be used to obtain preliminary reconstructions in a semiautomatic way.
Collapse
Affiliation(s)
- S Lanzavecchia
- Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università degli Studi, Via G. Venezian 21, Milan, 20133, Italy
| | | | | | | | | |
Collapse
|
319
|
Reyrat JM, Lanzavecchia S, Lupetti P, de Bernard M, Pagliaccia C, Pelicic V, Charrel M, Ulivieri C, Norais N, Ji X, Cabiaux V, Papini E, Rappuoli R, Telford JL. 3D imaging of the 58 kDa cell binding subunit of the Helicobacter pylori cytotoxin. J Mol Biol 1999; 290:459-70. [PMID: 10390344 DOI: 10.1006/jmbi.1999.2877] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Pathogenic strains of Helicobacter pylori produce a potent exotoxin, VacA, which intoxicates gastric epithelial cells and leads to peptic ulcer. The toxin is released from the bacteria as a high molecular mass homo-oligomer of a 95 kDa polypeptide which undergoes specific proteolytic cleavage to 37 kDa and 58 kDa subunits. We have engineered a strain of H. pylori to delete the gene sequence coding for the 37 kDa subunit. The remaining 58 kDa subunit is expressed efficiently and exported as a soluble dimer that is non-toxic but binds target cells in a manner similar to the holotoxin. A 3D reconstruction of the molecule from electron micrographs of quick-freeze, deep-etched preparations reveals the contribution of each building block to the structure and permits the reconstruction of the oligomeric holotoxin starting from individual subunits. In this model P58 subunits are assembled in a ring structure with P37 subunits laying on the top. The data indicate that the 58 kDa subunit is capable of folding autonomously into a discrete structure recognizable within the holotoxin and containing the cell binding domain.
Collapse
Affiliation(s)
- J M Reyrat
- Chiron S.p.A., IRIS, via Fiorentina 1, Siena, 53100, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
320
|
Error analysis in correlation computation of single particle reconstruction technique. ACTA ACUST UNITED AC 1999. [DOI: 10.1007/bf02916771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
321
|
Fully Three-Dimensional Reconstruction in Electron Microscopy. COMPUTATIONAL RADIOLOGY AND IMAGING 1999. [DOI: 10.1007/978-1-4612-1550-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
322
|
Frank J. The ribosome-structure and functional ligand-binding experiments using cryo-electron microscopy. J Struct Biol 1998; 124:142-50. [PMID: 10049802 DOI: 10.1006/jsbi.1998.4071] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cryo-electron microscopy has greatly advanced our understanding of the basic steps of protein synthesis in the bacterial ribosome. This article gives an overview of what has been achieved so far. Through three-dimensional visualization of complexes that represent the ribosome in defined binding states, locations were derived for the tRNA in A, P, and E sites, as well as the elongation factors. In addition, the pathways of messenger RNA and the exiting polypeptide chain could be inferred.
Collapse
Affiliation(s)
- J Frank
- Department of Biomedical Sciences, Wadsworth Center, Albany, New York, 12201-0509, USA
| |
Collapse
|
323
|
Sharma MR, Penczek P, Grassucci R, Xin HB, Fleischer S, Wagenknecht T. Cryoelectron microscopy and image analysis of the cardiac ryanodine receptor. J Biol Chem 1998; 273:18429-34. [PMID: 9660811 DOI: 10.1074/jbc.273.29.18429] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The three-dimensional structure of the cardiac muscle ryanodine receptor (RyR2) is described and compared with its skeletal muscle isoform (RyR1). Previously, structural studies of RyR2 have not been as informative as those for RyR1 because optimal conditions for electron microscopy, which require low levels of phospholipid, are destabilizing for RyR2. A simple procedure was devised for diluting RyR2 (in phospholipid-containing buffer) into a lipid-free buffer directly on the electron microscope grid, followed by freezing within a few seconds. Cryoelectron microscopy of RyR2 so prepared yielded images of sufficient quality for analysis by single particle image processing. Averaged projection images for RyR2, as well as for RyR1, prepared under the same conditions, were found to be nearly identical in overall dimensions and appearance at the resolution attained, approximately 30 A. An initial three-dimensional reconstruction of RyR2 was determined (resolution approximately 41 A) and compared with previously reported reconstructions of RyR1. Although they looked similar, which is consistent with the similarity found for the projection images, and with expectations based on the 66% amino acid sequence identity of the two isoforms, structural differences near the corners of the cytoplasmic assembly were observed in both two- and three-dimensional studies.
Collapse
Affiliation(s)
- M R Sharma
- Wadsworth Center for Laboratories and Research, New York State Department of Health, Albany, New York 12201-0509, USA
| | | | | | | | | | | |
Collapse
|
324
|
Yue H, Sui SF. Error analysis and distortion correction in reconstructing a picture from noisy identical samples. Ultramicroscopy 1998. [DOI: 10.1016/s0304-3991(98)00021-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
325
|
Ban N, Freeborn B, Nissen P, Penczek P, Grassucci RA, Sweet R, Frank J, Moore PB, Steitz TA. A 9 A resolution X-ray crystallographic map of the large ribosomal subunit. Cell 1998; 93:1105-15. [PMID: 9657144 DOI: 10.1016/s0092-8674(00)81455-5] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The 50S subunit of the ribosome catalyzes the peptidyl-transferase reaction of protein synthesis. We have generated X-ray crystallographic electron density maps of the large ribosomal subunit from Haloarcula marismortui at various resolutions up to 9 A using data from crystals that diffract to 3 A. Positioning a 20 A resolution EM image of these particles in the crystal lattice produced phases accurate enough to locate the bound heavy atoms in three derivatives using difference Fourier maps, thus demonstrating the correctness of the EM model and its placement in the unit cell. At 20 A resolution, the X-ray map is similar to the EM map; however, at 9 A it reveals long, continuous, but branched features whose shape, diameter, and right-handed twist are consistent with segments of double-helical RNA that crisscross the subunit.
Collapse
Affiliation(s)
- N Ban
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
326
|
Luigi Bellon P, Lanzavecchia S, Scatturin V. A two exposures technique of electron tomography from projections with random orientations and a quasi-Boolean angular reconstitution. Ultramicroscopy 1998. [DOI: 10.1016/s0304-3991(98)00016-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
327
|
Grigorieff N. Three-dimensional structure of bovine NADH:ubiquinone oxidoreductase (complex I) at 22 A in ice. J Mol Biol 1998; 277:1033-46. [PMID: 9571020 DOI: 10.1006/jmbi.1998.1668] [Citation(s) in RCA: 273] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NADH:ubiquinone oxidoreductase (complex I) is the first and largest complex in the electron transport chain of mitochondria. The bovine complex purified from cardiac muscle consists of at least 42 different subunits with a combined molecular mass of about 890 kDa. The three-dimensional structure of the complex was determined at 22 A from single particles embedded in vitrified ice using electron cryo-microscopy. The structure was calculated using a new program to align particles, to correct for the contrast transfer function of the microscope, and to carry out the three-dimensional reconstruction of the complex. The bovine complex has the overall L-shaped appearance found in earlier studies of the closely related complex I from Neurospora crassa, but it differs by having a thin stalk region linking the membrane-bound globular arm with the intrinsic membrane domain. Thus, the stalk which measures about 30 A in diameter is likely to contain part of the electron transfer pathway linking the NADH binding site in the globular arm with the ubiquinone binding site in the membrane domain. The globular domain of bovine complex I is significantly bigger than that of the N. crassa enzyme, suggesting that the apparent additional subunit complexity of the bovine enzyme is associated with the globular part.
Collapse
Affiliation(s)
- N Grigorieff
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, U.K
| |
Collapse
|
328
|
Affiliation(s)
- S Chen
- Department of Crystallography, Birkbeck College, London, United Kingdom
| | | | | |
Collapse
|
329
|
San Martin C, Radermacher M, Wolpensinger B, Engel A, Miles CS, Dixon NE, Carazo JM. Three-dimensional reconstructions from cryoelectron microscopy images reveal an intimate complex between helicase DnaB and its loading partner DnaC. Structure 1998; 6:501-9. [PMID: 9562559 DOI: 10.1016/s0969-2126(98)00051-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND DNA helicases play a fundamental role in all aspects of nucleic acid metabolism and defects in these enzymes have been implicated in a number of inherited human disorders. DnaB is the major replicative DNA helicase in Escherichia coli and has been used as a model system for studying the structure and function of hexameric helicases. The native protein is a hexamer of identical subunits, which in solution forms a complex with six molecules of the loading protein DnaC. DnaB is delivered from this complex onto the DNA template, with the subsequent release of DnaC. We report here the structures of the DnaB helicase hexamer and its complex with DnaC under a defined set of experimental conditions, as determined by three-dimensional cryoelectron microscopy. It was hoped that the structures would provide insight into the mechanisms of helicase activity. RESULTS The DnaB structure reveals that six DnaB monomers assemble as three asymmetric dimers to form a polar, ring-like hexamer. The hexamer has two faces, one displaying threefold and the other sixfold symmetry. The six DnaC protomers bind tightly to the sixfold face of the DnaB hexamer. This is the first report of a three-dimensional structure of a helicase obtained using cryoelectron microscopy, and the first report of the structure of a helicase in complex with a loading protein. CONCLUSIONS The structures of the DnaB helicase and its complex with DnaC reveal some interesting structural features relevant to helicase function and to the assembly of the two-protein complex. The results presented here provide a basis for a more complete understanding of the structure and function of these important proteins.
Collapse
Affiliation(s)
- C San Martin
- Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
330
|
Marabini R, Herman GT, Carazo JM. 3D reconstruction in electron microscopy using ART with smooth spherically symmetric volume elements (blobs). Ultramicroscopy 1998; 72:53-65. [PMID: 9561797 DOI: 10.1016/s0304-3991(97)00127-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Algebraic reconstruction techniques (ART) are iterative procedures for solving systems of linear equations. They have been used in tomography to recover objects from their projections. In this work we apply an ART approach in which the basis functions used to describe the objects are not based on voxels, but are much smoother functions named "blobs". The data collection studied in this work follows the so-called "conical tilt geometry" that is commonly used in many applications of three-dimensional electron microscopy of biological macromolecules. The performance of ART with blobs is carefully compared with a currently well-known three dimensional (3D) reconstruction algorithm (weighted back projection) using a methodology which assigns a level of statistical significance to a claim of relative superiority of one algorithm over another for a particular task. The conclusion we reach is that ART with blobs produces high-quality reconstructions and is, in particular, superior to weighted backprojection in recovering features along the "vertical" direction. For the exact implementation recommended in this paper, the computational costs of ART are almost an order of magnitude smaller than those of WBP.
Collapse
Affiliation(s)
- R Marabini
- Centro Nacional de Biotecnología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | | | | |
Collapse
|
331
|
Abstract
Cytoplasmic dynein is a microtubule-based mechanochemical protein that plays an essential role in cell division, vesicle transport, and cytoplasmic membrane organization. As a molecular motor, dynein utilizes an ATP hydrolysis mechanism to bind and release microtubules and to undergo conformational changes that result in a net displacement towards the microtubule's minus end. To visualize structural features of this motor protein, we have begun to characterize the dynein head domain by electron microscopy and image processing. Transmission electron microscopy of negatively stained native dynein from Dictyostelium has been performed and images of the head domain have been aligned and analyzed with the software SPIDER. The resulting 2D averages show an oblong round shape composed of seven to eight globular domains or lobes that encircle a stain-filled area. A recombinant 380 kDa fragment of the dynein heavy chain encodes just the globular head domain; analysis of these particles reveals a high structural similarity with the native head domain. A prominent stalk can be seen in several projections of this fragment, suggesting a structure analogous to the B-link described for some axonemal dyneins. Single tilt pair images were used to compute low resolution 3D reconstructions of the dynein head domain. These show a flattened spheroidal shape of 13.5 nm in length with seven similar domains arranged in a ring. Slices through the reconstructions reveal a large central cavity. This is the first detailed description of the head domain structure for a dynein molecule. The presence of a central cavity and the outer globular features, along with its large size make dynein structurally distinct from either myosin or kinesin.
Collapse
Affiliation(s)
- M Samsó
- Department of Biomedical Sciences, State University of New York, Albany 12201-0509, USA
| | | | | | | |
Collapse
|
332
|
Guénebaut V, Schlitt A, Weiss H, Leonard K, Friedrich T. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J Mol Biol 1998; 276:105-12. [PMID: 9514725 DOI: 10.1006/jmbi.1997.1518] [Citation(s) in RCA: 183] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Respiratory chains of bacteria and mitochondria contain closely related forms of the proton-pumping NADH:ubiquinone oxidoreductase (complex I). In bacteria the complex has a molecular mass of approximately 530 kDa and consists of 14 different subunits. The homologues of these 14 subunits together with some 27 additional subunits make up the mitochondrial complex, adding up to a molecular mass of approximately 1 MDa. We calculated three-dimensional models at medium resolution of isolated and negatively stained complex I particles from Eschericha coli and Neurospora crassa by electron microscopy using the random conical tilt reconstruction technique. Both the bacterial and the mitochondrial complexes are L-shaped molecules with an intrinsic membrane arm extending into the lipid bilayer and a peripheral arm protruding from the membrane. It is discussed whether the consistent length of the arms of both complexes has an implication for their function. The additional protein mass of the mitochondrial complex is distributed along both arms, but especially around the junction between the two arms and around the membrane arm. It appears that the structural framework of procaryotic complex I is stabilized in eucaryotes by this additional mass. A discrete location of additional protein in the peripheral arm of the mitochondrial complex is interpreted as being the possible position of two subunits with a specialized role in the biosynthesis of a yet unknown cofactor of complex I.
Collapse
Affiliation(s)
- V Guénebaut
- Structural Biology and Biocomputing Programme, European Molecular Biology Laboratory, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
333
|
Lanzavecchia S, Bellon PL, Lupetti P, Dallai R, Rappuoli R, Telford JL. Three-dimensional reconstruction of metal replicas of the Helicobacter pylori vacuolating cytotoxin. J Struct Biol 1998; 121:9-18. [PMID: 9573616 DOI: 10.1006/jsbi.1997.3941] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Helicobacter pylori vacuolating cytotoxin (VacA) forms high molecular weight homooligomers which contain either six or seven copies of a 95-kDa polypeptide. Electron microscope visualization of carbon platinum replicas of quick-freeze, deepetched, preparations of VacA has revealed that the oligomers are arranged in flower-like structures with six- or sevenfold radial symmetry, depending on the number of 95-kDa oligomers that they contain. Each monomer is structured in two subunits of 37 and 58 kDa connected by an exposed loop which is a site for proteolytic cleavage. In preparations of VacA which had undergone extensive cleavage at the exposed loop, oligomers of both six- and seven-fold symmetry which appeared flatter were observed; these latter were interpreted as molecules which had lost a complete set of one of the subunits. We exploited a 3D reconstruction of metal replicas of quick-freeze, deep-etched, oligomers, representing the four types of molecules described. All the molecules appear to adhere with the same face toward the mica. Images of rotary shadowed oligomers were processed by multivariate statistical analysis to evidence clusters of equivalent and homogeneous oligomers. 3D reconstructions of the replicas so classified were performed by random conical tilt tomography. In the case of intact molecules (not cleaved) the reconstructions represent both the outer and the inner surfaces of the mold; the latter gives a reasonably accurate sense of the upper surface of the VacA oligomers. These data support the hypothesis that VacA is an AB type toxin and suggest a model in which the smaller of the two subunits is arranged in a uniform ring on the surface of the molecule in such a way as to contribute to the overall stability of the molecule.
Collapse
Affiliation(s)
- S Lanzavecchia
- Dipartimento di Chimica Strutturale e Stereochimica Inorganica, Università di Milano, Italy
| | | | | | | | | | | |
Collapse
|
334
|
Horowitz RA, Koster AJ, Walz J, Woodcock CL. Automated electron microscope tomography of frozen-hydrated chromatin: the irregular three-dimensional zigzag architecture persists in compact, isolated fibers. J Struct Biol 1997; 120:353-62. [PMID: 9441938 DOI: 10.1006/jsbi.1997.3921] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The potential of electron microscope tomography as a tool for obtaining three-dimensional (3D) information about large macromolecular assemblies is greatly extended by automation of data collection. With the implementation of automated control of tilting, focusing, and digital image recording described here, tilt series of frozen-hydrated specimens can be collected with the requisite low dose. Long chromatin fibers were prepared in 90 mM monovalent ions to maintain a fully compact conformation, and after vitrification were completely contained within the ice layer. Tilt series of this material were recorded at 5 degrees tilt increments between +60 degrees and -60 degrees, with a cumulative dose of approximately 35 e-/A2 for the series. This extremely low dose data was successfully aligned, then reconstructed by weighted backprojection. The underlying architecture of the fibers is an irregular 3D zigzag of interconnected nucleosomes, with the linker DNA between successive nucleosomes in a largely extended conformation. The visualization of this structural motif within long, frozen-hydrated chromatin fibers at relatively high salt extends our previous studies on small fragments at low ionic strength and is in agreement with the observation of this architecture in chromatin fibers in situ in sectioned nuclei.
Collapse
Affiliation(s)
- R A Horowitz
- Biology Department, University of Massachusetts at Amherst 01003, USA
| | | | | | | |
Collapse
|
335
|
Koster AJ, Grimm R, Typke D, Hegerl R, Stoschek A, Walz J, Baumeister W. Perspectives of molecular and cellular electron tomography. J Struct Biol 1997; 120:276-308. [PMID: 9441933 DOI: 10.1006/jsbi.1997.3933] [Citation(s) in RCA: 270] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
After a general introduction to three-dimensional electron microscopy and particularly to electron tomography (ET), the perspectives of applying ET to native (frozen-hydrated) cellular structures are discussed. In ET, a set of 2-D images of an object is recorded at different viewing directions and is then used for calculating a 3-D image. ET at a resolution of 2-5 nm would allow the 3-D organization of structural cellular components to be studied and would provide important information about spatial relationships and interactions. The question of whether it is a realistic long-term goal to visualize or--by sophisticated pattern recognition methods--identify macromolecules in cells frozen in toto or in frozen sections of cells is addressed. Because of the radiation sensitivity of biological specimens, a prerequisite of application of ET is the automation of the imaging process. Technical aspects of automated ET as realized in Martinsried and experiences are presented, and limitations of the technique are identified, both theoretically and experimentally. Possible improvements of instrumentation to overcome at least part of the limitations are discussed in some detail. Those means include increasing the accelerating voltage into the intermediate voltage range (300 to 500 kV), energy filtering, the use of a field emission gun, and a liquid-helium-cooled specimen stage. Two additional sections deal with ET of isolated macromolecules and of macromolecular structures in situ, and one section is devoted to possible methods for the detection of structures in volume data.
Collapse
Affiliation(s)
- A J Koster
- Abteilung Molekulare Strukturbiologie, Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | | | | | | | | | | | |
Collapse
|
336
|
Ofverstedt LG, Zhang K, Isaksson LA, Bricogne G, Skoglund U. Automated correlation and averaging of three-dimensional reconstructions obtained by electron tomography. J Struct Biol 1997; 120:329-42. [PMID: 9441936 DOI: 10.1006/jsbi.1997.3915] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have developed a least-squares refinement procedure that in an automated way performs three-dimensional alignment and averaging of objects from multiple reconstructions. The computer implementation aligns the three-dimensional structures by a two-step procedure that maximizes the density overlap for all objects. First, an initial average density is built by successive incorporation of individual objects, after a global search for their optimal three-dimensional orientations. Second, the initial average is subsequently refined by excluding individual objects one at a time, realigning them with the reduced average containing all other objects and including them into the average again. The refinement is repeated until no further change of the average occurs. The resulting average model is therefore minimally biased by the order in which the individual reconstructions are incorporated into the average. The performance of the procedure was tested using a synthetic data set of randomly oriented objects with Poisson-distributed noise added. The program managed well to align and average the objects at the signal/noise ratio 1.0. The increase in signal/noise ratio was in all investigated cases almost equal to the expected square root of the number of objects. The program was also successfully tested on a set of authentic three-dimensional reconstructions from an in situ specimen containing Escherichia coli 70S ribosomes, where the immediate environment of the reconstructed objects may also contain variable amounts of other structures.
Collapse
Affiliation(s)
- L G Ofverstedt
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
337
|
Medalia O, Koster AJ, Tocilij A, Angenitzki M, Sperling J, Berkovitch-Yellin Z, Sperling R. Automated electron tomography of large nuclear RNP (InRNP) particles--the naturally assembled complexes of precursor messenger RNA and splicing factors. J Struct Biol 1997; 120:228-36. [PMID: 9441928 DOI: 10.1006/jsbi.1997.3926] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Splicing of nuclear pre-mRNA is an important step in the regulation of gene expression as only correctly spliced mRNAs will be exported to the cytoplasm to function in protein synthesis. Nuclear RNA transcripts of split genes and their splicing products, as well as the general population of nuclear polyadenylated RNA, are packaged in multicomponent large nuclear ribonucleoprotein (lnRNP) particles. These lnRNP particles, which sediment at the 200S region in sucrose gradients, contain all U snRNPs required for pre-mRNA splicing and several protein splicing factors, including U2AF and the SR proteins and can thus be viewed as naturally assembled complexes of pre-mRNA and splicing factors. We have previously reconstructed the three-dimensional image of negatively stained individual lnRNP particles by automated electron tomography. The reconstruction revealed a compact structure, 50 nm in diameter, composed of four major subunits. Here we further analyzed the reconstructed models and the apparent connectivity between the subunits using a new rendering technique. The uniformity of the lnRNP particles was substantiated by measurement of the volume engulfed by their surface. This study further supports the model proposed for the packaging of nuclear pre-mRNAs in lnRNP particles, where each substructure represents a functional unit. This model is compatible with the requirements for alternative splicing in multiintronic pre-mRNAs, and with the fact that the splicing of multiintronic pre-mRNAs does not occur in a sequential manner.
Collapse
Affiliation(s)
- O Medalia
- Department of Organic Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
338
|
de Haas F, Kuchumov A, Taveau JC, Boisset N, Vinogradov SN, Lamy JN. Three-dimensional reconstruction of native and reassembled Lumbricus terrestris extracellular hemoglobin. Localization of the monomeric globin chains. Biochemistry 1997; 36:7330-8. [PMID: 9200681 DOI: 10.1021/bi970131l] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The approximately 3.5 MDa hexagonal bilayer (HBL) hemoglobin (Hb) of the earthworm Lumbricus terrestris is composed of monomers and disulfide-bonded trimers (T) of globin chains and of four types of heme-deficient linker chains (L). Cryoelectron microscopic images of native Hb and of HBL reassembled from the constituent subunits depleted in monomer subunit (HBL[T+L]) were subjected to three-dimensional reconstructions by the random conical tilt series method. Native Hb has an architecture very similar to those of other annelid and vestimentiferan Hbs, consisting of 12 hollow globular substructures (HGS). Each HGS is comprised of six dense masses, has a 3-fold symmetry, and is organized in two hexagonally symmetric layers, with the vertices of the upper layer rotated 16 degrees clockwise relative to those of the lower layer. The layers are tethered to a central linker complex, consisting of two bracelets of connections perpendicular to the 6-fold axis and a set of six vertical connections linked to a flat hexagonal mass. HBL[T+L] shared all these features with the native Hb, except for a large hole around the 3-fold symmetry axis in each HGS, indicating the probable location of the missing monomer subunit.
Collapse
Affiliation(s)
- F de Haas
- Laboratoire de Biochimie Fondamentale and URA 1334 CNRS, Tours, France
| | | | | | | | | | | |
Collapse
|
339
|
San Martín MC, Gruss C, Carazo JM. Six molecules of SV40 large T antigen assemble in a propeller-shaped particle around a channel. J Mol Biol 1997; 268:15-20. [PMID: 9149137 DOI: 10.1006/jmbi.1997.0952] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The large T antigen of simian virus 40 (SV40) is a multifunctional regulatory protein, responsible for both the control of viral infection and the required alterations of cellular processes. T antigen is the only viral protein required for viral DNA replication. It binds specifically to the viral origin and as a helicase unwinds the SV40 DNA bidirectionally. The functional complex is a double hexameric oligomer. In the absence of DNA, but in the presence of ATP or a non-hydrolyzable analog, T antigen assembles into hexamers, which are active as a helicase when a partially single-stranded (3') entry site exists on the substrate. We have used negative staining electron microscopy, single particle image processing and three-dimensional reconstruction with a new algebraic reconstruction techniques (ART) algorithm to study the structure of these hexameric particles in the presence of different nucleotide cofactors (ATP, ADP, and the non-hydrolyzable analogs ATPgammaS and AMP-PNP). In every case a strong 6-fold structure was found, with the six density maxima arranged in a ring-like particle around a channel, and a well-defined vorticity. Because these structural features have recently been found in other prokaryotic helicases, they seem to be strongly related to the activity of the protein, which suggests a general functional model conserved through evolution.
Collapse
Affiliation(s)
- M C San Martín
- Centro Nacional de Biotecnología (C.S.I.C.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | |
Collapse
|
340
|
Rosenberg MF, Callaghan R, Ford RC, Higgins CF. Structure of the multidrug resistance P-glycoprotein to 2.5 nm resolution determined by electron microscopy and image analysis. J Biol Chem 1997; 272:10685-94. [PMID: 9099718 DOI: 10.1074/jbc.272.16.10685] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
P-glycoprotein (P-gp) is a member of the ATP binding cassette superfamily of active transporters and can confer multidrug resistance on cells and tumors by pumping chemotherapeutic drugs from the cytoplasm. P-gp was purified from CHrB30 cells and retained the ability to bind substrates and hydrolyze ATP. Labeling of P-gp with lectin-gold particles suggested it is monomeric. An initial structure of purified P-gp was determined to 2.5 nm resolution by electron microscopy and single particle image analysis of both detergent-solubilized and lipid-reconstituted protein. The structure was further refined by three dimensional reconstructions from single particle images and by Fourier projection maps of small two-dimensional crystalline arrays (unit cell parameters: a, 14.2 nm; b, 18.5 nm; and gamma, 91.6 degrees ). When viewed from above the membrane plane the protein is toroidal, with 6-fold symmetry and a diameter of about 10 nm. There is a large central pore of about 5 nm in diameter, which is closed at the inner (cytoplasmic) face of the membrane, forming an aqueous chamber within the membrane. An opening from this chamber to the lipid phase is present. The projection of the protein perpendicular to the membrane is roughly rectangular with a maximum depth of 8 nm and two 3-nm lobes exposed at the cytoplasmic face of the membrane, likely to correspond to the nucleotide binding domains. This study provides the first experimental insight into the three-dimensional architecture of any ATP binding cassette transporter.
Collapse
Affiliation(s)
- M F Rosenberg
- Department of Biochemistry and Applied Molecular Biology, University of Manchester Institute of Science and Technology, P. O. Box 88, Manchester M60 1QD, United Kingdom
| | | | | | | |
Collapse
|
341
|
Zhu J, Penczek PA, Schröder R, Frank J. Three-dimensional reconstruction with contrast transfer function correction from energy-filtered cryoelectron micrographs: procedure and application to the 70S Escherichia coli ribosome. J Struct Biol 1997; 118:197-219. [PMID: 9169230 DOI: 10.1006/jsbi.1997.3845] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Cryoelectron microscopy provides the means of studying macromolecules in their native state. However, the contrast transfer function (CTF) makes the images and the three-dimensional (3D) maps derived from them difficult to interpret. We developed methods to determine the CTF from experimental data and to obtain a CTF-corrected 3D reconstruction. The CTF correction and 3D reconstruction accomplished in one step make it easy to combine different defocus data sets and decrease the error accumulation in the computation. These methods were applied to energy-filtered images of the 70S Escherichia coli ribosome, resulting in a distortion-free 3D map of the ribosome at 1/24.5 A-1 resolution, as determined by the differential phase residual resolution criterion.
Collapse
Affiliation(s)
- J Zhu
- Wadsworth Center, New York State Department of Health, Albany 12201-0509, USA
| | | | | | | |
Collapse
|
342
|
Abstract
Major new results in the 3D cryoimaging of ribosomes have advanced our understanding of ribosomal structure and function. For the first time, 3D difference maps have been used to image tRNA molecules in situ. With this new technology, the stage is set for detailed ligand-binding experiments that explore the binding states of elongation factors and tRNA, and that pinpoint locations of proteins and RNA on the surface of the ribosome.
Collapse
Affiliation(s)
- J Frank
- Wadsworth Center, New York State Department of Health, State University of New York at Albany, PO Box 509, Empire State Plaza, Albany, NY 12201-0509, USA.
| |
Collapse
|
343
|
Taveau JC, Boisset N, Lamy J, Lambert O, Lamy JN. Three-dimensional reconstruction of Limulus polyphemus hemocyanin from cryoelectron microscopy. J Mol Biol 1997; 266:1002-15. [PMID: 9086277 DOI: 10.1006/jmbi.1996.0840] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Hemocyanin (Hc) the respiratory pigment of the horseshoe crab Limulus polyphemus (Lp) is composed of 48 approximately 75 kDa copper-containing subunits arranged in eight hexameric groups. In this study, we used the random conical tilt series method to do a three-dimensional (3D) reconstruction of Lp Hc observed in vitreous ice. This approach allowed the unambiguous determination of the handedness of the molecule. Lp Hc contains two superimposed 4 x 6mer structures possessing the same structural features as the other 4 x 6meric Hcs, namely flip and flop views and a rocking effect. Moreover, 3D fitting of the X-ray structure of subunit LpII with the reconstruction volume shows that the intra4 x 6meric contacts described in arthropod Hcs also occur within Limulus Hc. The two half-molecules composing the 8 x 6mer have their flop faces in contact (flop/flop association), the main links being formed by subunits LpIV. Model building shows that the flop/flop association is the only possible arrangement which allows the assembly of the whole particle. The two alternate constructions (flip/flop and flip/flip) are forbidden because of steric hindrance.
Collapse
Affiliation(s)
- J C Taveau
- Laboratoire des Protéines Complexes, Université de Tours and CNRS EP117, France
| | | | | | | | | |
Collapse
|
344
|
de Haas F, Zal F, Lallier FH, Toulmond A, Lamy JN. Three-dimensional reconstruction of the hexagonal bilayer hemoglobin of the hydrothermal vent tube worm Riftia pachyptila by cryoelectron microscopy. Proteins 1996; 26:241-56. [PMID: 8953646 DOI: 10.1002/(sici)1097-0134(199611)26:3<241::aid-prot1>3.0.co;2-h] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A frozen-hydrated specimen of the V1 hemoglobin of the hydrothermal vent tube worm Riftia pachyptila was observed in the electron microscope and subjected to three-dimensional reconstruction by the method of random conical tilt series. The 3D volume possesses a D6 point-group symmetry. When viewed along its 6-fold axis the vertices of its upper hexagonal layer are 16 degrees clockwise rotated compared to those of the lower layer. A central linker complex is decorated by 12 hollow globular substructures. The linker complex comprises (i) a central hexagonal toroid, (ii) two internal bracelets onto which the hollow globular substructures are built, and (iii) six structures connecting the two hexagonal layers. The hollow globular substructures, related to the dodecamers of globin chains resulting from the dissociation of the hexagonal bilayer hemoglobin, have a local pseudo 3-fold symmetry and are composed each of three elongated structures visible when the volume is displayed at high threshold. At a resolution of 36 A, the 3D volumes of the hexagonal bilayer hemoglobins of Riftia pachyptyla and of the leech Macrobdella decora look almost perfectly identical.
Collapse
Affiliation(s)
- F de Haas
- Groupe d'Analyse Structurale des Antigènes (URA 1334 CNRS), Tours, France
| | | | | | | | | |
Collapse
|
345
|
Boisset N, Taveau JC, Pochon F, Lamy J. Similar architectures of native and transformed human alpha2-macroglobulin suggest the transformation mechanism. J Biol Chem 1996; 271:25762-9. [PMID: 8824204 DOI: 10.1074/jbc.271.42.25762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The refined three-dimensional structure of native human alpha2-macroglobulin (alpha2M) has been determined by cryoelectron microscopy and three-dimensional reconstruction. New features corresponding to "sigmoid arches," "basal bodies," and "apical connections" were observed in the molecule. Since similar elements are found in the architecture of transformed alpha2M, the 2 volumes were aligned in three dimensions. In their common orientations, they show many similarities except near the openings of the central chamber. In the native conformation, these apertures are fully opened, allowing the proteases to access the central chamber of the molecule, while in the transformed structure, they are partially closed. These structures suggest that alpha2M conformational change involves a strong lateral compression and a vertical stretching of the native particle seen in its four-petaled flower view to produce the H view of the transformed form. A model of structural transformation, in which all the parts of the alpha2M molecule seem involved in the entrapment of the proteinases is proposed.
Collapse
Affiliation(s)
- N Boisset
- Groupe d'Analyze des Structures Antigéniques, Université François Rabelais and CNRS EP No. JO117, 2bis Boulevard Tonnellé, 37032 Tours Cedex, France
| | | | | | | |
Collapse
|
346
|
Electron tomography in conical tilt geometry. The accuracy of a direct Fourier method (DFM) and the suppression of non-tomographic noise. Ultramicroscopy 1996. [DOI: 10.1016/0304-3991(96)00043-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
347
|
Schroeter JP, Bretaudiere JP, Sass RL, Goldstein MA. Three-dimensional structure of the Z band in a normal mammalian skeletal muscle. J Cell Biol 1996; 133:571-83. [PMID: 8636232 PMCID: PMC2120817 DOI: 10.1083/jcb.133.3.571] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The three-dimensional structure of the vertebrate skeletal muscle Z band reflects its function as the muscle component essential for tension transmission between successive sarcomeres. We have investigated this structure as well as that of the nearby I band in a normal, unstimulated mammalian skeletal muscle by tomographic three-dimensional reconstruction from electron micrograph tilt series of sectioned tissue. The three-dimensional Z band structure consists of interdigitating axial filaments from opposite sarcomeres connected every 18 +/- 12 nm (mean +/- SD) to one to four cross-connecting Z-filaments are observed to meet the axial filaments in a fourfold symmetric arrangement. The substantial variation in the spacing between cross-connecting Z-filament to axial filament connection points suggests that the structure of the Z band is not determined solely by the arrangement of alpha-actinin to actin-binding sites along the axial filament. The cross-connecting filaments bind to or form a "relaxed interconnecting body" halfway between the axial filaments. This filamentous body is parallel to the Z band axial filaments and is observed to play an essential role in generating the small square lattice pattern seen in electron micrographs of unstimulated muscle cross sections. This structure is absent in cross section of the Z band from muscles fixed in rigor or in tetanus, suggesting that the Z band lattice must undergo dynamic rearrangement concomitant with crossbridge binding in the A band.
Collapse
Affiliation(s)
- J P Schroeter
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77080, USA
| | | | | | | |
Collapse
|
348
|
Verschoor A, Srivastava S, Grassucci R, Frank J. Native 3D structure of eukaryotic 80s ribosome: morphological homology with E. coli 70S ribosome. J Biophys Biochem Cytol 1996; 133:495-505. [PMID: 8636226 PMCID: PMC2120811 DOI: 10.1083/jcb.133.3.495] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A three-dimensional reconstruction of the eukaryotic 80S monosome from a frozen-hydrated electron microscopic preparation reveals the native structure of this macromolecular complex. The new structure, at 38A resolution, shows a marked resemblance to the structure determined for the E. coli 70S ribosome (Frank, J., A. Verschoor, Y. Li, J. Zhu, R.K. Lata, M. Radermacher, P. Penczek, R. Grassucci, R.K. Agrawal, and Srivastava. 1996b. In press; Frank, J., J. Zhu, P. Penczek, Y. Li, S. Srivastava ., A. Verschoor, M. Radermacher, R. Grassucci, R.K. Lata, and R. Agrawal. 1995. Nature (Lond.).376:441-444.) limited to a comparable resolution, but with a number of eukaryotic elaborations superimposed. Although considerably greater size and intricacy of the features is seen in the morphology of the large subunit (60S vs 50S), the most striking differences are in the small subunit morphology (40S vs 30S): the extended beak and crest features of the head, the back lobes, and the feet. However, the structure underlying these extra features appears to be remarkably similar in form to the 30S portion of the 70S structure. The intersubunit space also appears to be strongly conserved, as might be expected from the degree of functional conservation of the ribosome among kingdoms (Eukarya, Eubacteria, and Archaea). The internal organization of the 80S structure appears as an armature or core of high-density material for each subunit, with the two cores linked by a single bridge between the platform region of the 40S subunit and the region below the presumed peptidyltransferase center of the 60S subunit. This may be equated with a close contact of the 18S and 28S rRNAs in the translational domain centered on the upper subunit:subunit interface.
Collapse
MESH Headings
- Bacterial Proteins/chemistry
- Bacterial Proteins/ultrastructure
- Crystallography
- Escherichia coli/chemistry
- Image Processing, Computer-Assisted
- Microscopy, Electron
- Molecular Weight
- Protein Biosynthesis
- Protein Conformation
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/ultrastructure
- RNA, Ribosomal, 28S/chemistry
- RNA, Ribosomal, 28S/ultrastructure
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/ultrastructure
- Ribosomes/chemistry
- Ribosomes/ultrastructure
- Triticum/chemistry
Collapse
Affiliation(s)
- A Verschoor
- Wadsworth Center, New York State Department of Health 12201-0509, USA.
| | | | | | | |
Collapse
|
349
|
de Haas F, Biosset N, Taveau JC, Lambert O, Vinogradov SN, Lamy JN. Three-dimensional reconstruction of Macrobdella decora (leech) hemoglobin by cryoelectron microscopy. Biophys J 1996; 70:1973-84. [PMID: 8785356 PMCID: PMC1225166 DOI: 10.1016/s0006-3495(96)79762-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Macrobdella decora hemoglobin was observed in vitreous ice by cryoelectron microscopy and subjected to three-dimensional reconstruction by the method of random conical tilt series. The refined volume has a resolution of 40 A and a D6 point-group symmetry. Its architecture, with its hexagonal bilayer appearance, resembles those of Lumbricus terrestris (oligochaete) and Eudistylia vancouverii (polychaete). When the reconstruction volume is viewed along its sixfold axis, the vertices of the upper hexagonal layer are rotated 16 degrees clockwise compared to those of the lower layer. In agreement with the "bracelet" model of Vinogradov et al., a central linker complex is decorated by 12 hollow globular substructures. The linker complex is made up of a central hexagonal toroid linked by 12 c5 connections to two bracelets of c3 connections, which are themselves linked via six c4 connections. The portion of the hollow globular substructure corresponding to the dodecamer of globin chains has a local pseudo threefold symmetry and is composed of three elongated structures visible when the volume is displayed at high threshold. The main difference between Macrobdella, Lumbricus, and Eudistylia hemoglobins is the presence in Macrobdella of a central hexagonal toroid instead of a compact flat hexagonal structure.
Collapse
Affiliation(s)
- F de Haas
- Laboratoire des Protéines Complexes et CNRS URA 1334, Université de Tours, France
| | | | | | | | | | | |
Collapse
|
350
|
Owen CH, Landis WJ. Alignment of electron tomographic series by correlation without the use of gold particles. Ultramicroscopy 1996; 63:27-38. [PMID: 8785010 DOI: 10.1016/0304-3991(95)00154-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Electron tomography requires that a tilt series of micrographs be aligned and that the orientation of the tilt axis be known. This has been done conveniently with gold markers applied to the surface of a specimen to provide easily accessible information on the orientation of each tilt projection. Where gold markers are absent, another approach to alignment must be used. A method is presented here for aligning tilt projections without the use of markers, utilizing correlation methods. The technique is iterative, drawing principally on the work of Dengler [Ultramicroscopy 30 (1989) 337], and consists of computing a low resolution back projection image from which computed tomographic projections can be generated. These in turn serve as reference images for the next alignment of the tomographic series. An initial alignment must be made before the first back projection, and this is done following the method of Guckenberger [Ultramicroscopy 9 (1982) 167] for translational alignment and by common lines analysis [Liu et al., Ultramicroscopy 58 (1995) 393] for identification of the tilt axis. Four tomographic series of a biological nature were aligned and analyzed, and the method has proven to be both accurate and reproducible for the data presented here.
Collapse
Affiliation(s)
- C H Owen
- Department of Orthopedie Surgery, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|