301
|
Abstract
PURPOSE OF REVIEW Primary biliary cirrhosis (PBC) was first described in the 1950s as a clinical syndrome of progressive cholestatic liver disease resulting from chronic inflammatory destruction of the intrahepatic bile ducts. In the 1980s, the autoimmune nature of the disease was appreciated with the discovery of disease-specific loss of immune tolerance to the pyruvate dehydrogenase complex and subsequent development of antimitochondrial antibodies and autoreactive T cells. Then, in the 1990s, multiple clinical trials demonstrating the efficacy of ursodiol as a treatment for PBC were published, although it has been clear that ursodiol is not a cure and only delays progression in some patients. RECENT FINDINGS The study of PBC in the 2000s has been buoyed by two basic science advances: rapid sequencing technologies that have led to genome wide association studies, and elucidation of the role of nuclear hormone receptors in the regulation of bile salt metabolism, which has led to novel therapies under study for cholestatic diseases. SUMMARY Today's clinician should be able to determine which patients with PBC are likely to progress despite treatment with ursodiol and understand the putative new bile acid and immunosuppressant treatment strategies under development, as well as be aware of the recently described genetic factors at play in the development of PBC.
Collapse
|
302
|
Le Pichon CE, Chesler AT. The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 2014; 8:21. [PMID: 24795573 PMCID: PMC4001001 DOI: 10.3389/fnana.2014.00021] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/24/2014] [Indexed: 11/13/2022] Open
Abstract
The word somatosensation comes from joining the Greek word for body (soma) with a word for perception (sensation). Somatosensory neurons comprise the largest sensory system in mammals and have nerve endings coursing throughout the skin, viscera, muscle, and bone. Their cell bodies reside in a chain of ganglia adjacent to the dorsal spinal cord (the dorsal root ganglia) and at the base of the skull (the trigeminal ganglia). While the neuronal cell bodies are intermingled within the ganglia, the somatosensory system is in reality composed of numerous sub-systems, each specialized to detect distinct stimuli, such as temperature and touch. Historically, somatosensory neurons have been classified using a diverse host of anatomical and physiological parameters, such as the size of the cell body, degree of myelination, histological labeling with markers, specialization of the nerve endings, projection patterns in the spinal cord and brainstem, receptive tuning, and conduction velocity of their action potentials. While useful, the picture that emerged was one of heterogeneity, with many markers at least partially overlapping. More recently, by capitalizing on advances in molecular techniques, researchers have identified specific ion channels and sensory receptors expressed in subsets of sensory neurons. These studies have proved invaluable as they allow genetic access to small subsets of neurons for further molecular dissection. Data being generated from transgenic mice favor a model whereby an array of dedicated neurons is responsible for selectively encoding different modalities. Here we review the current knowledge of the different sensory neuron subtypes in the mouse, the markers used to study them, and the neurogenetic strategies used to define their anatomical projections and functional roles.
Collapse
Affiliation(s)
- Claire E. Le Pichon
- National Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesda, MD, USA
| | - Alexander T. Chesler
- Intramural Pain Program, Section on Sensory Cells and Circuits, National Center for Complementary and Alternative Medicine, National Institutes of HealthBethesda, MD, USA
| |
Collapse
|
303
|
Kardon AP, Polgár E, Hachisuka J, Snyder LM, Cameron D, Savage S, Cai X, Karnup S, Fan CR, Hemenway GM, Bernard CS, Schwartz ES, Nagase H, Schwarzer C, Watanabe M, Furuta T, Kaneko T, Koerber HR, Todd AJ, Ross SE. Dynorphin acts as a neuromodulator to inhibit itch in the dorsal horn of the spinal cord. Neuron 2014; 82:573-86. [PMID: 24726382 PMCID: PMC4022838 DOI: 10.1016/j.neuron.2014.02.046] [Citation(s) in RCA: 244] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2014] [Indexed: 12/15/2022]
Abstract
Menthol and other counterstimuli relieve itch, resulting in an antipruritic state that persists for minutes to hours. However, the neural basis for this effect is unclear, and the underlying neuromodulatory mechanisms are unknown. Previous studies revealed that Bhlhb5−/− mice, which lack a specific population of spinal inhibitory interneurons (B5-I neurons), develop pathological itch. Here we characterize B5-I neurons and show that they belong to a neurochemically distinct subset. We provide cause-and-effect evidence that B5-I neurons inhibit itch and show that dynorphin, which is released from B5-I neurons, is a key neuromodulator of pruritus. Finally, we show that B5-I neurons are innervated by menthol-, capsaicin-, and mustard oil-responsive sensory neurons and are required for the inhibition of itch by menthol. These findings provide a cellular basis for the inhibition of itch by chemical counterstimuli and suggest that kappa opioids may be a broadly effective therapy for pathological itch. Spinal B5-I interneurons function to inhibit itch B5-I neurons release the kappa opioid dynorphin Kappa opioid signaling bidirectionally modulates itch within the spinal cord Spinal B5-I interneurons mediate the inhibition of itch by menthol
Collapse
Affiliation(s)
- Adam P Kardon
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Erika Polgár
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Junichi Hachisuka
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Lindsey M Snyder
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Darren Cameron
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Sinead Savage
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Xiaoyun Cai
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Sergei Karnup
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Christopher R Fan
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Gregory M Hemenway
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Carcha S Bernard
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Erica S Schwartz
- University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Life Science Center of Tsukuba Advanced Research Alliance C-1F, 1-1-1 Tenoudai Tsukuba Ibaraki, Tsukuba 305-8577, Japan
| | - Christoph Schwarzer
- Department of Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | - Takahiro Furuta
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takeshi Kaneko
- Department of Morphological Brain Science, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - H Richard Koerber
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK.
| | - Sarah E Ross
- Department of Neurobiology, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; University of Pittsburgh Pain Center, University of Pittsburgh, 200 Lothrop St. Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| |
Collapse
|
304
|
Zhang L, Jiang GY, Song NJ, Huang Y, Chen JY, Wang QX, Ding YQ. Extracellular signal-regulated kinase (ERK) activation is required for itch sensation in the spinal cord. Mol Brain 2014; 7:25. [PMID: 24708812 PMCID: PMC3986448 DOI: 10.1186/1756-6606-7-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 03/25/2014] [Indexed: 12/22/2022] Open
Abstract
Background Itch, chronic itch in particular, can have a significant negative impact on an individual’s quality of life. However, the molecular mechanisms underlying itch processing in the central nervous system remain largely unknown. Results We report here that activation of ERK signaling in the spinal cord is required for itch sensation. ERK activation, as revealed by anti-phosphorylated ERK1/2 immunostaining, is observed in the spinal dorsal horn of mice treated with intradermal injections of histamine and compound 48/80 but not chloroquine or SLIGRL-NH2, indicating that ERK activation only occurs in histamine-dependent acute itch. In addition, ERK activation is also observed in 2, 4-dinitrofluorobenzene (DNFB)-induced itch. Consistently, intrathecal administration of the ERK phosphorylation inhibitor U0126 dramatically reduces the scratching behaviors induced by histamine and DNFB, but not by chloroquine. Furthermore, administration of the histamine receptor H1 antagonist chlorpheniramine decreases the scratching behaviors and ERK activation induced by histamine, but has no effect on DNFB-induced itch responses. Finally, the patch-clamp recording shows that in histamine-, chloroquine- and DNFB-treated mice the spontaneous excitatory postsynaptic current (sEPSC) of dorsal horn neurons is increased, and the decrease of action potential threshold is largely prevented by bathing of U0126 in histamine- and DNFB-treated mice but not those treated with chloroquine. Conclusion Our results demonstrate a critical role for ERK activation in itch sensation at the spinal level.
Collapse
Affiliation(s)
- Ling Zhang
- Key Laboratory of Arrhythmias, Ministry of Education of China, East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| | | | | | | | | | | | | |
Collapse
|
305
|
Moser HR, Giesler GJ. Characterization of pruriceptive trigeminothalamic tract neurons in rats. J Neurophysiol 2014; 111:1574-89. [PMID: 24478156 PMCID: PMC4035772 DOI: 10.1152/jn.00668.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/22/2014] [Indexed: 11/22/2022] Open
Abstract
Rodent models of facial itch and pain provide a valuable tool for distinguishing between behaviors related to each sensation. In rats, pruritogens applied to the face elicit scratching using the hindlimb while algogens elicit wiping using the forelimb. We wished to determine the role of trigeminothalamic tract (VTT) neurons in carrying information regarding facial itch and pain to the forebrain. We have characterized responses to facially applied pruritogens (serotonin, BAM8-22, chloroquine, histamine, capsaicin, and cowhage) and noxious stimuli in 104 VTT neurons recorded from anesthetized rats. Each VTT neuron had a mechanically sensitive cutaneous receptive field on the ipsilateral face. All pruriceptive VTT neurons also responded to noxious mechanical and/or thermal stimulation. Over half of VTT neurons responsive to noxious stimuli also responded to at least one pruritogen. Each tested pruritogen, with the exception of cowhage, produced an increase in discharge rate in a subset of VTT neurons. The response to each pruritogen was characterized, including maximum discharge rate, response duration, and spike timing dynamics. Pruriceptive VTT neurons were recorded from throughout superficial and deep layers of the spinal trigeminal nucleus and were shown to project via antidromic mapping to the ventroposterior medial nucleus or posterior thalamic nuclei. These results indicate that pruriceptive VTT neurons are a subset of polymodal nociceptive VTT neurons and characterize a system conducive to future experiments regarding the similarities and differences between facial itch and pain.
Collapse
Affiliation(s)
- Hannah R Moser
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | | |
Collapse
|
306
|
Therapy of chronic urticaria: a simple, modern approach. Ann Allergy Asthma Immunol 2014; 112:419-25. [PMID: 24656924 DOI: 10.1016/j.anai.2014.02.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/19/2014] [Accepted: 02/20/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To examine the available treatment choices for chronic spontaneous urticaria (CSU) and discuss a new paradigm for treating such patients. DATA SOURCES The literature regarding treatment is reviewed, including considerations of published guidelines. Attention is focused on the most recent evidence indicating particular efficacy of omalizumab. RESULTS Omalizumab has been found to have considerable efficacy in phase 2 and phase 3 trials in which more than 900 patients have been studied. A response rate of 65% is seen in patients resistant to antihistamines as well as to histamine2 blockers and leukotriene antagonists, and 40% of patients are completely free of hives as long as therapy is continued. In addition, serious adverse events have not been seen. Only cyclosporine can match this response rate (excluding steroids), but the adverse effect profile (blood pressure and renal function) is substantial by comparison. Double-blind, placebo-controlled studies of other agents often listed as alternatives are lacking (ie, whether their success rate exceeds the 25%-30% placebo response is uncertain). The mechanism by which omalizumab works in CSU is not clear because the response rate is unrelated to the autoimmune profile and can occur rapidly (ie, within a few days). CONCLUSION Omalizumab has exceptional efficacy for antihistamine-resistant CSU with an excellent adverse effect profile.
Collapse
|
307
|
BB2 bombesin receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling. Neuroreport 2014; 24:652-6. [PMID: 23778077 DOI: 10.1097/wnr.0b013e32836352d8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although spinal neurons expressing BB2 bombesin receptors are suggested to be involved in itch transmission, their role in pathological itch remains unknown. Because itch is often observed in patients with herpes zoster, we examined the role of BB2 receptor-expressing spinal neurons in herpes-associated itch in mice. Transdermal inoculation of human herpes virus 1 on the midflank produced herpes zoster-like skin lesions and caused the mice to scratch (itch-related behavior) and lick (pain-related behavior) the affected skin. Ablation of BB2 receptor-expressing spinal neurons by intrathecal treatment with a bombesin-saporin conjugate decreased the scratching but not the licking. Intrathecal administration of the BB2 receptor antagonist Leu13-ψ-(CH2NH)Leu14-bombesin decreased BB2 receptor agonist GRP(18-27)-induced scratching in naive mice but not herpes-associated scratching. The present results suggest that BB2 receptor-expressing spinal neurons transmit herpes-associated itch by BB2 receptor-independent signaling.
Collapse
|
308
|
Abstract
Chemicals that are used experimentally to evoke itch elicit activity in diverse subpopulations of cutaneous pruriceptive neurons, all of which also respond to painful stimuli. However, itch is distinct from pain: it evokes different behaviours, such as scratching, and originates from the skin or certain mucosae but not from muscle, joints or viscera. New insights regarding the neurons that mediate the sensation of itch have been gained from experiments in which gene expression has been manipulated in different types of pruriceptive neurons as well as from comparisons between psychophysical measurements of itch and the neuronal discharges and other properties of peripheral and central pruriceptive neurons.
Collapse
|
309
|
Abstract
The unique physiological features of histamine-sensitive C-fibers and spinothalamic tract neurons support the hypothesis of itch specific pathway, whereas subsequent studies on cowhage-induced itch have provided evidence against it, suggesting the presence of multiple neural pathways for itch. Not only peripheral pruritogens but also spinal neural receptors are involved in the control of itch, and will be the target of treatment. Itch sensitization in chronic pruritus is another crucial factor that needs to be considered in the treatment. Neuropathic itch is the type of itch that occurs when nerve fibers are damaged or injured and spontaneous firing of nerves takes place, and plays a major role in itch accompanying some pathological conditions such as herpes zoster. The complexity of itch is due to the broad range of mediators involved and the large variety of neural mechanisms behind.
Collapse
Affiliation(s)
- Akihiko Ikoma
- Research and Development, Galderma Japan, 13–1 Nishigokencho, Shinjuku-ku, Tokyo 162–0812, Japan.
| |
Collapse
|
310
|
Zhao ZQ, Huo FQ, Jeffry J, Hampton L, Demehri S, Kim S, Liu XY, Barry DM, Wan L, Liu ZC, Li H, Turkoz A, Ma K, Cornelius LA, Kopan R, Battey JF, Zhong J, Chen ZF. Chronic itch development in sensory neurons requires BRAF signaling pathways. J Clin Invest 2014; 123:4769-80. [PMID: 24216512 DOI: 10.1172/jci70528] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/12/2013] [Indexed: 12/17/2022] Open
Abstract
Chronic itch, or pruritus, is associated with a wide range of skin abnormalities. The mechanisms responsible for chronic itch induction and persistence remain unclear. We developed a mouse model in which a constitutively active form of the serine/threonine kinase BRAF was expressed in neurons gated by the sodium channel Nav1.8 (BRAF(Nav1.8) mice). We found that constitutive BRAF pathway activation in BRAF(Nav1.8) mice results in ectopic and enhanced expression of a cohort of itch-sensing genes, including gastrin-releasing peptide (GRP) and MAS-related GPCR member A3 (MRGPRA3), in nociceptors expressing transient receptor potential vanilloid 1 (TRPV1). BRAF(Nav1.8) mice showed de novo neuronal responsiveness to pruritogens, enhanced pruriceptor excitability, and heightened evoked and spontaneous scratching behavior. GRP receptor expression was increased in the spinal cord, indicating augmented coding capacity for itch subsequent to amplified pruriceptive inputs. Enhanced GRP expression and sustained ERK phosphorylation were observed in sensory neurons of mice with allergic contact dermatitis– or dry skin–elicited itch; however, spinal ERK activation was not required for maintaining central sensitization of itch. Inhibition of either BRAF or GRP signaling attenuated itch sensation in chronic itch mouse models. These data uncover RAF/MEK/ERK signaling as a key regulator that confers a subset of nociceptors with pruriceptive properties to initiate and maintain long-lasting itch sensation.
Collapse
|
311
|
Suo J, Linke B, Meyer dos Santos S, Pierre S, Stegner D, Zhang DD, Denis CV, Geisslinger G, Nieswandt B, Scholich K. Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol 2014; 96:133-42. [PMID: 24555986 DOI: 10.1189/jlb.3a1213-628r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inflammatory pain is based on stimulation and sensitization of peripheral endings of sensory neurons (nociceptors) by pronociceptive mediators. These mediators can be released by resident cells, as well as invading immune cells. Although neutrophils are known to release various mediators, which can stimulate or sensitize nociceptors, the extent of their contribution to nociceptive responses is unclear. Here, we studied the contribution of neutrophils to zymosan-induced inflammatory pain, which is characterized by an early recruitment of high numbers of neutrophils. Surprisingly, antibody-mediated neutrophil depletion caused a complete loss of edema formation but had no effect on mechanical pain thresholds. Blockage of the interaction between neutrophils and platelets or endothelial cells using antibodies directed against CD11b and CD162 reduced neutrophil recruitment to the site of inflammation. Again, the treatment decreased zymosan-induced edemas without altering mechanical pain thresholds. Also, HLB-219 mice, which have five to 10 times less platelets than WT mice, showed reduced neutrophil recruitment to the site of inflammation and decreased edema sizes, whereas, again, mechanical thresholds were unaltered. The effects observed in HLB-219 mice were relatively small and not reproduced in vWF-deficient mice or after antibody-mediated blockage of GPIbα. Flow chamber and transmigration assays showed that platelets were not necessary for neutrophil adhesion to endothelial cells but increased their transmigration. Taken together, zymosan-induced mechanical allodynia is, in contrast to edema formation, independent of neutrophils, and recruitment of neutrophils is only partly influenced by interactions with platelets.
Collapse
Affiliation(s)
- Jing Suo
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Bona Linke
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Sascha Meyer dos Santos
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Sandra Pierre
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - David Stegner
- Universität Würzburg, Institut für Experimentelle Biomedizin, Universitätsklinikum und Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Würzburg, Germany; and
| | - Dong Dong Zhang
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Cecile V Denis
- Institut National de la Santé et de la Recherche Médicale U770, Le Kremlin-Bicêtre, France
| | - Gerd Geisslinger
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany
| | - Bernhard Nieswandt
- Universität Würzburg, Institut für Experimentelle Biomedizin, Universitätsklinikum und Rudolf-Virchow-Zentrum für Experimentelle Biomedizin, Würzburg, Germany; and
| | - Klaus Scholich
- Institut für Klinische Pharmakologie, Pharmazentrum Frankfurt, Zentrums für Arzneimittelforschung Entwicklung und Sicherheit, Klinikum der Goethe-Universität Frankfurt, Frankfurt, Germany;
| |
Collapse
|
312
|
Akiyama T, Nagamine M, Carstens MI, Carstens E. Behavioral model of itch, alloknesis, pain and allodynia in the lower hindlimb and correlative responses of lumbar dorsal horn neurons in the mouse. Neuroscience 2014; 266:38-46. [PMID: 24530451 DOI: 10.1016/j.neuroscience.2014.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/02/2014] [Accepted: 02/04/2014] [Indexed: 12/01/2022]
Abstract
We have further developed a behavioral model of itch and pain in the lower hindlimb (calf) originally reported by LaMotte et al. (2011) that allows comparisons with responses of lumbar dorsal horn neurons to pruritic and noxious stimuli. Intradermal (id) microinjection of the pruritogens histamine, SLIGRL-NH2 (agonist of PAR-2 and MrgprC11) and chloroquine (agonist of MrgprA3) into the calf of the lower limb elicited significant biting and a small amount of licking directed to the injection site, over a 30-min time course. Following id injection of histamine, low-threshold mechanical stimuli reliably elicited discrete episodes of biting (alloknesis) over a longer time course; significantly less alloknesis was observed following id injection of SLIGRL-NH2. Capsaicin injections elicited licking but little biting. Following id injection of capsaicin, low-threshold mechanical stimuli elicited discrete hindlimb flinches (allodynia) over a prolonged (>2h) time course. In single-unit recordings from superficial lumbar dorsal horn neurons, low-threshold mechanically evoked responses were significantly enhanced, accompanied by receptive field expansion, following id injection of histamine in histamine-responsive neurons. This was not observed in histamine-insensitive neurons, or following id injection of saline or SLIGRL-NH2, regardless of whether the latter activated the neuron or not. These results suggest that itch-responsive neurons are selectively sensitized by histamine but not SLIGRL-NH2 to account for alloknesis. The presently described "calf" model appears to distinguish between itch- and pain-related behavioral responses, and provides a basis to investigate lumbar spinal neural mechanisms underlying itch, alloknesis, pain and allodynia.
Collapse
Affiliation(s)
- T Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - M Nagamine
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - M I Carstens
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA
| | - E Carstens
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
313
|
Naono-Nakayama R, Ikeda T, Matsushima O, Sameshima H, Takamiya K, Funahashi H, Nishimori T. An amino-terminal fragment of hemokinin-1 has an inhibitory effect on pruritic processing in rats. Neuroscience 2014; 259:172-83. [DOI: 10.1016/j.neuroscience.2013.10.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/11/2013] [Accepted: 10/28/2013] [Indexed: 12/01/2022]
|
314
|
Bautista DM, Wilson SR, Hoon MA. Why we scratch an itch: the molecules, cells and circuits of itch. Nat Neurosci 2014; 17:175-82. [PMID: 24473265 PMCID: PMC4364402 DOI: 10.1038/nn.3619] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 12/03/2013] [Indexed: 12/17/2022]
Abstract
Itch is described as an irritating sensation that triggers a desire to scratch. However, this definition hardly seems fitting for the millions of people who suffer from intractable itch. Indeed, the Buddhist philosopher Nāgārjuna more aptly stated, "There is pleasure when an itch is scratched. But to be without an itch is more pleasurable still." Chronic itch is widespread and very difficult to treat. In this review we focus on the molecules, cells and circuits in the peripheral and central nervous systems that drive acute and chronic itch transmission. Understanding the itch circuitry is critical to developing new therapies for this intractable disease.
Collapse
Affiliation(s)
- Diana M Bautista
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sarah R Wilson
- 1] Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, USA. [2] Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
| | - Mark A Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, National Institute of Dental and Craniofacial Research/NIH, Bethesda, Maryland, USA
| |
Collapse
|
315
|
|
316
|
Normal and abnormal coding of somatosensory stimuli causing pain. Nat Neurosci 2014; 17:183-91. [PMID: 24473266 DOI: 10.1038/nn.3629] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/18/2013] [Indexed: 12/13/2022]
Abstract
Noxious stimuli usually cause pain and pain usually arises from noxious stimuli, but exceptions to these apparent truisms are the basis for clinically important problems and provide valuable insight into the neural code for pain. In this Review, we discuss how painful sensations arise. We argue that, although primary somatosensory afferents are tuned to specific stimulus features, natural stimuli often activate more than one type of afferent. Manipulating coactivation patterns can alter perception in ways that argue against each type of afferent acting independently (as expected for strictly labeled lines), suggesting instead that signals conveyed by different types of afferents interact. Deciphering the central circuits that mediate those interactions is critical for explaining the generation and modulation of neural signals that ultimately elicit pain. The advent of genetic and optical dissection techniques promise to dramatically accelerate progress toward this goal, which will facilitate the rational design of future pain therapeutics.
Collapse
|
317
|
Liu XY, Wan L, Huo FQ, Barry DM, Li H, Zhao ZQ, Chen ZF. B-type natriuretic peptide is neither itch-specific nor functions upstream of the GRP-GRPR signaling pathway. Mol Pain 2014; 10:4. [PMID: 24438367 PMCID: PMC3930899 DOI: 10.1186/1744-8069-10-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 01/16/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A recent study by Mishra and Hoon identified B-type natriuretic peptide (BNP) as an important peptide for itch transmission and proposed that BNP activates spinal natriuretic peptide receptor-A (NPRA) expressing neurons, which release gastrin releasing peptide (GRP) to activate GRP receptor (GRPR) expressing neurons to relay itch information from the periphery to the brain (Science 340:968-971, 2013). A central premise for the validity of this novel pathway is the absence of GRP in the dorsal root ganglion (DRG) neurons. To this end, they showed that Grp mRNA in DRG neurons is either absent or barely detectable and claimed that BNP but not GRP is a major neurotransmitter for itch in pruriceptors. They showed that NPRA immunostaining is perfectly co-localized with Grp-eGFP in the spinal cord, and a few acute pain behaviors in Nppb-/- mice were tested. They claimed that BNP is an itch-selective peptide that acts as the first station of a dedicated neuronal pathway comprising a GRP-GRPR cascade for itch. However, our studies, along with the others, do not support their claims. FINDINGS We were unable to reproduce the immunostaining of BNP and NPRA as shown by Mishra and Hoon. By contrast, we were able to detect Grp mRNA in DRGs using in situ hybridization and real time RT-PCR. We show that the expression pattern of Grp mRNA is comparable to that of GRP protein in DRGs. Pharmacological and genetic blockade of GRP-GRPR signaling does not significantly affect intrathecal BNP-induced scratching behavior. We show that BNP inhibits inflammatory pain and morphine analgesia. CONCLUSIONS Accumulating evidence demonstrates that GRP is a key neurotransmitter in pruriceptors for mediating histamine-independent itch. BNP-NPRA signaling is involved in both itch and pain and does not function upstream of the GRP-GRPR dedicated neuronal pathway. The site of BNP action in itch and pain and its relationship with GRP remain to be clarified.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhou-Feng Chen
- Center for the Study of Itch, Washington University School of Medicine Pain Center, St, Louis, MO 63110, USA.
| |
Collapse
|
318
|
Tominaga M, Takamori K. Recent advances in pathophysiological mechanisms of itch. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/edm.10.7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
319
|
Indo Y. Nerve growth factor, pain, itch and inflammation: lessons from congenital insensitivity to pain with anhidrosis. Expert Rev Neurother 2014; 10:1707-24. [DOI: 10.1586/ern.10.154] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
320
|
Abstract
The itch-scratch reflex serves as a protective mechanism in everyday life. However, chronic persistent itching can be devastating. Despite the clinical importance of the itch sensation, its mechanism remains elusive. In the past decade, substantial progress has been made to uncover the mystery of itching. Here, we review the molecules, cells, and circuits known to mediate the itch sensation, which, coupled with advances in understanding the pathophysiology of chronic itching conditions, will hopefully contribute to the development of new anti-itch therapies.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205;
| |
Collapse
|
321
|
Gilabert-Oriol R, Weng A, Mallinckrodt BV, Melzig MF, Fuchs H, Thakur M. Immunotoxins constructed with ribosome-inactivating proteins and their enhancers: a lethal cocktail with tumor specific efficacy. Curr Pharm Des 2014; 20:6584-643. [PMID: 25341935 PMCID: PMC4296666 DOI: 10.2174/1381612820666140826153913] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 08/05/2014] [Indexed: 11/30/2022]
Abstract
The term ribosome-inactivating protein (RIP) is used to denominate proteins mostly of plant origin, which have N-glycosidase enzymatic activity leading to a complete destruction of the ribosomal function. The discovery of the RIPs was almost a century ago, but their usage has seen transition only in the last four decades. With the advent of antibody therapy, the RIPs have been a subject of extensive research especially in targeted tumor therapies, which is the primary focus of this review. In the present work we enumerate 250 RIPs, which have been identified so far. An attempt has been made to identify all the RIPs that have been used for the construction of immunotoxins, which are conjugates or fusion proteins of an antibody or ligand with a toxin. The data from 1960 onwards is reviewed in this paper and an extensive list of more than 450 immunotoxins is reported. The clinical reach of tumor-targeted toxins has been identified and detailed in the work as well. While there is a lot of potential that RIPs embrace for targeted tumor therapies, the success in preclinical and clinical evaluations has been limited mainly because of their inability to escape the endo/lysosomal degradation. Various strategies that can increase the efficacy and lower the required dose for targeted toxins have been compiled in this article. It is plausible that with the advancements in platform technologies or improved endosomal escape the usage of tumor targeted RIPs would see the daylight of clinical success.
Collapse
Affiliation(s)
| | | | | | | | | | - Mayank Thakur
- Institut fur Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie, Charite - Universitatsmedizin Berlin, Campus Virchow-Klinikum (Forum 4), Augustenburger Platz 1, D-13353 Berlin, Germany.
| |
Collapse
|
322
|
Gomes I, Fujita W, Chandrakala MV, Devi LA. Disease-specific heteromerization of G-protein-coupled receptors that target drugs of abuse. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:207-65. [PMID: 23663971 DOI: 10.1016/b978-0-12-386931-9.00009-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions.
Collapse
Affiliation(s)
- Ivone Gomes
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, USA
| | | | | | | |
Collapse
|
323
|
Abstract
Spatial and temporal cues govern the genesis of a diverse array of neurons located in the dorsal spinal cord, including dI1-dI6, dIL(A), and dIL(B) subtypes, but their physiological functions are poorly understood. Here we generated a new line of conditional knock-out (CKO) mice, in which the homeobox gene Tlx3 was removed in dI5 and dIL(B) cells. In these CKO mice, development of a subset of excitatory neurons located in laminae I and II was impaired, including itch-related GRPR-expressing neurons, PKCγ-expressing neurons, and neurons expressing three neuropeptide genes: somatostatin, preprotachykinin 1, and the gastrin-releasing peptide. These CKO mice displayed marked deficits in generating nocifensive motor behaviors evoked by a range of pain-related or itch-related stimuli. The mutants also failed to exhibit escape response evoked by dynamic mechanical stimuli but retained the ability to sense innocuous cooling and/or warm. Thus, our studies provide new insight into the ontogeny of spinal neurons processing distinct sensory modalities.
Collapse
|
324
|
Ballut PC, Siqueira AM, Orlando ACB, Alexandre MAA, Alecrim MGC, Lacerda MVG. Prevalence and risk factors associated to pruritus in Plasmodium vivax patients using chloroquine in the Brazilian Amazon. Acta Trop 2013; 128:504-8. [PMID: 23906614 DOI: 10.1016/j.actatropica.2013.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 07/12/2013] [Accepted: 07/19/2013] [Indexed: 10/26/2022]
Abstract
Chloroquine-induced pruritus has been described as a common adverse event in African patients being treated for Plasmodium falciparum malaria, and has been associated with treatment discontinuation in this setting. In Latin America, where Plasmodium vivax is the most common species causing malaria and chloroquine is still used as the first-line schizonticidal for treating this parasite infection, there are no reports on chloroquine-induced pruritus. This study aimed to estimate the frequency of pruritus and associated risk factors in P. vivax-infected patients treated with chloroquine in a reference centre in the Brazilian Amazon. In this cross-sectional study, patients who were prescribed with chloroquine for the treatment of microscopy-confirmed P. vivax infection in the past five days were actively asked about the occurrence of any level of pruritus and potential risk factors were investigated. Univariable and multivariable logistic regression was performed for the analysis of possible risk factors in two sets of patients: (1) all the patients interviewed and (2) restricted to patients with previous use of chloroquine. Among the 510 patients interviewed, 20.4% (95%CI: 16.9-23.9%) developed any level of pruritus during treatment with chloroquine. Most episodes of pruritus occurred during the first two days of treatment and the most common location was hands and feet. In multivariate analysis performed in the entire population, the only risk factors independently associated to pruritus were allergy history (adjusted odds ratio [AOR]: 1.83; 95%CI 1.02-3.31; p=0.044) and high parasitaemia (AOR: 1.96: 95%CI 1.22-3.13; p=0.005). In the analysis restricted to the 215 patients with previous use of chloroquine, previous chloroquine-induced pruritus was a strong predictor of pruritus occurrence (AOR: 11.84: 95%CI 3.15-44.47; p<0.001). Two patients (0.4%) interrupted treatment due to the severity of pruritus. Pruritus is a common adverse event in patients being treated with chloroquine for P. vivax malaria in the Brazilian Amazon. Host-parasite interaction may play a relevant role in the development of pruritus and concurs with the finding of strong association of pruritus with high parasitaemia and allergy history. Patients with previous chloroquine-induced pruritus had a high risk for developing pruritus. Due to its high frequency, this side effect cannot be neglected as it can have major implications on patients' compliance to treatment hampering elimination efforts in the region.
Collapse
|
325
|
Obara I, Hunt SP. Axonal protein synthesis and the regulation of primary afferent function. Dev Neurobiol 2013; 74:269-78. [PMID: 24085547 PMCID: PMC4237183 DOI: 10.1002/dneu.22133] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/27/2013] [Accepted: 09/15/2013] [Indexed: 11/09/2022]
Abstract
Local protein synthesis has been demonstrated in the peripheral processes of sensory primary afferents and is thought to contribute to the maintenance of the neuron, to neuronal plasticity following injury and also to regeneration of the axon after damage to the nerve. The mammalian target of rapamycin (mTOR), a master regulator of protein synthesis, integrates a variety of cues that regulate cellular homeostasis and is thought to play a key role in coordinating the neuronal response to environmental challenges. Evidence suggests that activated mTOR is expressed by peripheral nerve fibers, principally by A-nociceptors that rapidly signal noxious stimulation to the central nervous system, but also by a subset of fibers that respond to cold and itch. Inhibition of mTOR complex 1 (mTORC1) has shown that while the acute response to noxious stimulation is unaffected, more complex aspects of pain processing including the setting up and maintenance of chronic pain states can be disrupted suggesting a route for the generation of new drugs for the control of chronic pain. Given the role of mTORC1 in cellular homeostasis, it seems that systemic changes in the physiological state of the body such as occur during illness are likely to modulate the sensitivity of peripheral sensory afferents through mTORC1 signaling pathways.
Collapse
Affiliation(s)
- Ilona Obara
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom; School of Medicine, Pharmacy and Health, Durham University, Stockton-on-Tees TS17 6BH, United Kingdom
| | | |
Collapse
|
326
|
Oh MH, Oh SY, Lu J, Lou H, Myers AC, Zhu Z, Zheng T. TRPA1-dependent pruritus in IL-13-induced chronic atopic dermatitis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5371-82. [PMID: 24140646 DOI: 10.4049/jimmunol.1300300] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chronic debilitating pruritus is a cardinal feature of atopic dermatitis (AD). Little is known about the underlying mechanisms. Antihistamines lack efficacy in treating itch in AD, suggesting the existence of histamine-independent itch pathways in AD. Transient receptor potential ankyrin 1 (TRPA1) is essential in the signaling pathways that promote histamine-independent itch. In this study, we tested the hypothesis that TRPA1-dependent neural pathways play a key role in chronic itch in AD using an IL-13-transgenic mouse model of AD. In these mice, IL-13 causes chronic AD characterized by intensive chronic itch associated with markedly enhanced growth of dermal neuropeptide-secreting afferent nerve fibers and enhanced expression of TRPA1 in dermal sensory nerve fibers, their dorsal root ganglia, and mast cells. Inhibition of TRPA1 with a specific antagonist in these mice selectively attenuated itch-evoked scratching. Genetic deletion of mast cells in these mice led to significantly diminished itch-scratching behaviors and reduced TRPA1 expression in dermal neuropeptide containing afferents in the AD skin. Interestingly, IL-13 strongly stimulates TRPA1 expression, which is functional in calcium mobilization in mast cells. In accordance with these observations in the AD mice, TRPA1 expression was highly enhanced in the dermal afferent nerves, mast cells, and the epidermis in the lesional skin biopsies from patients with AD, but not in the skin from healthy subjects. These studies demonstrate a novel neural mechanism underlying chronic itch in AD and highlight the complex interactions among TRPA1(+) dermal afferent nerves and TRPA1(+) mast cells in a Th2-dominated inflammatory environment.
Collapse
Affiliation(s)
- Min-Hee Oh
- Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21224
| | | | | | | | | | | | | |
Collapse
|
327
|
Abstract
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
Collapse
Affiliation(s)
- Tasuku Akiyama
- University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, CA 95616, United States
| | | |
Collapse
|
328
|
Akiyama T, Tominaga M, Takamori K, Carstens MI, Carstens E. Roles of glutamate, substance P, and gastrin-releasing peptide as spinal neurotransmitters of histaminergic and nonhistaminergic itch. Pain 2013; 155:80-92. [PMID: 24041961 DOI: 10.1016/j.pain.2013.09.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/15/2013] [Accepted: 09/09/2013] [Indexed: 10/26/2022]
Abstract
We investigated roles for substance P (SP), gastrin-releasing peptide (GRP), and glutamate in the spinal neurotransmission of histamine-dependent and -independent itch. In anesthetized mice, responses of single superficial dorsal horn neurons to intradermal (i.d.) injection of chloroquine were partially reduced by spinal application of the α-amino-3-hydroxy-5-methyl-4-isoxazole proprionate acid (AMPA)/kainate antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Co-application of CNQX plus a neurokinin-1 (NK-1) antagonist produced stronger inhibition, while co-application of CNQX, NK-1, and GRP receptor (GRPR) antagonists completely inhibited firing. Nociceptive-specific and wide dynamic range-type neurons exhibited differential suppression by CNQX plus either the GRPR or NK-1 antagonist, respectively. Neuronal responses elicited by i.d. histamine were abolished by CNQX alone. In behavioral studies, individual intrathecal administration of a GRPR, NK-1, or AMPA antagonist each significantly attenuated chloroquine-evoked scratching behavior. Co-administration of the NK-1 and AMPA antagonists was more effective, and administration of all 3 antagonists abolished scratching. Intrathecal CNQX alone prevented histamine-evoked scratching behavior. We additionally employed a double-label strategy to investigate molecular markers of pruritogen-sensitive dorsal root ganglion (DRG) cells. DRG cells responsive to histamine and/or chloroquine, identified by calcium imaging, were then processed for co-expression of SP, GRP, or vesicular glutamate transporter type 2 (VGLUT2) immunofluorescence. Subpopulations of chloroquine- and/or histamine-sensitive DRG cells were immunopositive for SP and/or GRP, with >80% immunopositive for VGLUT2. These results indicate that SP, GRP, and glutamate each partially contribute to histamine-independent itch. Histamine-evoked itch is mediated primarily by glutamate, with GRP playing a lesser role. Co-application of NK-1, GRP, and AMPA receptor antagonists may prove beneficial in treating chronic itch.
Collapse
Affiliation(s)
- Tasuku Akiyama
- Department of Neurobiology, Physiology & Behavior, University of California, Davis, CA, USA Institute for Environmental and Gender Specific Medicine, Juntendo University Graduate School of Medicine, Urayasu, Chiba 279-0021, Japan
| | | | | | | | | |
Collapse
|
329
|
Abstract
Chronic itch is a debilitating condition that affects one in 10 people. Little is known about the molecules that mediate chronic itch in primary sensory neurons and skin. We demonstrate that the ion channel TRPA1 is required for chronic itch. Using a mouse model of chronic itch, we show that scratching evoked by impaired skin barrier is abolished in TRPA1-deficient animals. This model recapitulates many of the pathophysiological hallmarks of chronic itch that are observed in prevalent human diseases such as atopic dermatitis and psoriasis, including robust scratching, extensive epidermal hyperplasia, and dramatic changes in gene expression in sensory neurons and skin. Remarkably, TRPA1 is required for both transduction of chronic itch signals to the CNS and for the dramatic skin changes triggered by dry-skin-evoked itch and scratching. These data suggest that TRPA1 regulates both itch transduction and pathophysiological changes in the skin that promote chronic itch.
Collapse
|
330
|
Mediators of pruritus in lichen planus. Autoimmune Dis 2013; 2013:941431. [PMID: 23970959 PMCID: PMC3736511 DOI: 10.1155/2013/941431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/29/2013] [Indexed: 12/03/2022] Open
Abstract
Lichen planus (LP) is an inflammatory mucocutaneous disease, showing a wide variety of clinical subtypes. The classic presentation of LP involves the appearance of polygonal, flat-topped, violaceous papules and plaques with reticulated white lines, termed “Wickham's striae”. Cutaneous lesions tend to be extremely pruritic, and this symptom does not subside after common antipruritic treatment. Moreover, based on our previous pilot study, it could be stated, that itch is the most unpleasant and bothersome symptom of LP for majority of patients suffering from this disease. However, the underlying mechanisms of itch in lichen planus remain still unknown. In addition, there is no study on mediators of this sensation, but taking into account pathogenesis of LP there are some possible mediators implicated to transmit or modulate itch. In pathogenesis of LP important are such mechanisms as apoptosis, autoimmune reaction, and role of stress. With these pathways some, previously described in other diseases, itch mediators such as cytokines, proteases, and opioid system are connected. Whether these mechanisms are involved in pruritus accompanying LP requires further investigation. Limited knowledge of pruritus origin in lichen planus is responsible for the lack of the effective antipruritic treatments. Here, we describe possible mechanisms participating the pathogenesis of pruritus in lichen planus.
Collapse
|
331
|
Descalzi G, Chen T, Koga K, Li XY, Yamada K, Zhuo M. Cortical GluK1 kainate receptors modulate scratching in adult mice. J Neurochem 2013; 126:636-50. [DOI: 10.1111/jnc.12351] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 06/05/2013] [Accepted: 06/12/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Giannina Descalzi
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
| | - Tao Chen
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
- Center for Neuron and Disease; Frontier Institutes of Life Science, and Science and Technology; Xi'an Jiaotong University; Xian Shanxi China
| | - Kohei Koga
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
| | - Xiang-Yao Li
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
- Center for Neuron and Disease; Frontier Institutes of Life Science, and Science and Technology; Xi'an Jiaotong University; Xian Shanxi China
| | - Kaori Yamada
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
| | - Min Zhuo
- Department of Physiology; Faculty of Medicine; University of Toronto; 1 King's College Circle; University of Toronto Center for the study of Pain; Toronto Ontario Canada
- Center for Neuron and Disease; Frontier Institutes of Life Science, and Science and Technology; Xi'an Jiaotong University; Xian Shanxi China
| |
Collapse
|
332
|
Nishida K, Takechi K, Akiyama T, Carstens MI, Carstens E. Scratching inhibits serotonin-evoked responses of rat dorsal horn neurons in a site- and state-dependent manner. Neuroscience 2013; 250:275-81. [PMID: 23867770 DOI: 10.1016/j.neuroscience.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 06/30/2013] [Accepted: 07/04/2013] [Indexed: 10/26/2022]
Abstract
Scratching inhibits pruritogen-evoked responses of neurons in the superficial dorsal horn, implicating a spinal site for scratch inhibition of itch. We investigated if scratching differentially affects neurons depending on whether they are activated by itchy vs. painful stimuli, and if the degree of inhibition depends on the relative location of scratching. We recorded from rat lumbar dorsal horn neurons responsive to intradermal (id) microinjection of serotonin (5-hydroxytryptamine, 5-HT). During the response to 5-HT, scratch stimuli (3mm, 300 mN, 2 Hz, 20s) were delivered at the injection site within the mechanosensitive receptive field (on-site), or 4-30 mm away, outside of the receptive field (off-site). During off-site scratching, 5-HT-evoked firing was significantly attenuated followed by recovery. On-site scratching excited neurons, followed by a significant post-scratch decrease in 5-HT-evoked firing. Most neurons additionally responded to mustard oil (allyl isothiocyanate). Off-site scratching had no effect, while on-site scratching excited the neurons. These results indicate that scratching exerts a state-dependent inhibitory effect on responses of spinal neurons to pruritic but not algesic stimuli. Moreover, on-site scratching first excited neurons followed by inhibition, while off-site scratching immediately evoked the inhibition of pruritogen-evoked activity. This accounts for the suppression of itch by scratching at a distance from the site of the itchy stimulus.
Collapse
Affiliation(s)
- K Nishida
- Department of Anesthesiology and Resuscitology, Ehime University School of Medicine, Matsuyama, Japan
| | | | | | | | | |
Collapse
|
333
|
Abstract
INTRODUCTION Chronic pruritus (CP), defined as itch lasting for > 6 weeks, is a burdensome symptom of several different diseases, dermatological and systemic, with a high negative impact on the quality of life of patients. Given the manifold aetiologies of CP, therapy is often difficult. In recent years, however, novel substances have been developed for treatment of certain CP entities and identified targets. AREAS COVERED In this review, the authors present a survey of targets currently believed to be promising (H4R, IL-31, MOR, KOR, GRPR, NGF, NK-1R, TRP channels) and related investigational drugs that are in the preclinical or clinical stage of development. Some substances have already undergone clinical testing, but only one of them (nalfurafine) has been licensed so far. Many of them are most likely to exert their effects on the skin and interfere there with the cutaneous neurobiology of CP. EXPERT OPINION Currently, the most promising candidates for new therapeutic agents in CP are neurokinin-1 receptor antagonists and substances targeting the kappa- or mu-opioid receptor, or both. They have the potential to target the neuronal pathway of CP and are thus of interest for several CP entities. The goal for the coming years is to validate these concepts and move forward in developing new drugs for the therapy of CP.
Collapse
Affiliation(s)
- Heike Benecke
- University Medicine Göttingen, Center Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
334
|
Wang X, Zhang J, Eberhart D, Urban R, Meda K, Solorzano C, Yamanaka H, Rice D, Basbaum AI. Excitatory superficial dorsal horn interneurons are functionally heterogeneous and required for the full behavioral expression of pain and itch. Neuron 2013; 78:312-24. [PMID: 23622066 DOI: 10.1016/j.neuron.2013.03.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2013] [Indexed: 10/26/2022]
Abstract
To what extent dorsal horn interneurons contribute to the modality specific processing of pain and itch messages is not known. Here, we report that loxp/cre-mediated CNS deletion of TR4, a testicular orphan nuclear receptor, results in loss of many excitatory interneurons in the superficial dorsal horn but preservation of primary afferents and spinal projection neurons. The interneuron loss is associated with a near complete absence of supraspinally integrated pain and itch behaviors, elevated mechanical withdrawal thresholds and loss of nerve injury-induced mechanical hypersensitivity, but reflex responsiveness to noxious heat, nerve injury-induced heat hypersensitivity, and tissue injury-induced heat and mechanical hypersensitivity are intact. We conclude that different subsets of dorsal horn excitatory interneurons contribute to tissue and nerve injury-induced heat and mechanical pain and that the full expression of supraspinally mediated pain and itch behaviors cannot be generated solely by nociceptor and pruritoceptor activation of projection neurons; concurrent activation of excitatory interneurons is essential.
Collapse
Affiliation(s)
- Xidao Wang
- Departments of Anatomy and Physiology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Electroacupuncture Attenuates 5'-Guanidinonaltrindole-Evoked Scratching and Spinal c-Fos Expression in the Mouse. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:319124. [PMID: 23878596 PMCID: PMC3708416 DOI: 10.1155/2013/319124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 12/13/2022]
Abstract
The present study was undertaken to investigate the influence of electroacupuncture (EA) on compulsive scratching in mice and c-Fos expression elicited by subcutaneous (s.c.) administration of a known puritogen, 5'-guanidinonaltrindole (GNTI) to the neck. Application of EA to Hegu (LI4) and Quchi (LI11) acupoints at 2 Hz, but not 100 Hz, attenuated GNTI-evoked scratching. In mice pretreated with the µ opioid receptor antagonist naloxone, EA 2 Hz did not attenuate GNTI-evoked scratching, whereas EA at 2 Hz did attenuate GNTI-evoked scratching in mice pretreated with the κ opioid receptor antagonist nor-binaltorphimine. Moreover, intradermal (i.d.) administration of the selective µ opioid receptor agonist [d-Ala2, N-Me-Phe4, Gly5-ol]-enkephalin acetate (DAMGO) attenuated GNTI-evoked scratching behavior, while s.c. administration of DAMGO was ineffective. GNTI provoked c-Fos expression on the lateral side of the superficial layer of the dorsal horn of the cervical spinal cord. Application of 2 Hz EA to LI4 and LI11 decreased the number of c-Fos positive nuclei induced by GNTI. It may be concluded that application of 2 Hz EA to LI4 and LI11 attenuates scratching behavior induced by GNTI in mice and that the peripheral µ opioid system is involved, at least in part, in the anti-pruritic effects of EA.
Collapse
|
336
|
Sukhtankar DD, Ko MC. Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice. PLoS One 2013; 8:e67422. [PMID: 23826298 PMCID: PMC3691251 DOI: 10.1371/journal.pone.0067422] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 05/17/2013] [Indexed: 01/01/2023] Open
Abstract
Pruritus (itch) is a severe side effect associated with the use of drugs as well as hepatic and hematological disorders. Previous studies in rodents suggest that bombesin receptor subtypes i.e. receptors for gastrin-releasing peptide (GRPr) and neuromedin B (NMBr) differentially regulate itch scratching. However, to what degree spinal GRPr and NMBr regulate scratching evoked by intrathecally administered bombesin-related peptides is not known. The first aim of this study was to pharmacologically compare the dose-response curves for scratching induced by intrathecally administered bombesin-related peptides versus morphine, which is known to elicit itch in humans. The second aim was to determine if spinal GRPr and NMBr selectively or generally mediate scratching behavior. Mice received intrathecal injection of bombesin (0.01-0.3 nmol), GRP (0.01-0.3 nmol), NMB (0.1-1 nmol) or morphine (0.3-3 nmol) and were observed for one hour for scratching activity. Bombesin elicited most profound scratching over one hour followed by GRP and NMB, whereas morphine failed to evoke scratching response indicating the insensitivity of mouse models to intrathecal opioid-induced itch. Intrathecal pretreatment with GRPr antagonist RC-3095 (0.03-0.1 nmol) produced a parallel rightward shift in the dose response curve of GRP-induced scratching but not NMB-induced scratching. Similarly, PD168368 (1-3 nmol) only attenuated NMB but not GRP-induced scratching. Individual or co-administration of RC-3095 and PD168368 failed to alter bombesin-evoked scratching. A higher dose of RC-3095 (0.3 nmol) generally suppressed scratching induced by all three peptides but also compromised motor function in the rotarod test. Together, these data indicate that spinal GRPr and NMBr independently drive itch neurotransmission in mice and may not mediate bombesin-induced scratching. GRPr antagonists at functionally receptor-selective doses only block spinal GRP-elicited scratching but the suppression of scratching at higher doses is confounded by motor impairment.
Collapse
Affiliation(s)
- Devki D. Sukhtankar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
337
|
Abstract
Research over the past 15 years has helped to clarify the anatomy and physiology of itch, the clinical features of neuropathic itch syndromes and the scientific underpinning of effective treatments. Two itch-sensitive pathways exist: a histamine-stimulated pathway that uses mechanically insensitive C-fibres, and a cowhage-stimulated pathway primarily involving polymodal C-fibres. Interactions with pain continue to be central to explaining various aspects of itch. Certain spinal interneurons (Bhlhb5) inhibit itch pathways within the dorsal horn; they may represent mediators between noxious and pruritic pathways, and allow scratch to inhibit itch. In the brain, functional imaging studies reveal diffuse activation maps for itch that overlap, but not identically, with pain maps. Neuropathic itch syndromes are chronic itch states due to dysfunction of peripheral or central nervous system structures. The most recognized are postherpetic itch, brachioradial pruritus, trigeminal trophic syndrome, and ischaemic stroke-related itch. These disorders affect a patient's quality of life to a similar extent as neuropathic pain. Treatment of neuropathic itch focuses on behavioural interventions (e.g., skin protection) followed by stepwise trials of topical agents (e.g., capsaicin), antiepileptic drugs (e.g., gabapentin), injection of other agents (e.g., botulinum A toxin), and neurostimulation techniques (e.g., cutaneous field stimulation). The involved mechanisms of action include desensitization of nerve fibres (in the case of capsaicin) and postsynaptic blockade of calcium channels (for gabapentin). In the future, particular histamine receptors, protease pathway molecules, and vanilloids may serve as targets for novel antipruritic agents.
Collapse
Affiliation(s)
- Amar Dhand
- Department of Neurology, University of California, San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0114, USA
| | | |
Collapse
|
338
|
Abstract
Itch is triggered by somatosensory neurons expressing the ion channel TRPV1 (transient receptor potential cation channel subfamily V member 1), but the mechanisms underlying this nociceptive response remain poorly understood. Here, we show that the neuropeptide natriuretic polypeptide b (Nppb) is expressed in a subset of TRPV1 neurons and found that Nppb(-/-) mice selectively lose almost all behavioral responses to itch-inducing agents. Nppb triggered potent scratching when injected intrathecally in wild-type and Nppb(-/-) mice, showing that this neuropeptide evokes itch when released from somatosensory neurons. Itch responses were blocked by toxin-mediated ablation of Nppb-receptor-expressing cells, but a second neuropeptide, gastrin-releasing peptide, still induced strong responses in the toxin-treated animals. Thus, our results define the primary pruriceptive neurons, characterize Nppb as an itch-selective neuropeptide, and reveal the next two stages of this dedicated neuronal pathway.
Collapse
Affiliation(s)
- Santosh K. Mishra
- Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Building 49, Room 1A16, 49 Convent Drive, Bethesda MD20892
| | - Mark A. Hoon
- Molecular Genetics Unit, Laboratory of Sensory Biology, NIDCR, NIH, Building 49, Room 1A16, 49 Convent Drive, Bethesda MD20892
| |
Collapse
|
339
|
Activity-dependent silencing reveals functionally distinct itch-generating sensory neurons. Nat Neurosci 2013; 16:910-8. [PMID: 23685721 PMCID: PMC3695070 DOI: 10.1038/nn.3404] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/18/2013] [Indexed: 02/06/2023]
Abstract
The peripheral terminals of primary sensory neurons detect histamine and non-histamine itch-provoking ligands through molecularly distinct transduction mechanisms. It remains unclear, however, whether these distinct pruritogens activate the same or different afferent fibers. We utilized a strategy of reversibly silencing specific subsets of murine pruritogen-sensitive sensory axons by targeted delivery of a charged sodium-channel blocker and found that functional blockade of histamine itch did not affect the itch evoked by chloroquine or SLIGRL-NH2, and vice versa. Notably, blocking itch-generating fibers did not reduce pain-associated behavior. However, silencing TRPV1+ or TRPA1+ neurons allowed AITC or capsaicin respectively to evoke itch, implying that certain peripheral afferents may normally indirectly inhibit algogens from eliciting itch. These findings support the presence of functionally distinct sets of itch-generating neurons and suggest that targeted silencing of activated sensory fibers may represent a clinically useful anti-pruritic therapeutic approach for histaminergic and non-histaminergic pruritus.
Collapse
|
340
|
Liu T, Ji RR. New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms? Pflugers Arch 2013; 465:1671-85. [PMID: 23636773 DOI: 10.1007/s00424-013-1284-2] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 04/13/2013] [Accepted: 04/14/2013] [Indexed: 12/30/2022]
Abstract
Itch and pain are closely related but distinct sensations. They share largely overlapping mediators and receptors, and itch-responding neurons are also sensitive to pain stimuli. Itch-mediating primary sensory neurons are equipped with distinct receptors and ion channels for itch transduction, including Mas-related G protein-coupled receptors (Mrgprs), protease-activated receptors, histamine receptors, bile acid receptor, toll-like receptors, and transient receptor potential subfamily V1/A1 (TRPV1/A1). Recent progress has indicated the existence of an itch-specific neuronal circuitry. The MrgprA3-expressing primary sensory neurons exclusively innervate the epidermis of skin, and their central axons connect with gastrin-releasing peptide receptor (GRPR)-expressing neurons in the superficial spinal cord. Notably, ablation of MrgprA3-expressing primary sensory neurons or GRPR-expressing spinal cord neurons results in selective reduction in itch but not pain. Chronic itch results from dysfunction of the immune and nervous system and can manifest as neural plasticity despite the fact that chronic itch is often treated by dermatologists. While differences between acute pain and acute itch are striking, chronic itch and chronic pain share many similar mechanisms, including peripheral sensitization (increased responses of primary sensory neurons to itch and pain mediators), central sensitization (hyperactivity of spinal projection neurons and excitatory interneurons), loss of inhibitory control in the spinal cord, and neuro-immune and neuro-glial interactions. Notably, painful stimuli can elicit itch in some chronic conditions (e.g., atopic dermatitis), and some drugs for treating chronic pain are also effective in chronic itch. Thus, itch and pain have more similarities in pathological and chronic conditions.
Collapse
Affiliation(s)
- Tong Liu
- Pain Signaling and Plasticity Laboratory, Department of Anesthesiology and Neurobiology, Duke University Medical Center, 595 LaSalle Street, GSRB-I, Room 1027A, DUMC 3094, Durham, NC, 27710, USA,
| | | |
Collapse
|
341
|
Gastrin-releasing peptide-expressing nerves comprise subsets of human cutaneous Aδ and C fibers that may sense pruritus. J Invest Dermatol 2013; 133:2645-2647. [PMID: 23615431 PMCID: PMC3800262 DOI: 10.1038/jid.2013.194] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
342
|
Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J Invest Dermatol 2013; 133:2489-2492. [PMID: 23558404 PMCID: PMC3737283 DOI: 10.1038/jid.2013.166] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
343
|
Moser HR, Giesler GJ. Itch and analgesia resulting from intrathecal application of morphine: contrasting effects on different populations of trigeminothalamic tract neurons. J Neurosci 2013; 33:6093-101. [PMID: 23554490 PMCID: PMC3668454 DOI: 10.1523/jneurosci.0216-13.2013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 11/21/2022] Open
Abstract
Intrathecal application of morphine is among the most powerful methods used to treat severe chronic pain. However, this approach commonly produces itch sufficiently severe that patients are forced to choose between relief of pain or itch. The neuronal populations responsible for processing and transmitting information underlying itch caused by intrathecal application of morphine have not been identified and characterized. We describe two populations of antidromically identified trigeminothalamic tract (VTT) neurons in anesthetized rats that are differentially affected by morphine and explain several aspects of opioid-induced itch and analgesia. We found that intrathecal application of morphine increased ongoing activity of itch-responsive VTT neurons. In addition, intrathecal application of morphine increased responses to pruritogens injected into the skin and greatly heightened responses to innocuous mechanical stimuli. In contrast, the ongoing activity and responses to noxious pinches in nociceptive VTT neurons were frequently inhibited by the same dose of morphine. These results reveal that i.t. application of morphine affects specific subpopulations of VTT neurons in ways that may produce itch, hyperknesis, alloknesis, and analgesia.
Collapse
Affiliation(s)
- Hannah R Moser
- Graduate Program in Neuroscience and Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, 55455, USA
| | | |
Collapse
|
344
|
Alemi F, Kwon E, Poole DP, Lieu T, Lyo V, Cattaruzza F, Cevikbas F, Steinhoff M, Nassini R, Materazzi S, Guerrero-Alba R, Valdez-Morales E, Cottrell GS, Schoonjans K, Geppetti P, Vanner SJ, Bunnett NW, Corvera CU. The TGR5 receptor mediates bile acid-induced itch and analgesia. J Clin Invest 2013; 123:1513-30. [PMID: 23524965 DOI: 10.1172/jci64551] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 01/17/2013] [Indexed: 12/23/2022] Open
Abstract
Patients with cholestatic disease exhibit pruritus and analgesia, but the mechanisms underlying these symptoms are unknown. We report that bile acids, which are elevated in the circulation and tissues during cholestasis, cause itch and analgesia by activating the GPCR TGR5. TGR5 was detected in peptidergic neurons of mouse dorsal root ganglia and spinal cord that transmit itch and pain, and in dermal macrophages that contain opioids. Bile acids and a TGR5-selective agonist induced hyperexcitability of dorsal root ganglia neurons and stimulated the release of the itch and analgesia transmitters gastrin-releasing peptide and leucine-enkephalin. Intradermal injection of bile acids and a TGR5-selective agonist stimulated scratching behavior by gastrin-releasing peptide- and opioid-dependent mechanisms in mice. Scratching was attenuated in Tgr5-KO mice but exacerbated in Tgr5-Tg mice (overexpressing mouse TGR5), which exhibited spontaneous pruritus. Intraplantar and intrathecal injection of bile acids caused analgesia to mechanical stimulation of the paw by an opioid-dependent mechanism. Both peripheral and central mechanisms of analgesia were absent from Tgr5-KO mice. Thus, bile acids activate TGR5 on sensory nerves, stimulating the release of neuropeptides in the spinal cord that transmit itch and analgesia. These mechanisms could contribute to pruritus and painless jaundice that occur during cholestatic liver diseases.
Collapse
Affiliation(s)
- Farzad Alemi
- Department of Surgery, UCSF, San Francisco, California 94121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
345
|
Brandão MS, Pereira SS, Lima DF, Oliveira JPC, Ferreira ELF, Chaves MH, Almeida FRC. Antinociceptive effect of Lecythis pisonis Camb. (Lecythidaceae) in models of acute pain in mice. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:180-186. [PMID: 23276784 DOI: 10.1016/j.jep.2012.12.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/14/2012] [Accepted: 12/20/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lecythis pisonis Camb., also known in Brazil as sapucaia, is used in folk medicine against pruritus, muscle pain and gastric ulcer. AIM OF THE STUDY To investigate the antinociceptive effect of ethanol extract from Lecythis pisonis leaves (LPEE), fractions (hexane-LPHF, ether-LPEF and ethyl acetate-LPEAF) and mixture of triterpenes [ursolic and oleanolic acids (MT)] in mice. MATERIALS AND METHODS LPEE and LPEF were evaluated on the acetic acid induced writhings and formalin, capsaicin and glutamate tests. In addition, MT was investigated on the writhings induced by acetic acid, capsaicin and glutamate tests. In the study of some possible mechanisms involved on the antinociceptive effect of LPEF, it was investigated the participation of opioid system, K+ATP channels and L-arginine-nitric oxide pathway. RESULTS LPEE (12.5 and 25 mg/kg, p.o.), LPEF and MT (6.25, 12.5 and 25 mg/kg, p.o.) reduced the writhings in comparison to saline. LPEE (100 mg/kg, p.o.) and LPEF (50 mg/kg, p.o.) were effective in inhibiting both phases of formalin test. In capsaicin test, LPEE (100 and 200 mg/kg, p.o.), LPEF (12.5-50 mg/kg, p.o) and MT (6.25-25 mg/kg, p.o.) showed a significant antinociceptive effect compared to the control. LPEE (25 and 50 mg/kg, p.o.), LPEF (50 and 100 mg/kg, p.o.) and MT (12.5 and 25 mg/kg, p.o.) reduced the glutamate-evoked nociceptive response. Treatment with naloxone, L-arginine and glibenclamide reversed the effect of LPEF in glutamate test. CONCLUSIONS These results indicate the antinociceptive effect of Lecythis pisonis leaves and suggest that this effect may be related to opioid pathway, K+ATP channels, and L-arginine-nitric oxide modulation. Furthermore, these data support the ethnomedical use of this plant.
Collapse
Affiliation(s)
- M S Brandão
- Medicinal Plants Research Center, Department of Chemistry, Federal University of Piauí, Av. Nossa Senhora de Fátima s/n, 64049-550 Teresina, Brazil
| | | | | | | | | | | | | |
Collapse
|
346
|
Lavinka PC, Dong X. Molecular signaling and targets from itch: lessons for cough. COUGH 2013; 9:8. [PMID: 23497684 PMCID: PMC3630061 DOI: 10.1186/1745-9974-9-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 02/08/2013] [Indexed: 01/05/2023]
Abstract
Itch is described as an unpleasant sensation that elicits the desire to scratch, which results in the removal of the irritant from the skin. The cough reflex also results from irritation, with the purpose of removing said irritant from the airway. Could cough then be similar to itch? Anatomically, both pathways are mediated by small-diameter sensory fibers. These cough and itch sensory fibers release neuropeptides upon activation, which leads to inflammation of the nerves. Both cough and itch also involve mast cells and their mediators, which are released upon degranulation. This common inflammation and interaction with mast cells are involved in the development of chronic conditions of itch and cough. In this review, we examine the anatomy and molecular mechanisms of itch and compare them to known mechanisms for cough. Highlighting the common aspects of itch and cough could lead to new thoughts and perspectives in both fields.
Collapse
Affiliation(s)
- Pamela Colleen Lavinka
- The Solomon H, Snyder Department of Neuroscience, Center for Sensory Biology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
347
|
Han L, Ma C, Liu Q, Weng HJ, Cui Y, Tang Z, Kim Y, Nie H, Qu L, Patel KN, Li Z, McNeil B, He S, Guan Y, Xiao B, LaMotte R, Dong X. A subpopulation of nociceptors specifically linked to itch. Nat Neurosci 2013; 16:174-82. [PMID: 23263443 PMCID: PMC3557753 DOI: 10.1038/nn.3289] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/26/2012] [Indexed: 02/06/2023]
Abstract
Itch-specific neurons have been sought for decades. The existence of such neurons has been doubted recently as a result of the observation that itch-mediating neurons also respond to painful stimuli. We genetically labeled and manipulated MrgprA3(+) neurons in the dorsal root ganglion (DRG) and found that they exclusively innervated the epidermis of the skin and responded to multiple pruritogens. Ablation of MrgprA3(+) neurons led to substantial reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions, whereas pain sensitivity remained intact. Notably, mice in which TRPV1 was exclusively expressed in MrgprA3(+) neurons exhibited itch, but not pain, behavior in response to capsaicin. Although MrgprA3(+) neurons were sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.
Collapse
Affiliation(s)
- Liang Han
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Chao Ma
- Department of Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China, 100005
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Qin Liu
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Hao-Jui Weng
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yiyuan Cui
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Zongxiang Tang
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yushin Kim
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Hong Nie
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Lintao Qu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Kush N Patel
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Zhe Li
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Benjamin McNeil
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
| | - Shaoqiu He
- Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205
| | - Yun Guan
- Department of Anesthesiology & Critical Care Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, 21205
| | - Bo Xiao
- The State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, People's Republic of China
| | - Robert LaMotte
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Center for Sensory Biology
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
348
|
Moreau SJM. "It stings a bit but it cleans well": venoms of Hymenoptera and their antimicrobial potential. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:186-204. [PMID: 23073394 DOI: 10.1016/j.jinsphys.2012.10.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/01/2012] [Accepted: 10/04/2012] [Indexed: 06/01/2023]
Abstract
Venoms from Hymenoptera display a wide range of functions and biological roles. These notably include manipulation of the host, capture of prey and defense against competitors and predators thanks to endocrine and immune systems disruptors, neurotoxic, cytolytic and pain-inducing venom components. Recent works indicate that many hymenopteran species, whatever their life style, have also evolved a venom with properties which enable it to regulate microbial infections, both in stinging and stung animals. In contrast to biting insects and their salivary glands, stinging Hymenoptera seem to constitute an under-exploited ecological niche for agents of vector-borne disease. Few parasitic or mutualistic microorganisms have been reported to be hosted by venom-producing organs or to be transmitted to stung animals. This may result from the presence of potent antimicrobial molecules in venoms, histological features of venom apparatuses and selective effects of venoms on immune defenses of targeted organisms. The present paper reviews for the first time the venom antimicrobial potential of solitary and social Hymenoptera in molecular, ecological, and evolutionary perspectives.
Collapse
Affiliation(s)
- Sébastien J M Moreau
- Institut de Recherche sur la Biologie de l'Insecte, CNRS UMR 7261, Université François-Rabelais, UFR Sciences et Techniques, Parc Grandmont, 37200 Tours, France.
| |
Collapse
|
349
|
Serum gastrin-releasing peptide levels correlate with pruritus in patients with atopic dermatitis. J Invest Dermatol 2013; 133:1673-5. [PMID: 23353988 DOI: 10.1038/jid.2013.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
350
|
Choi YH, Kim KM, Kim HO, Jang YC, Kwak IS. Clinical and Histological Correlation in Post-Burn Hypertrophic Scar for Pain and Itching Sensation. Ann Dermatol 2013; 25:428-33. [PMID: 24371389 PMCID: PMC3870210 DOI: 10.5021/ad.2013.25.4.428] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 10/04/2012] [Accepted: 10/04/2012] [Indexed: 11/28/2022] Open
Abstract
Background Hypertrophic scar following a burn is caused by the excessive deposit of collagen resulting in an exaggerated wound healing response. The burn patient complains of pain and itching over the scar, which can give rise to cosmetic and functional problems. Objective The aim of this study was to investigate the clinical and histological correlation of a hypertrophic burn scar for itching and pain sensations. Methods Thirty-eight patients underwent a scar release and skin graft. the modified Vancouver scar scale and the verbal numerical rating scale were recorded. All biopsies were taken from scar tissue (scar) and normal tissue (normal). Histologically, tissues were observed in the epidermis, the monocytes around the vessels, the collagen fiber, elastic fiber, and the mast cells. Results The mean total score of MVSS was 8.4±2.7 (pliability 2.0±0.9; thickness 1.8±0.9; vascularity 2.0± 0.9; and pigmentation 2.1±0.9). Pain and itching were 2.4±2.0 and 2.9±3.0. Epidermis were 7.9±2.8 layers (scar) and 4.0±0.8 layers (normal). The collagen fibers were thin and dense (scar) and thicker and loose (normal). The elastic fibers were thin and nonexistent (scar) and thin and loose (normal). Mast cells were 11.2±5.8/high power field (scar) and 7.4±4.1 (normal). Conclusion As the scar tissue thickens, the itching becomes more severe. The stiffness of the scar with the pain appeared to be associated with the condition of the tissue. The correlation between clinical and histological post-burn hypertrophic scars will help further studies on the scar. This helped with the development of the base material for therapeutic strategies.
Collapse
Affiliation(s)
- Young-Hee Choi
- Department of Pathology, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Kwang-Min Kim
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Hye-One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Chul Jang
- Department of Plastic and Reconstructive Surgery, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - In-Suk Kwak
- Department of Anesthesiology and Pain Medicine, Hangang Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|