301
|
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, Teichmann SA, Watt FM. Wounding induces dedifferentiation of epidermal Gata6 + cells and acquisition of stem cell properties. Nat Cell Biol 2017; 19:603-613. [PMID: 28504705 DOI: 10.1038/ncb3532] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/18/2017] [Indexed: 02/08/2023]
Abstract
The epidermis is maintained by multiple stem cell populations whose progeny differentiate along diverse, and spatially distinct, lineages. Here we show that the transcription factor Gata6 controls the identity of the previously uncharacterized sebaceous duct (SD) lineage and identify the Gata6 downstream transcription factor network that specifies a lineage switch between sebocytes and SD cells. During wound healing differentiated Gata6+ cells migrate from the SD into the interfollicular epidermis and dedifferentiate, acquiring the ability to undergo long-term self-renewal and differentiate into a much wider range of epidermal lineages than in undamaged tissue. Our data not only demonstrate that the structural and functional complexity of the junctional zone is regulated by Gata6, but also reveal that dedifferentiation is a previously unrecognized property of post-mitotic, terminally differentiated cells that have lost contact with the basement membrane. This resolves the long-standing debate about the contribution of terminally differentiated cells to epidermal wound repair.
Collapse
Affiliation(s)
- Giacomo Donati
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy
| | - Emanuel Rognoni
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Toru Hiratsuka
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| | - Esther Hoste
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,VIB Center for Inflammation Research, Department of Biomedical Molecular Biology (Ghent University), B-9052 Ghent, Belgium
| | - Gozde Kar
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Roslin Russell
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK
| | - Kai Kretzschmar
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK.,Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 1QR, UK.,Hubrecht Institute, KNAW and UMC Utrecht, 3584CT Utrecht, The Netherlands
| | - Klaas W Mulder
- Cancer Research UK Cambridge Research Institute, Cambridge CB2 0RE, UK.,Radboud Institute for Molecular Life Sciences, Department of Molecular Developmental Biology, Radboud University, Nijmegen, The Netherlands
| | - Sarah A Teichmann
- European Bioinformatics Institute and Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SD, UK
| | - Fiona M Watt
- King's College London Centre for Stem Cells and Regenerative Medicine, 28th Floor, Tower Wing, Guy's Campus, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
302
|
Giroux V, Lento AA, Islam M, Pitarresi JR, Kharbanda A, Hamilton KE, Whelan KA, Long A, Rhoades B, Tang Q, Nakagawa H, Lengner CJ, Bass AJ, Wileyto EP, Klein-Szanto AJ, Wang TC, Rustgi AK. Long-lived keratin 15+ esophageal progenitor cells contribute to homeostasis and regeneration. J Clin Invest 2017; 127:2378-2391. [PMID: 28481227 DOI: 10.1172/jci88941] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/09/2017] [Indexed: 12/30/2022] Open
Abstract
The esophageal lumen is lined by a stratified squamous epithelium comprised of proliferative basal cells that differentiate while migrating toward the luminal surface and eventually desquamate. Rapid epithelial renewal occurs, but the specific cell of origin that supports this high proliferative demand remains unknown. Herein, we have described a long-lived progenitor cell population in the mouse esophageal epithelium that is characterized by expression of keratin 15 (Krt15). Genetic in vivo lineage tracing revealed that the Krt15 promoter marks a long-lived basal cell population able to self-renew, proliferate, and generate differentiated cells, consistent with a progenitor/stem cell population. Transcriptional profiling demonstrated that Krt15+ basal cells are molecularly distinct from Krt15- basal cells. Depletion of Krt15-derived cells resulted in decreased proliferation, thereby leading to atrophy of the esophageal epithelium. Further, Krt15+ cells were radioresistant and contributed to esophageal epithelial regeneration following radiation-induced injury. These results establish the presence of a long-lived and indispensable Krt15+ progenitor cell population that provides additional perspective on esophageal epithelial biology and the widely prevalent diseases that afflict this epithelium.
Collapse
Affiliation(s)
- Véronique Giroux
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ashley A Lento
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mirazul Islam
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Jason R Pitarresi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akriti Kharbanda
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelly A Whelan
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Apple Long
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ben Rhoades
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Qiaosi Tang
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hiroshi Nakagawa
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, and Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Adam J Bass
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - E Paul Wileyto
- Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andres J Klein-Szanto
- Department of Pathology and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York, USA
| | - Anil K Rustgi
- Division of Gastroenterology, Department of Medicine, and.,Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
303
|
Abstract
Cellular heterogeneity in cancer represents a significant challenge. In order to develop effective and lasting therapies, it is essential to understand the source of this heterogeneity, and its role in tumor progression and therapy resistance. Here, we consider not only genetic and epigenetic mechanisms, but also inflammation and cell state reprogramming in creating tumor heterogeneity. We discuss similarities between normal mammary epithelial developmental states and various breast cancer molecular sub-types, and the cells that are thought to propagate them. We emphasize that while stem cell phenotypes and mesenchymal character have often been conflated, existing data suggest that the combination of intrinsic genetic and epigenetic changes, and microenvironmental influences generate multiple types of tumor propagating cells distinguishable by their positions along a continuum of epithelial to mesenchymal, stem to differentiated and embryonic to mature cell states. Consequently, in addition to the prospect of stem cell-directed tumor therapies, there is a need to understand interrelationships between stem cell, epithelial–mesenchymal, and tumor-associated reprogramming events to develop new therapies that mitigate cell state plasticity and minimize the evolution of tumor heterogeneity.
Collapse
|
304
|
Yang H, Adam RC, Ge Y, Hua ZL, Fuchs E. Epithelial-Mesenchymal Micro-niches Govern Stem Cell Lineage Choices. Cell 2017; 169:483-496.e13. [PMID: 28413068 DOI: 10.1016/j.cell.2017.03.038] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/09/2017] [Accepted: 03/23/2017] [Indexed: 01/19/2023]
Abstract
Adult tissue stem cells (SCs) reside in niches, which, through intercellular contacts and signaling, influence SC behavior. Once activated, SCs typically give rise to short-lived transit-amplifying cells (TACs), which then progress to differentiate into their lineages. Here, using single-cell RNA-seq, we unearth unexpected heterogeneity among SCs and TACs of hair follicles. We trace the roots of this heterogeneity to micro-niches along epithelial-mesenchymal interfaces, where progenitors display molecular signatures reflective of spatially distinct local signals and intercellular interactions. Using lineage tracing, temporal single-cell analyses, and chromatin landscaping, we show that SC plasticity becomes restricted in a sequentially and spatially choreographed program, culminating in seven spatially arranged unilineage progenitors within TACs of mature follicles. By compartmentalizing SCs into micro-niches, tissues gain precise control over morphogenesis and regeneration: some progenitors specify lineages immediately, whereas others retain potency, preserving self-renewing features established early while progressively restricting lineages as they experience dynamic changes in microenvironment.
Collapse
Affiliation(s)
- Hanseul Yang
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Rene C Adam
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yejing Ge
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Zhong L Hua
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
305
|
Makrantonaki E, Wlaschek M, Scharffetter-Kochanek K. Pathogenese von Wundheilungsstörungen bei älteren Patienten. J Dtsch Dermatol Ges 2017; 15:255-278. [DOI: 10.1111/ddg.13199_g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/21/2016] [Indexed: 01/13/2023]
|
306
|
Voutsadakis IA. Proteasome expression and activity in cancer and cancer stem cells. Tumour Biol 2017; 39:101042831769224. [DOI: 10.1177/1010428317692248] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Proteasome is a multi-protein organelle that participates in cellular proteostasis by destroying damaged or short-lived proteins in an organized manner guided by the ubiquitination signal. By being in a central place in the cellular protein complement homeostasis, proteasome is involved in virtually all cell processes including decisions on cell survival or death, cell cycle, and differentiation. These processes are important also in cancer, and thus, the proteasome is an important regulator of carcinogenesis. Cancers include a variety of cells which, according to the cancer stem cell theory, descend from a small percentage of cancer stem cells, alternatively termed tumor-initiating cells. These cells constitute the subsets that have the ability to propagate the whole variety of cancer and repopulate tumors after cytostatic therapies. Proteasome plays a role in cellular processes in cancer stem cells, but it has been found to have a decreased function in them compared to the rest of cancer cells. This article will discuss the transcriptional regulation of proteasome sub-unit proteins in cancer and in particular cancer stem cells and the relationship of the proteasome with the pluripotency that is the defining characteristic of stem cells. Therapeutic opportunities that present from the understanding of the proteasome role will also be discussed.
Collapse
Affiliation(s)
- Ioannis A Voutsadakis
- Division of Medical Oncology, Department of Internal Medicine, Sault Area Hospital, Sault Ste. Marie, ON, Canada
- Division of Clinical Sciences, Northern Ontario School of Medicine, Sudbury, ON, Canada
| |
Collapse
|
307
|
Girard D, Laverdet B, Buhé V, Trouillas M, Ghazi K, Alexaline MM, Egles C, Misery L, Coulomb B, Lataillade JJ, Berthod F, Desmoulière A. Biotechnological Management of Skin Burn Injuries: Challenges and Perspectives in Wound Healing and Sensory Recovery. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:59-82. [DOI: 10.1089/ten.teb.2016.0195] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dorothée Girard
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Betty Laverdet
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| | - Virginie Buhé
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Marina Trouillas
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Kamélia Ghazi
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Maïa M. Alexaline
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Christophe Egles
- Sorbonne University, Université de Technologie de Compiègne, CNRS UMR 7338 Biomechanics and Bioengineering, Centre de Recherche Royallieu, Compiègne, France
| | - Laurent Misery
- University of Western Brittany, Laboratory of Neurosciences of Brest (EA 4685), Brest, France
| | - Bernard Coulomb
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - Jean-Jacques Lataillade
- Paris Sud University, Unité mixte Inserm/SSA 1197, IRBA/CTSA/HIA Percy, École du Val de Grâce, Clamart, France
| | - François Berthod
- Centre LOEX de l'Université Laval, Centre de recherche du CHU de Québec and Département de Chirurgie, Faculté de Médecine, Université Laval, Québec, Canada
| | - Alexis Desmoulière
- University of Limoges, Myelin Maintenance and Peripheral Neuropathies (EA 6309), Faculties of Medicine and Pharmacy, Limoges, France
| |
Collapse
|
308
|
Natsiou D, Granchi Z, Mitsiadis TA, Jimenez-Rojo L. Generation of Spheres from Dental Epithelial Stem Cells. Front Physiol 2017; 8:7. [PMID: 28154538 PMCID: PMC5243826 DOI: 10.3389/fphys.2017.00007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 01/05/2017] [Indexed: 01/12/2023] Open
Abstract
The in vitro three-dimensional sphere model has already been established as an important tool in fundamental sciences. This model facilitates the study of a variety of biological processes including stem cell/niche functions and tissue responses to injury and drugs. Here we describe the complete protocol for the in vitro formation of spheres originated from the epithelium of rodent incisors. In addition, we show that in these spheres cell proliferation is maintained, as well as the expression of several key molecules characterizing stem cells such as Sox2 and p63. These epithelial dentospheres could be used as an in vitro model system for stem cell research purposes.
Collapse
Affiliation(s)
- Despoina Natsiou
- Orofacial Development and Regeneration, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | | | - Thimios A Mitsiadis
- Orofacial Development and Regeneration, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| | - Lucia Jimenez-Rojo
- Orofacial Development and Regeneration, Centre for Dental Medicine, Institute of Oral Biology, University of Zurich Zurich, Switzerland
| |
Collapse
|
309
|
Hamazaki Y, Sekai M, Minato N. Medullary thymic epithelial stem cells: role in thymic epithelial cell maintenance and thymic involution. Immunol Rev 2016; 271:38-55. [PMID: 27088906 DOI: 10.1111/imr.12412] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thymus consists of two distinct anatomical regions, the cortex and the medulla; medullary thymic epithelial cells (mTECs) play a crucial role in establishing central T-cell tolerance for self-antigens. Although the understanding of mTEC development in thymic organogenesis as well as the regulation of their differentiation and maturation has improved, the mechanisms of postnatal maintenance remain poorly understood. This issue has a central importance in immune homeostasis and physiological thymic involution as well as autoimmune disorders in various clinicopathological settings. Recently, several reports have demonstrated the existence of TEC stem or progenitor cells in the postnatal thymus, which are either bipotent or unipotent. We identified stem cells specified for mTEC-lineage that are generated in the thymic ontogeny and may sustain mTEC regeneration and lifelong central T-cell self-tolerance. This finding suggested that the thymic medulla is maintained autonomously by its own stem cells. Although several issues, including the relationship with other putative TEC stem/progenitors, remain unclear, further examination of mTEC stem cells (mTECSCs) and their regulatory mechanisms may contribute to the understanding of postnatal immune homeostasis. Possible relationships between decline of mTECSC activity and early thymic involution as well as various autoimmune disorders are discussed.
Collapse
Affiliation(s)
- Yoko Hamazaki
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Miho Sekai
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nagahiro Minato
- Department of Immunology and Cell Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
310
|
Sánchez-Danés A, Blanpain C. Maintaining hair follicle stem cell identity in a dish. EMBO J 2016; 36:132-134. [PMID: 28003314 DOI: 10.15252/embj.201696051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
| | - Cédric Blanpain
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium.,WELBIO, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
311
|
Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res 2016; 58:81-94. [PMID: 27974711 DOI: 10.1159/000454919] [Citation(s) in RCA: 631] [Impact Index Per Article: 78.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The integrity of healthy skin plays a crucial role in maintaining physiological homeostasis of the human body. The skin is the largest organ system of the body. As such, it plays pivotal roles in the protection against mechanical forces and infections, fluid imbalance, and thermal dysregulation. At the same time, it allows for flexibility to enable joint function in some areas of the body and more rigid fixation to hinder shifting of the palm or foot sole. Many instances lead to inadequate wound healing which necessitates medical intervention. Chronic conditions such as diabetes mellitus or peripheral vascular disease can lead to impaired wound healing. Acute trauma such as degloving or large-scale thermal injuries are followed by a loss of skin organ function rendering the organism vulnerable to infections, thermal dysregulation, and fluid loss. METHODS For this update article, we have reviewed the actual literature on skin wound healing purposes focusing on the main phases of wound healing, i.e., inflammation, proliferation, epithelialization, angiogenesis, remodeling, and scarring. RESULTS The reader will get briefed on new insights and up-to-date concepts in skin wound healing. The macrophage as a key player in the inflammatory phase will be highlighted. During the epithelialization process, we will present the different concepts of how the wound will get closed, e.g., leapfrogging, lamellipodial crawling, shuffling, and the stem cell niche. The neovascularization represents an essential component in wound healing due to its fundamental impact from the very beginning after skin injury until the end of the wound remodeling. Here, the distinct pattern of the neovascularization process and the special new functions of the pericyte will be underscored. At the end, this update will present 3 topics of high interest in skin wound healing issues, dealing with scarring, tissue engineering, and plasma application. CONCLUSION Although wound healing mechanisms and specific cell functions in wound repair have been delineated in part, many underlying pathophysiological processes are still unknown. The purpose of the following update on skin wound healing is to focus on the different phases and to brief the reader on the current knowledge and new insights. Skin wound healing is a complex process, which is dependent on many cell types and mediators interacting in a highly sophisticated temporal sequence. Although some interactions during the healing process are crucial, redundancy is high and other cells or mediators can adopt functions or signaling without major complications.
Collapse
Affiliation(s)
- Heiko Sorg
- Department of Plastic, Reconstructive and Aesthetic Surgery, Hand Surgery, Alfried Krupp Krankenhaus Essen, Essen, Germany
| | | | | | | | | |
Collapse
|
312
|
|
313
|
Chacón-Martínez CA, Klose M, Niemann C, Glauche I, Wickström SA. Hair follicle stem cell cultures reveal self-organizing plasticity of stem cells and their progeny. EMBO J 2016; 36:151-164. [PMID: 27940653 DOI: 10.15252/embj.201694902] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 12/17/2022] Open
Abstract
Understanding how complex tissues are formed, maintained, and regenerated through local growth, differentiation, and remodeling requires knowledge on how single-cell behaviors are coordinated on the population level. The self-renewing hair follicle, maintained by a distinct stem cell population, represents an excellent paradigm to address this question. A major obstacle in mechanistic understanding of hair follicle stem cell (HFSC) regulation has been the lack of a culture system that recapitulates HFSC behavior while allowing their precise monitoring and manipulation. Here, we establish an in vitro culture system based on a 3D extracellular matrix environment and defined soluble factors, which for the first time allows expansion and long-term maintenance of murine multipotent HFSCs in the absence of heterologous cell types. Strikingly, this scheme promotes de novo generation of HFSCs from non-HFSCs and vice versa in a dynamic self-organizing process. This bidirectional interconversion of HFSCs and their progeny drives the system into a population equilibrium state. Our study uncovers regulatory dynamics by which phenotypic plasticity of cells drives population-level homeostasis within a niche, and provides a discovery tool for studies on adult stem cell fate.
Collapse
Affiliation(s)
| | - Markus Klose
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Catherin Niemann
- Institute for Biochemistry II, Medical Faculty, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Ingmar Glauche
- Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Sara A Wickström
- Paul Gerson Unna Group "Skin Homeostasis and Ageing", Max Planck Institute for Biology of Ageing, Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
314
|
Ingthorsson S, Briem E, Bergthorsson JT, Gudjonsson T. Epithelial Plasticity During Human Breast Morphogenesis and Cancer Progression. J Mammary Gland Biol Neoplasia 2016; 21:139-148. [PMID: 27815674 PMCID: PMC5159441 DOI: 10.1007/s10911-016-9366-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 10/23/2016] [Indexed: 01/05/2023] Open
Abstract
Understanding the complex events leading to formation of an epithelial-based organ such as the breast requires a detailed insight into the crosstalk between epithelial and stromal compartments. These interactions occur both through heterotypic cellular interactions and between cells and matrix components. While in vivo models may partially capture these complex interactions, there is a need for in- vitro models to study these events. In this review we discuss cell-cell interactions in breast development focusing on the stem cell niche and branching morphogenesis. Given the recent understanding that the basic developmental events underlying branching morphogenesis are closely related to pathways important to cancer progression, i.e. epithelial plasticity and epithelial to mesenchymal transition (EMT), we will also discuss aspects relevant to cancer progression. In cancer, the adoption of mesenchymal phenotype by the malignant cells allows stromal invasion and subsequent intravasation to blood- or lymphatic vessels, a route that is a prerequisite for metastasis. A number of publications have demonstrated that tumor initiating cells, sometimes referred to as cancer stem cells adapt an EMT phenotype that renders them more resistant to apoptosis and drug therapy. The mechanism behind this phenomenon is currently unknown but this may partially explain relapse in breast cancer patients. Increased understanding of branching morphogenesis in the breast gland and the regulation of EMT and its reverse process mesenchymal to epithelial transition (MET) may hold the keys for future development of methods/drugs that neutralize the invading properties of cancer cells.
Collapse
Affiliation(s)
- Saevar Ingthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Eirikur Briem
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
| | - Jon Thor Bergthorsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavík, Iceland.
- Department of Laboratory Hematology, Landspitali, University Hospital, Reykjavík, Iceland.
| |
Collapse
|
315
|
Latil M, Nassar D, Beck B, Boumahdi S, Wang L, Brisebarre A, Dubois C, Nkusi E, Lenglez S, Checinska A, Vercauteren Drubbel A, Devos M, Declercq W, Yi R, Blanpain C. Cell-Type-Specific Chromatin States Differentially Prime Squamous Cell Carcinoma Tumor-Initiating Cells for Epithelial to Mesenchymal Transition. Cell Stem Cell 2016; 20:191-204.e5. [PMID: 27889319 DOI: 10.1016/j.stem.2016.10.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/17/2022]
Abstract
Epithelial to mesenchymal transition (EMT) in cancer cells has been associated with metastasis, stemness, and resistance to therapy. Some tumors undergo EMT while others do not, which may reflect intrinsic properties of their cell of origin. However, this possibility is largely unexplored. By targeting the same oncogenic mutations to discrete skin compartments, we show that cell-type-specific chromatin and transcriptional states differentially prime tumors to EMT. Squamous cell carcinomas (SCCs) derived from interfollicular epidermis (IFE) are generally well differentiated, while hair follicle (HF) stem cell-derived SCCs frequently exhibit EMT, efficiently form secondary tumors, and possess increased metastatic potential. Transcriptional and epigenomic profiling revealed that IFE and HF tumor-initiating cells possess distinct chromatin landscapes and gene regulatory networks associated with tumorigenesis and EMT that correlate with accessibility of key epithelial and EMT transcription factor binding sites. These findings highlight the importance of chromatin states and transcriptional priming in dictating tumor phenotypes and EMT.
Collapse
Affiliation(s)
- Mathilde Latil
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Dany Nassar
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Benjamin Beck
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Soufiane Boumahdi
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Li Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Audrey Brisebarre
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Christine Dubois
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Erwin Nkusi
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Sandrine Lenglez
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Agnieszka Checinska
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Alizée Vercauteren Drubbel
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium
| | - Michael Devos
- VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Wim Declercq
- VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Rui Yi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Cédric Blanpain
- Université libre de Buxelles (ULB), Institut de recherche interdisciplinaire en biologie humaine et moléculaire (IRIBHM), 808 route de Lennik, 1070 Brussels, Belgium; WELBIO, Université Libre de Bruxelles (ULB), 1070 Bruxelles, Belgium.
| |
Collapse
|
316
|
Wang T, Shigdar S, Gantier MP, Hou Y, Wang L, Li Y, Shamaileh HA, Yin W, Zhou SF, Zhao X, Duan W. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget 2016; 6:44191-206. [PMID: 26496035 PMCID: PMC4792551 DOI: 10.18632/oncotarget.6176] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/06/2015] [Indexed: 12/12/2022] Open
Abstract
Although cancer stem cells have been well characterized in numerous malignancies, the fundamental characteristics of this group of cells, however, have been challenged by some recent observations: cancer stem cells may not necessary to be rare within tumors; cancer stem cells and non-cancer stem cells may undergo reversible phenotypic changes; and the cancer stem cells phenotype can vary substantially between patients. Here the current status and progresses of cancer stem cells theory is illustrated and via providing a panoramic view of cancer therapy, we addressed the recent controversies regarding the feasibility of cancer stem cells targeted anti-cancer therapy.
Collapse
Affiliation(s)
- Tao Wang
- School of Nursing, Zhengzhou University, Zhengzhou, China.,School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah Shigdar
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Michael P Gantier
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Yingchun Hou
- Co-Innovation Center for Qinba Region's Sustainable Development, Shaanxi Normal University, Xi'an, China
| | - Li Wang
- Department of Gynecologic Oncology, Henan Cancer Hospital, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Li
- Cancer Care Centre, St George Hospital and St George Clinical School, University of New South Wales (UNSW), Kensington, Australia
| | - Hadi Al Shamaileh
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Wang Yin
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, Victoria, Australia
| |
Collapse
|
317
|
Wang PY, Thissen H, Kingshott P. Modulation of human multipotent and pluripotent stem cells using surface nanotopographies and surface-immobilised bioactive signals: A review. Acta Biomater 2016; 45:31-59. [PMID: 27596488 DOI: 10.1016/j.actbio.2016.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/30/2016] [Accepted: 08/30/2016] [Indexed: 02/08/2023]
Abstract
The ability to control the interactions of stem cells with synthetic surfaces is proving to be effective and essential for the quality of passaged stem cells and ultimately the success of regenerative medicine. The stem cell niche is crucial for stem cell self-renewal and differentiation. Thus, mimicking the stem cell niche, and here in particular the extracellular matrix (ECM), in vitro is an important goal for the expansion of stem cells and their applications. Here, surface nanotopographies and surface-immobilised biosignals have been identified as major factors that control stem cell responses. The development of tailored surfaces having an optimum nanotopography and displaying suitable biosignals is proposed to be essential for future stem cell culture, cell therapy and regenerative medicine applications. While early research in the field has been restricted by the limited availability of micro- and nanofabrication techniques, new approaches involving the use of advanced fabrication and surface immobilisation methods are starting to emerge. In addition, new cell types such as induced pluripotent stem cells (iPSCs) have become available in the last decade, but have not been fully understood. This review summarises significant advances in the area and focuses on the approaches that are aimed at controlling the behavior of human stem cells including maintenance of their self-renewal ability and improvement of their lineage commitment using nanotopographies and biosignals. More specifically, we discuss developments in biointerface science that are an important driving force for new biomedical materials and advances in bioengineering aiming at improving stem cell culture protocols and 3D scaffolds for clinical applications. Cellular responses revolve around the interplay between the surface properties of the cell culture substrate and the biomolecular composition of the cell culture medium. Determination of the precise role played by each factor, as well as the synergistic effects amongst the factors, all of which influence stem cell responses is essential for future developments. This review provides an overview of the current state-of-the-art in the design of complex material surfaces aimed at being the next generation of tools tailored for applications in cell culture and regenerative medicine. STATEMENT OF SIGNIFICANCE This review focuses on the effect of surface nanotopographies and surface-bound biosignals on human stem cells. Recently, stem cell research attracts much attention especially the induced pluripotent stem cells (iPSCs) and direct lineage reprogramming. The fast advance of stem cell research benefits disease treatment and cell therapy. On the other hand, surface property of cell adhered materials has been demonstrated very important for in vitro cell culture and regenerative medicine. Modulation of cell behavior using surfaces is costeffective and more defined. Thus, we summarise the recent progress of modulation of human stem cells using surface science. We believe that this review will capture a broad audience interested in topographical and chemical patterning aimed at understanding complex cellular responses to biomaterials.
Collapse
|
318
|
Tan Q, Choi KM, Sicard D, Tschumperlin DJ. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2016; 113:118-132. [PMID: 27815996 DOI: 10.1016/j.biomaterials.2016.10.046] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
319
|
Charni M, Aloni-Grinstein R, Molchadsky A, Rotter V. p53 on the crossroad between regeneration and cancer. Cell Death Differ 2016; 24:8-14. [PMID: 27768121 PMCID: PMC5260496 DOI: 10.1038/cdd.2016.117] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Regeneration and tumorigenesis share common molecular pathways, nevertheless the outcome of regeneration is life, whereas tumorigenesis leads to death. Although the process of regeneration is strictly controlled, malignant transformation is unrestrained. In this review, we discuss the involvement of TP53, the major tumor-suppressor gene, in the regeneration process. We point to the role of p53 as coordinator assuring that regeneration will not shift to carcinogenesis. The fluctuation in p53 activity during the regeneration process permits a tight control. On one hand, its inhibition at the initial stages allows massive proliferation, on the other its induction at advanced steps of regeneration is essential for preservation of robustness and fidelity of the regeneration process. A better understanding of the role of p53 in regulation of regeneration may open new opportunities for implementation of TP53-based therapies, currently available for cancer patients, in regenerative medicine.
Collapse
Affiliation(s)
- Meital Charni
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ronit Aloni-Grinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alina Molchadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Varda Rotter
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
320
|
Abstract
Metastases that are resistant to conventional therapy are the major cause of death from cancer. In most patients, metastasis has already occurred by the time of diagnosis. Thus, the prevention of metastasis is unlikely to be of therapeutic benefit. The biological heterogeneity of metastases presents a major obstacle to treatment. However, the growth and survival of metastases depend on interactions between tumor cells and host homeostatic mechanisms. Targeting these interactions, in addition to the tumor cells, can produce synergistic therapeutic effects against existing metastases.
Collapse
Affiliation(s)
- Isaiah J Fidler
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX, 77030, USA.
| | - Margaret L Kripke
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 173, Houston, TX, 77030, USA
| |
Collapse
|
321
|
Panciera T, Azzolin L, Fujimura A, Di Biagio D, Frasson C, Bresolin S, Soligo S, Basso G, Bicciato S, Rosato A, Cordenonsi M, Piccolo S. Induction of Expandable Tissue-Specific Stem/Progenitor Cells through Transient Expression of YAP/TAZ. Cell Stem Cell 2016; 19:725-737. [PMID: 27641305 PMCID: PMC5145813 DOI: 10.1016/j.stem.2016.08.009] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 07/13/2016] [Accepted: 08/12/2016] [Indexed: 01/21/2023]
Abstract
The ability to induce autologous tissue-specific stem cells in culture could have a variety of applications in regenerative medicine and disease modeling. Here we show that transient expression of exogenous YAP or its closely related paralogue TAZ in primary differentiated mouse cells can induce conversion to a tissue-specific stem/progenitor cell state. Differentiated mammary gland, neuronal, and pancreatic exocrine cells, identified using a combination of cell sorting and lineage tracing approaches, efficiently convert to proliferating cells with properties of stem/progenitor cells of their respective tissues after YAP induction. YAP-induced mammary stem/progenitor cells show molecular and functional properties similar to endogenous MaSCs, including organoid formation and mammary gland reconstitution after transplantation. Because YAP/TAZ function is also important for self-renewal of endogenous stem cells in culture, our findings have implications for understanding the molecular determinants of the somatic stem cell state. YAP/TAZ expression turns differentiated mammary gland cells into mammary stem cells YAP-induced MaSCs form organoids and have reconstitution capacity Induction of YAP in differentiated fetal neurons yields tripotent neural stem cells Pancreatic exocrine cells are also converted to progenitors by YAP expression
Collapse
Affiliation(s)
- Tito Panciera
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Luca Azzolin
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Atsushi Fujimura
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Daniele Di Biagio
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Chiara Frasson
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, via Giustiniani 3, 35128 Padua, Italy
| | - Silvia Bresolin
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, via Giustiniani 3, 35128 Padua, Italy
| | - Sandra Soligo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Giuseppe Basso
- Department of Woman and Child Health, Haemato-Oncology Laboratory, University of Padua, via Giustiniani 3, 35128 Padua, Italy
| | - Silvio Bicciato
- Center for Genome Research, Department of Life Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100 Modena, Italy
| | - Antonio Rosato
- Istituto Oncologico Veneto IOV-IRCCS and Department of Surgery, Oncology, and Gastroenterology, University of Padua School of Medicine, via Gattamelata 64, 35128 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| |
Collapse
|
322
|
Baker LA, Holliday H, Swarbrick A. ID4 controls luminal lineage commitment in normal mammary epithelium and inhibits BRCA1 function in basal-like breast cancer. Endocr Relat Cancer 2016; 23:R381-92. [PMID: 27412917 DOI: 10.1530/erc-16-0196] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 12/21/2022]
Abstract
Inhibitor of differentiation (ID) proteins are key regulators of development and tumorigenesis. One member of this family, ID4, controls lineage commitment during mammary gland development by acting upstream of key developmental pathways. Recent evidence suggests an emerging role for ID4 as a lineage-dependent proto-oncogene that is overexpressed and amplified in a subset of basal-like breast cancers (BLBCs), conferring poor prognosis. Several lines of evidence suggest ID4 may suppress BRCA1 function in BLBC and in doing so, define a subset of BLBC patients who may respond to therapies traditionally used in BRCA1-mutant cancers. This review highlights recent advances in our understanding of the requirement for ID4 in mammary lineage commitment and the role for ID4 in BLBC. We address current shortfalls in this field and identify important areas of future research.
Collapse
Affiliation(s)
- Laura A Baker
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Holly Holliday
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research DivisionGarvan Institute of Medical Research, Darlinghurst, New South Wales, Australia St Vincent's Clinical SchoolFaculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
323
|
Vagnozzi AN, Reiter JF, Wong SY. Hair follicle and interfollicular epidermal stem cells make varying contributions to wound regeneration. Cell Cycle 2016; 14:3408-17. [PMID: 26398918 DOI: 10.1080/15384101.2015.1090062] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Upon wounding, multiple stem cell populations in the hair follicle (HF) and interfollicular epidermis (IFE) converge at the site of injury. Although these cells can contribute permanently to the regenerating epithelium, it remains unclear whether these contributions vary among cells originating from diverse compartments in the skin. By comparing the fates of several keratinocyte lineages, we observed here an initial decrease in both HF- and IFE-derived cells within the transient acanthotic layers of the regenerating epithelium. At the same time, the relative abundance of early-arriving IFE-derived cells specifically in the wound basal layer declined as later-arriving HF-derived cells entered the site of injury. Although laggard bulge-derived cells were typically constrained at the regenerative periphery, these cells persisted in the wound basal layer. Finally, suppressing Notch enabled IFE-derived cells to out-compete HF-derived cells. Taken together, these findings indicate that IFE-, HF- and bulge-derived cells make distinct contributions to regeneration over time. Furthermore, we speculate that extrinsic, non-genetic factors such as spatial constraint, distance from the wound, and basal versus suprabasal position may largely determine whether a cell ultimately persists.
Collapse
Affiliation(s)
- Alicia N Vagnozzi
- a Departments of Dermatology and Cell and Developmental Biology ; University of Michigan ; Ann Arbor , MI USA
| | - Jeremy F Reiter
- b Department of Biochemistry ; University of California San Francisco ; San Francisco , CA USA
| | - Sunny Y Wong
- a Departments of Dermatology and Cell and Developmental Biology ; University of Michigan ; Ann Arbor , MI USA
| |
Collapse
|
324
|
Abstract
Deep esophageal glands play a vital role in the protection and regeneration of the esophageal mucosa. Conditions such as gastroesophageal reflux disease and Barrett's esophagus have been associated with a change in the usual glands by oncocytic metaplasia. However, little is known regarding the function of oncocytes or the relevance of this metaplastic change in the human esophagus. We hypothesized that oncocytes of deep esophageal glands also express markers characteristic of a ductal epithelial phenotype because similar oncocytes have been described as part of large ductal epithelial cells in salivary glands. We used immunohistochemical stains to define structural, functional, proliferative, and potential stem/progenitor characteristics of oncocytes. Oncocytes did not express mucins or lysozyme C, two molecules found in mucous cells and used for antimicrobial defense. Oncocytes did not express CK5, a cytokeratin found in myoepithelial cells and basal epithelial cells, but expressed CK7, a cytokeratin found in intralobular ductal epithelial cells and luminal epithelial cells of the main duct. Oncocytes expressed cystic fibrosis transmembrane conductance regulator and sodium/potassium ATPase, ion channels that play a role in bicarbonate secretion. Membrane-bound beta-catenin was detected in oncocytes, but these cells did not express the proliferative marker Ki67. Approximately, a third of oncocytes expressed SOX9 and p63, transcription factors expressed in epithelial progenitor cells in multiple organs. Moreover, oncocytes expressed CD44, a transmembrane Glycoprotein expressed in cancer stem cells. Taken together, our data show that oncocytes express markers of intralobular ductal epithelial cells and luminal epithelial cells of the main duct. Additionally, our observations suggest that oncocytes act as epithelial progenitor cells and play a role in bicarbonate secretion. Since oncocytic metaplasia is associated with conditions of chronic acid injury, it is possible that oncocytes replace the mucous cells in deep esophageal glands (dEG) as an adaptive change to counteract injury from acid reflux. The marker characterization suggests that oncocytes may originate from transdifferentiation of myoepithelial and mucous cells. This transdifferentiation might lead to an overall decrease of mucins production and secretion by the dEG and a subsequent reduction of the protection conferred by the viscoelastic mucous layer.
Collapse
Affiliation(s)
- G Gonzalez
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
| | - Q Huang
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
| | - H Mashimo
- Department of Research, Veterans Affairs Boston Healthcare System and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
325
|
Huch M, Dollé L. The plastic cellular states of liver cells: Are EpCAM and Lgr5 fit for purpose? Hepatology 2016; 64:652-62. [PMID: 26799921 PMCID: PMC4973669 DOI: 10.1002/hep.28469] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/25/2015] [Accepted: 01/17/2016] [Indexed: 12/14/2022]
Abstract
Adult liver cells have been considered restricted regarding their fate and lineage potential. That is, hepatocytes have been thought able only to generate hepatocytes and duct cells, only duct cells. While this may be the case for the majority of scenarios in a state of quiescence or homeostasis, evidence suggests that liver cells are capable of interconverting between cellular states of distinct phenotypic traits. This interconversion or plasticity had been suggested by classical studies using cellular markers, but recently lineage tracing approaches have proven that cells are highly plastic and retain an extraordinary ability to respond differently to normal tissue homeostasis, to tissue repair, or when challenged to expand ex vivo or to differentiate upon transplantation. Stemness, as "self-renewal and multipotency," seems not to be limited to a particular cell type but rather to a cellular state in which cells exhibit a high degree of plasticity and can move back and forth in different phenotypic states. For instance, upon damage cells can dedifferentiate to acquire stem cell potential that allows them to self-renew, repopulate a damaged tissue, and then undergo differentiation. In this review, we will discuss the evidence on cellular plasticity in the liver, focusing our attention on two markers, epithelial cell adhesion molecule and leucine-rich repeat-containing G protein-coupled receptor 5, which identify cells with stem cell potential. (Hepatology 2016;64:652-662).
Collapse
Affiliation(s)
- Meritxell Huch
- Wellcome Trust/Cancer Research UK‐Gurdon Institutethe Wellcome Trust‐Medical Research Council Stem Cell Institute, and Physiology, Development, and Neuroscience, University of CambridgeCambridgeUK
| | - Laurent Dollé
- Laboratory of Liver Cell BiologyDepartment of Basic Biomedical SciencesFaculty of Medicine and PharmacyFree University BrusselsBrusselsBelgium
| |
Collapse
|
326
|
Tata PR, Rajagopal J. Cellular plasticity: 1712 to the present day. Curr Opin Cell Biol 2016; 43:46-54. [PMID: 27485353 DOI: 10.1016/j.ceb.2016.07.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022]
Abstract
Cell identity is a fundamental feature of cells. Tissues are often organized into cellular hierarchies characterized by progressive differentiation and developmental commitment. However, it is been historically evident that the cells of many organisms of various phyla, especially in the context of injury, exhibit remarkable plasticity in terms of their ability to convert into other cell types. Recent modern studies, using genetic lineage tracing, have demonstrated that many mature functional cells retain a potential to undergo lineage reversion (dedifferentiation) or to convert into cells of other more distant lineages (transdifferentiation) following injury. Similarly, mimicking progenitor cell transdetermination, stem cells can interconvert. These forms of plasticity may be essential for organismal survival, and are likely part and parcel of regeneration.
Collapse
Affiliation(s)
- Purushothama Rao Tata
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA; Massachusetts General Hospital for Children, Pediatric Pulmonary Medicine, Boston, MA, USA; Division of Otology and Laryngology, Massachusetts Eye and Ear, Boston, MA, USA.
| |
Collapse
|
327
|
Ali NJA, Dias Gomes M, Bauer R, Brodesser S, Niemann C, Iden S. Essential Role of Polarity Protein Par3 for Epidermal Homeostasis through Regulation of Barrier Function, Keratinocyte Differentiation, and Stem Cell Maintenance. J Invest Dermatol 2016; 136:2406-2416. [PMID: 27452221 DOI: 10.1016/j.jid.2016.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Partitioning-defective (Par) proteins contribute to multiprotein complexes that drive cell polarity and fate in invertebrates. Of these, the ternary Par3-atypical protein kinase C-Par6 polarity complex mediates asymmetry in various systems, whereas Par3 and aPKC/Par6 can also act independently. aPKC-λ has recently been implicated in epidermal differentiation and stem cell fate; however, whether Par3 contributes to the homeostasis of adult stratified epithelia is currently unknown. Here, we provide functional evidence that epidermal Par3 loss disturbed the inside-out skin barrier, coinciding with altered expression and localization of principle tight junction components, and that epidermal differentiation and thickness were increased. Moreover, Par3 inactivation caused an initial expansion and later decline of hair follicle bulge stem cells, accompanied by an enrichment of committed progenitors, formation of hypertrophic sebaceous glands, and increased epidermal differentiation, suggesting aberrant cell fate decisions. Importantly, and opposite to aPKCλ deletion, Par3 loss did not enhance perpendicular cell divisions. Instead, in Par3-deficient hair follicles, spindles were shifted toward planar orientation, indicating that abnormal differentiation after Par3 inactivation is unlikely to be attributed to increased perpendicular spindle orientation. Collectively, mammalian Par3 controls the epidermal barrier, differentiation, and stem cell maintenance in the pilosebaceous unit, which are all essential for the homeostasis of an important barrier-forming epithelium.
Collapse
Affiliation(s)
- Noelle J A Ali
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Martim Dias Gomes
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Ronja Bauer
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany
| | - Catherin Niemann
- Center for Biochemistry, Medical Faculty, University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
328
|
Abstract
Mammalian embryonic development is a tightly regulated process that, from a single zygote, produces a large number of cell types with hugely divergent functions. Distinct cellular differentiation programmes are facilitated by tight transcriptional and epigenetic regulation. However, the contribution of epigenetic regulation to tissue homeostasis after the completion of development is less well understood. In this Review, we explore the effects of epigenetic dysregulation on adult stem cell function. We conclude that, depending on the tissue type and the epigenetic regulator affected, the consequences range from negligible to stem cell malfunction and disruption of tissue homeostasis, which may predispose to diseases such as cancer.
Collapse
|
329
|
Defining the clonal dynamics leading to mouse skin tumour initiation. Nature 2016; 536:298-303. [PMID: 27459053 PMCID: PMC5068560 DOI: 10.1038/nature19069] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/04/2016] [Indexed: 12/28/2022]
Abstract
The changes that occur in cell dynamics following oncogenic mutation that lead to the development of tumours are currently unknown. Here, using skin epidermis as a model, we assessed the impact of oncogenic hedgehog signalling in distinct cell populations and their capacity to induce basal cell carcinoma, the most frequent cancer in humans. We found that only stem cells, and not progenitors, were competent to initiate tumour formation upon oncogenic hedgehog signalling. Interestingly, this difference was due to the hierarchical organization of tumour growth in oncogene-targeted stem cells, characterized by an increase of symmetric self-renewing divisions and a higher p53-dependent resistance to apoptosis, leading to rapid clonal expansion and progression into invasive tumours. Our work reveals that the capacity of oncogene-targeted cells to induce tumour formation is not only dependent on their long-term survival and expansion, but also on the specific clonal dynamics of the cancer cell of origin.
Collapse
|
330
|
Hindley CJ, Cordero-Espinoza L, Huch M. Organoids from adult liver and pancreas: Stem cell biology and biomedical utility. Dev Biol 2016; 420:251-261. [PMID: 27364469 DOI: 10.1016/j.ydbio.2016.06.039] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/26/2016] [Accepted: 06/26/2016] [Indexed: 01/02/2023]
Abstract
The liver and pancreas are critical organs maintaining whole body metabolism. Historically, the expansion of adult-derived cells from these organs in vitro has proven challenging and this in turn has hampered studies of liver and pancreas stem cell biology, as well as being a roadblock to disease modelling and cell replacement therapies for pathologies in these organs. Recently, defined culture conditions have been described which allow the in vitro culture and manipulation of adult-derived liver and pancreatic material. Here we review these systems and assess their physiological relevance, as well as their potential utility in biomedicine.
Collapse
Affiliation(s)
- Christopher J Hindley
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; The Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lucía Cordero-Espinoza
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Wellcome Trust/Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
331
|
Abstract
To maintain cycling adult tissue in homeostasis the balance between proliferation and differentiation of stem cells needs to be precisely regulated. To investigate how stem cells achieve perfect self-renewal, emphasis has been placed on models in which stem cells progress sequentially through a one-way proliferative hierarchy. However, investigations of tissue regeneration have revealed a surprising degree of flexibility, with cells normally committed to differentiation able to recover stem cell competence following injury. Here, we investigate whether the reversible transfer of cells between states poised for proliferation or differentiation may provide a viable mechanism for a heterogeneous stem cell population to maintain homeostasis even under normal physiological conditions. By addressing the clonal dynamics, we show that such models of "dynamic heterogeneity" may be equally capable of describing the results of recent lineage tracing assays involving epithelial tissues. Moreover, together with competition for limited niche access, such models may provide a mechanism to render tissue homeostasis robust. In particular, in 2D epithelial layers, we show that the mechanism of dynamic heterogeneity avoids some pathological dependencies that undermine models based on a hierarchical stem/progenitor organization.
Collapse
|
332
|
Zanconato F, Cordenonsi M, Piccolo S. YAP/TAZ at the Roots of Cancer. Cancer Cell 2016; 29:783-803. [PMID: 27300434 PMCID: PMC6186419 DOI: 10.1016/j.ccell.2016.05.005] [Citation(s) in RCA: 1321] [Impact Index Per Article: 165.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/26/2016] [Accepted: 05/16/2016] [Indexed: 02/06/2023]
Abstract
YAP and TAZ are highly related transcriptional regulators pervasively activated in human malignancies. Recent work indicates that, remarkably, YAP/TAZ are essential for cancer initiation or growth of most solid tumors. Their activation induces cancer stem cell attributes, proliferation, chemoresistance, and metastasis. YAP/TAZ are sensors of the structural and mechanical features of the cell microenvironment. A number of cancer-associated extrinsic and intrinsic cues conspire to overrule the YAP-inhibiting microenvironment of normal tissues, including changes in mechanotransduction, inflammation, oncogenic signaling, and regulation of the Hippo pathway. Addiction to YAP/TAZ thus potentially represents a central cancer vulnerability that may be exploited therapeutically.
Collapse
Affiliation(s)
- Francesca Zanconato
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| | - Stefano Piccolo
- Department of Molecular Medicine, University of Padua School of Medicine, viale Colombo 3, 35126 Padua, Italy.
| |
Collapse
|
333
|
Quantitative lineage tracing strategies to resolve multipotency in tissue-specific stem cells. Genes Dev 2016; 30:1261-77. [PMID: 27284162 PMCID: PMC4911926 DOI: 10.1101/gad.280057.116] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Here, Wuidart et al. present a rigorous new method for assessing the lineage relationship and stem cell fate in different organs and tissues. The authors developed two novel methods for determining lineage relationships: the first one based on statistical analysis of multicolor lineage tracing, and the second one based on lineage tracing at saturation to assess the fate of all stem cells within a given lineage and the “flux” of cells between different lineages. Lineage tracing has become the method of choice to study the fate and dynamics of stem cells (SCs) during development, homeostasis, and regeneration. However, transgenic and knock-in Cre drivers used to perform lineage tracing experiments are often dynamically, temporally, and heterogeneously expressed, leading to the initial labeling of different cell types and thereby complicating their interpretation. Here, we developed two methods: the first one based on statistical analysis of multicolor lineage tracing, allowing the definition of multipotency potential to be achieved with high confidence, and the second one based on lineage tracing at saturation to assess the fate of all SCs within a given lineage and the “flux” of cells between different lineages. Our analysis clearly shows that, whereas the prostate develops from multipotent SCs, only unipotent SCs mediate mammary gland (MG) development and adult tissue remodeling. These methods offer a rigorous framework to assess the lineage relationship and SC fate in different organs and tissues.
Collapse
|
334
|
Rittié L. Cellular mechanisms of skin repair in humans and other mammals. J Cell Commun Signal 2016; 10:103-20. [PMID: 27170326 PMCID: PMC4882309 DOI: 10.1007/s12079-016-0330-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
The increased incidence of non-healing skin wounds in developed societies has prompted tremendous research efforts on the complex process known as "wound healing". Unfortunately, the weak relevance of modern wound healing research to human health continues to be a matter of concern. This review summarizes the current knowledge of the cellular mechanisms that mediate wound closure in the skin of humans and laboratory animals. The author highlights the anatomical singularities of human skin vs. the skin of other mammals commonly used for wound healing research (i.e. as mice, rats, rabbits, and pigs), and discusses the roles of stem cells, myofibroblasts, and the matrix environment in the repair process. The majority of this review focuses on reepithelialization and wound closure. Other aspects of wound healing (e.g. inflammation, fibrous healing) are referred to when relevant to the main topic. This review aims at providing the reader with a clear understanding of the similarities and differences that have been reported over the past 100 years between the healing of human wounds and that of other mammals.
Collapse
Affiliation(s)
- Laure Rittié
- Department of Dermatology, University of Michigan Medical School, 6447 Medical Building I, 1301 E. Catherine St., Ann Arbor, MI, 48109, USA.
| |
Collapse
|
335
|
Tajima A, Pradhan I, Trucco M, Fan Y. Restoration of Thymus Function with Bioengineered Thymus Organoids. CURRENT STEM CELL REPORTS 2016; 2:128-139. [PMID: 27529056 PMCID: PMC4982700 DOI: 10.1007/s40778-016-0040-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The thymus is the primary site for the generation of a diverse repertoire of T-cells that are essential to the efficient function of adaptive immunity. Numerous factors varying from aging, chemotherapy, radiation exposure, virus infection and inflammation contribute to thymus involution, a phenomenon manifested as loss of thymus cellularity, increased stromal fibrosis and diminished naïve T-cell output. Rejuvenating thymus function is a challenging task since it has limited regenerative capability and we still do not know how to successfully propagate thymic epithelial cells (TECs), the predominant population of the thymic stromal cells making up the thymic microenvironment. Here, we will discuss recent advances in thymus regeneration and the prospects of applying bioengineered artificial thymus organoids in regenerative medicine and solid organ transplantation.
Collapse
Affiliation(s)
- Asako Tajima
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Isha Pradhan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| | - Yong Fan
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA 15212
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19104
| |
Collapse
|
336
|
Ouspenskaia T, Matos I, Mertz AF, Fiore VF, Fuchs E. WNT-SHH Antagonism Specifies and Expands Stem Cells prior to Niche Formation. Cell 2016; 164:156-169. [PMID: 26771489 DOI: 10.1016/j.cell.2015.11.058] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 10/15/2015] [Accepted: 11/18/2015] [Indexed: 12/15/2022]
Abstract
Adult stem cell (SC) maintenance and differentiation are known to depend on signals received from the niche. Here, however, we demonstrate a mechanism for SC specification and regulation that is niche independent. Using immunofluorescence, live imaging, genetics, cell-cycle analyses, in utero lentiviral transduction, and lineage-tracing, we show that in developing hair buds, SCs are born from asymmetric divisions that differentially display WNT and SHH signaling. Displaced WNT(lo) suprabasal daughters become SCs that respond to paracrine SHH and symmetrically expand. By contrast, basal daughters remain WNT(hi). They express but do not respond to SHH and hence maintain slow-cycling, asymmetric divisions. Over time, they become short-lived progenitors, generating differentiating daughters rather than SCs. Thus, in contrast to an established niche that harbors a fixed SC pool whose expelled progeny differentiate, asymmetric divisions first specify and displace early SCs into an environment conducive to expansion and later restrict their numbers by switching asymmetric fates.
Collapse
Affiliation(s)
- Tamara Ouspenskaia
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Irina Matos
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Aaron F Mertz
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Vincent F Fiore
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Elaine Fuchs
- Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
337
|
Nassar D, Blanpain C. Cancer Stem Cells: Basic Concepts and Therapeutic Implications. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2016; 11:47-76. [DOI: 10.1146/annurev-pathol-012615-044438] [Citation(s) in RCA: 405] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dany Nassar
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
| | - Cédric Blanpain
- IRIBHM, Université Libre de Bruxelles, Brussels B-1070, Belgium;
- WELBIO, Université Libre de Bruxelles, Brussels B-1070, Belgium
| |
Collapse
|
338
|
Elbediwy A, Vincent-Mistiaen ZI, Thompson BJ. YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage. Bioessays 2016; 38:644-53. [PMID: 27173018 PMCID: PMC5031209 DOI: 10.1002/bies.201600037] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The YAP/TAZ family of transcriptional co‐activators drives cell proliferation in epithelial tissues and cancers. Yet, how YAP and TAZ are physiologically regulated remains unclear. Here we review recent reports that YAP and TAZ act primarily as sensors of epithelial cell polarity, being inhibited when cells differentiate an apical membrane domain, and being activated when cells contact the extracellular matrix via their basal membrane domain. Apical signalling occurs via the canonical Crumbs/CRB‐Hippo/MST‐Warts/LATS kinase cascade to phosphorylate and inhibit YAP/TAZ. Basal signalling occurs via Integrins and Src family kinases to phosphorylate and activate YAP/TAZ. Thus, YAP/TAZ is localised to the nucleus in basal stem/progenitor cells and cytoplasm in differentiated squamous cells or columnar cells. In addition, other signals such as mechanical forces, tissue damage and possibly receptor tyrosine kinases (RTKs) can influence MST‐LATS or Src family kinase activity to modulate YAP/TAZ activity.
Collapse
Affiliation(s)
- Ahmed Elbediwy
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| | | | - Barry J Thompson
- Epithelial Biology Laboratory, Francis Crick Institute, London, UK
| |
Collapse
|
339
|
Aloia L, McKie MA, Huch M. Cellular plasticity in the adult liver and stomach. J Physiol 2016; 594:4815-25. [PMID: 27028579 DOI: 10.1113/jp271769] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/21/2016] [Indexed: 12/21/2022] Open
Abstract
Adult tissues maintain function and architecture through robust homeostatic mechanisms mediated by self-renewing cells capable of generating all resident cell types. However, severe injury can challenge the regeneration potential of such a stem/progenitor compartment. Indeed, upon injury adult tissues can exhibit massive cellular plasticity in order to achieve proper tissue regeneration, circumventing an impaired stem/progenitor compartment. Several examples of such plasticity have been reported in both rapidly and slowly self-renewing organs and follow conserved mechanisms. Upon loss of the cellular compartment responsible for maintaining homeostasis, quiescent or slowly proliferating stem/progenitor cells can acquire high proliferation potential and turn into active stem cells, or, alternatively, mature cells can de-differentiate into stem-like cells or re-enter the cell cycle to compensate for the tissue loss. This extensive cellular plasticity acts as a key mechanism to respond to multiple stimuli in a context-dependent manner, enabling tissue regeneration in a robust fashion. In this review cellular plasticity in the adult liver and stomach will be examined, highlighting the diverse cell populations capable of repairing the damaged tissue.
Collapse
Affiliation(s)
- Luigi Aloia
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Mikel Alexander McKie
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| | - Meritxell Huch
- Wellcome Trust/Cancer Research UK - Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
340
|
Sen CK. Expanding horizons of cellular plasticity in regenerative medicine. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 185:2592-5. [PMID: 26435411 DOI: 10.1016/j.ajpath.2015.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
This Guest Editorial introduces the Regenerative Medicine Theme Issue, which provides critical insight into the unfolding frontier of regenerative medicine.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine & Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| |
Collapse
|
341
|
Yang GN, Kopecki Z, Cowin AJ. Role of Actin Cytoskeleton in the Regulation of Epithelial Cutaneous Stem Cells. Stem Cells Dev 2016; 25:749-59. [PMID: 27021878 DOI: 10.1089/scd.2016.0051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cutaneous stem cells (CSCs) orchestrate the homeostasis and regeneration of mammalian skin. Epithelial CSCs have been isolated and characterized from the skin and hold great potential for tissue engineering and clinical applications. The actin cytoskeleton is known to regulate cell adhesion and motility through its intricate participation in signal transduction and structural modifications. The dynamics of actin cytoskeleton can directly influence CSCs behaviors including tissue morphogenesis, homeostasis, niche maintenance, activation, and wound repair. Various regulators of the actin cytoskeleton including kinases, actin-remodeling proteins, paracrine signals, and micro-RNAs collaborate and contribute to epithelial CSC proliferation, adhesion, and differentiation. This review brings together the latest mechanistic insights into how the actin cytoskeleton participates in the regulation of epithelial CSCs during development, homeostasis, and wound repair.
Collapse
Affiliation(s)
- Gink N Yang
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| | - Allison J Cowin
- Future Industries Institute, University of South Australia , Adelaide, South Australia, Australia
| |
Collapse
|
342
|
The Role of Epidermal Stem Cells in the Origin of Basal Cell Carcinoma. ACTAS DERMO-SIFILIOGRAFICAS 2016. [DOI: 10.1016/j.adengl.2016.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
343
|
Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D, Umemura A, Taniguchi K, Nakagawa H, Valasek MA, Ye L, Kopp JL, Sander M, Carter H, Deisseroth K, Verma IM, Karin M. Hybrid Periportal Hepatocytes Regenerate the Injured Liver without Giving Rise to Cancer. Cell 2016; 162:766-79. [PMID: 26276631 DOI: 10.1016/j.cell.2015.07.026] [Citation(s) in RCA: 362] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 03/25/2015] [Accepted: 06/26/2015] [Indexed: 12/24/2022]
Abstract
Compensatory proliferation triggered by hepatocyte loss is required for liver regeneration and maintenance but also promotes development of hepatocellular carcinoma (HCC). Despite extensive investigation, the cells responsible for hepatocyte restoration or HCC development remain poorly characterized. We used genetic lineage tracing to identify cells responsible for hepatocyte replenishment following chronic liver injury and queried their roles in three distinct HCC models. We found that a pre-existing population of periportal hepatocytes, located in the portal triads of healthy livers and expressing low amounts of Sox9 and other bile-duct-enriched genes, undergo extensive proliferation and replenish liver mass after chronic hepatocyte-depleting injuries. Despite their high regenerative potential, these so-called hybrid hepatocytes do not give rise to HCC in chronically injured livers and thus represent a unique way to restore tissue function and avoid tumorigenesis. This specialized set of pre-existing differentiated cells may be highly suitable for cell-based therapy of chronic hepatocyte-depleting disorders.
Collapse
Affiliation(s)
- Joan Font-Burgada
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Shabnam Shalapour
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Suvasini Ramaswamy
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brian Hsueh
- Departments of Bioengineering, Psychiatry, and Behavioral Sciences, Neurosciences Program, Howard Hughes Medical Institute, Stanford University, 318 Campus Drive West, Clark Center W080, Stanford, CA 94305, USA
| | - David Rossell
- Department of Statistics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Atsushi Umemura
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Koji Taniguchi
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hayato Nakagawa
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655
| | - Mark A Valasek
- Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Li Ye
- Departments of Bioengineering, Psychiatry, and Behavioral Sciences, Neurosciences Program, Howard Hughes Medical Institute, Stanford University, 318 Campus Drive West, Clark Center W080, Stanford, CA 94305, USA
| | - Janel L Kopp
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Cellular & Physiological Sciences, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Maike Sander
- Department of Pediatrics and Department of Cellular & Molecular Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hannah Carter
- Department of Medicine, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Karl Deisseroth
- Departments of Bioengineering, Psychiatry, and Behavioral Sciences, Neurosciences Program, Howard Hughes Medical Institute, Stanford University, 318 Campus Drive West, Clark Center W080, Stanford, CA 94305, USA
| | - Inder M Verma
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
344
|
Varki NM, Varki A. On the apparent rarity of epithelial cancers in captive chimpanzees. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0225. [PMID: 26056369 DOI: 10.1098/rstb.2014.0225] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Malignant neoplasms arising from epithelial cells are called carcinomas. Such cancers are diagnosed in about one in three humans in 'developed' countries, with the most common sites affected being lung, breast, prostate, colon, ovary and pancreas. By contrast, carcinomas are said to be rare in captive chimpanzees, which share more than 99% protein sequence homology with humans (and possibly in other related 'great apes'-bonobos, gorillas and orangutans). Simple ascertainment bias is an unlikely explanation, as these nonhuman hominids are recipients of excellent veterinary care in research facilities and zoos, and are typically subjected to necropsies when they die. In keeping with this notion, benign tumours and cancers that are less common in humans are well documented in this population. In this brief overview, we discuss other possible explanations for the reported rarity of carcinomas in our closest evolutionary cousins, including inadequacy of numbers surveyed, differences in life expectancy, diet, genetic susceptibility, immune responses or their microbiomes, and other potential environmental factors. We conclude that while relative carcinoma risk is a likely difference between humans and chimpanzees (and possibly other 'great apes'), a more systematic survey of available data is required for validation of this claim.
Collapse
Affiliation(s)
- Nissi M Varki
- Department of Pathology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA 92093, USA
| | - Ajit Varki
- Department of Pathology, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA 92093, USA Department of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA 92093, USA Department of Cellular and Molecular Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
345
|
Toivanen R, Mohan A, Shen MM. Basal Progenitors Contribute to Repair of the Prostate Epithelium Following Induced Luminal Anoikis. Stem Cell Reports 2016; 6:660-667. [PMID: 27117783 PMCID: PMC4939748 DOI: 10.1016/j.stemcr.2016.03.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 11/04/2022] Open
Abstract
Contact with the extracellular matrix is essential for maintenance of epithelial cells in many tissues, while in its absence epithelial cells can detach and undergo anoikis. Here, we show that anoikis of luminal cells in the prostate epithelium is followed by a program of tissue repair that is mediated in part by differentiation of basal epithelial cells to luminal cells. We describe a mouse model in which inducible deletion of E-cadherin in prostate luminal cells results in their apoptotic cell death by anoikis, in the absence of phenotypic effects in the surrounding stroma. Quantitative assessments of proliferation and cell death in the luminal and basal compartments indicate that basal cells can rapidly generate luminal cells. Thus, our findings identify a role for basal-to-luminal differentiation in prostate epithelial repair, and provide a normal context to analogous processes that may occur during prostate cancer initiation. Induced deletion of E-cadherin results in anoikis of prostate luminal cells Luminal anoikis and tissue repair take place in the absence of stromal phenotypes Basal cells proliferate and differentiate to produce luminal cells during repair These findings suggest a conserved role for basal cells in epithelial tissue repair
Collapse
Affiliation(s)
- Roxanne Toivanen
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Adithi Mohan
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael M Shen
- Departments of Medicine, Genetics & Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA.
| |
Collapse
|
346
|
Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis. Nat Commun 2016; 7:11278. [PMID: 27080563 PMCID: PMC4835553 DOI: 10.1038/ncomms11278] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 03/09/2016] [Indexed: 12/14/2022] Open
Abstract
Mechanisms of plasticity to acquire different cell fates are critical for adult stem cell (SC) potential, yet are poorly understood. Reduced global histone methylation is an epigenetic state known to mediate plasticity in cultured embryonic SCs and T-cell progenitors. Here we find histone H3 K4/K9/K27me3 levels actively reduced in adult mouse skin and hair follicle stem cells (HFSCs) during G0 quiescence. The level of marks over specific gene promoters did not correlate to mRNA level changes in quiescent HFSCs. Skin hypomethylation during quiescence was necessary for subsequent progression of hair homeostasis (cycle). Inhibiting BMP signal, a known HFSC anti-proliferative factor, elevated HFSC methylation in vivo during quiescence prior to proliferation onset. Furthermore, removal of proliferation factors and addition of BMP4 reduced histone methylases and increased demethylases mRNAs in cultured skin epithelial cells. We conclude that signalling couples hair follicle stem cell quiescence with reduced H3 K4/K9/K27me3 levels for proper tissue homeostasis. Changes in global histone trimethylation have been linked to embryonic but not adult stem cell plasticity. Here, Lee et al. find H3 K4/K9/K27me3 levels actively reduced in adult mouse skin and hair follicle stem cells during quiescence (catagen) and link this to active bone morphogen protein signalling.
Collapse
|
347
|
Lust K, Sinn R, Pérez Saturnino A, Centanin L, Wittbrodt J. De novo neurogenesis by targeted expression of atoh7 to Müller glia cells. Development 2016; 143:1874-83. [PMID: 27068106 PMCID: PMC4920165 DOI: 10.1242/dev.135905] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/05/2016] [Indexed: 01/11/2023]
Abstract
Regenerative responses in the vertebrate CNS depend on quiescent radial glia stem cells, which re-enter the cell cycle and eventually differentiate into neurons. The entry into the cell cycle and the differentiation into neurons are events of opposite nature, and therefore efforts to force quiescent radial glia into neurons require different factors. Here, we use fish to show that a single neurogenic factor, Atoh7, directs retinal radial glia (Müller glia, MG) into proliferation. The resulting neurogenic clusters differentiate in vivo into various retinal neurons. We use signaling reporters to demonstrate that the Atoh7-induced regeneration-like response of MG cells is mimicked by Notch, resembling the behavior of early progenitors during retinogenesis. Activation of Notch signaling in MG cells is sufficient to trigger proliferation and differentiation. Our results uncover a new role for Atoh7 as a universal neurogenic factor, and illustrate how signaling modules are re-employed in diverse contexts to trigger different biological responses. Highlighted article: Induced activation of atoh7 in Müller glia cells in vivo is sufficient to drive cell cycle re-entry and proliferation, followed by the formation of neurogenic clusters and de novo neurogenesis.
Collapse
Affiliation(s)
- Katharina Lust
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Rebecca Sinn
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Alicia Pérez Saturnino
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany The Hartmut Hoffmann-Berling International Graduate School of Molecular and Cellular Biology (HBIGS), Heidelberg University, Heidelberg, Germany
| | - Lázaro Centanin
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| | - Joachim Wittbrodt
- Centre for Organismal Studies (COS) Heidelberg, Im Neuenheimer Feld 230, Heidelberg 69120, Germany
| |
Collapse
|
348
|
Chen CH, Puliafito A, Cox BD, Primo L, Fang Y, Di Talia S, Poss KD. Multicolor Cell Barcoding Technology for Long-Term Surveillance of Epithelial Regeneration in Zebrafish. Dev Cell 2016; 36:668-80. [PMID: 27003938 PMCID: PMC4806370 DOI: 10.1016/j.devcel.2016.02.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 01/17/2016] [Accepted: 02/19/2016] [Indexed: 12/12/2022]
Abstract
Current fate mapping and imaging platforms are limited in their ability to capture dynamic behaviors of epithelial cells. To deconstruct regenerating adult epithelial tissue at single-cell resolution, we created a multicolor system, skinbow, that barcodes the superficial epithelial cell (SEC) population of zebrafish skin with dozens of distinguishable tags. With image analysis to directly segment and simultaneously track hundreds of SECs in vivo over entire surface lifetimes, we readily quantified the orchestration of cell emergence, growth, repositioning, and loss under homeostatic conditions and after exfoliation or appendage amputation. We employed skinbow-based imaging in conjunction with a live reporter of epithelial stem cell cycle activity and as an instrument to evaluate the effects of reactive oxygen species on SEC behavior during epithelial regeneration. Our findings introduce a platform for large-scale, quantitative in vivo imaging of regenerating skin and reveal unanticipated collective dynamism in epithelial cell size, mobility, and interactions.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Alberto Puliafito
- Laboratory of Cell Migration, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Torino 10060, Italy
| | - Ben D Cox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Luca Primo
- Laboratory of Cell Migration, Candiolo Cancer Institute - FPO, IRCCS, Candiolo, Torino 10060, Italy; Department of Oncology, University of Torino, Torino 10060, Italy
| | - Yi Fang
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
349
|
Adult cell plasticity in vivo: de-differentiation and transdifferentiation are back in style. Nat Rev Mol Cell Biol 2016; 17:413-25. [PMID: 26979497 DOI: 10.1038/nrm.2016.24] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biologists have long been intrigued by the possibility that cells can change their identity, a phenomenon known as cellular plasticity. The discovery that terminally differentiated cells can be experimentally coaxed to become pluripotent has invigorated the field, and recent studies have demonstrated that changes in cell identity are not limited to the laboratory. Specifically, certain adult cells retain the capacity to de-differentiate or transdifferentiate under physiological conditions, as part of an organ's normal injury response. Recent studies have highlighted the extent to which cell plasticity contributes to tissue homeostasis, findings that have implications for cell-based therapy.
Collapse
|
350
|
Kwak M, Alston N, Ghazizadeh S. Identification of Stem Cells in the Secretory Complex of Salivary Glands. J Dent Res 2016; 95:776-83. [PMID: 26936214 DOI: 10.1177/0022034516634664] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Salivary glands have an essential secretory function for maintaining oral and overall health. The epithelial compartment of the gland is composed of several highly specialized cell types that cooperate to secrete and deliver saliva to the oral cavity. The mouse submandibular gland has been used as a model for major salivary glands in human. The secretory complex in this model is composed of 2 secretory compartments, including acini and granular ducts connected by intercalated ducts. Contractile myoepithelial cells surround the secretory complex to facilitate salivary flow. Whether differentiated cells in the secretory complex are maintained by self-duplication or contribution from stem cells has remained an open question. Here, in analyzing the expression of basal cytokeratin (K) 14 in the secretory complex, we discovered a subset of K14(+) ductal cells in the intercalated ducts of the adult gland. These cells are distinct from the K14-expressing basal/myoepithelial cells, proliferate at a significantly higher rate than any other epithelial cell type in the gland, and reside in a spatially defined domain within the intercalated duct. Using inducible genetic lineage tracing, we show that K14(+) ductal cells represent a long-lived yet cycling population of stem cells that are established during development and contribute to the formation and maintenance of the granular ducts throughout life. Our data provide direct evidence for the existence of stem cells contributing to homeostasis of salivary glands, as well as new insights into glandular pathobiology.
Collapse
Affiliation(s)
- M Kwak
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| | - N Alston
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| | - S Ghazizadeh
- Department of Oral Biology and Pathology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|