301
|
Lokmane L, Haumaitre C, Garcia-Villalba P, Anselme I, Schneider-Maunoury S, Cereghini S. Crucial role of vHNF1 in vertebrate hepatic specification. Development 2008; 135:2777-86. [PMID: 18635606 DOI: 10.1242/dev.023010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mouse liver induction occurs via the acquisition of ventral endoderm competence to respond to inductive signals from adjacent mesoderm, followed by hepatic specification. Little is known about the regulatory circuit involved in these processes. Through the analysis of vHnf1 (Hnf1b)-deficient embryos, generated by tetraploid embryo complementation, we demonstrate that lack of vHNF1 leads to defective hepatic bud formation and abnormal gut regionalization. Thickening of the ventral hepatic endoderm and expression of known hepatic genes do not occur. At earlier stages, hepatic specification of vHnf1-/- ventral endoderm is disrupted. More importantly, mutant ventral endoderm cultured in vitro loses its responsiveness to inductive FGF signals and fails to induce the hepatic-specification genes albumin and transthyretin. Analysis of liver induction in zebrafish indicates a conserved role of vHNF1 in vertebrates. Our results reveal the crucial role of vHNF1 at the earliest steps of liver induction: the acquisition of endoderm competence and the hepatic specification.
Collapse
Affiliation(s)
- Ludmilla Lokmane
- Centre National de la Recherche Scientifique, UMR7622 Biologie du Developpement, 9 quai St. Bernard Bât. C, 75005 Paris, France
| | | | | | | | | | | |
Collapse
|
302
|
Wederell ED, Bilenky M, Cullum R, Thiessen N, Dagpinar M, Delaney A, Varhol R, Zhao Y, Zeng T, Bernier B, Ingham M, Hirst M, Robertson G, Marra MA, Jones S, Hoodless PA. Global analysis of in vivo Foxa2-binding sites in mouse adult liver using massively parallel sequencing. Nucleic Acids Res 2008; 36:4549-64. [PMID: 18611952 PMCID: PMC2504304 DOI: 10.1093/nar/gkn382] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Foxa2 (HNF3β) is a one of three, closely related transcription factors that are critical to the development and function of the mouse liver. We have used chromatin immunoprecipitation and massively parallel Illumina 1G sequencing (ChIP–Seq) to create a genome-wide profile of in vivo Foxa2-binding sites in the adult liver. More than 65% of the ∼11.5 k genomic sites associated with Foxa2 binding, mapped to extended gene regions of annotated genes, while more than 30% of intragenic sites were located within first introns. 20.5% of all sites were further than 50 kb from any annotated gene, suggesting an association with novel gene regions. QPCR analysis demonstrated a strong positive correlation between peak height and fold enrichment for Foxa2-binding sites. We measured the relationship between Foxa2 and liver gene expression by overlapping Foxa2-binding sites with a SAGE transcriptome profile, and found that 43.5% of genes expressed in the liver were also associated with Foxa2 binding. We also identified potential Foxa2-interacting transcription factors whose motifs were enriched near Foxa2-binding sites. Our comprehensive results for in vivo Foxa2-binding sites in the mouse liver will contribute to resolving transcriptional regulatory networks that are important for adult liver function.
Collapse
|
303
|
Ito Y, Seno S, Nakamura H, Fukui A, Asashima M. XHAPLN3 plays a key role in cardiogenesis by maintaining the hyaluronan matrix around heart anlage. Dev Biol 2008; 319:34-45. [DOI: 10.1016/j.ydbio.2008.03.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 02/22/2008] [Accepted: 03/31/2008] [Indexed: 11/28/2022]
|
304
|
Wei X, Wang CY, Liu QP, Li J, Li D, Zhao FT, Lian JQ, Xie YM, Wang PZ, Bai XF, Jia ZS. In Vitro Hepatic Differentiation of Mesenchymal Stem Cells from Human Fetal Bone Marrow. J Int Med Res 2008; 36:721-7. [DOI: 10.1177/147323000803600414] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We examined whether human fetal mesenchymal stem cells (FMSCs) derived from fetal bone marrow were able to differentiate into functional hepatocyte-like cells in vitro The surface phenotype of FMSCs was characterized by flow cytometry. To induce hepatic differentiation of FMSCs, we added hepatocyte growth factor, basic fibroblast growth factor and oncostatin M into the cell culture medium. After 21 days of hepatocyte induction, FMSCs expressed the hepatocyte-specific markers, α-fetoprotein and cytokeratin 18, as demonstrated by immunofluorescence staining. Differentiated FMSCs also demonstrated in vitro functions characteristic of liver cells, including albumin production, urea secretion and glycogen storage. In conclusion, fetal bone marrow-derived FMSCs are able to differentiate into functional hepatocyte-like cells and may serve as a source of cells for liver disease therapy.
Collapse
Affiliation(s)
- X Wei
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - CY Wang
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - QP Liu
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - J Li
- Department of Cardiology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - D Li
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - FT Zhao
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - JQ Lian
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - YM Xie
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - PZ Wang
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - XF Bai
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| | - ZS Jia
- Centre of Diagnosis and Treatment for Infectious Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
305
|
Abstract
Pancreatic cancer has one of the highest mortalities among all malignancies and there is an urgent need for new therapy. This might be achieved by resolving the detailed biological mechanism, and in this study we examined how pancreatic cancer cells develop aggressive properties by focusing on signalling through the fibroblast growth factor (FGF)10 and FGF receptor (FGFR)2, which play important roles in pancreatic organogenesis. Immunostaining of pancreatic cancer tissues showed that FGFR2 was expressed in cancer cells, whereas FGF10 was expressed in stromal cells surrounding the cancer cells. Patients with high FGFR2 expression in cancer cells had a shorter survival time compared to those with low FGFR2 expression. Fibroblast growth factor 10 induced cell migration and invasion of CFPAC-1 and AsPC-1 pancreatic cancer cells through interaction with FGFR2-IIIb, a specific isoform of FGFR2. Fibroblast growth factor 10 also induced expression of mRNA for membrane type 1-matrix metalloproteinase (MT1-MMP) and transforming growth factor (TGF)-β1, and increased secretion of TGF-β1 protein from these cell lines. These data indicate that stromal FGF10 induces migration and invasion in pancreatic cancer cells through interaction with FGFR2, resulting in a poor prognosis. This suggests that FGF10/FGFR2 signalling is a promising target for new molecular therapy against pancreatic cancer.
Collapse
|
306
|
Kamiya A, Kakinuma S, Onodera M, Miyajima A, Nakauchi H. Prospero-related homeobox 1 and liver receptor homolog 1 coordinately regulate long-term proliferation of murine fetal hepatoblasts. Hepatology 2008; 48:252-64. [PMID: 18571787 DOI: 10.1002/hep.22303] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED During early to late-fetal liver development, bipotential hepatoblasts proliferate and differentiate into hepatocytes and cholangiocytes. The prospero-related homeobox 1 gene (Prox1) is expressed in hepatoblasts, and the inactivation of Prox1 causes defective early liver development, in particular, faulty migration of fetal hepatoblasts. Prox1 binds to another hepatocyte-enriched transcription factor, liver receptor homolog 1 (Lrh1), and suppresses its transcriptional activity. However, the molecular mechanism by which Prox1 and Lrh1 regulate the characteristics of fetal hepatic cells remains unknown. We investigated the contribution of Prox1 and Lrh1 in early liver development. Embryonic day 13 liver-derived CD45-Ter119-Dlk+ cells were purified as fetal hepatic stem/progenitor cells, and formation of colonies derived from single cells was detected under low-density culture conditions. We found that overexpression of Prox1 using retrovirus infection induced migration and proliferation of fetal hepatic stem/progenitor cells. In contrast, overexpression of Lrh1 suppressed colony formation. Prox1 induced the long-term proliferation of fetal hepatic stem/progenitor cells, which exhibited both high proliferative activity and bipotency for differentiation. Prox1 up-regulated expression of cyclins D2, E1, and E2, whereas it suppressed expression of p16(ink4a), the cdk inhibitor. In addition, overexpression of Prox1 significantly inhibited the proximal promoter activity of p16(ink4a). CONCLUSION These results suggested that Prox1 and Lrh1 coordinately regulate development of hepatic stem/progenitor cells and that Prox1 induces fetal hepatocytic proliferation through the suppression of the promoter activity of p16(ink4a).
Collapse
Affiliation(s)
- Akihide Kamiya
- Laboratory of Stem Cell Therapy, Center for Experimental Medicine, The Institute of Medical Science, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
307
|
Collardeau-Frachon S, Scoazec JY. Vascular development and differentiation during human liver organogenesis. Anat Rec (Hoboken) 2008; 291:614-27. [PMID: 18484606 DOI: 10.1002/ar.20679] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The vascular architecture of the human liver is established at the end of a complex embryological history. The hepatic primordium emerges at the 4th week and is in contact with two major venous systems of the fetal circulation: the vitelline veins and the umbilical veins. The fetal architecture of the afferent venous circulation of the liver is acquired between the 4th and the 6th week. At the end of this process, the portal vein is formed from several distinct segments of the vitelline veins; the portal sinus, deriving from the subhepatic intervitelline anastomosis, connects the umbilical vein, which is the predominant vessel of the fetal liver, to the portal system; the ductus venosus connects the portal sinus to the vena cava inferior. At birth, the umbilical vein and the ductus venosus collapse; the portal vein becomes the only afferent vein of the liver. The efferent venous vessels of the liver derive from the vitelline veins and are formed between the 4th and the 6th week. The hepatic artery forms at the 8th week; intrahepatic arterial branches progressively extend from the central to the peripheral areas of the liver between the 10th and the 15th week. Hepatic sinusoids appear very early, as soon as hepatic cords invade the septum transversum at the 4th week. They then progressively acquire their distinctive structural and functional characters, through a multistage process. Vascular development and differentiation during liver organogenesis is, therefore, a unique process; many of the cellular and molecular mechanisms involved remain poorly understood.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Hospices Civils de Lyon, Hôpital Edouard Herriot, Service Central d'Anatomie et Cytologie Pathologiques, Lyon, France
| | | |
Collapse
|
308
|
Zhu W, Shiojima I, Ito Y, Li Z, Ikeda H, Yoshida M, Naito AT, Nishi JI, Ueno H, Umezawa A, Minamino T, Nagai T, Kikuchi A, Asashima M, Komuro I. IGFBP-4 is an inhibitor of canonical Wnt signalling required for cardiogenesis. Nature 2008; 454:345-9. [PMID: 18528331 DOI: 10.1038/nature07027] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 04/24/2008] [Indexed: 01/01/2023]
Abstract
Insulin-like growth-factor-binding proteins (IGFBPs) bind to and modulate the actions of insulin-like growth factors (IGFs). Although some of the actions of IGFBPs have been reported to be independent of IGFs, the precise mechanisms of IGF-independent actions of IGFBPs are largely unknown. Here we report a previously unknown function for IGFBP-4 as a cardiogenic growth factor. IGFBP-4 enhanced cardiomyocyte differentiation in vitro, and knockdown of Igfbp4 attenuated cardiomyogenesis both in vitro and in vivo. The cardiogenic effect of IGFBP-4 was independent of its IGF-binding activity but was mediated by the inhibitory effect on canonical Wnt signalling. IGFBP-4 physically interacted with a Wnt receptor, Frizzled 8 (Frz8), and a Wnt co-receptor, low-density lipoprotein receptor-related protein 6 (LRP6), and inhibited the binding of Wnt3A to Frz8 and LRP6. Although IGF-independent, the cardiogenic effect of IGFBP-4 was attenuated by IGFs through IGFBP-4 sequestration. IGFBP-4 is therefore an inhibitor of the canonical Wnt signalling required for cardiogenesis and provides a molecular link between IGF signalling and Wnt signalling.
Collapse
Affiliation(s)
- Weidong Zhu
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
309
|
Fujimori H, Asahina K, Shimizu-Saito K, Ikeda R, Tanaka Y, Teramoto K, Morita I, Teraoka H. Vascular endothelial growth factor promotes proliferation and function of hepatocyte-like cells in embryoid bodies formed from mouse embryonic stem cells. J Hepatol 2008; 48:962-73. [PMID: 18384904 DOI: 10.1016/j.jhep.2008.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Revised: 01/09/2008] [Accepted: 01/15/2008] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Embryoid bodies (EBs) formed from embryonic stem cells (ESCs) differentiate into hepatocyte-like cells (HLCs), and are thus thought to be a useful cell source for drug testing and bioartificial liver. The aim of this study was to induce proliferation and function of ESC-derived HLCs in EBs using HLC-endothelial cell interaction. METHODS EBs were cultured in the presence of vascular endothelial growth factor (VEGF) and/or VEGF receptor (VEGFR) inhibitors. To reproduce HLC-endothelial cell interaction, we overexpressed VEGF in ESC-derived HLCs under the control of Cyp7a1 gene in EBs. RESULTS VEGF added to the cultured EBs increased the proliferation of ESC-derived endothelial cells, resulting in the promotion of proliferation and function of ESC-derived HLCs. In EBs, the VEGFR2 inhibitor suppressed expression of albumin and endothelial cell marker genes, whereas the inhibitor for both VEGFR1 and VEGFR2 suppressed expression of Cyp7a1 and hepatocyte growth factor (Hgf) genes. Upon exposure to VEGF, the endothelial cells in EBs increased Hgf mRNA expression. Forced VEGF expression in ESC-derived HLCs in EBs induced angiogenesis around the HLCs and resulted in an increase in the amount of HLCs. CONCLUSIONS VEGF indirectly induces the proliferation and function of ESC-derived HLCs through VEGFR1 and VEGFR2 signaling in endothelial cells.
Collapse
Affiliation(s)
- Hiroaki Fujimori
- Department of Pathological Biochemistry, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | |
Collapse
|
310
|
Shiraki N, Umeda K, Sakashita N, Takeya M, Kume K, Kume S. Differentiation of mouse and human embryonic stem cells into hepatic lineages. Genes Cells 2008; 13:731-46. [PMID: 18513331 DOI: 10.1111/j.1365-2443.2008.01201.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We recently reported a novel method to induce embryonic stem (ES) cells differentiate into an endodermal fate, especially pancreatic, using a supporting cell line. Here we describe the modified culture condition with the addition and withdrawal of secreted growth factors could induce ES cells to selectively differentiate into a hepatic fate efficiently. The signaling of BMP and FGF that have been implicated in hepatic differentiation during normal embryonic development are shown to play pivotal roles in generating hepatic cells from the definitive endoderm derived from ES cells. Moreover, the expression of AFP, Albumin or a biliary molecular marker appeared sequentially thus suggested the differentiation of ES cells recapitulated normal developmental processes of liver. The ES cell-derived differentiated cells showed evidence of glycogen storage, secreted Albumin, exhibited drug metabolism activities and expressed a set of cytochrome or drug conjugate enzymes, drug transporters specifically expressed in mature hepatocytes. With the same procedure, human ES cells also gave rise to cells with mature hepatocytes' characteristics. In conclusion, this novel procedure for hepatic differentiation will be useful for elucidation of molecular mechanisms of hepatic fate decision at gut regionalization, and could represent an attractive approach for a surrogate cell source for pharmaceutical studies such as toxicology.
Collapse
Affiliation(s)
- Nobuaki Shiraki
- Divisions of Stem Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Honjo 2-2-1, Kumamoto 860-0811, Japan
| | | | | | | | | | | |
Collapse
|
311
|
Shin CH, Chung WS, Hong SK, Ober EA, Verkade H, Field HA, Huisken J, Stainier DYR. Multiple roles for Med12 in vertebrate endoderm development. Dev Biol 2008; 317:467-79. [PMID: 18394596 PMCID: PMC2435012 DOI: 10.1016/j.ydbio.2008.02.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 02/02/2023]
Abstract
In zebrafish, the endoderm originates at the blastula stage from the most marginal blastomeres. Through a series of complex morphogenetic movements and differentiation events, the endodermal germ layer gives rise to the epithelial lining of the digestive tract as well as its associated organs such as the liver, pancreas, and swim bladder. How endodermal cells differentiate into distinct cell types such as hepatocytes or endocrine and exocrine pancreatic cells remains a major question. In a forward genetic screen for genes regulating endodermal organ development, we identified mutations at the shiri locus that cause defects in the development of a number of endodermal organs including the liver and pancreas. Detailed phenotypic analyses indicate that these defects are partially due to a reduction in endodermal expression of the hairy/enhancer of split-related gene, her5, at mid to late gastrulation stages. Using the Tg(0.7her5:EGFP)(ne2067) line, we show that her5 is expressed in the endodermal precursors that populate the pharyngeal region as well as the organ-forming region. We also find that knocking down her5 recapitulates some of the endodermal phenotypes of shiri mutants, further revealing the role of her5 in endoderm development. Positional cloning reveals that shiri encodes Med12, a regulatory subunit of the transcriptional Mediator complex recently associated with two human syndromes. Additional studies indicate that Med12 modulates the ability of Casanova/Sox32 to induce sox17 expression. Thus, detailed phenotypic analyses of embryos defective in a component of the Mediator complex have revealed new insights into discrete aspects of vertebrate endoderm development, and provide possible explanations for the craniofacial and digestive system defects observed in humans with mutations in MED12.
Collapse
Affiliation(s)
- Chong Hyun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Won-Suk Chung
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD20892, USA
| | - Elke A. Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Heather Verkade
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Holly A. Field
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Jan Huisken
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| | - Didier Y. R. Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, and Liver Center, University of California, San Francisco, San Francisco, CA94158, USA
| |
Collapse
|
312
|
Zaret KS. Genetic programming of liver and pancreas progenitors: lessons for stem-cell differentiation. Nat Rev Genet 2008; 9:329-40. [DOI: 10.1038/nrg2318] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
313
|
Agarwal S, Holton KL, Lanza R. Efficient differentiation of functional hepatocytes from human embryonic stem cells. Stem Cells 2008; 26:1117-27. [PMID: 18292207 DOI: 10.1634/stemcells.2007-1102] [Citation(s) in RCA: 270] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Differentiation of human embryonic stem cells (hESCs) to specific functional cell types can be achieved using methods that mimic in vivo embryonic developmental programs. Current protocols for generating hepatocytes from hESCs are hampered by inefficient differentiation procedures that lead to low yields and large cellular heterogeneity. We report here a robust and highly efficient process for the generation of high-purity (70%) hepatocyte cultures from hESCs that parallels sequential hepatic development in vivo. Highly enriched populations of definitive endoderm were generated from hESCs and then induced to differentiate along the hepatic lineage by the sequential addition of inducing factors implicated in physiological hepatogenesis. The differentiation process was largely uniform, with cell cultures progressively expressing increasing numbers of hepatic lineage markers, including GATA4, HNF4alpha, alpha-fetoprotein, CD26, albumin, alpha-1-antitrypsin, Cyp7A1, and Cyp3A4. The hepatocytes exhibited functional hepatic characteristics, such as glycogen storage, indocyanine green uptake and release, and albumin secretion. In a mouse model of acute liver injury, the hESC-derived definitive endoderm differentiated into hepatocytes and repopulated the damaged liver. The methodology described here represents a significant step toward the efficient generation of hepatocytes for use in regenerative medicine and drug discovery.
Collapse
Affiliation(s)
- Sadhana Agarwal
- Advanced Cell Technology, 381 Plantation Street, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
314
|
Wnt9a secreted from the walls of hepatic sinusoids is essential for morphogenesis, proliferation, and glycogen accumulation of chick hepatic epithelium. Dev Biol 2008; 319:234-47. [PMID: 18513713 DOI: 10.1016/j.ydbio.2008.04.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/25/2008] [Accepted: 04/03/2008] [Indexed: 11/22/2022]
Abstract
Hepatic epithelial morphogenesis, including hepatoblast migration and proliferation in the septum transversum, requires the interaction of hepatic epithelium with the embryonic sinusoidal wall. No factors that mediate this interaction have yet been identified. As the beta-catenin pathway is active in hepatoblast proliferation, then Wnt ligands might activate the canonical Wnt pathway during liver development. Here, we investigated the role of Wnts in mediating epithelial vessel interactions in the developing chick liver. We found that Wnt9a was specifically expressed in both endothelial and stellate cells of the embryonic sinusoidal wall. Induced overexpression of Wnt9a resulted in hepatomegaly with hyperplasia of the hepatocellular cords, and in hyperproliferation of hepatocytes. Knockdown of Wnt9a caused a reduction in liver size, with hypoplasia of hepatocellular cord branching, and hypoproliferation of hepatoblasts, and also inhibited glycogen accumulation at later developmental stages. Wnt9a promoted in vivo stabilization of beta-catenin through binding with Frizzled 4, 7, and 9, and activated TOPflash reporter expression in vitro via Frizzled 7 and 9. Our results demonstrate that Wnt9a from the embryonic sinusoidal wall is required for the proper morphogenesis of chick hepatocellular cords, proliferation of hepatoblasts/hepatocytes, and glycogen accumulation in hepatocytes. Wnt9a signaling appears to be mediated by an Fzd7/9-beta-catenin pathway.
Collapse
|
315
|
Yagi K, Kojima M, Oyagi S, Ikeda E, Hirose M, Isoda K, Kawase M, Kondoh M, Ohgushi H. [Application of mesenchymal stem cells to liver regenerative medicine]. YAKUGAKU ZASSHI 2008; 128:3-9. [PMID: 18176050 DOI: 10.1248/yakushi.128.3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stem cell-based therapy has received attention as a possible alternative to organ transplantation, owing to the ability of stem cells to repopulate and differentiate at the engrafted site. We transplanted bone marrow-derived mesenchymal stem cells (BMSCs) into liver-injured rats to test the therapeutic effect. Rat bone marrow cells were cultured in the presence of hepatocyte growth factor (HGF). RT-PCR and immunocytochemical analysis indicated that the BMSCs expressed the albumin mRNA and the production of protein after cultivation with HGF for 2 weeks. The BMSCs appeared to differentiate into hepatocyte-like cells in response to the culture with HGF. After labeling with a fluorescent marker, the BMSCs were transplanted into CCl(4)-injured rats by injection through the caudal vein. The liver was excised and blood samples were collected 4 weeks later. Engraftment of the transplanted BMSCs was seen with significant fluorescence in the injured liver. Transplantation of the BMSCs into liver-injured rats restored their serum albumin level and suppressed transaminase activity and liver fibrosis. Therefore, BMSCs were shown to have a therapeutic effect on liver injury. Recently, we have been trying to use mesenchymal stem cells isolated from dental papilla of discarded human wisdom teeth. Autologous transplantation of mesenchymal stem cells from bone marrow and dental papilla could be ethically and functionally promising for stem cell-based therapy.
Collapse
Affiliation(s)
- Kiyohito Yagi
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Shin D, Shin CH, Tucker J, Ober EA, Rentzsch F, Poss KD, Hammerschmidt M, Mullins MC, Stainier DYR. Bmp and Fgf signaling are essential for liver specification in zebrafish. Development 2008; 134:2041-50. [PMID: 17507405 DOI: 10.1242/dev.000281] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Based on data from in vitro tissue explant and ex vivo cell/bead implantation experiments, Bmp and Fgf signaling have been proposed to regulate hepatic specification. However, genetic evidence for this hypothesis has been lacking. Here, we provide in vivo genetic evidence that Bmp and Fgf signaling are essential for hepatic specification. We utilized transgenic zebrafish that overexpress dominant-negative forms of Bmp or Fgf receptors following heat-shock induction. These transgenes allow one to bypass the early embryonic requirements for Bmp and Fgf signaling, and also to completely block Bmp or Fgf signaling. We found that the expression of hhex and prox1, the earliest liver markers in zebrafish, was severely reduced in the liver region when Bmp or Fgf signaling was blocked just before hepatic specification. However, hhex and prox1 expression in adjacent endodermal and mesodermal tissues appeared unaffected by these manipulations. Additional genetic studies indicate that the endoderm maintains competence for Bmp-mediated hepatogenesis over an extended window of embryonic development. Altogether, these data provide the first genetic evidence that Bmp and Fgf signaling are essential for hepatic specification, and suggest that endodermal cells remain competent to differentiate into hepatocytes for longer than anticipated.
Collapse
Affiliation(s)
- Donghun Shin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, Liver Center, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Barthelery M, Salli U, Vrana KE. Nuclear proteomics and directed differentiation of embryonic stem cells. Stem Cells Dev 2008; 16:905-19. [PMID: 17999636 DOI: 10.1089/scd.2007.0071] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
During the past decade, regenerative medicine has been the subject of intense interest due, in large part, to our growing knowledge of embryonic stem (ES) cell biology. ES cells give rise to cell lineages from the three primordial germ layers--endoderm, mesoderm, and ectoderm. This process needs to be channeled if these cells are to be differentiated efficiently and used subsequently for therapeutic purposes. Indeed, an important area of investigation involves directed differentiation to influence the lineage commitment of these pluripotent cells in vitro. Various strategies involving timely growth factor supplementation, cell co-cultures, and gene transfection are used to drive lineage specific emergence. The underlying goal is to control directly the center of gene expression and cellular programming--the nucleus. Gene expression is enabled, managed, and sustained by the collective actions and interactions of proteins found in the nucleus--the nuclear proteome--in response to extracellular signaling. Nuclear proteomics can inventory these nuclear proteins in differentiating cells and decipher their dynamics during cellular phenotypic commitment. This review details what is currently known about nuclear effectors of stem cell differentiation and describes emerging techniques in the discovery of nuclear proteomics that will illuminate new transcription factors and modulators of gene expression.
Collapse
Affiliation(s)
- Miguel Barthelery
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
318
|
He WY, Liu SX, Jiang HQ. Effect of different induction conditions on hepatocyte-like cells induced in vitro by rat bone marrow mesenchymal stem cells. Shijie Huaren Xiaohua Zazhi 2008; 16:473-478. [DOI: 10.11569/wcjd.v16.i5.473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the optimal conditions for in vitro induction and culture of rat bone marrow mesenchymal stem cells (MSCs) in order to provide the theoretical basis for the treatment of severe liver disease patients with MSCs.
METHODS: MSCs were isolated by gradient density centrifugation and plastic adherence and purified. MSCs were induced by different concentrations of FBS and cytokines. Levels of AFP and albumin in the supernatant were measured by radioimmunoassay on days 15, 21 and 27. On day 27, cells were collected. Glycogen store of heoatocytes was determined by periodic acid-Schiff staining and the expression of CK-18 and CK-19 in MSCs were detected by immunocytochemical analysis.
RESULTS: The level of AFP was higher in induced MSCs than in non-induced MSCs on days 15, 21, 27, and reached its highest on day 21. There was no significant difference in albumin levels on day 15, between induced and non-induced MSCs. However, on days 21 and 27, the albumin level was higher in induced MSCs than in non-induced MSCs. Glycogen storage in induced MSCs was observed on day 27 but not in non-induced MSCs. The induced MSCs expressed CK-18 and CK-19 while the non-induced MSCs did not. Multiple factor analysis by ANOVA showed that MSCs should be cultured in Dulbecco's modified Eagle's medium supplemented with 200 mL/L FBS, 20 μg/L hepatocyte growth factor (HGF) and 20 μg/L fibroblast growth factor 4 (FGF-4), which might be the best induction conditions for MSCs.
CONCLUSION: Rat MSCs can differentiate into hepatocyte-like cells with hepatic phenotypes and functions in the presence HGF and/or FGF-4 in vitro. The concentrations of fetal bovine serum, HGF and FGF-4 affect the differentiation of rat MSCs into hepatocyte-like cells. MSCs can be used in the treatment of severe hepatic diseases.
Collapse
|
319
|
Oertel M, Shafritz DA. Stem cells, cell transplantation and liver repopulation. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1782:61-74. [PMID: 18187050 PMCID: PMC2857398 DOI: 10.1016/j.bbadis.2007.12.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/10/2007] [Accepted: 12/12/2007] [Indexed: 02/07/2023]
Abstract
Liver transplantation is currently the only therapeutic option for patients with end-stage chronic liver disease and for severe acute liver failure. Because of limited donor availability, attention has been focused on the possibility to restore liver mass and function through cell transplantation. Stem cells are a promising source for liver repopulation after cell transplantation, but whether or not the adult mammalian liver contains hepatic stem cells is highly controversial. Part of the problem is that proliferation of mature adult hepatocytes is sufficient to regenerate the liver after two-thirds partial hepatectomy or acute toxic liver injury and participation of stem cells is not required. However, under conditions in which hepatocyte proliferation is blocked, undifferentiated epithelial cells in the periportal areas, called "oval cells", proliferate, differentiate into hepatocytes and restore liver mass. These cells are referred to as facultative liver stem cells, but they do not repopulate the normal liver after their transplantation. In contrast, epithelial cells isolated from the early fetal liver can effectively repopulate the normal liver, but they are already traversing the hepatic lineage and may not be true stem cells. Mesenchymal stem cells and embryonic stem cells can be induced to differentiate along the hepatic lineage in culture, but at present these cells are inefficient in repopulating the liver. This review will characterize these various cell types and compare the properties of these cells and the conditions under which they do or do not repopulate the liver following their transplantation.
Collapse
Affiliation(s)
- Michael Oertel
- Marion Bessin Liver Research Center, Division of Hepatology, Department of Medicine, Albert Einstein College of Medicine of Yeshiva University, 1300 Morris Park Avenue, Bronx, NY 10461, USA.
| | | |
Collapse
|
320
|
Miki R, Tatsumi N, Matsumoto K, Yokouchi Y. New primary culture systems to study the differentiation and proliferation of mouse fetal hepatoblasts. Am J Physiol Gastrointest Liver Physiol 2008; 294:G529-39. [PMID: 18096607 DOI: 10.1152/ajpgi.00412.2007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatoblasts have the potential to differentiate into both hepatocytes and biliary epithelial cells through a differentiation program that has not been fully elucidated. With the aim to better define the mechanism of differentiation of hepatoblasts, we isolated hepatoblasts and established new culture systems. We isolated hepatoblasts from E12.5 fetal mouse liver by using E-cadherin. The E-cadherin+ cells expressed alpha-fetoprotein (AFP) and albumin (Alb) but not cytokeratin 19 (CK19). Transplantation of the E-cadherin+ cells into mice that had been subjected to liver injury or biliary epithelial injury led to differentiation of the cells into hepatocytes or biliary epithelial cells, respectively. In a low-cell-density culture system in the absence of additional growth factors, E-cadherin+ cells formed colonies of various sizes, largely comprising Alb-positive cells. Supplementation of the culture medium with hepatocyte growth factor and epidermal growth factor promoted proliferation of the cells. Thus the low-cell-density culture system should be useful to identify inductive factors that regulate the proliferation and differentiation of hepatoblasts. In a high-cell-density system in the presence of oncostatin M+dexamethasone, E14.5, but not E12.5, E-cadherin+ cells differentiated into mature hepatocytes, suggesting that unidentified factors are involved in hepatic maturation. Culture of E-cadherin+ cells derived from E12.5 or E14.5 liver under high-cell-density conditions should allow elucidation of the mechanism of hepatic differentiation in greater detail. These new culture systems should be of use to identify growth factors that induce hepatoblasts to proliferate or differentiate into hepatocytes and biliary epithelial cells.
Collapse
Affiliation(s)
- Rika Miki
- Division of Pattern Formation, Department of Organogenesis, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto, 860-0811, Japan
| | | | | | | |
Collapse
|
321
|
Bird TG, Lorenzini S, Forbes SJ. Activation of stem cells in hepatic diseases. Cell Tissue Res 2008; 331:283-300. [PMID: 18046579 PMCID: PMC3034134 DOI: 10.1007/s00441-007-0542-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/23/2007] [Indexed: 02/06/2023]
Abstract
The liver has enormous regenerative capacity. Following acute liver injury, hepatocyte division regenerates the parenchyma but, if this capacity is overwhelmed during massive or chronic liver injury, the intrinsic hepatic progenitor cells (HPCs) termed oval cells are activated. These HPCs are bipotential and can regenerate both biliary epithelia and hepatocytes. Multiple signalling pathways contribute to the complex mechanism controlling the behaviour of the HPCs. These signals are delivered primarily by the surrounding microenvironment. During liver disease, stem cells extrinsic to the liver are activated and bone-marrow-derived cells play a role in the generation of fibrosis during liver injury and its resolution. Here, we review our current understanding of the role of stem cells during liver disease and their mechanisms of activation.
Collapse
Affiliation(s)
- T G Bird
- MRC/University of Edinburgh Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| | | | | |
Collapse
|
322
|
Wauthier E, Schmelzer E, Turner W, Zhang L, LeCluyse E, Ruiz J, Turner R, Furth M, Kubota H, Lozoya O, Barbier C, McClelland R, Yao H, Moss N, Bruce A, Ludlow J, Reid L. Hepatic Stem Cells and Hepatoblasts: Identification, Isolation, and Ex Vivo Maintenance. Methods Cell Biol 2008; 86:137-225. [DOI: 10.1016/s0091-679x(08)00008-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
323
|
Pan RL, Chen Y, Pan RL, Chen Y, Xiang LX, Shao JZ, Dong XJ, Zhang GR. Fetal liver-conditioned medium induces hepatic specification from mouse bone marrow mesenchymal stromal cells: a novel strategy for hepatic transdifferentiation. Cytotherapy 2008; 10:668-75. [DOI: 10.1080/14653240802360704] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
324
|
Soto-Gutierrez A, Basma H, Navarro-Alvarez N, Uygun BE, Yarmush ML, Kobayashi N, Fox IJ. Differentiating stem cells into liver. Biotechnol Genet Eng Rev 2008; 25:149-163. [PMID: 21412354 DOI: 10.5661/bger-25-149] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Research involving differentiated embryonic stem (ES) cells may revolutionize the study of liver disease, improve the drug discovery process, and assist in the development of stem-cell-based clinical therapies. Generation of ES cell-derived hepatic tissue has benefited from an understanding of the cytokines, growth factors and biochemical compounds that are essential in liver development, and this knowledge has been used to mimic some aspects of embryonic development in vitro. Although great progress has been made in differentiating human ES cells into liver cells, current protocols have not yet produced cells with the phenotype of a mature hepatocyte. There is a significant need to formally establish criteria that would define what constitutes a functional human stem cell-derived hepatocyte. Here, we explore current challenges and future opportunities in development and use of ES cell-derived liver cells. ES-derived hepatocytes could be used to better understand liver biology, begin the process of "personalizing" health care, and to treat some forms of liver disease.
Collapse
Affiliation(s)
- Alejandroo Soto-Gutierrez
- Center for Engineering in Medicine and Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and the Shriners Hospitals for Children, Boston, MA 02114, USA
| | | | | | | | | | | | | |
Collapse
|
325
|
Millien G, Beane J, Lenburg M, Tsao PN, Lu J, Spira A, Ramirez. MI. Characterization of the mid-foregut transcriptome identifies genes regulated during lung bud induction. Gene Expr Patterns 2008; 8:124-39. [PMID: 18023262 PMCID: PMC2440337 DOI: 10.1016/j.modgep.2007.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Revised: 08/31/2007] [Accepted: 09/14/2007] [Indexed: 11/30/2022]
Abstract
To identify genes expressed during initiation of lung organogenesis, we generated transcriptional profiles of the prospective lung region of the mouse foregut (mid-foregut) microdissected from embryos at three developmental stages between embryonic day 8.5 (E8.5) and E9.5. This period spans from lung specification of foregut cells to the emergence of the primary lung buds. We identified a number of known and novel genes that are temporally regulated as the lung bud forms. Genes that regulate transcription, including DNA binding factors, co-factors, and chromatin remodeling genes, are the main functional groups that change during lung bud formation. Members of key developmental transcription and growth factor families, not previously described to participate in lung organogenesis, are expressed in the mid-foregut during lung bud induction. These studies also show early expression in the mid-foregut of genes that participate in later stages of lung development. This characterization of the mid-foregut transcriptome provides new insights into molecular events leading to lung organogenesis.
Collapse
Affiliation(s)
- Guetchyn Millien
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jennifer Beane
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Marc Lenburg
- Depatment of Genetics and Genomics, Boston University School of Medicine, Boston, MA 02118
| | - Po-Nien Tsao
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Jining Lu
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
| | - Avrum Spira
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
- Bioinformatics Program, Boston University College of Engineering, Boston, MA 02118
| | - Maria I. Ramirez.
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118
- Department of Pathology, and Laboratory Medicine, Boston University School of Medicine, Boston, MA 02118
| |
Collapse
|
326
|
Funa NS, Saldeen J, Akerblom B, Welsh M. Interdependent fibroblast growth factor and activin A signaling promotes the expression of endodermal genes in differentiating mouse embryonic stem cells expressing Src Homology 2-domain inactive Shb. Differentiation 2007; 76:443-53. [PMID: 18093225 DOI: 10.1111/j.1432-0436.2007.00249.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanisms controlling endodermal development during stem cell differentiation have been only partly elucidated, although previous studies have suggested the participation of fibroblast growth factor (FGF) and activin A in these processes. Shb is a Src homology 2 (SH2) domain-containing adapter protein that has been implicated in FGF receptor 1 (FGFR1) signaling. To study the putative crosstalk between activin A and Shb-dependent FGF signaling in the differentiation of endoderm from embryonic stem (ES) cells, embryoid bodies (EBs) derived from mouse ES cells overexpressing wild-type Shb or Shb with a mutated SH2 domain (R522K-Shb) were cultured in the presence of activin A. We show that expression of R522K-Shb results in up-regulation of FGFR1 and FGF2 in EBs. Addition of activin A to the cultures enhances the expression of endodermal genes primarily in EBs expressing mutant Shb. Inhibition of FGF signaling by the addition of the FGFR1 inhibitor SU5402 completely counteracts the synergistic effects of R522K-Shb and activin A. In conclusion, the present results suggest that expression of R522K-Shb enhances certain signaling pathways downstream of FGF and that an interplay between FGF and activin A participates in ES cell differentiation to endoderm.
Collapse
Affiliation(s)
- Nina S Funa
- Department of Medical Cell Biology, Uppsala University, Biomedical Centre, PO Box 571, Husargatan 3, SE-751 23, Uppsala, Sweden
| | | | | | | |
Collapse
|
327
|
Xu J, Lu Y, Ding F, Zhan X, Zhu M, Wang Z. Reversal of diabetes in mice by intrahepatic injection of bone-derived GFP-murine mesenchymal stem cells infected with the recombinant retrovirus-carrying human insulin gene. World J Surg 2007; 31:1872-1882. [PMID: 17653584 DOI: 10.1007/s00268-007-9168-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND The objective of this study was to assess the effect of intrahepatic injection of bone-derived green fluorescent protein (GFP)-transgenic murine mesenchymal stem cells (GFP-mMSCs) containing the human insulin(ins) gene in streptozotocin-induced diabetic mice. METHODS GFP-mMSCs were isolated from the bone marrow of GFP transgenic mice, expanded, and transfected with a recombinant retrovirus MSCV carrying the human insulin gene. C57BL/6J mice were made diabetic by an intraperitoneal administration of 160 mg/kg streptozotocin (STZ), followed by intrahepatic injection of transfected GFP-mMSCs. The variations in body weight and the blood glucose and serum insulin levels were determined after cell transplantation. GFP-mMSCs survival and human insulin expression in liver tissues were examined by fluorescent microscopy and immunohistochemistry. RESULTS The body weight in diabetic mice that received GFP-mMSCs harboring the human insulin gene was increased by 6% within 6 weeks after treatment, and the average blood glucose levels in these animals were 10.40 +/- 2.80 mmol/l (day 7) and 6.50 +/- 0.89 mmol/l (day 42), respectively, while the average values of blood glucose in diabetic animals without treatment were 26.80 +/- 2.49 mmol/l (day 7) and 25.40 +/- 4.10 mmol/l (day 42), showing a significant difference (p < 0.05). Moreover, secretion of human insulin of GFP-mMSCs in serum and animal liver was detected by radioimmunoassay (RIA) and immunohistochemistry (IHC). CONCLUSIONS Experimental diabetes could be relieved effectively for up to 6 weeks by intrahepatic transplantation of murine mesenchymal stem cells expressing human insulin. This study implies a novel approach of gene therapy for type I diabetes.
Collapse
Affiliation(s)
- Jian Xu
- Department of General Surgery, the Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Yuhua Lu
- Department of General Surgery, the Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Fei Ding
- Key Laboratory of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Xi Zhan
- Greenebaum Cancer Center, School of Medicine, University of Maryland, Baltimore, USA
| | - Mingyan Zhu
- Department of General Surgery, the Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China, 226001
| | - Zhiwei Wang
- Department of General Surgery, the Affiliated Hospital, Nantong University, Nantong, Jiangsu Province, China, 226001.
| |
Collapse
|
328
|
Rogler CE, Zhou HC, LeVoci L, Rogler LE. Clonal, cultured, murine fetal liver hepatoblasts maintain liver specification in chimeric mice. Hepatology 2007; 46:1971-8. [PMID: 17935221 DOI: 10.1002/hep.21894] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
UNLABELLED Recent studies have shown a pluripotential nature of stem cells that were previously thought to be committed to specific lineages. HBC-3 cells are a clonal fetal murine hepatoblast cell line derived from an e9.5 murine embryo, and these cells can be induced to form hepatocytes and bile ducts in vitro and when transplanted into adult mouse livers. To determine whether HBC-3 cells can exhibit a pluripotential phenotype, we created chimeric mice by injection of enhanced green fluorescent protein (EGFP)-marked HBC-3 cells into wild-type or dipeptidyl dipeptidase IV (DPPIV) knockout blastocysts. Genetically labeled HBC-3 cells were identified by EGFP polymerase chain reaction (PCR) in all the major organs of many chimeric mice and visualized in chimeras as bright red DPPIV-positive cells in the DPPIV knockout chimeric mice. Strikingly, the HBC-3 cells maintained phenotypic and biochemical features of liver specification in every case in which they were identified in nonliver organs, such as brain, mesenchyme, and bone. In adult liver they were present as small foci of hepatocytes and bile ducts in the chimeras. Additional major histocompatibility complex (MHC) marker analysis and X and Y chromosome content analysis further demonstrated that HBC-3 cells did not acquire the phenotype of the organs in which they resided and that they were not present because of fusion with host cells. CONCLUSION In contrast to other stem cell types, these data demonstrate that cultured murine fetal liver stem cells appear to maintain their liver specification in the context of nonliver organs in chimeric mice.
Collapse
Affiliation(s)
- Charles E Rogler
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
329
|
Shimomura T, Yoshida Y, Sakabe T, Ishii K, Gonda K, Murai R, Takubo K, Tsuchiya H, Hoshikawa Y, Kurimasa A, Hisatome I, Uyama T, Umezawa A, Shiota G. Hepatic differentiation of human bone marrow-derived UE7T-13 cells: Effects of cytokines and CCN family gene expression. Hepatol Res 2007; 37:1068-79. [PMID: 17627621 DOI: 10.1111/j.1872-034x.2007.00162.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM Bone marrow-derived mesenchymal stem cells (MSC) are expected to be an excellent source of cells for transplantation. We aimed to study the culture conditions and involved genes to differentiate MSC into hepatocytes. METHODS The culture conditions to induce the efficient differentiation of human bone marrow-derived UE7T-13 cells were examined using cytokines, hormones, 5-azacytidine and type IV collagen. RESULTS We found that combination of acidic fibroblast growth factor (aFGF), basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF) with type IV collagen coating induced hepatic differentiation of UE7T-13 cells at over 30% frequency, where expression of albumin mRNA was increased over 20-fold. The differentiated cells had functions of albumin production, glycogen synthesis and urea secretion as well as expressing hepatocyte-specific genes. In addition, these cellshave binuclear and cuboidal morphology, which is a characteristic feature of hepatocytes. During hepatic differentiation, UE7T-13 cells showed depressed expression of WISP1 and WISP2 genes, members of the CCN family. Conversely, knockdown of WISP1 or WISP2 gene by siRNA stimulated hepatic differentiation. The effect of aFGF/bFGF/HGF/type IV collagen coating and WISP1-siRNA on hepatic differentiation was additive. CONCLUSION The present study suggests that aFGF/bFGF/HGF/type IV collagen coating is the efficient condition for hepatic differentiation of UE7T-13 cells, and that WISP1 and WISP2 play an important role in hepatic transdifferentiation of these cells.
Collapse
Affiliation(s)
- Takashi Shimomura
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Tottori, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
330
|
van den Brink GR. Hedgehog signaling in development and homeostasis of the gastrointestinal tract. Physiol Rev 2007; 87:1343-75. [PMID: 17928586 DOI: 10.1152/physrev.00054.2006] [Citation(s) in RCA: 210] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Hedgehog family of secreted morphogenetic proteins acts through a complex evolutionary conserved signaling pathway to regulate patterning events during development and in the adult organism. In this review I discuss the role of Hedgehog signaling in the development, postnatal maintenance, and carcinogenesis of the gastrointestinal tract. Three mammalian hedgehog genes, sonic hedgehog (Shh), indian hedgehog (Ihh), and desert hedgehog (Dhh) have been identified. Shh and Ihh are important endodermal signals in the endodermal-mesodermal cross-talk that patterns the developing gut tube along different axes. Mutations in Shh, Ihh, and downstream signaling molecules lead to a variety of gross malformations of the murine gastrointestinal tract including esophageal atresia, tracheoesophageal fistula, annular pancreas, midgut malrotation, and duodenal and anal atresia. These congenital malformations are also found in varying constellations in humans, suggesting a possible role for defective Hedgehog signaling in these patients. In the adult, Hedgehog signaling regulates homeostasis in several endoderm-derived epithelia, for example, the stomach, intestine, and pancreas. Finally, growth of carcinomas of the proximal gastrointestinal tract such as esophageal, gastric, biliary duct, and pancreatic cancers may depend on Hedgehog signaling offering a potential avenue for novel therapy for these aggressive cancers.
Collapse
Affiliation(s)
- Gijs R van den Brink
- Center for Experimental and Molecular Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
331
|
Liang X, Ma L, Thai NL, Fung JJ, Qian S, Lu L. The role of liver-derived regulatory dendritic cells in prevention of type 1 diabetes. Immunology 2007; 120:251-60. [PMID: 17233742 PMCID: PMC2265858 DOI: 10.1111/j.1365-2567.2006.02496.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Development of type 1 diabetes has been attributed to T-cell-mediated autoimmunity, which is regulated by antigen-presenting cells. To study the role of liver-derived B220(+) regulatory dendritic cells (DCs) in the development of diabetes in non-obese diabetic (NOD) mice, we found that liver 220(+) DCs could easily be propagated from young NOD mice, but that such propagation was extremely difficult from mice older than 11 weeks, when insulitis began. This was not simply an age-related phenomenon, because liver B220(+) DCs were readily propagated from both young and old congenic non-obese diabetic-resistant (NOR) and normal BALB/c mice. It was therefore speculated that the development of diabetes might be associated with a lack of precursors of B220(+) DC in the liver in this animal model. Unfortunately, the specific marker for precursors of liver B220(+) DC has not been identified. An alternative approach to supplement liver B220(+) DCs by intravenous administration significantly inhibited the development of diabetes by inducing T-cell hyporesponsiveness via enhancement of their apoptotic death. Liver B220(+) DCs were capable of effectively presenting antigens but, unlike plasmacytoid DCs, did not express CD11c and were not interferon-alpha producers. These observations may throw new light on the aetiopathology of type 1 diabetes.
Collapse
Affiliation(s)
- Xiaoyan Liang
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
| | - Linlin Ma
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
| | - Ngoc L Thai
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
| | - John J Fung
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
- Department of General Surgery, Cleveland ClinicCleveland, OH, USA
| | - Shiguang Qian
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
- Department of Immunology, Cleveland ClinicCleveland, OH, USA
| | - Lina Lu
- Thomas E. Starzl Transplantation Institute, Department of Surgery, University of PittsburghPittsburgh, PA
- Department of Immunology, Cleveland ClinicCleveland, OH, USA
| |
Collapse
|
332
|
Yoshida Y, Shimomura T, Sakabe T, Ishii K, Gonda K, Matsuoka S, Watanabe Y, Takubo K, Tsuchiya H, Hoshikawa Y, Kurimasa A, Hisatome I, Uyama T, Terai M, Umezawa A, Shiota G. A role of Wnt/beta-catenin signals in hepatic fate specification of human umbilical cord blood-derived mesenchymal stem cells. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1089-98. [PMID: 17884977 DOI: 10.1152/ajpgi.00187.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (UCBMSCs) are expected to be an excellent source of cells for transplantation. In addition, the stem cell plasticity of human UCBMSCs, which can transdifferentiate into hepatocytes, has been reported. However, the mechanisms involved remain to be clarified. To identify the genes and/or signals that are important in specifying the hepatic fate of human UCBMSCs, we analyzed gene expression profiles during the hepatic differentiation of UCBMSCs with human telomerase reverse transcriptase, UCBMSCs immortalized by infection with a retrovirus carrying telomerase reverse transcriptase, but whose differentiation potential remains unchanged. Efficient differentiation was induced by 5-azacytidine (5-aza)/hepatocyte growth factor (HGF)/oncostatin M (OSM)/fibroblast growth factor 2 (FGF2) treatment in terms of function as well as protein expression: 2.5-fold increase in albumin, 4-fold increase in CCAAT enhancer-binding protein alpha, 1.5-fold increase in cytochrome p450 1A1/2, and 8-fold increase in periodic acid-Schiff staining. Consequently, we found that the expression of Wnt/beta-catenin-related genes downregulated, and the translocation of beta-catenin was observed along the cell membrane and in the cytoplasm, although some beta-catenin was still in the nucleus. Downregulation of Wnt/beta-catenin signals in the cells by Fz8-small interference RNA treatment, which was analyzed with a Tcf4 promoter-luciferase assay, resulted in similar hepatic differentiation to that observed with 5-azacytidine/HGF/OSM/FGF2. In addition, the subcellular distribution of beta-catenin was similar to that of cells treated with 5-azacytidine/HGF/OSM/FGF2. In conclusion, the suppression of Wnt/beta-catenin signaling induced the hepatic differentiation of UCBMSCs, suggesting that Wnt/beta-catenin signals play an important role in the hepatic fate specification of human UCBMSCs.
Collapse
Affiliation(s)
- Yoko Yoshida
- Division of Molecular and Genetic Medicine, Department of Genetic Medicine and Regenerative Therapeutics, Graduate School of Medicine, Tottori University, Yonago, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
. PC, . AW, . SA. Organogenesis and Regeneration of Liver: Mechanism and Signal Cascade. ACTA ACUST UNITED AC 2007. [DOI: 10.3923/ajb.2007.364.374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
334
|
Qu X, Lam E, Doughman YQ, Chen Y, Chou YT, Lam M, Turakhia M, Dunwoodie SL, Watanabe M, Xu B, Duncan SA, Yang YC. Cited2, a coactivator of HNF4alpha, is essential for liver development. EMBO J 2007; 26:4445-56. [PMID: 17932483 DOI: 10.1038/sj.emboj.7601883] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/18/2007] [Indexed: 12/18/2022] Open
Abstract
The transcriptional modulator Cited2 is induced by various biological stimuli including hypoxia, cytokines, growth factors, lipopolysaccharide (LPS) and flow shear. In this study, we report that Cited2 is required for mouse fetal liver development. Cited2(-/-) fetal liver displays hypoplasia with higher incidence of cell apoptosis, and exhibits disrupted cell-cell contact, disorganized sinusoidal architecture, as well as impaired lipid metabolism and hepatic gluconeogenesis. Furthermore, we demonstrated the physical and functional interaction of Cited2 with liver-enriched transcription factor HNF4alpha. Chromatin immunoprecipitation (ChIP) assays further confirmed the recruitment of Cited2 onto the HNF4alpha-responsive promoters and the reduced HNF4alpha binding to its target gene promoters in the absence of Cited2. Taken together, this study suggests that fetal liver defects in mice lacking Cited2 result, at least in part, from its defective coactivation function for HNF4alpha.
Collapse
Affiliation(s)
- Xiaoling Qu
- Department of Pharmacology and Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
335
|
Crivellato E, Nico B, Ribatti D. Contribution of endothelial cells to organogenesis: a modern reappraisal of an old Aristotelian concept. J Anat 2007; 211:415-27. [PMID: 17683480 PMCID: PMC2375830 DOI: 10.1111/j.1469-7580.2007.00790.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2007] [Indexed: 01/02/2023] Open
Abstract
It is well established that many tissue-derived factors are involved in blood vessel formation, but evidence is now emerging that endothelial cells themselves represent a crucial source of instructive signals to non-vascular tissue cells during organ development. Thus, endothelial cell signalling is currently believed to promote fundamental cues for cell fate specification, embryo patterning, organ differentiation and postnatal tissue remodelling. This review article summarizes some of the recent advances in our understanding of the role of endothelial cells as effector cells in organ formation.
Collapse
Affiliation(s)
- E Crivellato
- Department of Medical and Morphological Research, Anatomy Section, University of Udine, Italy.
| | | | | |
Collapse
|
336
|
Berg T, Rountree CB, Lee L, Estrada J, Sala FG, Choe A, Veltmaat JM, De Langhe S, Lee R, Tsukamoto H, Crooks GM, Bellusci S, Wang KS. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology 2007; 46:1187-97. [PMID: 17668871 PMCID: PMC3494299 DOI: 10.1002/hep.21814] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
UNLABELLED Fibroblast growth factor (FGF) signaling and beta-catenin activation have been shown to be crucial for early embryonic liver development. This study determined the significance of FGF10-mediated signaling in a murine embryonic liver progenitor cell population as well as its relation to beta-catenin activation. We observed that Fgf10(-/-) and Fgfr2b(-/-) mouse embryonic livers are smaller than wild-type livers; Fgf10(-/-) livers exhibit diminished proliferation of hepatoblasts. A comparison of beta-galactosidase activity as a readout of Fgf10 expression in Fgf10(+/LacZ) mice and of beta-catenin activation in TOPGAL mice, demonstrated peak Fgf10 expression from E9 to E13.5 coinciding with peak beta-catenin activation. Flow cytometric isolation and marker gene expression analysis of LacZ(+) cells from E13.5 Fgf10(+/LacZ) and TOPGAL livers, respectively, revealed that Fgf10 expression and beta-catenin signaling occur distinctly in stellate/myofibroblastic cells and hepatoblasts, respectively. Moreover, hepatoblasts express Fgfr2b, which strongly suggests they can respond to recombinant FGF10 produced by stellate cells. Fgfr2b(-/-)/TOPGAL(+/+) embryonic livers displayed less beta-galactosidase activity than livers of Fgfr2b(+/+)/TOPGAL(+/+) littermates. In addition, cultures of whole liver explants in Matrigel or cell in suspension from E12.5 TOPGAL(+/+)mice displayed a marked increase in beta-galactosidase activity and cell survival upon treatment with recombinant FGF10, indicating that FGFR (most likely FGFR2B) activation is upstream of beta-catenin signaling and promote hepatoblast survival. CONCLUSION Embryonic stellate/myofibroblastic cells promote beta-catenin activation in and survival of hepatoblasts via FGF10-mediated signaling. We suggest a role for stellate/myofibroblastic FGF10 within the liver stem cell niche in supporting the proliferating hepatoblast.
Collapse
Affiliation(s)
- Tove Berg
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | - Lily Lee
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | | | - Andrea Choe
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | | | - Rene Lee
- Saban Research Institute, Childrens Hospital Los Angeles
| | - Hide Tsukamoto
- Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Gay M. Crooks
- Saban Research Institute, Childrens Hospital Los Angeles
| | | | - Kasper S. Wang
- Saban Research Institute, Childrens Hospital Los Angeles
- Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
337
|
Tamagawa T, Oi S, Ishiwata I, Ishikawa H, Nakamura Y. Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum Cell 2007; 20:77-84. [PMID: 17645727 DOI: 10.1111/j.1749-0774.2007.00032.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells are believed to be involved in the formation of mesenchymal tissues, including bone, cartilage, muscle, tendon and adipose tissue. Interestingly, it has previously been reported that mesenchymal stem cells could also differentiate into endoderm-derived cells, such as hepatocytes. The amniotic membrane contains mesenchymal cells and is a readily available human tissue. Therefore, we investigated the potential of mesenchymal cells derived from human amniotic membrane (MC-HAM) to differentiate into hepatocytes. We analyzed the expression of hepatocyte-specific genes in MC-HAM before and after induction of differentiation into hepatocytes. We observed the expression of mRNAs encoding albumin, a-fetoprotein, cytokeratin 18 and alpha1-antitrypsin, but not those encoding glucose-6-phosphatase or ornithine transcarbamylase, prior to the induction of differentiation. However, immunocytochemistry revealed that albumin and alpha-fetoprotein were abundantly produced only after the induction of differentiation into hepatocytes. In addition, we observed the storage of glycogen, a characteristic feature of hepatocytes, using periodic acid-Schiff staining of MC-HAM induced to differentiate into hepatocytes. Overall, MC-HAM appear to be able to differentiate into cells possessing some characteristics of hepatocytes. Although further studies should be carried out to determine whether such in vitro-differentiated cells can function in vivo as hepatocytes. These cells may be useful in various applications that require human hepatocytes.
Collapse
Affiliation(s)
- Tomoharu Tamagawa
- Institute of Cell Biology, Ishiwata Hospital, RIKEN BioResource Centre, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
338
|
Duan Y, Catana A, Meng Y, Yamamoto N, He S, Gupta S, Gambhir SS, Zern MA. Differentiation and enrichment of hepatocyte-like cells from human embryonic stem cells in vitro and in vivo. Stem Cells 2007; 25:3058-68. [PMID: 17885076 DOI: 10.1634/stemcells.2007-0291] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human embryonic stem cells (hESC) may provide a cell source for functional hepatocytes. The aim of this study is to establish a viable human hepatocyte-like cell line from hESC that can be used for cell-based therapies. The differentiated hESC were enriched by transducing with a lentivirus vector containing the green fluorescent protein (GFP) gene driven by the alpha1-antitrypsin promoter; the GFP gene is expressed in committed hepatocyte progenitors and hepatocytes. GFP+ hESC were purified by laser microdissection and pressure catapulting. In addition, differentiated hESC that were transduced with a lentivirus triple-fusion vector were transplanted into NOD-SCID mice, and the luciferase-induced bioluminescence in the livers was evaluated by a charge-coupled device camera. GFP+ hESC expressed a large series of liver-specific genes, and expression levels of these genes were significantly improved by purifying GFP+ hESC; our results demonstrated that purified differentiated hESC express nearly physiological levels of liver-specific genes and have liver-specific functions that are comparable to those of primary human hepatocytes. The differentiated hESC survived and engrafted in mouse livers, and human liver-specific mRNA and protein species were detected in the transplanted mouse liver and serum at 3 weeks after transplantation. This is the first time that human albumin generated by hESC-derived hepatocytes was detected in the serum of an animal model. This also represents the first successful transplantation of differentiated hESC in an animal liver and the first bioluminescence imaging of hESC in the liver. This study is an initial step in establishing a viable hepatocyte-like cell line from hESC. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Yuyou Duan
- Transplant Research Institute, University of California Davis Medical Center, 4635 2nd Avenue, Suite 1001, Sacramento, California 95817, USA
| | | | | | | | | | | | | | | |
Collapse
|
339
|
Elmaouhoub A, Dudas J, Ramadori G. Kinetics of albumin- and alpha-fetoprotein-production during rat liver development. Histochem Cell Biol 2007; 128:431-43. [PMID: 17879097 DOI: 10.1007/s00418-007-0338-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2007] [Indexed: 10/22/2022]
Abstract
Synthesis of most of the plasma proteins is one of the main functions of the hepatocytes. Albumin synthesis is quantitatively the most abundant. In the present study we investigated albumin- and alpha-fetoprotein-gene-expression, and the function of the secretory apparatus during rat liver development. To this purpose we used the method of radioactive biosynthetic labeling of newly synthesized albumin and alpha-fetoprotein (AFP) to monitor the secretory capacity of endodermal cells derived from ventral foregut region (embryonic day 10, E10), and of embryonic and fetal hepatoblasts. Synthesis and secretion of albumin and AFP were already detected in the low numbered ventral foregut endodermal cells; fibrinogen synthesis was detectable in the E12 hepatoblasts, which were in higher number. The whole secretory machinery was functional from the earliest stages of liver development, and the speed of secretion was comparable with that of the adult hepatocytes. There was almost 4-fold increase of hepatoblasts cell volume in fetal stage compared with embryonic stage. The model used suggests that the hepatocyte secretory apparatus is already functional before the emergence of the liver bud. This is the first comparative report to analyze the hepatocyte secretory function, cell proliferation and cell volume during liver development.
Collapse
Affiliation(s)
- Abderrahim Elmaouhoub
- Department of Internal Medicine, Section of Gastroenterology and Endocrinology, Georg-August-University, Goettingen, Germany
| | | | | |
Collapse
|
340
|
The Onecut transcription factors HNF-6/OC-1 and OC-2 regulate early liver expansion by controlling hepatoblast migration. Dev Biol 2007; 311:579-89. [PMID: 17936262 DOI: 10.1016/j.ydbio.2007.09.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Revised: 09/07/2007] [Accepted: 09/10/2007] [Indexed: 11/23/2022]
Abstract
Liver development in mammals is initiated by the formation of a hepatic bud from the ventral foregut endoderm. The hepatic cells then proliferate and invade the septum transversum mesenchyme, and further differentiate to give rise to hepatocytes and biliary cells. By analyzing mice that are knockout for the transcription factors Hepatocyte Nuclear Factor-6 (HNF-6)/Onecut-1 (OC-1) and OC-2, we show here that these factors redundantly stimulate the degradation of the basal lamina surrounding the liver bud and promote hepatoblast migration in the septum transversum. Gene expression analysis indicates that HNF-6 and OC-2 belong to a gene network comprising E-cadherin, thrombospondin-4 and osteopontin, which regulates liver bud expansion by controlling hepatoblast migration and adhesion. This network operating at the onset of liver development contains candidate genes for investigation of liver carcinogenesis.
Collapse
|
341
|
Papoutsi M, Dudas J, Becker J, Tripodi M, Opitz L, Ramadori G, Wilting J. Gene regulation by homeobox transcription factor Prox1 in murine hepatoblasts. Cell Tissue Res 2007; 330:209-20. [PMID: 17828556 DOI: 10.1007/s00441-007-0477-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 07/13/2007] [Indexed: 10/22/2022]
Abstract
The homeobox transcription factor Prox1 is expressed in embryonic hepatoblasts and remains expressed in adult hepatocytes. Prox1-null mice show severe deficiencies in liver development, although the underlying mechanisms are unknown. We have studied the effects of Prox1 on the transcriptional profile of met-murine hepatocytes (MMH) obtained on embryonic day 14 (ED14). These immortalized murine hepatoblasts express numerous hepatoblast markers, but not Prox1. We have performed stable transfection with Prox1 cDNA, analyzed the transcriptome with Agilent mouse whole-genome microarrays, and validated genes by quantitative reverse transcription/polymerase chain reaction. We have observed the up-regulation of 22 genes and the down-regulation of 232 genes, by more than 12-fold. Many of these genes are involved in metabolic hepatocyte functions and may be regulated by Prox1 directly or indirectly, e.g., by the down-regulation of hepatocyte nuclear factor 4alpha. Prox1 induces the down-regulation of transcription factors that are highly expressed in neighboring endodermal organs, suggesting a function during hepatoblast commitment. Prox1 does not influence the proliferative activity of MMH but regulates genes involved in liver morphogenesis. We have observed the up-regulation of both type-IValpha3 procollagen and functionally active matrix metalloproteinase-2 (MMP-2), an observation that places Prox1 at the center of liver matrix turnover. This is consistent with MMP-2 expression in hepatoblasts during liver development and with the persistence of a basal lamina around the liver bud in Prox1-deficient mice. Our studies suggest that Prox1 is a multifunctional regulator of liver morphogenesis and of hepatocyte function and commitment.
Collapse
Affiliation(s)
- Maria Papoutsi
- Children's Hospital, Pediatrics I, Georg August University, Robert-Koch-Strasse 40, 37075, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
342
|
Kimura J, Deutsch GH. Key mechanisms of early lung development. Pediatr Dev Pathol 2007; 10:335-47. [PMID: 17929994 DOI: 10.2350/07-06-0290.1] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/06/2007] [Indexed: 11/20/2022]
Abstract
Lung morphogenesis requires the integration of multiple regulatory factors, which results in a functional air-blood interface required for gas exchange at birth. The respiratory tract is composed of endodermally derived epithelium surrounded by cells of mesodermal origin. Inductive signaling between these 2 tissue compartments plays a critical role in formation and differentiation of the lung, which is mediated by evolutionarily conserved signaling families used reiteratively during lung formation, including the fibroblast growth factor, hedgehog, retinoic acid, bone morphogenetic protein, and Wnt signaling pathways. Cells coordinate their response to these signaling proteins largely through transcription factors, which determine respiratory cell fate and pattern formation via the activation and repression of downstream target genes. Gain- and loss-of-function studies in null mutant and transgenic mice models have greatly facilitated the identification and hierarchical classification of these molecular programs. In this review, we highlight select molecular events that drive key phases of pulmonary development, including specification of a lung cell fate, primary lung bud formation, tracheoesophageal septation, branching morphogenesis, and proximal-distal epithelial patterning. Understanding the genetic pathways that regulate respiratory tract development is essential to provide insight into the pathogenesis of congenital anomalies and to develop innovative strategies to treat inherited and acquired lung disease.
Collapse
Affiliation(s)
- Jun Kimura
- Division of Pathology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
343
|
Améen C, Strehl R, Björquist P, Lindahl A, Hyllner J, Sartipy P. Human embryonic stem cells: current technologies and emerging industrial applications. Crit Rev Oncol Hematol 2007; 65:54-80. [PMID: 17689256 DOI: 10.1016/j.critrevonc.2007.06.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 06/11/2007] [Accepted: 06/27/2007] [Indexed: 12/28/2022] Open
Abstract
The efficiency and accuracy of the drug development process is severely restricted by the lack of functional human cell systems. However, the successful derivation of pluripotent human embryonic stem (hES) cell lines in the late 1990s is expected to revolutionize biomedical research in many areas. Due to their growth capacity and unique developmental potential to differentiate into almost any cell type of the human body, hES cells have opened novel avenues both in basic and applied research as well as for therapeutic applications. In this review we describe, from an industrial perspective, the basic science that underlies the hES cell technology and discuss the current and future prospects for hES cells in novel and improved stem cell based applications for drug discovery, toxicity testing as well as regenerative medicine.
Collapse
Affiliation(s)
- Caroline Améen
- Cellartis AB, Arvid Wallgrens Backe 20, 413 46 Göteborg, Sweden
| | | | | | | | | | | |
Collapse
|
344
|
A systematic screen for genes expressed in definitive endoderm by Serial Analysis of Gene Expression (SAGE). BMC DEVELOPMENTAL BIOLOGY 2007; 7:92. [PMID: 17683524 PMCID: PMC1950885 DOI: 10.1186/1471-213x-7-92] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 08/02/2007] [Indexed: 12/17/2022]
Abstract
Background The embryonic definitive endoderm (DE) gives rise to organs of the gastrointestinal and respiratory tract including the liver, pancreas and epithelia of the lung and colon. Understanding how DE progenitor cells generate these tissues is critical to understanding the cause of visceral organ disorders and cancers, and will ultimately lead to novel therapies including tissue and organ regeneration. However, investigation into the molecular mechanisms of DE differentiation has been hindered by the lack of early DE-specific markers. Results We describe the identification of novel as well as known genes that are expressed in DE using Serial Analysis of Gene Expression (SAGE). We generated and analyzed three longSAGE libraries from early DE of murine embryos: early whole definitive endoderm (0–6 somite stage), foregut (8–12 somite stage), and hindgut (8–12 somite stage). A list of candidate genes enriched for expression in endoderm was compiled through comparisons within these three endoderm libraries and against 133 mouse longSAGE libraries generated by the Mouse Atlas of Gene Expression Project encompassing multiple embryonic tissues and stages. Using whole mount in situ hybridization, we confirmed that 22/32 (69%) genes showed previously uncharacterized expression in the DE. Importantly, two genes identified, Pyy and 5730521E12Rik, showed exclusive DE expression at early stages of endoderm patterning. Conclusion The high efficiency of this endoderm screen indicates that our approach can be successfully used to analyze and validate the vast amount of data obtained by the Mouse Atlas of Gene Expression Project. Importantly, these novel early endoderm-expressing genes will be valuable for further investigation into the molecular mechanisms that regulate endoderm development.
Collapse
|
345
|
Wendl T, Adzic D, Schoenebeck JJ, Scholpp S, Brand M, Yelon D, Rohr KB. Early developmental specification of the thyroid gland depends on han-expressing surrounding tissue and on FGF signals. Development 2007; 134:2871-9. [PMID: 17611226 DOI: 10.1242/dev.02872] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The thyroid is an endocrine gland in all vertebrates that develops from the ventral floor of the anterior pharyngeal endoderm. Unravelling the molecular mechanisms of thyroid development helps to understand congenital hypothyroidism caused by the absence or reduction of this gland in newborn humans. Severely reduced or absent thyroid-specific developmental genes concomitant with the complete loss of the functional gland in the zebrafish hands off (han, hand2) mutant reveals the han gene as playing a novel, crucial role in thyroid development. han-expressing tissues surround the thyroid primordium throughout development. Fate mapping reveals that, even before the onset of thyroid-specific developmental gene expression, thyroid precursor cells are in close contact with han-expressing cardiac lateral plate mesoderm. Grafting experiments show that han is required in surrounding tissue, and not in a cell-autonomous manner, for thyroid development. Loss of han expression in the branchial arches and arch-associated cells after morpholino knock-down of upstream regulator genes does not impair thyroid development, indicating that other han-expressing structures, most probably cardiac mesoderm, are responsible for the thyroid defects in han mutants. The zebrafish ace (fgf8) mutant has similar thyroid defects as han mutants, and chemical suppression of fibroblast growth factor (FGF) signalling confirms that this pathway is required for thyroid development. FGF-soaked beads can restore thyroid development in han mutants, showing that FGFs act downstream of or in parallel to han. These data suggest that loss of FGF-expressing tissue in han mutants is responsible for the thyroid defects.
Collapse
Affiliation(s)
- Thomas Wendl
- Institute for Developmental Biology, University of Cologne, Gyrhofstrasse 17, 50923 Köln, Germany
| | | | | | | | | | | | | |
Collapse
|
346
|
Hata S, Namae M, Nishina H. Liver development and regeneration: from laboratory study to clinical therapy. Dev Growth Differ 2007; 49:163-70. [PMID: 17335437 DOI: 10.1111/j.1440-169x.2007.00910.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The liver has an unusual capacity to regenerate after a loss of mass and function caused by surgical resection or toxic liver injury. Over the last 10 years there have been major advances in our understanding of the molecular and cellular mechanisms underlying liver development and regeneration. The numerous factors crucial to these phenomena have been identified mainly by using knockout mice. Forward-genetics studies using zebrafish and medaka have also generated many mutants with liver disorders or defects in liver formation. Our goal is to translate knowledge gained from laboratory work and animal models into novel therapies for human liver diseases. Exciting progress has been achieved using human partial liver transplantation and autologous cell therapy.
Collapse
Affiliation(s)
- Shoji Hata
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | |
Collapse
|
347
|
McLin VA, Rankin SA, Zorn AM. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development 2007; 134:2207-17. [PMID: 17507400 DOI: 10.1242/dev.001230] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The liver and pancreas are specified from the foregut endoderm through an interaction with the adjacent mesoderm. However, the earlier molecular mechanisms that establish the foregut precursors are largely unknown. In this study, we have identified a molecular pathway linking gastrula-stage endoderm patterning to organ specification. We show that in gastrula and early-somite stage Xenopus embryos, Wnt/beta-catenin activity must be repressed in the anterior endoderm to maintain foregut identity and to allow liver and pancreas development. By contrast, high beta-catenin activity in the posterior endoderm inhibits foregut fate while promoting intestinal development. Experimentally repressing beta-catenin activity in the posterior endoderm was sufficient to induce ectopic organ buds that express early liver and pancreas markers. beta-catenin acts in part by inhibiting expression of the homeobox gene hhex, which is one of the earliest foregut markers and is essential for liver and pancreas development. Promoter analysis indicates that beta-catenin represses hhex transcription indirectly via the homeodomain repressor Vent2. Later in development, beta-catenin activity has the opposite effect and enhances liver development. These results illustrate that turning Wnt signaling off and on in the correct temporal sequence is essential for organ formation, a finding that might directly impact efforts to differentiate liver and pancreas tissue from stem cells.
Collapse
Affiliation(s)
- Valérie A McLin
- Cincinnati Children's Research Foundation, Department of Pediatrics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
348
|
Zhou QJ, Huang YD, Xiang LX, Shao JZ, Zhou GS, Yao H, Dai LC, Lu YL. In vitro differentiation of embryonic stem cells into hepatocytes induced by fibroblast growth factors and bone morphological protein-4. Int J Biochem Cell Biol 2007; 39:1714-21. [PMID: 17600753 DOI: 10.1016/j.biocel.2007.04.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 04/18/2007] [Accepted: 04/23/2007] [Indexed: 12/14/2022]
Abstract
The feasibility of transforming embryonic endoderm into different cell types is tightly controlled by mesodermal and septum transversumal signalings during early embryonic development. Here, an induction protocol tracing embryonic liver development was designed, in which, three growth factors, acid fibroblast growth factor, basic fibroblast growth factor and bone morphological protein-4 that secreted from pre-cardiac mesoderm and septum transversum mesenchyme, respectively, were employed to investigate their specific potency of modulating the mature hepatocyte proportion during the differentiation process. Results showed that hepatic differentiation took place spontaneously at a low level, however, supplements of the three growth factors gave rise to a significant up-regulation of mature hepatocytes. Bone morphological protein-4 highlighted the differentiation ratio to 40-55%, showing the most effective promotion, and also exhibited a synergistic effect with the other two fibroblast factors, whereas no similar phenomenon was observed between the other two factors, which was reported for the first time. Our study not only provides a high-performance system of embryonic stem cells differentiating into hepatocytes, which would supply a sufficient hepatic population for related studies, but also make it clear of the inductive effects of three important growth factors, which could support for further investigation on the mechanisms of mesodermal and septumal derived signalings that regulate hepatic differentiation.
Collapse
Affiliation(s)
- Qing-Jun Zhou
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, PR China
| | | | | | | | | | | | | | | |
Collapse
|
349
|
Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H. Directed differentiation of human embryonic stem cells into functional hepatic cells. Hepatology 2007; 45:1229-39. [PMID: 17464996 DOI: 10.1002/hep.21582] [Citation(s) in RCA: 455] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
UNLABELLED The differentiation capacity of human embryonic stem cells (hESCs) holds great promise for therapeutic applications. We report a novel three-stage method to efficiently direct the differentiation of human embryonic stem cells into hepatic cells in serum-free medium. Human ESCs were first differentiated into definitive endoderm cells by 3 days of Activin A treatment. Next, the presence of fibroblast growth factor-4 and bone morphogenetic protein-2 in the culture medium for 5 days induced efficient hepatic differentiation from definitive endoderm cells. Approximately 70% of the cells expressed the hepatic marker albumin. After 10 days of further in vitro maturation, these cells expressed the adult liver cell markers tyrosine aminotransferase, tryptophan oxygenase 2, phosphoenolpyruvate carboxykinase (PEPCK), Cyp7A1, Cyp3A4 and Cyp2B6. Furthermore, these cells exhibited functions associated with mature hepatocytes including albumin secretion, glycogen storage, indocyanine green, and low-density lipoprotein uptake, and inducible cytochrome P450 activity. When transplanted into CCl4 injured severe combined immunodeficiency mice, these cells integrated into the mouse liver and expressed human alpha-1 antitrypsin for at least 2 months. In addition, we found that the hESC-derived hepatic cells were readily infected by human immunodeficiency virus-hepatitis C virus pseudotype viruses. CONCLUSION We have developed an efficient way to direct the differentiation of human embryonic stem cells into cells that exhibit characteristics of mature hepatocytes. Our studies should facilitate searching the molecular mechanisms underlying human liver development, and form the basis for hepatocyte transplantation and drug tests.
Collapse
Affiliation(s)
- Jun Cai
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
350
|
Watanabe N, Tanaka M, Suzuki K, Kumanogoh A, Kikutani H, Miyajima A. Tim2 is expressed in mouse fetal hepatocytes and regulates their differentiation. Hepatology 2007; 45:1240-9. [PMID: 17465005 DOI: 10.1002/hep.21539] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Liver development is regulated by various extracellular molecules such as cytokines and cell surface proteins. Although several such regulators have been identified, additional molecules are likely to be involved in liver development. To identify such molecules, we employed the signal sequence trap (SST) method to screen cDNAs encoding a secreted or membrane protein from fetal liver and obtained a number of clones. Among them, we found that T cell immunoglobulin and mucin domain 2 (Tim2) was expressed specifically on immature hepatocytes in the fetal liver. Tim2 has been shown to regulate immune responses, but its role in liver development had not been studied. We have examined the possible role of Tim2 in hepatocyte differentiation. At first, we prepared a soluble Tim2 fusion protein consisting of its extracellular domain and the Fc domain of human IgG (Tim2-hFc) and found that it bound to fetal and adult hepatocytes, suggesting that there are Tim2-binding molecules on hepatocytes. Second, Tim2-hFc inhibited the differentiation of hepatocytes in fetal liver primary culture, i.e., the expression of mature hepatic enzymes and accumulation of glycogen were severely reduced. Third, Tim2-hFc also inhibited proliferation of fetal hepatocytes. Fourth, down-regulation of Tim2 expression by small interfering RNA (siRNA) enhanced the expression of liver differentiation marker genes. CONCLUSION It is strongly suggested that Tim2 is involved in the differentiation of fetal hepatocytes.
Collapse
Affiliation(s)
- Natsumi Watanabe
- Institute of Molecular and Cellular Biosciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|