301
|
Kornek B, Leutmezer F, Rommer PS, Koblischke M, Schneider L, Haslacher H, Thalhammer R, Zimprich F, Zulehner G, Bsteh G, Dal-Bianco A, Rinner W, Zebenholzer K, Wimmer I, Steinmaurer A, Graninger M, Mayer M, Roedl K, Berger T, Winkler S, Aberle JH, Tobudic S. B Cell Depletion and SARS-CoV-2 Vaccine Responses in Neuroimmunologic Patients. Ann Neurol 2022; 91:342-352. [PMID: 35067959 PMCID: PMC9011809 DOI: 10.1002/ana.26309] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The study was undertaken to assess the impact of B cell depletion on humoral and cellular immune responses to severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) vaccination in patients with various neuroimmunologic disorders on anti-CD20 therapy. This included an analysis of the T cell vaccine response to the SARS-CoV-2 Delta variant. METHODS We investigated prospectively humoral and cellular responses to SARS-CoV-2 mRNA vaccination in 82 patients with neuroimmunologic disorders on anti-CD20 therapy and 82 age- and sex-matched healthy controls. For quantification of antibodies, the Elecsys anti-SARS-CoV-2 viral spike (S) immunoassay against the receptor-binding domain (RBD) was used. IFN-gamma enzyme-linked immunosorbent spot assays were performed to assess T cell responses against the SARS-CoV-2 Wuhan strain and the Delta variant. RESULTS SARS-CoV-2-specific antibodies were found less frequently in patients (70% [57/82]) compared with controls (82/82 [100%], p < 0.001). In patients without detectable B cells (<1 B cell/mcl), seroconversion rates and antibody levels were lower compared to nondepleted (≥1 B cell/mcl) patients (p < 0.001). B cell levels ≥1 cell/mcl were sufficient to induce seroconversion in our cohort of anti-CD20 treated patients. In contrast to the antibody response, the T-cell response against the Wuhan strain and the Delta variant was more pronounced in frequency (p < 0.05) and magnitude (p < 0.01) in B-cell depleted compared to nondepleted patients. INTERPRETATION Antibody responses to SARS-CoV-2 mRNA vaccinnation can be attained in patients on anti-CD20 therapy by the onset of B cell repopulation. In the absence of B cells, a strong T cell response is generated which may help to protect against severe coronavirus disease 2019 (COVID-19) in this high-risk population. ANN NEUROL 2022;91:342-352.
Collapse
Affiliation(s)
- Barbara Kornek
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Fritz Leutmezer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Paulus S Rommer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Lisa Schneider
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Helmuth Haslacher
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Renate Thalhammer
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Fritz Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gudrun Zulehner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Walter Rinner
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Karin Zebenholzer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Anja Steinmaurer
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | | | - Margareta Mayer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Kilian Roedl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Stefan Winkler
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Selma Tobudic
- Division of Infectious Diseases, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
302
|
Càmara J, González-Díaz A, Barrabeig I, Fernández-Huerta M, Calatayud L, Niubó J, Martí S, Ángeles Domínguez M, Ardanuy C. SARS-CoV-2 outbreak in a nursing home after vaccination with BNT162b2: A role for the quantification of circulating antibodies. Vaccine 2022; 40:2531-2534. [PMID: 35307228 PMCID: PMC8920877 DOI: 10.1016/j.vaccine.2022.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 12/25/2022]
Abstract
We describe an outbreak of SARS-CoV-2 (B.1.351) in a nursing home. At the outbreak onset 96% of residents and 76% of HCW had received two doses of BNT162b2. Twenty-eight residents (28/53) and six HCW (6/33) were infected. Infected residents had lower levels of anti-S antibodies compared to those who were not infected (157 vs 552 U/mL). Among 50 residents with available serological status, nineteen (19/25) with serum concentration < 300 U/mL and seven (7/25) with concentration > 300 U/mL acquired SARS-CoV-2 (RR 2.7 [95 %CI 1.4–5.3]). The quantification of circulating antibodies could be useful in detecting people with an impaired immune response who are at high risk of acquiring and spreading SARS-CoV-2.
Collapse
|
303
|
van den Hoogen LL, Smits G, van Hagen CC, Wong D, Vos ER, van Boven M, de Melker HE, van Vliet J, Kuijer M, Woudstra L, Wijmenga-Monsuur AJ, GeurtsvanKessel CH, Stoof SP, Reukers D, Wijsman LA, Meijer A, Reusken CB, Rots NY, van der Klis FR, van Binnendijk RS, den Hartog G. Seropositivity to Nucleoprotein to detect mild and asymptomatic SARS-CoV-2 infections: A complementary tool to detect breakthrough infections after COVID-19 vaccination? Vaccine 2022; 40:2251-2257. [PMID: 35287986 PMCID: PMC8904156 DOI: 10.1016/j.vaccine.2022.03.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/14/2022] [Accepted: 03/03/2022] [Indexed: 12/17/2022]
Abstract
Background Methods Results Conclusions
Collapse
|
304
|
Chen C, Saville JW, Marti MM, Schäfer A, Cheng MH, Mannar D, Zhu X, Berezuk AM, Banerjee A, Sobolewski MD, Kim A, Treat BR, Da Silva Castanha PM, Enick N, McCormick KD, Liu X, Adams C, Hines MG, Sun Z, Chen W, Jacobs JL, Barratt-Boyes SM, Mellors JW, Baric RS, Bahar I, Dimitrov DS, Subramaniam S, Martinez DR, Li W. Potent Neutralization of Omicron and other SARS-CoV-2 Variants of Concern by Biparatopic Human VH Domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.18.481058. [PMID: 35194603 PMCID: PMC8863138 DOI: 10.1101/2022.02.18.481058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The emergence of SARS-CoV-2 variants of concern (VOCs) requires the development of next-generation biologics that are effective against a variety of strains of the virus. Herein, we characterize a human V H domain, F6, which we generated by sequentially panning large phage displayed V H libraries against receptor binding domains (RBDs) containing VOC mutations. Cryo-EM analyses reveal that F6 has a unique binding mode that spans a broad surface of the RBD and involves the antibody framework region. Attachment of an Fc region to a fusion of F6 and ab8, a previously characterized V H domain, resulted in a construct (F6-ab8-Fc) that neutralized Omicron pseudoviruses with a half-maximal neutralizing concentration (IC 50 ) of 4.8 nM in vitro . Additionally, prophylactic treatment using F6-ab8-Fc reduced live Beta (B.1.351) variant viral titers in the lungs of a mouse model. Our results provide a new potential therapeutic against SARS-CoV-2 VOCs - including the recently emerged Omicron variant - and highlight a vulnerable epitope within the spike protein RBD that may be exploited to achieve broad protection against circulating variants.
Collapse
Affiliation(s)
- Chuan Chen
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - James W. Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Michelle M. Marti
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Mary Hongying Cheng
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dhiraj Mannar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Alison M. Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - Anupam Banerjee
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele D. Sobolewski
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Andrew Kim
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Benjamin R. Treat
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Priscila Mayrelle Da Silva Castanha
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nathan Enick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Kevin D McCormick
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Xianglei Liu
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Cynthia Adams
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Margaret Grace Hines
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Zehua Sun
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | | | - Jana L. Jacobs
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon M. Barratt-Boyes
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - John W. Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Abound Bio, Pittsburgh, PA, USA
| | - Ralph S. Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dimiter S. Dimitrov
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
- Abound Bio, Pittsburgh, PA, USA
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver BC, V6T 1Z3
| | - David R. Martinez
- Department of Epidemiology, University of North Carolina at Chapel Hill, 135 Dauer Drive, 3109 Michael Hooker Research Center, Chapel Hill, NC 27599, USA
| | - Wei Li
- Center for Antibody Therapeutics, Division of Infectious Diseases, Department of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| |
Collapse
|
305
|
Kurahashi Y, Sutandhio S, Furukawa K, Tjan LH, Iwata S, Sano S, Tohma Y, Ohkita H, Nakamura S, Nishimura M, Arii J, Kiriu T, Yamamoto M, Nagano T, Nishimura Y, Mori Y. Cross-Neutralizing Breadth and Longevity Against SARS-CoV-2 Variants After Infections. Front Immunol 2022; 13:773652. [PMID: 35281007 PMCID: PMC8907139 DOI: 10.3389/fimmu.2022.773652] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/04/2022] [Indexed: 01/05/2023] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the virus responsible for the Coronavirus Disease 2019 (COVID-19) pandemic. The emergence of variants of concern (VOCs) has become one of the most pressing issues in public health. To control VOCs, it is important to know which COVID-19 convalescent sera have cross-neutralizing activity against VOCs and how long the sera maintain this protective activity. Methods Sera of patients infected with SARS-CoV-2 from March 2020 to January 2021 and admitted to Hyogo Prefectural Kakogawa Medical Center were selected. Blood was drawn from patients at 1-3, 3-6, and 6-8 months post onset. Then, a virus neutralization assay against SARS-CoV-2 variants (D614G mutation as conventional strain; B.1.1.7, P.1, and B.1.351 as VOCs) was performed using authentic viruses. Results We assessed 97 sera from 42 patients. Sera from 28 patients showed neutralizing activity that was sustained for 3-8 months post onset. The neutralizing antibody titer against D614G significantly decreased in sera of 6-8 months post onset compared to those of 1-3 months post onset. However, the neutralizing antibody titers against the three VOCs were not significantly different among 1-3, 3-6, and 6-8 months post onset. Discussion Our results indicate that neutralizing antibodies that recognize the common epitope for several variants may be maintained for a long time, while neutralizing antibodies having specific epitopes for a variant, produced in large quantities immediately after infection, may decrease quite rapidly.
Collapse
Affiliation(s)
- Yukiya Kurahashi
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Silvia Sutandhio
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Koichi Furukawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Lidya Handayani Tjan
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Sachiyo Iwata
- Division of Cardiovascular Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Shigeru Sano
- Acute Care Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Yoshiki Tohma
- Acute Care Medical Center, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Hiroyuki Ohkita
- Division of General Internal Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Sachiko Nakamura
- Division of General Internal Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Jun Arii
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsunori Kiriu
- Division of Respiratory Medicine, Hyogo Prefectural Awaji Medical Center, Sumoto, Japan
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
306
|
Thakur S, Sasi S, Pillai SG, Nag A, Shukla D, Singhal R, Phalke S, Velu GSK. SARS-CoV-2 Mutations and Their Impact on Diagnostics, Therapeutics and Vaccines. Front Med (Lausanne) 2022; 9:815389. [PMID: 35273977 PMCID: PMC8902153 DOI: 10.3389/fmed.2022.815389] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
With the high rate of COVID-19 infections worldwide, the emergence of SARS-CoV-2 variants was inevitable. Several mutations have been identified in the SARS-CoV-2 genome, with the spike protein as one of the mutational hot spots. Specific amino acid substitutions such as D614G and N501Y were found to alter the transmissibility and virulence of the virus. The WHO has classified the variants identified with fitness-enhancing mutations as variants of concern (VOC), variants of interest (VOI) or variants under monitoring (VUM). The VOCs pose an imminent threat as they exhibit higher transmissibility, disease severity and ability to evade vaccine-induced and natural immunity. Here we review the mutational landscape on the SARS-CoV-2 structural and non-structural proteins and their impact on diagnostics, therapeutics and vaccines. We also look at the effectiveness of approved vaccines, antibody therapy and convalescent plasma on the currently prevalent VOCs, which are B.1.17, B.1.351, P.1, B.1.617.2 and B.1.1.529. We further discuss the possible factors influencing mutation rates and future directions.
Collapse
Affiliation(s)
- Suresh Thakur
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - Shalitha Sasi
- Blue Horizon International Therapeutic Sciences, Hackensack, NJ, United States
| | | | | | - Dhananjay Shukla
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Ritu Singhal
- Department of Microbiology, National Institute of Tuberculosis and Respiratory Disease, New Delhi, India
| | - Sameer Phalke
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| | - G. S. K. Velu
- Trivitron Healthcare Pvt., Ltd., Visakhapatnam, India
| |
Collapse
|
307
|
Zhuang C, Liu X, Chen Q, Sun Y, Su Y, Huang S, Wu T, Xia N. Protection Duration of COVID-19 Vaccines: Waning Effectiveness and Future Perspective. Front Microbiol 2022; 13:828806. [PMID: 35273584 PMCID: PMC8902038 DOI: 10.3389/fmicb.2022.828806] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) vaccines have very successfully decreased the disease risk as we know; some key information remains unknown due to the short development history and the lack of long-term follow-up studies in vaccinated populations. One of the unanswered issues is the protection duration conferred after COVID-19 vaccination, which appears to play a pivotal role in the future impact of pathogens and is critical to inform the public health response and policy decisions. Here, we review current information on the long-term effectiveness of different COVID-19 vaccines, persistence of immunogenicity, and gaps in knowledge. Meanwhile, we also discuss the influencing factors and future study prospects on this topic.
Collapse
Affiliation(s)
- Chunlan Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Xiaohui Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Qi Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Yuxin Sun
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yingying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Shoujie Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Ting Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Collaborative Innovation Center of Biologic Products, School of Public Health, Xiamen University, Xiamen, China
- Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
308
|
A single dose of COVID-19 vaccine induces a strong T cell and B cell response in healthcare professionals recovered from SARS-CoV-2 infection. Clin Exp Med 2022; 23:529-537. [PMID: 35190936 PMCID: PMC8860269 DOI: 10.1007/s10238-022-00801-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/27/2022] [Indexed: 11/30/2022]
Abstract
A broad understanding on how SARS-CoV-2 infection and vaccination mobilize the immune system is necessary to find the best predictors of long-term protection and identify individuals that would benefit from additional vaccine doses. This study aims to understand the effect of a single dose of Pfizer-BioNTech BNT162b2 COVID-19 vaccine, in individuals recovered from SARS-CoV-2 infection, on circulating CD4+ T follicular helper (Tfh)-cells, Spike-specific T-cells and IgG/IgA antibodies. For that, peripheral blood samples from 50 healthcare professionals, recovered from SARS-CoV-2 infection, collected immediately before (T1) and 15 days after (T2) vaccine administration, were used to analyze the frequency and numbers of Tfh-cells and their subsets, serum titers of SARS-CoV-2-specific antibodies, and SARS-CoV-2-specific T-cells. Six months after infection (T1), 96% of recovered participants presented either IgG or T-cells specific for Spike, however, Spike-specific T-cells were missing in 16% of them. These individuals presented lower levels of Spike-specific IgG (T1 and T2), IgA (T1), and Spike-specific T-cells (T2). Vaccination increased the percentage of participants reactive for Spike-specific T-cells (from 64 to 98%), IgG (from 90 to 100%) and IgA (from 48 to 98%). It also mobilized circulating Tfh-cells, increasing their frequency and activation, and promoting Tfh17 polarization, restoring the decreased numbers of Tfh-cells (especially Tfh17) observed in recovered participants. Interestingly, Tfh percentage correlated with Spike-specific IgG levels. Our data showed that a single dose of vaccine efficiently restored Spike-specific T-cells, and IgG and IgA antibodies. Mobilization of Tfh-cells, and their correlation with IgG levels, suggest that vaccination induced a functional Tfh cell response.
Collapse
|
309
|
Reincke SM, Yuan M, Kornau HC, Corman VM, van Hoof S, Sánchez-Sendin E, Ramberger M, Yu W, Hua Y, Tien H, Schmidt ML, Schwarz T, Jeworowski LM, Brandl SE, Rasmussen HF, Homeyer MA, Stöffler L, Barner M, Kunkel D, Huo S, Horler J, von Wardenburg N, Kroidl I, Eser TM, Wieser A, Geldmacher C, Hoelscher M, Gänzer H, Weiss G, Schmitz D, Drosten C, Prüss H, Wilson IA, Kreye J. SARS-CoV-2 Beta variant infection elicits potent lineage-specific and cross-reactive antibodies. Science 2022; 375:782-787. [PMID: 35076281 PMCID: PMC8939768 DOI: 10.1126/science.abm5835] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/18/2022] [Indexed: 12/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Beta variant of concern (VOC) resists neutralization by major classes of antibodies from COVID-19 patients and vaccinated individuals. In this study, serum of Beta-infected patients revealed reduced cross-neutralization of wild-type virus. From these patients, we isolated Beta-specific and cross-reactive receptor-binding domain (RBD) antibodies. The Beta-specificity results from recruitment of VOC-specific clonotypes and accommodation of mutations present in Beta and Omicron into a major antibody class that is normally sensitive to these mutations. The Beta-elicited cross-reactive antibodies share genetic and structural features with wild type-elicited antibodies, including a public VH1-58 clonotype that targets the RBD ridge. These findings advance our understanding of the antibody response to SARS-CoV-2 shaped by antigenic drift, with implications for design of next-generation vaccines and therapeutics.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antigenic Drift and Shift
- COVID-19/immunology
- COVID-19/virology
- Cross Reactions
- Female
- Humans
- Male
- Middle Aged
- Neutralization Tests
- Protein Binding
- Protein Domains
- Protein Interaction Domains and Motifs
- SARS-CoV-2/chemistry
- SARS-CoV-2/genetics
- SARS-CoV-2/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- S. Momsen Reincke
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hans-Christian Kornau
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center (NWFZ), Cluster NeuroCure, Berlin, Germany
| | - Victor M. Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
- Labor Berlin–Charité Vivantes GmbH, Berlin
| | - Scott van Hoof
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Elisa Sánchez-Sendin
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Melanie Ramberger
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Wenli Yu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yuanzi Hua
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Henry Tien
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Marie Luisa Schmidt
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Tatjana Schwarz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Lara Maria Jeworowski
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Sarah E. Brandl
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Helle Foverskov Rasmussen
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Marie A. Homeyer
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Laura Stöffler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Martin Barner
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Désirée Kunkel
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Flow and Mass Cytometry Core Facility, Berlin, Germany
| | - Shufan Huo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
| | - Johannes Horler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Niels von Wardenburg
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Inge Kroidl
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Tabea M. Eser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Andreas Wieser
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Christof Geldmacher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Center of the University of Munich (LMU), Germany
- German Center for Infection Research (DZIF), partner site Munich, Germany
| | - Hannes Gänzer
- Department of Internal Medicine, BKH Schwaz, Schwaz, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Innsbruck, Austria
| | - Dietmar Schmitz
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neuroscience Research Center (NWFZ), Cluster NeuroCure, Berlin, Germany
| | - Christian Drosten
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany and German Centre for Infection Research (DZIF), Berlin, Germany
| | - Harald Prüss
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jakob Kreye
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology and Experimental Neurology, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin, Germany
- Helmholtz Innovation Lab BaoBab (Brain antibody-omics and B-cell Lab), Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Neurology, Berlin, Germany
| |
Collapse
|
310
|
Immunization with synthetic SARS-CoV-2 S glycoprotein virus-like particles protects macaques from infection. Cell Rep Med 2022; 3:100528. [PMID: 35233549 PMCID: PMC8784613 DOI: 10.1016/j.xcrm.2022.100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the “down” conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing. S glycoprotein formaldehyde cross-linking stabilizes S in the prefusion conformation Vaccination of cynomolgus macaques with S lipid particles induces neutralization Vaccination protects macaques against a SARS-CoV-2 challenge Sterilizing protection correlates with nasopharyngeal anti-S IgG and IgA titers
Collapse
|
311
|
SARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivity. Cell Rep Med 2022; 3:100510. [PMID: 35233544 PMCID: PMC8761540 DOI: 10.1016/j.xcrm.2022.100510] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/19/2021] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) variants of concern (VOCs) exhibit escape from neutralizing antibodies, causing concern about vaccine effectiveness. However, while non-neutralizing cytotoxic functions of antibodies are associated with improved disease outcome and vaccine protection, Fc effector function escape from VOCs is poorly defined. Furthermore, whether VOCs trigger Fc functions with altered specificity, as has been reported for neutralization, is unknown. Here, we demonstrate that the Beta VOC partially evades Fc effector activity in individuals infected with the original (D614G) variant. However, not all functions are equivalently affected, suggesting differential targeting by antibodies mediating distinct Fc functions. Furthermore, Beta and Delta infection trigger responses with significantly improved Fc cross-reactivity against global VOCs compared with D614G-infected or Ad26.COV2.S-vaccinated individuals. This suggests that, as for neutralization, the infecting spike sequence affects Fc effector function. These data have important implications for vaccine strategies that incorporate VOCs, suggesting these may induce broader Fc effector responses.
Collapse
|
312
|
Tenda ED, Asaf MM, Pradipta A, Kumaheri MA, Susanto AP. The COVID-19 surge in Indonesia: what we learned and what to expect. Breathe (Sheff) 2022; 17:210146. [PMID: 35296104 PMCID: PMC8919782 DOI: 10.1183/20734735.0146-2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/21/2021] [Indexed: 11/05/2022] Open
Abstract
Through the implementation of a test and trace system, disciplined public health measures, the acceleration of vaccinations, and a genome surveillance programme, LMICs such as Indonesia can prevent future outbreaks and survive the COVID-19 pandemic.https://bit.ly/3JBBSie From June 2021 until August 2021, Indonesia experienced an unprecedented surge in the number of daily new confirmed coronavirus disease 2019 (COVID-19) cases. We, as authors who saw these events unfold first-hand, would like to describe the extent of Indonesia's COVID-19 case surge, its effect on the healthcare system, and the fallout, in this editorial. Moreover, we aim to identify the root of the problems that could have caused the recent surge, and subsequently propose possible solutions.
Collapse
|
313
|
Riou C, Keeton R, Moyo-Gwete T, Hermanus T, Kgagudi P, Baguma R, Valley-Omar Z, Smith M, Tegally H, Doolabh D, Iranzadeh A, Tyers L, Mutavhatsindi H, Tincho MB, Benede N, Marais G, Chinhoyi LR, Mennen M, Skelem S, du Bruyn E, Stek C, de Oliveira T, Williamson C, Moore PL, Wilkinson RJ, Ntusi NAB, Burgers WA. Escape from recognition of SARS-CoV-2 variant spike epitopes but overall preservation of T cell immunity. Sci Transl Med 2022; 14:eabj6824. [PMID: 34931886 PMCID: PMC9434381 DOI: 10.1126/scitranslmed.abj6824] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SARS-CoV-2 variants that escape neutralization and potentially affect vaccine efficacy have emerged. T cell responses play a role in protection from reinfection and severe disease, but the potential for spike mutations to affect T cell immunity is incompletely understood. We assessed neutralizing antibody and T cell responses in 44 South African COVID-19 patients either infected with the Beta variant (dominant from November 2020 to May 2021) or infected before its emergence (first wave, Wuhan strain) to provide an overall measure of immune evasion. We show that robust spike-specific CD4 and CD8 T cell responses were detectable in Beta-infected patients, similar to first-wave patients. Using peptides spanning the Beta-mutated regions, we identified CD4 T cell responses targeting the wild-type peptides in 12 of 22 first-wave patients, all of whom failed to recognize corresponding Beta-mutated peptides. However, responses to mutated regions formed only a small proportion (15.7%) of the overall CD4 response, and few patients (3 of 44) mounted CD8 responses that targeted the mutated regions. Among the spike epitopes tested, we identified three epitopes containing the D215, L18, or D80 residues that were specifically recognized by CD4 T cells, and their mutated versions were associated with a loss of response. This study shows that despite loss of recognition of immunogenic CD4 epitopes, CD4 and CD8 T cell responses to Beta are preserved overall. These observations may explain why several vaccines have retained the ability to protect against severe COVID-19 even with substantial loss of neutralizing antibody activity against Beta.
Collapse
Affiliation(s)
- Catherine Riou
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Roanne Keeton
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Thandeka Moyo-Gwete
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tandile Hermanus
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Prudence Kgagudi
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Baguma
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Ziyaad Valley-Omar
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Mikhail Smith
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Houriiyah Tegally
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Deelan Doolabh
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Arash Iranzadeh
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Lynn Tyers
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Hygon Mutavhatsindi
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
| | - Marius B Tincho
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Ntombi Benede
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Gert Marais
- Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa.,Groote Schuur Hospital Medical Virology Laboratory of the National Health Laboratory Service, Observatory 7925, South Africa
| | - Lionel R Chinhoyi
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Mathilda Mennen
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Sango Skelem
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Elsa du Bruyn
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa
| | - Cari Stek
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Department of Infectious Diseases, Imperial College London, London W12 0NN, UK
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform, Durban, South Africa
| | - Carolyn Williamson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| | - Penny L Moore
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa.,MRC Antibody Immunity Research Unit, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Department of Infectious Diseases, Imperial College London, London W12 0NN, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Ntobeko A B Ntusi
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Department of Medicine, University of Cape Town and Groote Schuur Hospital, Observatory 7925, South Africa.,Hatter Institute for Cardiovascular Research in Africa, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Wendy A Burgers
- Wellcome Centre for Infectious Diseases Research in Africa, University of Cape Town, Observatory 7925, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa.,Division of Medical Virology, Department of Pathology, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
314
|
Chakraborty C, Sharma AR, Bhattacharya M, Lee SS. A Detailed Overview of Immune Escape, Antibody Escape, Partial Vaccine Escape of SARS-CoV-2 and Their Emerging Variants With Escape Mutations. Front Immunol 2022; 13:801522. [PMID: 35222380 PMCID: PMC8863680 DOI: 10.3389/fimmu.2022.801522] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/05/2022] [Indexed: 01/08/2023] Open
Abstract
The infective SARS-CoV-2 is more prone to immune escape. Presently, the significant variants of SARS-CoV-2 are emerging in due course of time with substantial mutations, having the immune escape property. Simultaneously, the vaccination drive against this virus is in progress worldwide. However, vaccine evasion has been noted by some of the newly emerging variants. Our review provides an overview of the emerging variants' immune escape and vaccine escape ability. We have illustrated a broad view related to viral evolution, variants, and immune escape ability. Subsequently, different immune escape approaches of SARS-CoV-2 have been discussed. Different innate immune escape strategies adopted by the SARS-CoV-2 has been discussed like, IFN-I production dysregulation, cytokines related immune escape, immune escape associated with dendritic cell function and macrophages, natural killer cells and neutrophils related immune escape, PRRs associated immune evasion, and NLRP3 inflammasome associated immune evasion. Simultaneously we have discussed the significant mutations related to emerging variants and immune escape, such as mutations in the RBD region (N439K, L452R, E484K, N501Y, K444R) and other parts (D614G, P681R) of the S-glycoprotein. Mutations in other locations such as NSP1, NSP3, NSP6, ORF3, and ORF8 have also been discussed. Finally, we have illustrated the emerging variants' partial vaccine (BioNTech/Pfizer mRNA/Oxford-AstraZeneca/BBIBP-CorV/ZF2001/Moderna mRNA/Johnson & Johnson vaccine) escape ability. This review will help gain in-depth knowledge related to immune escape, antibody escape, and partial vaccine escape ability of the virus and assist in controlling the current pandemic and prepare for the next.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, South Korea
| |
Collapse
|
315
|
Cohen H, Rotem S, Elia U, Bilinsky G, Levy I, Chitlaru T, Bar-Haim E. T Cell Response following Anti-COVID-19 BNT162b2 Vaccination Is Maintained against the SARS-CoV-2 Omicron B.1.1.529 Variant of Concern. Viruses 2022; 14:347. [PMID: 35215940 PMCID: PMC8878189 DOI: 10.3390/v14020347] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 02/04/2023] Open
Abstract
The progression of the COVID-19 pandemic has led to the emergence of variants of concern (VOC), which may compromise the efficacy of the currently administered vaccines. Antigenic drift can potentially bring about reduced protective T cell immunity and, consequently, more severe disease manifestations. To assess this possibility, the T cell responses to the wild-type Wuhan-1 SARS-CoV-2 ancestral spike protein and the Omicron B.1.1.529 spike protein were compared. Accordingly, peripheral blood mononuclear cells (PBMC) were collected from eight healthy volunteers 4-5 months following a third vaccination with BNT162b2, and stimulated with overlapping peptide libraries representing the spike of either the ancestral or the Omicron SARS-CoV-2 virus variants. Quantification of the specific T cells was carried out by a fluorescent ELISPOT assay, monitoring cells secreting interferon-gamma (IFNg), interleukin-10 (IL-10) and interleukin-4 (IL-4). For all the examined individuals, comparable levels of reactivity to both forms of spike protein were determined. In addition, a dominant Th1 response was observed, manifested mainly by IFNg-secreting cells and only limited numbers of IL-10- and IL-4-secreting cells. The data demonstrate stable T cell activity in response to the emerging Omicron variant in the tested individuals; therefore, the protective immunity to the variant following BNT162b2 vaccination is not significantly affected.
Collapse
Affiliation(s)
- Hila Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| | - Shahar Rotem
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| | - Uri Elia
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| | - Gal Bilinsky
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| | - Itzchak Levy
- Sheba Medical Center, Infectious Disease Unit, Ramat Gan 5262112, Israel;
- Sackler Medical School, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Theodor Chitlaru
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| | - Erez Bar-Haim
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona 74100, Israel; (H.C.); (S.R.); (U.E.); (G.B.); (T.C.)
| |
Collapse
|
316
|
Kudlay D, Kofiadi I, Khaitov M. Peculiarities of the T Cell Immune Response in COVID-19. Vaccines (Basel) 2022; 10:242. [PMID: 35214700 PMCID: PMC8877307 DOI: 10.3390/vaccines10020242] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023] Open
Abstract
Understanding the T cell response to SARS-CoV-2 is critical to vaccine development, epidemiological surveillance, and control strategies for this disease. This review provides data from studies of the immune response in coronavirus infections. It describes general mechanisms of immunity, its T cell components, and presents a detailed scheme of the T cell response in SARS-CoV-2 infection, including from the standpoint of determining the most promising targets for assessing its level. In addition, we reviewed studies investigating post-vaccination immunity in the development of vaccines against COVID-19. This review also includes the peculiarities of immunity in different age and gender groups, and in the presence of a number of factors, for example, comorbidity or disease severity. This study summarizes the most informative methods for assessing the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dmitry Kudlay
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ilya Kofiadi
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Musa Khaitov
- NRC Institute of Immunology FMBA of Russia, 115522 Moscow, Russia
- Department of Immunology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
317
|
Salehi-Vaziri M, Fazlalipour M, Seyed Khorrami SM, Azadmanesh K, Pouriayevali MH, Jalali T, Shoja Z, Maleki A. The ins and outs of SARS-CoV-2 variants of concern (VOCs). Arch Virol 2022; 167:327-344. [PMID: 35089389 PMCID: PMC8795292 DOI: 10.1007/s00705-022-05365-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023]
Abstract
SARS-CoV-2, a newly emerging coronavirus that caused the COVID-19 epidemic, has been spreading quickly throughout the world. Despite immunization and some fairly effective therapeutic regimens, SARS-CoV-2 has been ravaging patients, health workers, and the economy. SARS-CoV-2 mutates and evolves to adapt to its host as a result of extreme selection pressure. As a consequence, new SARS-CoV-2 variants have emerged, some of which are classified as variants of concern (VOC) because they exhibit greater transmissibility, cause more-severe disease, are better able to escape immunity, or cause higher mortality than the original Wuhan strain. Here, we introduce these VOCs and review their characteristics, such as transmissibility, immune escape, mortality risk, and diagnostics.
Collapse
Affiliation(s)
- Mostafa Salehi-Vaziri
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Fazlalipour
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
| | | | - Kayhan Azadmanesh
- Research Center for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Hassan Pouriayevali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Tahmineh Jalali
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran
- Department of Arboviruses and Viral Hemorrhagic Fevers (National Reference Laboratory), Pasteur Institute of Iran, Tehran, Iran
| | - Zabihollah Shoja
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Maleki
- COVID-19 National Reference Laboratory, Pasteur Institute of Iran, 69 Pasteur Ave, 1316943551, Tehran, Iran.
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
318
|
Mak WA, Koeleman JG, van der Vliet M, Keuren F, Ong DS. SARS-CoV-2 antibody and T cell responses one year after COVID-19 and the booster effect of vaccination: A prospective cohort study. J Infect 2022; 84:171-178. [PMID: 34896516 PMCID: PMC8656179 DOI: 10.1016/j.jinf.2021.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVES First, to describe SARS-CoV-2 T cell and antibody responses in a prospective cohort of healthcare workers that suffered from mild to moderate COVID-19 approximately one year ago. Second, to assess COVID-19 vaccine-induced immune responses in these prior-infected individuals. METHODS SARS-CoV-2-specific T cell and anti-SARS-CoV-2-Spike-RBD immunoglobulin G (IgG) responses in blood were determined before COVID-19 vaccination with mRNA-1273, BNT162b2, Ad26.CoV2-S or ChAdOx1-S, two weeks after first vaccination, and after second vaccination. RESULTS 55 prior SARS-CoV-2 infected and seroconverted individuals were included. S1-specific T cell responses and anti-RBD IgG were detectable one year post SARS-CoV-2 infection: 24 spot-forming cells per 106 peripheral blood mononuclear cells (SFCs/106 PBMCs) after S1 stimulation and anti-RBD IgG concentration of 74 (IQR 36-158) IU/mL. Responses after the first and second vaccination were comparable with S1-specfic T cell responses of 198 (IQR 137-359) and 180 (IQR 103-347) SFCs/106 PBMCs, and IgG concentrations of 6792 (IQR 3386-15,180) and 6326 (IQR 2336-13,440) IU/mL, respectively. These responses retained up to four months after vaccination. CONCLUSIONS Both T cell and IgG responses against SARS-CoV-2 persist for up to one year after COVID-19. A second COVID-19 vaccination in prior-infected individuals did not further increase immune responses in comparison to one vaccination.
Collapse
Affiliation(s)
- Willem A. Mak
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands
| | - Johannes G.M. Koeleman
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands
| | - Marijke van der Vliet
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands
| | - Frans Keuren
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands
| | - David S.Y. Ong
- Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands,Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Universiteitsweg 100, Utrecht 3584 GC, the Netherlands,Corresponding author at: Department of Medical Microbiology and Infection Control, Franciscus Gasthuis and Vlietland, Kleiweg 500, Rotterdam 3045 PM, the Netherlands
| |
Collapse
|
319
|
Minervina AA, Pogorelyy MV, Kirk AM, Crawford JC, Allen EK, Chou CH, Mettelman RC, Allison KJ, Lin CY, Brice DC, Zhu X, Vegesana K, Wu G, Trivedi S, Kottapalli P, Darnell D, McNeely S, Olsen SR, Schultz-Cherry S, Estepp JH, McGargill MA, Wolf J, Thomas PG. SARS-CoV-2 antigen exposure history shapes phenotypes and specificity of memory CD8 T cells. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2021.07.12.21260227. [PMID: 34341799 PMCID: PMC8328067 DOI: 10.1101/2021.07.12.21260227] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Although mRNA vaccine efficacy against severe COVID-19 remains high, variant emergence and breakthrough infections have changed vaccine policy to include booster immunizations. However, the effect of diverse and repeated antigen exposures on SARS-CoV-2 memory T cells is poorly understood. Here, we utilize DNA-barcoded MHC-multimers combined with scRNAseq and scTCRseq to capture the ex vivo profile of SARS-CoV-2-responsive T cells within a cohort of individuals with one, two, or three antigen exposures, including vaccination, primary infection, and breakthrough infection. We found that the order of exposure determined the relative distribution between spike- and non-spike-specific responses, with vaccination after infection leading to further expansion of spike-specific T cells and differentiation to a CCR7-CD45RA+ effector phenotype. In contrast, individuals experiencing a breakthrough infection mount vigorous non-spike-specific responses. In-depth analysis of over 4,000 epitope-specific T cell receptor sequences demonstrates that all types of exposures elicit diverse repertoires characterized by shared, dominant TCR motifs, with no evidence for repertoire narrowing from repeated exposure. Our findings suggest that breakthrough infections diversify the T cell memory repertoire and that current vaccination protocols continue to expand and differentiate spike-specific memory responses.
Collapse
Affiliation(s)
| | - Mikhail V. Pogorelyy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Allison M. Kirk
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - E. Kaitlynn Allen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Ching-Heng Chou
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Robert C. Mettelman
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kim J. Allison
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chun-Yang Lin
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - David C. Brice
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Xun Zhu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Kasi Vegesana
- Information Services, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Sanchit Trivedi
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Pratibha Kottapalli
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Daniel Darnell
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Suzanne McNeely
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Scott R. Olsen
- Hartwell Center for Bioinformatics & Biotechnology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jeremie H. Estepp
- Department of Global Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN USA
| | | | - Maureen A. McGargill
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Joshua Wolf
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Paul G. Thomas
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN USA
| |
Collapse
|
320
|
Mazzoni A, Vanni A, Spinicci M, Capone M, Lamacchia G, Salvati L, Coppi M, Antonelli A, Carnasciali A, Farahvachi P, Giovacchini N, Aiezza N, Malentacchi F, Zammarchi L, Liotta F, Rossolini GM, Bartoloni A, Cosmi L, Maggi L, Annunziato F. SARS-CoV-2 Spike-Specific CD4+ T Cell Response Is Conserved Against Variants of Concern, Including Omicron. Front Immunol 2022; 13:801431. [PMID: 35154116 PMCID: PMC8826050 DOI: 10.3389/fimmu.2022.801431] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/10/2022] [Indexed: 12/16/2022] Open
Abstract
Although accumulating data have investigated the effect of SARS-CoV-2 mutations on antibody neutralizing activity, less is known about T cell immunity. In this work, we found that the ancestral (Wuhan strain) Spike protein can efficaciously reactivate CD4+ T cell memory in subjects with previous Alpha variant infection. This finding has practical implications, as in many countries only one vaccine dose is currently administered to individuals with previous COVID-19, independently of which SARS-CoV-2 variant was responsible of the infection. We also found that only a minority of Spike-specific CD4+ T cells targets regions mutated in Alpha, Beta and Delta variants, both after natural infection and vaccination. Finally, we found that the vast majority of Spike-specific CD4+ T cell memory response induced by natural infection or mRNA vaccination is conserved also against Omicron variant. This is of importance, as this newly emerged strain is responsible for a sudden rise in COVID-19 cases worldwide due to its increased transmissibility and ability to evade antibody neutralization. Collectively, these observations suggest that most of the memory CD4+ T cell response is conserved against SARS-CoV-2 variants of concern, providing an efficacious line of defense that can protect from the development of severe forms of COVID-19.
Collapse
Affiliation(s)
- Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Anna Vanni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele Spinicci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Disease Unit, Careggi University Hospital, Florence, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Lamacchia
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lorenzo Salvati
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Marco Coppi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alberto Carnasciali
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Parham Farahvachi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Nicla Giovacchini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Noemi Aiezza
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Lorenzo Zammarchi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Disease Unit, Careggi University Hospital, Florence, Italy
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Alessandro Bartoloni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Infectious and Tropical Disease Unit, Careggi University Hospital, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Immunology and Cell Therapy Unit, Careggi University Hospital, Florence, Italy
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| |
Collapse
|
321
|
Murugesan K, Jagannathan P, Altamirano J, Maldonado YA, Bonilla HF, Jacobson KB, Parsonnet J, Andrews JR, Shi RZ, Boyd S, Pinsky BA, Singh U, Banaei N. Long-Term Accuracy of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Interferon-γ Release Assay and Its Application in Household Investigation. Clin Infect Dis 2022; 75:e314-e321. [PMID: 35079772 PMCID: PMC8807306 DOI: 10.1093/cid/ciac045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND An immunodiagnostic assay that sensitively detects a cell-mediated immune response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is needed for epidemiological investigation and for clinical assessment of T- cell-mediated immune response to vaccines, particularly in the context of emerging variants that might escape antibody responses. METHODS The performance of a whole blood interferon-gamma (IFN-γ) release assay (IGRA) for the detection of SARS-CoV-2 antigen-specific T cells was evaluated in coronavirus disease 2019 (COVID-19) convalescents tested serially up to 10 months post-infection and in healthy blood donors. SARS-CoV-2 IGRA was applied in contacts of households with index cases. Freshly collected blood in the lithium heparin tube was left unstimulated, stimulated with a SARS-CoV-2 peptide pool, and stimulated with mitogen. RESULTS The overall sensitivity and specificity of IGRA were 84.5% (153/181; 95% confidence interval [CI]: 79.0-89.0) and 86.6% (123/142; 95% CI: 80.0-91.2), respectively. The sensitivity declined from 100% (16/16; 95% CI: 80.6-100) at 0.5-month post-infection to 79.5% (31/39; 95% CI: 64.4-89.2) at 10 months post-infection (P < .01). The IFN-γ response remained relatively robust at 10 months post-infection (3.8 vs 1.3 IU/mL, respectively). In 14 households, IGRA showed a positivity rate of 100% (12/12) and 65.2% (15/23), and IgG of 50.0% (6/12) and 43.5% (10/23) in index cases and contacts, respectively, exhibiting a difference of + 50% (95% CI: +25.4 to +74.6) and +21.7% (95% CI: +9.23 to +42.3), respectively. Either IGRA or IgG was positive in 100% (12/12) of index cases and 73.9% (17/23) of contacts. CONCLUSIONS The SARS-CoV-2 IGRA is a useful clinical diagnostic tool for assessing cell-mediated immune response to SARS-CoV-2.
Collapse
Affiliation(s)
- Kanagavel Murugesan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan Altamirano
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yvonne A Maldonado
- Division of Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Hector F Bonilla
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Karen B Jacobson
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Julie Parsonnet
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Run-Zhang Shi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Scott Boyd
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin A Pinsky
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA,Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA,Clinical Virology Laboratory, Stanford Health Care, Stanford, CA, USA
| | - Upinder Singh
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA,Department of Microbiology and Immunology
| | - Niaz Banaei
- Corresponding Author: Niaz Banaei MD , 3375 Hillview Ave, Rm. 1602, Palo Alto, Ca 94304 USA, Phone 650-736-8052,
| |
Collapse
|
322
|
Rüthrich MM, Giesen N, Mellinghoff SC, Rieger CT, von Lilienfeld-Toal M. Cellular Immune Response after Vaccination in Patients with Cancer-Review on Past and Present Experiences. Vaccines (Basel) 2022; 10:182. [PMID: 35214642 PMCID: PMC8875094 DOI: 10.3390/vaccines10020182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Patients with cancer are at particular risk for infection but also have diminished vaccine responses, usually quantified by the level of specific antibodies. Nonetheless, vaccines are specifically recommended in this vulnerable patient group. Here, we discuss the cellular part of the vaccine response in patients with cancer. We summarize the experience with vaccines prior to and during the SARS-CoV-2 pandemic in different subgroups, and we discuss why, especially in patients with cancer, T cells may be the more reliable correlate of protection. Finally, we provide a brief outlook on options to improve the cellular response to vaccines.
Collapse
Affiliation(s)
- Maria Madeleine Rüthrich
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| | - Nicola Giesen
- Department of Haematology and Oncology, Internal Medicine V, University Hospital Heidelberg, 69115 Heidelberg, Germany;
| | - Sibylle C. Mellinghoff
- Centre for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Faculty of Medicine and University Hospital of Cologne, Department I of Internal Medicine, University of Cologne, 50923 Cologne, Germany;
| | - Christina T. Rieger
- Hemato-Oncology Germering & Interdisciplinary Tumorcenter, Ludwig-Maximilians-University Munich, 81377 Munich, Germany;
| | - Marie von Lilienfeld-Toal
- Department of Internal Medicine II, Hematology and Medical Oncology, Universitätsklinikum Jena, Am Klinikum 1, 07747 Jena, Germany;
- Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institut, Adolf-Reichwein-Straße 23, 07745 Jena, Germany
| |
Collapse
|
323
|
Hyun YS, Lee YH, Jo HA, Baek IC, Kim SM, Sohn HJ, Kim TG. Comprehensive Analysis of CD4 + T Cell Response Cross-Reactive to SARS-CoV-2 Antigens at the Single Allele Level of HLA Class II. Front Immunol 2022; 12:774491. [PMID: 35069546 PMCID: PMC8770530 DOI: 10.3389/fimmu.2021.774491] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Common human coronaviruses have been circulating undiagnosed worldwide. These common human coronaviruses share partial sequence homology with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); therefore, T cells specific to human coronaviruses are also cross-reactive with SARS-CoV-2 antigens. Herein, we defined CD4+ T cell responses that were cross-reactive with SARS-CoV-2 antigens in blood collected in 2016–2018 from healthy donors at the single allele level using artificial antigen-presenting cells (aAPC) expressing a single HLA class II allotype. We assessed the allotype-restricted responses in the 42 individuals using the aAPCs matched 22 HLA-DR alleles, 19 HLA-DQ alleles, and 13 HLA-DP alleles. The response restricted by the HLA-DR locus showed the highest magnitude, and that by HLA-DP locus was higher than that by HLA-DQ locus. Since two alleles of HLA-DR, -DQ, and -DP loci are expressed co-dominantly in an individual, six different HLA class II allotypes can be used to the cross-reactive T cell response. Of the 16 individuals who showed a dominant T cell response, five, one, and ten showed a dominant response by a single allotype of HLA-DR, -DQ, and -DP, respectively. The single allotype-restricted T cells responded to only one antigen in the five individuals and all the spike, membrane, and nucleocapsid proteins in the six individuals. In individuals heterozygous for the HLA-DPA and HLA-DPB loci, four combinations of HLA-DP can be expressed, but only one combination showed a dominant response. These findings demonstrate that cross-reactive T cells to SARS-CoV-2 respond with single-allotype dominance.
Collapse
Affiliation(s)
- You-Seok Hyun
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Yong-Hun Lee
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyeong-A Jo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - In-Cheol Baek
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun-Mi Kim
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Hyun-Jung Sohn
- Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Tai-Gyu Kim
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Catholic Hematopoietic Stem Cell Bank, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
324
|
Synthetic multiantigen MVA vaccine COH04S1 protects against SARS-CoV-2 in Syrian hamsters and non-human primates. NPJ Vaccines 2022; 7:7. [PMID: 35064109 PMCID: PMC8782996 DOI: 10.1038/s41541-022-00436-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/15/2021] [Indexed: 12/23/2022] Open
Abstract
Second-generation COVID-19 vaccines could contribute to establish protective immunity against SARS-CoV-2 and its emerging variants. We developed COH04S1, a synthetic multiantigen modified vaccinia Ankara-based SARS-CoV-2 vaccine that co-expresses spike and nucleocapsid antigens. Here, we report COH04S1 vaccine efficacy in animal models. We demonstrate that intramuscular or intranasal vaccination of Syrian hamsters with COH04S1 induces robust Th1-biased antigen-specific humoral immunity and cross-neutralizing antibodies (NAb) and protects against weight loss, lower respiratory tract infection, and lung injury following intranasal SARS-CoV-2 challenge. Moreover, we demonstrate that single-dose or two-dose vaccination of non-human primates with COH04S1 induces robust antigen-specific binding antibodies, NAb, and Th1-biased T cells, protects against both upper and lower respiratory tract infection following intranasal/intratracheal SARS-CoV-2 challenge, and triggers potent post-challenge anamnestic antiviral responses. These results demonstrate COH04S1-mediated vaccine protection in animal models through different vaccination routes and dose regimens, complementing ongoing investigation of this multiantigen SARS-CoV-2 vaccine in clinical trials.
Collapse
|
325
|
Stieber F, Allen N, Carpenter K, Howard J, Alagna R, Manissero D, Nikolayevskyy V. Accuracy of Interferon Gamma Release Assays for the COVID-19 immunity assessment. J Virol Methods 2022; 302:114472. [PMID: 35065949 PMCID: PMC8772062 DOI: 10.1016/j.jviromet.2022.114472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/17/2022] [Indexed: 01/29/2023]
Abstract
Emerging evidence suggests that T-cells play a significant role in COVID-19 immunity both in the context of natural infection and vaccination. Easy to use IGRA assays including QFN SARS are considered attractive alternatives to more “traditional” but laborious methods for detection of SARS-CoV-2-specific T-cell responses. In our Letter we are proposing explanations to an apparently lower than expected T-cell responses (44 % reactive individuals) reported by Krüttgen et al in a small cohort of healthy double vaccinated individuals. These results could have been affected by reporting raw optical density values instead of calculated Interferon-ɣ concentrations which is supported by unexpectedly low mitogen responses in healthy individuals. This study highlights an importance of adhering to good laboratory practice principles as well as overall importance of accurate T-cell immunity assessment using IGRA assays.
Collapse
Affiliation(s)
- Francis Stieber
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Nadia Allen
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Kara Carpenter
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | - Jenny Howard
- QIAGEN Sciences Inc, 19300 Germantown Road, Germantown, MD, 20874, USA
| | | | - Davide Manissero
- QIAGEN Manchester, Citylabs 2.0 Hathersage Road, Manchester, M130BH, United Kingdom
| | | |
Collapse
|
326
|
Hirabara SM, Serdan TDA, Gorjao R, Masi LN, Pithon-Curi TC, Covas DT, Curi R, Durigon EL. SARS-COV-2 Variants: Differences and Potential of Immune Evasion. Front Cell Infect Microbiol 2022; 11:781429. [PMID: 35118007 PMCID: PMC8805732 DOI: 10.3389/fcimb.2021.781429] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/20/2021] [Indexed: 12/16/2022] Open
Abstract
The structural spike (S) glycoprotein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) plays an essential role in infection and is an important target for neutralizing antibody recognition. Mutations in the S gene can generate variants of concern (VOCs), which improve “viral fitness” through selective or survival advantages, such as increased ACE-2 receptor affinity, infectivity, viral replication, higher transmissibility, resistance to neutralizing antibodies and immune escape, increasing disease severity and reinfection risk. Five VOCs have been recognized and include B.1.1.7 (U.K.), B.1.351 (South Africa), P.1 (Brazil), B.1.617.2 (India), and B.1.1.529 (multiple countries). In this review, we addressed the following critical points concerning VOCs: a) characteristics of the SARS-CoV-2 VOCs with mutations in the S gene; b) possible evasion of variants from neutralizing antibodies generated through vaccination, previous infection, or immune therapies; c) potential risk of new pandemic waves induced by the variants worldwide; and d) perspectives for further studies and actions aimed at preventing or reducing the impact of new variants during the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sandro M. Hirabara
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- *Correspondence: Sandro M. Hirabara,
| | - Tamires D. A. Serdan
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| | - Renata Gorjao
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Laureane N. Masi
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Tania C. Pithon-Curi
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
| | - Dimas T. Covas
- Butantan Institute, São Paulo, Brazil
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Rui Curi
- Interdisciplinary Program of Health Sciences, Cruzeiro do Sul University, São Paulo, Brazil
- Immunobiological Production Section, Bioindustrial Center, Butantan Institute, São Paulo, Brazil
| | - Edison L. Durigon
- Laboratory of Clinical and Molecular Virology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Scientific Platform Pasteur University of São Paulo, São Paulo, Brazil
| |
Collapse
|
327
|
Tarabini RF, Rigo MM, Faustino Fonseca A, Rubin F, Bellé R, Kavraki LE, Ferreto TC, Amaral Antunes D, de Souza APD. Large-Scale Structure-Based Screening of Potential T Cell Cross-Reactivities Involving Peptide-Targets From BCG Vaccine and SARS-CoV-2. Front Immunol 2022; 12:812176. [PMID: 35095907 PMCID: PMC8793865 DOI: 10.3389/fimmu.2021.812176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/22/2022] Open
Abstract
Although not being the first viral pandemic to affect humankind, we are now for the first time faced with a pandemic caused by a coronavirus. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been responsible for the COVID-19 pandemic, which caused more than 4.5 million deaths worldwide. Despite unprecedented efforts, with vaccines being developed in a record time, SARS-CoV-2 continues to spread worldwide with new variants arising in different countries. Such persistent spread is in part enabled by public resistance to vaccination in some countries, and limited access to vaccines in other countries. The limited vaccination coverage, the continued risk for resistant variants, and the existence of natural reservoirs for coronaviruses, highlight the importance of developing additional therapeutic strategies against SARS-CoV-2 and other coronaviruses. At the beginning of the pandemic it was suggested that countries with Bacillus Calmette-Guérin (BCG) vaccination programs could be associated with a reduced number and/or severity of COVID-19 cases. Preliminary studies have provided evidence for this relationship and further investigation is being conducted in ongoing clinical trials. The protection against SARS-CoV-2 induced by BCG vaccination may be mediated by cross-reactive T cell lymphocytes, which recognize peptides displayed by class I Human Leukocyte Antigens (HLA-I) on the surface of infected cells. In order to identify potential targets of T cell cross-reactivity, we implemented an in silico strategy combining sequence-based and structure-based methods to screen over 13,5 million possible cross-reactive peptide pairs from BCG and SARS-CoV-2. Our study produced (i) a list of immunogenic BCG-derived peptides that may prime T cell cross-reactivity against SARS-CoV-2, (ii) a large dataset of modeled peptide-HLA structures for the screened targets, and (iii) new computational methods for structure-based screenings that can be used by others in future studies. Our study expands the list of BCG peptides potentially involved in T cell cross-reactivity with SARS-CoV-2-derived peptides, and identifies multiple high-density "neighborhoods" of cross-reactive peptides which could be driving heterologous immunity induced by BCG vaccination, therefore providing insights for future vaccine development efforts.
Collapse
Affiliation(s)
- Renata Fioravanti Tarabini
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | | | - André Faustino Fonseca
- Antunes Lab, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Felipe Rubin
- School of Technology - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rafael Bellé
- Laboratório de alto desempenho – Centro de Apoio ao desenvolvimento cientifico e tecnológico da (IDEIA), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Lydia E Kavraki
- Kavraki Lab, Department of Computer Science, Rice University, Houston, TX, United States
| | - Tiago Coelho Ferreto
- School of Technology - Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil,Laboratório de alto desempenho – Centro de Apoio ao desenvolvimento cientifico e tecnológico da (IDEIA), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Dinler Amaral Antunes
- Antunes Lab, Department of Biology and Biochemistry, University of Houston, Houston, TX, United States,*Correspondence: Ana Paula Duarte de Souza, ; Dinler Amaral Antunes,
| | - Ana Paula Duarte de Souza
- Laboratory of Clinical and Experimental Immunology, Infant Center, School of Health Science, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil,*Correspondence: Ana Paula Duarte de Souza, ; Dinler Amaral Antunes,
| |
Collapse
|
328
|
Abstract
The process of adaptation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to humans probably had started decades ago, when its ancestor diverged from the bat coronavirus. The adaptive process comprises strategies the virus uses to overcome the respiratory tract defense barriers and replicate and shed in the host cells. These strategies include the impairment of interferon production, hiding immunogenic motifs, avoiding viral RNA detection, manipulating cell autophagy, triggering host cell death, inducing lymphocyte exhaustion and depletion, and finally, mutation and escape from immunity. In addition, SARS-CoV-2 employs strategies to take advantage of host cell resources for its benefits, such as inhibiting the ubiquitin-proteasome system, hijacking mitochondria functions, and usage of enhancing antibodies. It may be anticipated that as the tradeoffs of adaptation progress, the virus destructive burden will gradually subside. Some evidence suggests that SARS-CoV-2 will become part of the human respiratory virome, as had occurred with other coronaviruses, and coevolve with its host.
Collapse
Affiliation(s)
- Eduardo Tosta
- Universidade de Brasília, Faculdade de Medicina, Brasília, DF, Brasil
| |
Collapse
|
329
|
Siracusano G, Ruggiero A, Bisoffi Z, Piubelli C, Carbonare LD, Valenti MT, Mayora-Neto M, Temperton N, Lopalco L, Zipeto D. Different decay of antibody response and VOC sensitivity in naïve and previously infected subjects at 15 weeks following vaccination with BNT162b2. J Transl Med 2022; 20:22. [PMID: 34998405 PMCID: PMC8742572 DOI: 10.1186/s12967-021-03208-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 02/01/2023] Open
Abstract
Background COVID-19 vaccines have demonstrated effectiveness in reducing SARS-CoV-2 mild and severe outcomes. In vaccinated subjects with SARS-CoV-2 history, RBD-specific IgG and pseudovirus neutralization titers were rapidly recalled by a single BTN162b2 vaccine dose to higher levels than those in naïve recipients after the second dose, irrespective of waning immunity. In this study, we inspected the long-term kinetic and neutralizing responses of S-specific IgG induced by two administrations of BTN162b2 vaccine in infection-naïve subjects and in subjects previously infected with SARS-CoV-2. Methods Twenty-six naïve and 9 previously SARS-CoV-2 infected subjects during the second wave of the pandemic in Italy were enrolled for this study. The two groups had comparable demographic and clinical characteristics. By means of ELISA and pseudotyped-neutralization assays, we investigated the kinetics of developed IgG-RBD and their neutralizing activity against both the ancestral D614G and the SARS-CoV-2 variants of concern emerged later, respectively. The Wilcoxon matched pair signed rank test and the Kruskal–Wallis test with Dunn’s correction for multiple comparison were applied when needed. Results Although after 15 weeks from vaccination IgG-RBD dropped in all participants, naïve subjects experienced a more dramatic decline than those with previous SARS-CoV-2 infection. Neutralizing antibodies remained higher in subjects with SARS-CoV-2 history and conferred broad-spectrum protection. Conclusions These data suggest that hybrid immunity to SARS-CoV-2 has a relevant impact on the development of IgG-RBD upon vaccination. However, the rapid decay of vaccination-elicited antibodies highlights that the administration of a third dose is expected to boost the response and acquire high levels of cross-neutralizing antibodies. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03208-3.
Collapse
Affiliation(s)
- Gabriel Siracusano
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Alessandra Ruggiero
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Zeno Bisoffi
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital Negrar, Verona, Italy.,Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital Negrar, Verona, Italy
| | | | | | - Martin Mayora-Neto
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, ME7, 47B, UK
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Kent and Greenwich at Medway, Chatham, ME7, 47B, UK
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Donato Zipeto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
330
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Teng IT, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in rhesus macaques coincides with anamnestic antibody response in the lung. Cell 2022; 185:113-130.e15. [PMID: 34921774 PMCID: PMC8639396 DOI: 10.1016/j.cell.2021.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 01/07/2023]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. Here, we immunized rhesus macaques and assessed immune responses over 1 year in blood and upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody-binding titers also decreased in bronchoalveolar lavage (BAL). Four days after Delta challenge, the virus was unculturable in BAL, and subgenomic RNA declined by ∼3-log10 compared with control animals. In nasal swabs, sgRNA was reduced by 1-log10, and the virus remained culturable. Anamnestic antibodies (590-fold increased titer) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kizzmekia S Corbett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Danielle A Wagner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lauren McCormick
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Saule T Nurmukhambetova
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Kevin W Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Bianca M Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Anne P Werner
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Juan I Moliva
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Courtney Tucker
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia G Lorang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bingchun Zhao
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth McCarthy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Prakriti Mudvari
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jesmine Roberts-Torres
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | - Seyhan Boyoglu-Barnum
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eun Sung Yang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Shi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aurélie Ploquin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | - Mehul S Suthar
- Department of Pediatrics, Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ian N Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nancy J Sullivan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
331
|
Naranbhai V, Nathan A, Kaseke C, Berrios C, Khatri A, Choi S, Getz MA, Tano-Menka R, Ofoman O, Gayton A, Senjobe F, Denis KJS, Lam EC, Garcia-Beltran WF, Balazs AB, Walker BD, Iafrate AJ, Gaiha GD. T cell reactivity to the SARS-CoV-2 Omicron variant is preserved in most but not all prior infected and vaccinated individuals. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.04.21268586. [PMID: 35018386 PMCID: PMC8750712 DOI: 10.1101/2022.01.04.21268586] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (∼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4 + and CD8 + memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8 + T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.
Collapse
|
332
|
Boedecker-Lips SC, Lautem A, Runkel S, Klimpke P, Kraus D, Keil P, Holtz S, Tomalla V, Marczynski P, Boedecker CB, Galle PR, Koch M, Weinmann-Menke J. Six-Month Follow-Up after Vaccination with BNT162b2: SARS-CoV-2 Antigen-Specific Cellular and Humoral Immune Responses in Hemodialysis Patients and Kidney Transplant Recipients. Pathogens 2022; 11:67. [PMID: 35056015 PMCID: PMC8780885 DOI: 10.3390/pathogens11010067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/02/2022] [Indexed: 02/01/2023] Open
Abstract
Hemodialysis patients (HDP) and kidney transplant recipients (KTR) have a high risk of infection with SARS-CoV-2 with poor clinical outcomes. Because of this, vaccination of these groups of patients against SARS-CoV-2 is particularly important. However, immune responses may be impaired in immunosuppressed and chronically ill patients. Here, our aim was to compare the efficacy of an mRNA-based vaccine in HDP, KTR, and healthy subjects. DESIGN In this prospective observational cohort study, the humoral and cellular response of prevalent 192 HDP, 50 KTR, and 28 healthy controls (HC) was assessed 1, 2, and 6 months after the first immunization with the BNT162b2 mRNA vaccine. RESULTS After 6 months, 97.5% of HDP, 37.9% of KTR, and 100% of HC had an antibody response. Median antibody levels were 1539.7 (±3355.8), 178.5 (±369.5), and 2657.8 (±2965.8) AU/mL in HDP, KTR, and HC, respectively (p ≤ 0.05). A SARS-CoV-2 antigen-specific cell response to vaccination was found in 68.8% of HDP, 64.5% of KTR, and 90% of HC. CONCLUSION The humoral response rates to mRNA-based vaccination of HDPs are comparable to HCs, but antibody titers are lower. Furthermore, HDPs have weaker T-cell response to vaccination than HCs. KTRs have very low humoral and antigen-specific cellular response rates and antibody titers, which requires other vaccination strategies in addition to booster vaccination.
Collapse
Affiliation(s)
- Simone Cosima Boedecker-Lips
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Anja Lautem
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (A.L.); (C.B.B.); (M.K.)
| | - Stefan Runkel
- Blood Transfusion Center, University Medical Center Mainz, Johannes-Gutenberg University, D 55131 Mainz, Germany;
| | - Pascal Klimpke
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Daniel Kraus
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Philipp Keil
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Stefan Holtz
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Vanessa Tomalla
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Paul Marczynski
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
| | - Christian Benedikt Boedecker
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (A.L.); (C.B.B.); (M.K.)
| | - Peter Robert Galle
- Department of Internal Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany;
| | - Martina Koch
- Department of General, Visceral and Transplantation Surgery, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (A.L.); (C.B.B.); (M.K.)
| | - Julia Weinmann-Menke
- Department of Nephrology, I. Department of Medicine, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany; (S.C.B.-L.); (P.K.); (D.K.); (P.K.); (S.H.); (V.T.); (P.M.)
- Research Center of Immunotherapy (FZI), University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| |
Collapse
|
333
|
Ahmed SF, Quadeer AA, McKay MR. SARS-CoV-2 T Cell Responses Elicited by COVID-19 Vaccines or Infection Are Expected to Remain Robust against Omicron. Viruses 2022; 14:79. [PMID: 35062283 PMCID: PMC8781795 DOI: 10.3390/v14010079] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
Omicron, the most recent SARS-CoV-2 variant of concern (VOC), harbours multiple mutations in the spike protein that were not observed in previous VOCs. Initial studies suggest Omicron to substantially reduce the neutralizing capability of antibodies induced from vaccines and previous infection. However, its effect on T cell responses remains to be determined. Here, we assess the effect of Omicron mutations on known T cell epitopes and report data suggesting T cell responses to remain broadly robust against this new variant.
Collapse
Affiliation(s)
- Syed Faraz Ahmed
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
| | - Ahmed Abdul Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
| | - Matthew R. McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| |
Collapse
|
334
|
Kwok SL, Cheng SM, Leung JN, Leung K, Lee CK, Peiris JM, Wu JT. Waning antibody levels after COVID-19 vaccination with mRNA Comirnaty and inactivated CoronaVac vaccines in blood donors, Hong Kong, April 2020 to October 2021. Euro Surveill 2022; 27:2101197. [PMID: 35027105 PMCID: PMC8759113 DOI: 10.2807/1560-7917.es.2022.27.2.2101197] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/13/2022] [Indexed: 04/09/2023] Open
Abstract
The mRNA vaccine Comirnaty and the inactivated vaccine CoronaVac are both available in Hong Kong's COVID-19 vaccination programme. We observed waning antibody levels in 850 fully vaccinated (at least 14 days passed after second dose) blood donors using ELISA and surrogate virus neutralisation test. The Comirnaty-vaccinated group's (n = 593) antibody levels remained over the ELISA and sVNT positive cut-offs within the first 6 months. The CoronaVac-vaccinated group's (n = 257) median antibody levels began to fall below the cut-offs 4 months after vaccination.
Collapse
Affiliation(s)
- Shirley Ll Kwok
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Samuel Ms Cheng
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Jennifer Ns Leung
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong Special Administrative Region, China
| | - Kathy Leung
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Cheuk-Kwong Lee
- Hong Kong Red Cross Blood Transfusion Service, Hospital Authority, Hong Kong Special Administrative Region, China
| | - Js Malik Peiris
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- HKU-Pasteur Research Pole, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Immunology and Infection (C2i), Hong Kong Science Park, Hong Kong Special Administrative Region, China
| | - Joseph T Wu
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Laboratory of Data Discovery for Health (D24H), Hong Kong Science Park, Hong Kong Special Administrative Region, China
| |
Collapse
|
335
|
Simnani FZ, Singh D, Kaur R. COVID-19 phase 4 vaccine candidates, effectiveness on SARS-CoV-2 variants, neutralizing antibody, rare side effects, traditional and nano-based vaccine platforms: a review. 3 Biotech 2022; 12:15. [PMID: 34926119 PMCID: PMC8665991 DOI: 10.1007/s13205-021-03076-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has endangered world health and the economy. As the number of cases is increasing, different companies have started developing potential vaccines using both traditional and nano-based platforms to overcome the pandemic. Several countries have approved a few vaccine candidates for emergency use authorization (EUA), showing significant effectiveness and inducing a robust immune response. Oxford-AstraZeneca, Pfizer-BioNTech's BNT162, Moderna's mRNA-1273, Sinovac's CoronaVac, Johnson & Johnson, Sputnik-V, and Sinopharm's vaccine candidates are leading the race. However, the SARS-CoV-2 is constantly mutating, making the vaccines less effective, possibly by escaping immune response for some variants. Besides, some EUA vaccines have been reported to induce rare side effects such as blood clots, cardiac injury, anaphylaxis, and some neurological effects. Although the COVID-19 vaccine candidates promise to overcome the pandemic, a more significant and clear understanding is needed. In this review, we brief about the clinical trial of some leading candidates, their effectiveness, and their neutralizing effect on SARS-CoV-2 variants. Further, we have discussed the rare side effects, different traditional and nano-based platforms to understand the scope of future development.
Collapse
Affiliation(s)
| | - Dibyangshee Singh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024 India
| | - Ramneet Kaur
- Department of Life Sciences, RIMT University, Ludhiana, Punjab India
| |
Collapse
|
336
|
Mukhopadhyay L, Gupta N, Yadav PD, Aggarwal N. Neutralization assays for SARS-CoV-2: Implications for assessment of protective efficacy of COVID-19 vaccines. Indian J Med Res 2022; 155:105-122. [PMID: 35859437 PMCID: PMC9552365 DOI: 10.4103/ijmr.ijmr_2544_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/04/2022] Open
Abstract
The WHO emergency use-listed (EUL) COVID-19 vaccines were developed against early strains of SARS-CoV-2. With the emergence of SARS-CoV-2 variants of concern (VOCs) - Alpha, Beta, Gamma, Delta and Omicron, it is necessary to assess the neutralizing activity of these vaccines against the VOCs. PubMed and preprint platforms were searched for literature on neutralizing activity of serum from WHO EUL vaccine recipients, against the VOCs, using appropriate search terms till November 30, 2021. Our search yielded 91 studies meeting the inclusion criteria. The analysis revealed a drop of 0-8.9-fold against Alpha variant, 0.3-42.4-fold against Beta variant, 0-13.8-fold against Gamma variant and 1.35-20-fold against Delta variant in neutralization titres of serum from the WHO EUL COVID-19 vaccine recipients, as compared to early SARS-CoV-2 isolates. The wide range of variability was due to differences in the choice of virus strains selected for neutralization assays (pseudovirus or live virus), timing of serum sample collection after the final dose of vaccine (day 0 to 8 months) and sample size (ranging from 5 to 470 vaccinees). The reasons for this variation have been discussed and the possible way forward to have uniformity across neutralization assays in different laboratories have been described, which will generate reliable data. Though in vitro neutralization studies are a valuable tool to estimate the performance of vaccines against the backdrop of emerging variants, the results must be interpreted with caution and corroborated with field-effectiveness studies.
Collapse
Affiliation(s)
- Labanya Mukhopadhyay
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Nivedita Gupta
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Pragya D. Yadav
- Maximum Containment Laboratory, Indian Council of Medical Research-National Institute of Virology, Pune, Maharashtra, India
| | - Neeraj Aggarwal
- Virology Unit, Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
337
|
Rowe LA, Beddingfield BJ, Goff K, Killeen SZ, Chirichella NR, Melton A, Roy CJ, Maness NJ. Intra-Host SARS-CoV-2 Evolution in the Gut of Mucosally-Infected Chlorocebus aethiops (African Green Monkeys). Viruses 2022; 14:77. [PMID: 35062281 PMCID: PMC8777858 DOI: 10.3390/v14010077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 02/04/2023] Open
Abstract
In recent months, several SARS-CoV-2 variants have emerged that enhance transmissibility and escape host humoral immunity. Hence, the tracking of viral evolutionary trajectories is clearly of great importance. Little is known about SARS-CoV-2 evolution in nonhuman primate models used to test vaccines and therapies and to model human disease. Viral RNA was sequenced from rectal swabs from Chlorocebus aethiops (African green monkeys) after experimental respiratory SARS-CoV-2 infection. Two distinct patterns of viral evolution were identified that were shared between all collected samples. First, mutations in the furin cleavage site that were initially present in the virus as a consequence of VeroE6 cell culture adaptation were not detected in viral RNA recovered in rectal swabs, confirming the necessity of this motif for viral infection in vivo. Three amino acid changes were also identified; ORF 1a S2103F, and spike D215G and H655Y, which were detected in rectal swabs from all sampled animals. These findings are demonstrative of intra-host SARS-CoV-2 evolution and may identify a host-adapted variant of SARS-CoV-2 that would be useful in future primate models involving SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Lori A. Rowe
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Brandon J. Beddingfield
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Stephanie Z. Killeen
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Nicole R. Chirichella
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Alexandra Melton
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, LA 70433, USA; (L.A.R.); (B.J.B.); (K.G.); (S.Z.K.); (N.R.C.); (A.M.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
338
|
Stuart ASV, Shaw RH, Liu X, Greenland M, Aley PK, Andrews NJ, Cameron JC, Charlton S, Clutterbuck EA, Collins AM, Darton T, Dinesh T, Duncan CJA, England A, Faust SN, Ferreira DM, Finn A, Goodman AL, Green CA, Hallis B, Heath PT, Hill H, Horsington BM, Lambe T, Lazarus R, Libri V, Lillie PJ, Mujadidi YF, Payne R, Plested EL, Provstgaard-Morys S, Ramasamy MN, Ramsay M, Read RC, Robinson H, Screaton GR, Singh N, Turner DPJ, Turner PJ, Vichos I, White R, Nguyen-Van-Tam JS, Snape MD. Immunogenicity, safety, and reactogenicity of heterologous COVID-19 primary vaccination incorporating mRNA, viral-vector, and protein-adjuvant vaccines in the UK (Com-COV2): a single-blind, randomised, phase 2, non-inferiority trial. Lancet 2022; 399:36-49. [PMID: 34883053 PMCID: PMC8648333 DOI: 10.1016/s0140-6736(21)02718-5] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Given the importance of flexible use of different COVID-19 vaccines within the same schedule to facilitate rapid deployment, we studied mixed priming schedules incorporating an adenoviral-vectored vaccine (ChAdOx1 nCoV-19 [ChAd], AstraZeneca), two mRNA vaccines (BNT162b2 [BNT], Pfizer-BioNTech, and mRNA-1273 [m1273], Moderna) and a nanoparticle vaccine containing SARS-CoV-2 spike glycoprotein and Matrix-M adjuvant (NVX-CoV2373 [NVX], Novavax). METHODS Com-COV2 is a single-blind, randomised, non-inferiority trial in which adults aged 50 years and older, previously immunised with a single dose of ChAd or BNT in the community, were randomly assigned (in random blocks of three and six) within these cohorts in a 1:1:1 ratio to receive a second dose intramuscularly (8-12 weeks after the first dose) with the homologous vaccine, m1273, or NVX. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentrations measured by ELISA in heterologous versus homologous schedules at 28 days after the second dose, with a non-inferiority criterion of the GMR above 0·63 for the one-sided 98·75% CI. The primary analysis was on the per-protocol population, who were seronegative at baseline. Safety analyses were done for all participants who received a dose of study vaccine. The trial is registered with ISRCTN, number 27841311. FINDINGS Between April 19 and May 14, 2021, 1072 participants were enrolled at a median of 9·4 weeks after receipt of a single dose of ChAd (n=540, 47% female) or BNT (n=532, 40% female). In ChAd-primed participants, geometric mean concentration (GMC) 28 days after a boost of SARS-CoV-2 anti-spike IgG in recipients of ChAd/m1273 (20 114 ELISA laboratory units [ELU]/mL [95% CI 18 160 to 22 279]) and ChAd/NVX (5597 ELU/mL [4756 to 6586]) was non-inferior to that of ChAd/ChAd recipients (1971 ELU/mL [1718 to 2262]) with a GMR of 10·2 (one-sided 98·75% CI 8·4 to ∞) for ChAd/m1273 and 2·8 (2·2 to ∞) for ChAd/NVX, compared with ChAd/ChAd. In BNT-primed participants, non-inferiority was shown for BNT/m1273 (GMC 22 978 ELU/mL [95% CI 20 597 to 25 636]) but not for BNT/NVX (8874 ELU/mL [7391 to 10 654]), compared with BNT/BNT (16 929 ELU/mL [15 025 to 19 075]) with a GMR of 1·3 (one-sided 98·75% CI 1·1 to ∞) for BNT/m1273 and 0·5 (0·4 to ∞) for BNT/NVX, compared with BNT/BNT; however, NVX still induced an 18-fold rise in GMC 28 days after vaccination. There were 15 serious adverse events, none considered related to immunisation. INTERPRETATION Heterologous second dosing with m1273, but not NVX, increased transient systemic reactogenicity compared with homologous schedules. Multiple vaccines are appropriate to complete primary immunisation following priming with BNT or ChAd, facilitating rapid vaccine deployment globally and supporting recognition of such schedules for vaccine certification. FUNDING UK Vaccine Task Force, Coalition for Epidemic Preparedness Innovations (CEPI), and National Institute for Health Research. NVX vaccine was supplied for use in the trial by Novavax.
Collapse
Affiliation(s)
- Arabella S V Stuart
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Robert H Shaw
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melanie Greenland
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Nick J Andrews
- Statistics, Modelling and Economics Department, UK Health Security Agency, London, UK; Immunisation and Countermeasures Division, National Infection Service, UK Health Security Agency, London, UK
| | - J C Cameron
- Public Health Scotland, Glasgow, Scotland, UK
| | - Sue Charlton
- UK Health Security Agency, Porton Down, Salisbury, UK
| | | | | | - Tom Darton
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tanya Dinesh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Christopher J A Duncan
- The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK; Translational and Clinical Research Institute, Newcastle University, Newcastle, UK
| | - Anna England
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | - Adam Finn
- School of Population Health Sciences, and School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Anna L Goodman
- Department of Infection, and NIHR BRC, Guy's and St Thomas' NHS Foundation Trust, London, UK; MRC Clinical Trials Unit, University College London, London, UK
| | - Christopher A Green
- NIHR/Wellcome Trust Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK; Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
| | - Bassam Hallis
- UK Health Security Agency, Porton Down, Salisbury, UK
| | - Paul T Heath
- The Vaccine Institute, St George's University of London, London, UK
| | - Helen Hill
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Bryn M Horsington
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Chinese Academy of Medical, Science Oxford Institute, University of Oxford, Oxford, UK
| | | | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Patrick J Lillie
- Infection Research Group, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Ruth Payne
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK; Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Emma L Plested
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Maheshi N Ramasamy
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Mary Ramsay
- Immunisation and Countermeasures Division, National Infection Service, UK Health Security Agency, London, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Hannah Robinson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Gavin R Screaton
- Chinese Academy of Medical, Science Oxford Institute, University of Oxford, Oxford, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nisha Singh
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - David P J Turner
- University of Nottingham, Nottingham, UK; Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Paul J Turner
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Iason Vichos
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Rachel White
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jonathan S Nguyen-Van-Tam
- Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Oxford NIHR-Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| |
Collapse
|
339
|
Mattoo SUS, Myoung J. A Promising Vaccination Strategy against COVID-19 on the Horizon: Heterologous Immunization. J Microbiol Biotechnol 2021; 31:1601-1614. [PMID: 34949742 PMCID: PMC9705928 DOI: 10.4014/jmb.2111.11026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
To overcome the ongoing COVID-19 pandemic, vaccination campaigns are the highest priority of majority of countries. Limited supply and worldwide disproportionate availability issues for the approved vaccines, together with concerns about rare side-effects have recently initiated the switch to heterologous vaccination, commonly known as mixing of vaccines. The COVID-19 vaccines are highly effective in the general population. However, none of the vaccines is 100% efficacious or effective, with variants posing more challenges, resulting in breakthrough cases. This review summarizes the current knowledge of immune responses to variants of concern (VOC) and breakthrough infections. Furthermore, we discuss the scope of heterologous vaccination and future strategies to tackle the COVID-19 pandemic, including fractionation of vaccine doses and alternative route of vaccination.
Collapse
Affiliation(s)
- Sameer-ul-Salam Mattoo
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea
| | - Jinjong Myoung
- Korea Zoonosis Research Institute, Department of Bioactive Material Science and Genetic Engineering Research Institute, Jeonbuk National University, Jeonju 54531, Republic of Korea,Corresponding author Phone: +82-63-9004055 Fax: +82-63-9004012 E-mail:
| |
Collapse
|
340
|
Nguyen THO, Cohen CA, Rowntree LC, Bull MB, Hachim A, Kedzierska K, Valkenburg SA. T Cells Targeting SARS-CoV-2: By Infection, Vaccination, and Against Future Variants. Front Med (Lausanne) 2021; 8:793102. [PMID: 35004764 PMCID: PMC8739267 DOI: 10.3389/fmed.2021.793102] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/29/2021] [Indexed: 01/09/2023] Open
Abstract
T cell responses are a key cornerstone to viral immunity to drive high-quality antibody responses, establishing memory for recall and for viral clearance. Inefficient recruitment of T cell responses plays a role in the development of severe COVID-19 and is also represented by reduced cellular responses in men, children, and diversity compared with other epitope-specific subsets and available T cell receptor diversity. SARS-CoV-2-specific T cell responses are elicited by multiple vaccine formats and augmented by prior infection for hybrid immunity. Epitope conservation is relatively well-maintained leading to T cell crossreactivity for variants of concern that have diminished serological responses.
Collapse
Affiliation(s)
- Thi H. O. Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Carolyn A. Cohen
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Louise C. Rowntree
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Maireid B. Bull
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Asmaa Hachim
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Sophie A. Valkenburg
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- HKU-Pasteur Research Pole, Li Ka Shing Faculty of Medicine, School of Public Health, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
341
|
Benning L, Morath C, Bartenschlager M, Reineke M, Töllner M, Nusshag C, Kälble F, Reichel P, Schaier M, Schnitzler P, Zeier M, Süsal C, Bartenschlager R, Speer C. Natural SARS-CoV-2 infection results in higher neutralization response against variants of concern compared to two-dose BNT162b2 vaccination in kidney transplant recipients. Kidney Int 2021; 101:639-642. [PMID: 34954213 PMCID: PMC8695512 DOI: 10.1016/j.kint.2021.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022]
Affiliation(s)
- Louise Benning
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany.
| | - Christian Morath
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Marie Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Marvin Reineke
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | | | - Christian Nusshag
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Paula Reichel
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Schaier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Virology, University of Heidelberg, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany
| | - Caner Süsal
- Institute of Immunology, University of Heidelberg, Heidelberg, Germany; Transplant Immunology Research Center of Excellence, Koç University Hospital, Istanbul, Turkey
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany; German Center for Infection Research, Partner Site Heidelberg, Heidelberg, Germany; Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, University of Heidelberg, Heidelberg, Germany; Department of Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
342
|
Bushman M, Kahn R, Taylor BP, Lipsitch M, Hanage WP. Population impact of SARS-CoV-2 variants with enhanced transmissibility and/or partial immune escape. Cell 2021; 184:6229-6242.e18. [PMID: 34910927 PMCID: PMC8603072 DOI: 10.1016/j.cell.2021.11.026] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
SARS-CoV-2 variants of concern exhibit varying degrees of transmissibility and, in some cases, escape from acquired immunity. Much effort has been devoted to measuring these phenotypes, but understanding their impact on the course of the pandemic-especially that of immune escape-has remained a challenge. Here, we use a mathematical model to simulate the dynamics of wild-type and variant strains of SARS-CoV-2 in the context of vaccine rollout and nonpharmaceutical interventions. We show that variants with enhanced transmissibility frequently increase epidemic severity, whereas those with partial immune escape either fail to spread widely or primarily cause reinfections and breakthrough infections. However, when these phenotypes are combined, a variant can continue spreading even as immunity builds up in the population, limiting the impact of vaccination and exacerbating the epidemic. These findings help explain the trajectories of past and present SARS-CoV-2 variants and may inform variant assessment and response in the future.
Collapse
Affiliation(s)
- Mary Bushman
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Rebecca Kahn
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Bradford P Taylor
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - William P Hanage
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
343
|
Munro APS, Janani L, Cornelius V, Aley PK, Babbage G, Baxter D, Bula M, Cathie K, Chatterjee K, Dodd K, Enever Y, Gokani K, Goodman AL, Green CA, Harndahl L, Haughney J, Hicks A, van der Klaauw AA, Kwok J, Lambe T, Libri V, Llewelyn MJ, McGregor AC, Minassian AM, Moore P, Mughal M, Mujadidi YF, Murira J, Osanlou O, Osanlou R, Owens DR, Pacurar M, Palfreeman A, Pan D, Rampling T, Regan K, Saich S, Salkeld J, Saralaya D, Sharma S, Sheridan R, Sturdy A, Thomson EC, Todd S, Twelves C, Read RC, Charlton S, Hallis B, Ramsay M, Andrews N, Nguyen-Van-Tam JS, Snape MD, Liu X, Faust SN. Safety and immunogenicity of seven COVID-19 vaccines as a third dose (booster) following two doses of ChAdOx1 nCov-19 or BNT162b2 in the UK (COV-BOOST): a blinded, multicentre, randomised, controlled, phase 2 trial. Lancet 2021; 398:2258-2276. [PMID: 34863358 PMCID: PMC8639161 DOI: 10.1016/s0140-6736(21)02717-3] [Citation(s) in RCA: 465] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023]
Abstract
BACKGROUND Few data exist on the comparative safety and immunogenicity of different COVID-19 vaccines given as a third (booster) dose. To generate data to optimise selection of booster vaccines, we investigated the reactogenicity and immunogenicity of seven different COVID-19 vaccines as a third dose after two doses of ChAdOx1 nCov-19 (Oxford-AstraZeneca; hereafter referred to as ChAd) or BNT162b2 (Pfizer-BioNtech, hearafter referred to as BNT). METHODS COV-BOOST is a multicentre, randomised, controlled, phase 2 trial of third dose booster vaccination against COVID-19. Participants were aged older than 30 years, and were at least 70 days post two doses of ChAd or at least 84 days post two doses of BNT primary COVID-19 immunisation course, with no history of laboratory-confirmed SARS-CoV-2 infection. 18 sites were split into three groups (A, B, and C). Within each site group (A, B, or C), participants were randomly assigned to an experimental vaccine or control. Group A received NVX-CoV2373 (Novavax; hereafter referred to as NVX), a half dose of NVX, ChAd, or quadrivalent meningococcal conjugate vaccine (MenACWY)control (1:1:1:1). Group B received BNT, VLA2001 (Valneva; hereafter referred to as VLA), a half dose of VLA, Ad26.COV2.S (Janssen; hereafter referred to as Ad26) or MenACWY (1:1:1:1:1). Group C received mRNA1273 (Moderna; hereafter referred to as m1273), CVnCov (CureVac; hereafter referred to as CVn), a half dose of BNT, or MenACWY (1:1:1:1). Participants and all investigatory staff were blinded to treatment allocation. Coprimary outcomes were safety and reactogenicity and immunogenicity of anti-spike IgG measured by ELISA. The primary analysis for immunogenicity was on a modified intention-to-treat basis; safety and reactogenicity were assessed in the intention-to-treat population. Secondary outcomes included assessment of viral neutralisation and cellular responses. This trial is registered with ISRCTN, number 73765130. FINDINGS Between June 1 and June 30, 2021, 3498 people were screened. 2878 participants met eligibility criteria and received COVID-19 vaccine or control. The median ages of ChAd/ChAd-primed participants were 53 years (IQR 44-61) in the younger age group and 76 years (73-78) in the older age group. In the BNT/BNT-primed participants, the median ages were 51 years (41-59) in the younger age group and 78 years (75-82) in the older age group. In the ChAd/ChAD-primed group, 676 (46·7%) participants were female and 1380 (95·4%) were White, and in the BNT/BNT-primed group 770 (53·6%) participants were female and 1321 (91·9%) were White. Three vaccines showed overall increased reactogenicity: m1273 after ChAd/ChAd or BNT/BNT; and ChAd and Ad26 after BNT/BNT. For ChAd/ChAd-primed individuals, spike IgG geometric mean ratios (GMRs) between study vaccines and controls ranged from 1·8 (99% CI 1·5-2·3) in the half VLA group to 32·3 (24·8-42·0) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·1 (95% CI 0·7-1·6) for ChAd to 3·6 (2·4-5·5) for m1273. For BNT/BNT-primed individuals, spike IgG GMRs ranged from 1·3 (99% CI 1·0-1·5) in the half VLA group to 11·5 (9·4-14·1) in the m1273 group. GMRs for wild-type cellular responses compared with controls ranged from 1·0 (95% CI 0·7-1·6) for half VLA to 4·7 (3·1-7·1) for m1273. The results were similar between those aged 30-69 years and those aged 70 years and older. Fatigue and pain were the most common solicited local and systemic adverse events, experienced more in people aged 30-69 years than those aged 70 years or older. Serious adverse events were uncommon, similar in active vaccine and control groups. In total, there were 24 serious adverse events: five in the control group (two in control group A, three in control group B, and zero in control group C), two in Ad26, five in VLA, one in VLA-half, one in BNT, two in BNT-half, two in ChAd, one in CVn, two in NVX, two in NVX-half, and one in m1273. INTERPRETATION All study vaccines boosted antibody and neutralising responses after ChAd/ChAd initial course and all except one after BNT/BNT, with no safety concerns. Substantial differences in humoral and cellular responses, and vaccine availability will influence policy choices for booster vaccination. FUNDING UK Vaccine Taskforce and National Institute for Health Research.
Collapse
Affiliation(s)
- Alasdair P S Munro
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Leila Janani
- Imperial Clinical Trials Unit, Imperial College London, London, UK
| | | | - Parvinder K Aley
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Gavin Babbage
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - Marcin Bula
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | - Katrina Cathie
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Krishna Chatterjee
- NIHR Cambridge Clinical Research Facility, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Kate Dodd
- NIHR Liverpool and Broadgreen Clinical Research Facility, Liverpool, UK
| | | | - Karishma Gokani
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Anna L Goodman
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK; MRC Clinical Trials Unit, University College London, London, UK
| | - Christopher A Green
- NIHR/Wellcome Clinical Research Facility, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Linda Harndahl
- Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - John Haughney
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK
| | | | - Agatha A van der Klaauw
- Wellcome-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Jonathan Kwok
- Cancer Research UK Oxford Centre, University of Oxford, Oxford, UK
| | - Teresa Lambe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Vincenzo Libri
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | | | - Alastair C McGregor
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Angela M Minassian
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Yama F Mujadidi
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Jennifer Murira
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Orod Osanlou
- North Wales Clinical Research Facility, Betsi Cadwaladr University Health Board and Bangor University, Bangor, UK
| | - Rostam Osanlou
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Daniel R Owens
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Mihaela Pacurar
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | - Adrian Palfreeman
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Daniel Pan
- University Hospitals of Leicester NHS Trust, University of Leicester, Leicester, UK
| | - Tommy Rampling
- NIHR UCLH Clinical Research Facility and NIHR UCLH Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Regan
- Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Stephen Saich
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Jo Salkeld
- Department of Infection, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Dinesh Saralaya
- Bradford Institute for Health Research and Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Sunil Sharma
- University Hospitals Sussex NHS Foundation Trust, Brighton, UK
| | - Ray Sheridan
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Ann Sturdy
- Department of Infectious Diseases and Tropical Medicine, London Northwest University Healthcare, London, UK
| | - Emma C Thomson
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, UK; MRC University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shirley Todd
- Royal Devon and Exeter Hospital NHS Foundation Trust, Exeter, UK
| | - Chris Twelves
- NIHR Leeds Clinical Research Facility, Leeds Teaching Hospitals Trust and University of Leeds, Leeds, UK
| | - Robert C Read
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK
| | | | | | - Mary Ramsay
- UK Health Security Agency, Colindale, London, UK
| | - Nick Andrews
- UK Health Security Agency, Colindale, London, UK
| | - Jonathan S Nguyen-Van-Tam
- Division of Epidemiology and Public Health, University of Nottingham School of Medicine, Nottingham, UK
| | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Xinxue Liu
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
| | - Saul N Faust
- NIHR Southampton Clinical Research Facility and Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK; Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, UK.
| |
Collapse
|
344
|
Horiuchi S, Oishi K, Carrau L, Frere J, Møller R, Panis M, tenOever BR. Immune memory from SARS-CoV-2 infection in hamsters provides variant-independent protection but still allows virus transmission. Sci Immunol 2021; 6:eabm3131. [PMID: 34699266 DOI: 10.1126/sciimmunol.abm3131] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Shu Horiuchi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Kohei Oishi
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Justin Frere
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Rasmus Møller
- Department of Microbiology, New York University, New York, NY 10016, USA
| | - Maryline Panis
- Department of Microbiology, New York University, New York, NY 10016, USA
| | | |
Collapse
|
345
|
Lu Z, Laing ED, Pena DaMata J, Pohida K, Tso MS, Samuels EC, Epsi NJ, Dorjbal B, Lake C, Richard SA, Maves RC, Lindholm DA, Rozman JS, English C, Huprikar N, Mende K, Colombo RE, Colombo CJ, Broder CC, Ganesan A, Lanteri CA, Agan BK, Tribble D, Simons MP, Dalgard CL, Blair PW, Chenoweth J, Pollett SD, Snow AL, Burgess TH, Malloy AMW. Durability of SARS-CoV-2-Specific T-Cell Responses at 12 Months Postinfection. J Infect Dis 2021; 224:2010-2019. [PMID: 34673956 PMCID: PMC8672777 DOI: 10.1093/infdis/jiab543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Characterizing the longevity and quality of cellular immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enhances understanding of coronavirus disease 2019 (COVID-19) immunity that influences clinical outcomes. Prior studies suggest SARS-CoV-2-specific T cells are present in peripheral blood 10 months after infection. Analysis of the function, durability, and diversity of cellular response long after natural infection, over a range of ages and disease phenotypes, is needed to identify preventative and therapeutic interventions. METHODS We identified participants in our multisite longitudinal, prospective cohort study 12 months after SARS-CoV-2 infection representing a range of disease severity. We investigated function, phenotypes, and frequency of T cells specific for SARS-CoV-2 using intracellular cytokine staining and spectral flow cytometry, and compared magnitude of SARS-CoV-2-specific antibodies. RESULTS SARS-CoV-2-specific antibodies and T cells were detected 12 months postinfection. Severe acute illness was associated with higher frequencies of SARS-CoV-2-specific CD4 T cells and antibodies at 12 months. In contrast, polyfunctional and cytotoxic T cells responsive to SARS-CoV-2 were identified in participants over a wide spectrum of disease severity. CONCLUSIONS SARS-CoV-2 infection induces polyfunctional memory T cells detectable at 12 months postinfection, with higher frequency noted in those who experienced severe disease.
Collapse
Affiliation(s)
- Zhongyan Lu
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Jarina Pena DaMata
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
| | - Katherine Pohida
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Marana S Tso
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Emily C Samuels
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Batsukh Dorjbal
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Camille Lake
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Ryan C Maves
- Naval Medical Center San Diego, San Diego, California, USA
| | - David A Lindholm
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Julia S Rozman
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Caroline English
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nikhil Huprikar
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Katrin Mende
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Brooke Army Medical Center, Joint Base San Antonio-Fort Sam Houston, San Antonio, Texas, USA
| | - Rhonda E Colombo
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Madigan Army Medical Center, Tacoma, Washington, USA
| | | | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anuradha Ganesan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Charlotte A Lanteri
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Brian K Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - David Tribble
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Mark P Simons
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Paul W Blair
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Austere Environments Consortium for Enhanced Sepsis Outcomes, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Josh Chenoweth
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Austere Environments Consortium for Enhanced Sepsis Outcomes, Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Allison M W Malloy
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
346
|
Jiang W, Shi L, Cai L, Wang X, Li J, Li H, Liang J, Gu Q, Ji G, Li J, Liu L, Sun M. A two-adjuvant multiantigen candidate vaccine induces superior protective immune responses against SARS-CoV-2 challenge. Cell Rep 2021; 37:110112. [PMID: 34863353 PMCID: PMC8610932 DOI: 10.1016/j.celrep.2021.110112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/06/2021] [Accepted: 11/18/2021] [Indexed: 01/22/2023] Open
Abstract
An ideal vaccine against SARS-CoV-2 is expected to elicit broad immunity to prevent viral infection and disease, with efficient viral clearance in the upper respiratory tract (URT). Here, the N protein and prefusion-full S protein (SFLmut) are combined with flagellin (KF) and cyclic GMP-AMP (cGAMP) to generate a candidate vaccine, and this vaccine elicits stronger systemic and mucosal humoral immunity than vaccines containing other forms of the S protein. Furthermore, the candidate vaccine administered via intranasal route can enhance local immune responses in the respiratory tract. Importantly, human ACE2 transgenic mice given the candidate vaccine are protected against lethal SARS-CoV-2 challenge, with superior protection in the URT compared with that in mice immunized with an inactivated vaccine. In summary, the developed vaccine can elicit a multifaceted immune response and induce robust viral clearance in the URT, which makes it a potential vaccine for preventing disease and infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Lukui Cai
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Heng Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jiangli Liang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Qin Gu
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Guang Ji
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Li
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China
| | - Longding Liu
- Laboratory of Respiratory Infection, Kunming National High-level Biosafety Research Center, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China; Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
347
|
Carmen JM, Shrivastava S, Lu Z, Anderson A, Morrison EB, Sankhala RS, Chen WH, Chang WC, Bolton JS, Matyas GR, Michael NL, Joyce MG, Modjarrad K, Currier JR, Bergmann-Leitner E, Malloy AMW, Rao M. SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ Vaccines 2021; 6:151. [PMID: 34903722 PMCID: PMC8668928 DOI: 10.1038/s41541-021-00414-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of variants of concern, some with reduced susceptibility to COVID-19 vaccines underscores consideration for the understanding of vaccine design that optimizes induction of effective cellular and humoral immune responses. We assessed a SARS-CoV-2 spike-ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel® or Army Liposome Formulation containing QS-21 (ALFQ) for unique vaccine evoked immune signatures. Recruitment of highly activated multifaceted antigen-presenting cells to the lymph nodes of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific memory CD4+ T cells and Kb spike-(539-546)-specific long-lived memory CD8+ T cells with effective cytolytic function and distribution to the lungs. The presence of this epitope in SARS-CoV, suggests that generation of cross-reactive T cells may be induced against other coronavirus strains. Our study reveals that a nanoparticle vaccine, combined with a potent adjuvant that effectively engages innate immune cells, enhances SARS-CoV-2-specific durable adaptive immune T cell responses.
Collapse
Affiliation(s)
- Joshua M Carmen
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shikha Shrivastava
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Zhongyan Lu
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alexander Anderson
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Elaine B Morrison
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jessica S Bolton
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Allison M W Malloy
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
348
|
Zhuang Z, Liu D, Sun J, Li F, Zhao J. Immune responses to human respiratory coronaviruses infection in mouse models. Curr Opin Virol 2021; 52:102-111. [PMID: 34906757 PMCID: PMC8665230 DOI: 10.1016/j.coviro.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 12/23/2022]
Abstract
Human respiratory coronaviruses (HCoVs), including the recently emerged SARS-CoV-2, the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, potentially cause severe lung infections and multiple organ damages, emphasizing the urgent need for antiviral therapeutics and vaccines against HCoVs. Small animal models, especially mice, are ideal tools for deciphering the pathogenesis of HCoV infections as well as virus-induced immune responses, which is critical for antiviral drug development and vaccine design. In this review, we focus on the antiviral innate immune response, antibody response and T cell response in HCoV infected mouse models, and discuss the potential implications for understanding the anti-HCoV immunity and fighting the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhen Zhuang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Donglan Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Fang Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510182, China; Guangzhou Laboratory, Bio-Island, Guangzhou, Guangdong 510320, China.
| |
Collapse
|
349
|
Humoral Immune Response after the Third SARS-CoV-2 mRNA Vaccination in CD20 Depleted People with Multiple Sclerosis. Vaccines (Basel) 2021; 9:vaccines9121470. [PMID: 34960216 PMCID: PMC8707582 DOI: 10.3390/vaccines9121470] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 01/14/2023] Open
Abstract
CD20 depletion is a risk factor for unfavorable outcomes of COVID-19 in people with MS (pwMS). Evidence suggests that protective IgG response to mRNA-based vaccines in B cell-depleted individuals is limited. We studied the seroconversion after the third mRNA SARS-CoV-2 vaccine in B cell-depleted pwMS with limited or no IgG response after the standard immunization. Sixteen pwMS treated with ocrelizumab or rituximab received a third homologous SARS-CoV-2 mRNA vaccine, either the Moderna mRNA-1273 or Pfizer-BioNTech’s BNT162b2 vaccine. We quantified the response of IgG antibodies against the spike receptor-binding domain of SARS-CoV-2 four weeks later. An antibody titer of 100 AU/mL or more was considered clinically relevant. The median time between the last infusion of the anti-CD20 treatment and the third vaccination was 22.9 weeks (range 15.1–31.3). After the third vaccination, one out of 16 patients showed an IgG titer deemed clinically relevant. Only the seroconverted patient had measurable B-cell counts at the time of the third vaccination. The development of a humoral immune response remains rare in pwMS on anti-CD20 therapy, even after third dose of the homologous SARS-CoV-2 mRNA vaccine. It remains to be determined whether T-cell responses can compensate for the lack of seroconversion and provide sufficient protection against CoV-2 infections.
Collapse
|
350
|
SARS-COV-2 Memory B and T Cells Profile in Mild COVID-19 Convalescents subjects. Int J Infect Dis 2021; 115:208-214. [PMID: 34896265 PMCID: PMC8653411 DOI: 10.1016/j.ijid.2021.12.309] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES . Antiviral adaptive immunity involves memory B-(MBC) and T-cells (MTC), however their dynamics in SARS-CoV-2 convalescents warrant further investigation. METHODS . In the cross-sectional and longitudinal study, we evaluated blood-derived MBC- and MTC-responses in 68 anti-spike IgG-positive mild-COVID-19 convalescents at visit 1 between 1-7 months (median 4.1 months) after disease onset. SARS-CoV-2 anti-spike IgG was performed by ELISA, MBC by SARS-COV-2 specific receptor binding domain (RBD) Elispot and Interferon gamma (IFNg), interleukin 2 (IL2) and IFNg+IL2 secreting MTC by IFNg and IL2 SARS-CoV-2 FluoroSpot. For 24 patients sampled at first visit, the IgG, MBC and MTC analysis were also performed 3 months later at second visit. RESULTS . Seventy two percent were both MBC- and MTC-positive, 18 % - MBC-positive and MTC-negative, and 10% - MTC-positive and MBC-negative. The peak of MBC-response level was detected at 3 months after COVID-19 onset and persisted up to 7 months post infection. A significant MTC-levels were detected one month after onset in response to S1, S2_N and SNMO peptide pools. The frequency and magnitude of MTC response to SNMO was higher than to S1 and S2_N. Longitudinal analysis demonstrated that even when specific humoral immunity declined, the cellular immunity persisted. CONCLUSION . Our findings demonstrate durability of adaptive cellular immunity at least for 7-months after SARS-CoV-2 infection that suggest long-lasting protection.
Collapse
|