301
|
Sitati EM, Diamond MS. CD4+ T-cell responses are required for clearance of West Nile virus from the central nervous system. J Virol 2006; 80:12060-9. [PMID: 17035323 PMCID: PMC1676257 DOI: 10.1128/jvi.01650-06] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although studies have established that innate and adaptive immune responses are important in controlling West Nile virus (WNV) infection, the function of CD4(+) T lymphocytes in modulating viral pathogenesis is less well characterized. Using a mouse model, we examined the role of CD4(+) T cells in coordinating protection against WNV infection. A genetic or acquired deficiency of CD4(+) T cells resulted in a protracted WNV infection in the central nervous system (CNS) that culminated in uniform lethality by 50 days after infection. Mice surviving past day 10 had high-level persistent WNV infection in the CNS compared to wild-type mice, even 45 days following infection. The absence of CD4(+) T-cell help did not affect the kinetics of WNV infection in the spleen and serum, suggesting a role for CD4-independent clearance mechanisms in peripheral tissues. WNV-specific immunoglobulin M (IgM) levels were similar to those of wild-type mice in CD4-deficient mice early during infection but dropped approximately 20-fold at day 15 postinfection, whereas IgG levels in CD4-deficient mice were approximately 100- to 1,000-fold lower than in wild-type mice throughout the course of infection. WNV-specific CD8(+) T-cell activation and trafficking to the CNS were unaffected by the absence of CD4(+) T cells at day 9 postinfection but were markedly compromised at day 15. Our experiments suggest that the dominant protective role of CD4(+) T cells during primary WNV infection is to provide help for antibody responses and sustain WNV-specific CD8(+) T-cell responses in the CNS that enable viral clearance.
Collapse
Affiliation(s)
- Elizabeth M Sitati
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
302
|
Debiasi RL, Tyler KL. West Nile virus meningoencephalitis. ACTA ACUST UNITED AC 2006; 2:264-75. [PMID: 16932563 PMCID: PMC3773989 DOI: 10.1038/ncpneuro0176] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2006] [Accepted: 03/07/2006] [Indexed: 01/10/2023]
Abstract
Since its first appearance in the US in 1999, West Nile virus (WNV) has emerged as the most common cause of epidemic meningoencephalitis in North America. In the 6 years following the 1999 outbreak, the geographic range and burden of the disease in birds, mosquitoes and humans has greatly expanded to include the 48 contiguous US and 7 Canadian provinces, as well as Mexico, the Caribbean islands and Colombia. WNV has shown an increasing propensity for neuroinvasive disease over the past decade, with varied presentations including meningitis, encephalitis and acute flaccid paralysis. Although neuroinvasive disease occurs in less than 1% of infected individuals, it is associated with high mortality. From 1999-2005, more than 8,000 cases of neuroinvasive WNV disease were reported in the US, resulting in over 780 deaths. In this review, we discuss epidemiology, risk factors, clinical features, diagnosis and prognosis of WNV meningoencephalitis, along with potential treatments.
Collapse
Affiliation(s)
- Roberta L Debiasi
- Department of Pediatrics, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | | |
Collapse
|
303
|
Wang T, Gao Y, Scully E, Davis CT, Anderson JF, Welte T, Ledizet M, Koski R, Madri JA, Barrett A, Yin Z, Craft J, Fikrig E. Gamma delta T cells facilitate adaptive immunity against West Nile virus infection in mice. THE JOURNAL OF IMMUNOLOGY 2006; 177:1825-32. [PMID: 16849493 DOI: 10.4049/jimmunol.177.3.1825] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
West Nile (WN) virus causes fatal meningoencephalitis in laboratory mice, and gammadelta T cells are involved in the protective immune response against viral challenge. We have now examined whether gammadelta T cells contribute to the development of adaptive immune responses that help control WN virus infection. Approximately 15% of TCRdelta(-/-) mice survived primary infection with WN virus compared with 80-85% of the wild-type mice. These mice were more susceptible to secondary challenge with WN virus than the wild-type mice that survived primary challenge with the virus. Depletion of gammadelta T cells in wild-type mice that survived the primary infection, however, does not affect host susceptibility during secondary challenge with WN virus. Furthermore, gammadelta T cells do not influence the development of Ab responses during primary and at the early stages of secondary infection with WN virus. Adoptive transfer of CD8(+) T cells from wild-type mice that survived primary infection with WN virus to naive mice afforded partial protection from lethal infection. In contrast, transfer of CD8(+) T cells from TCRdelta(-/-) mice that survived primary challenge with WN virus failed to alter infection in naive mice. This difference in survival correlated with the numeric and functional reduction of CD8 memory T cells in these mice. These data demonstrate that gammadelta T cells directly link innate and adaptive immunity during WN virus infection.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/transplantation
- CD8-Positive T-Lymphocytes/virology
- Genetic Predisposition to Disease/genetics
- Immunity, Cellular/genetics
- Immunity, Innate/genetics
- Immunization, Secondary
- Immunoglobulin G/biosynthesis
- Immunoglobulin M/biosynthesis
- Immunologic Memory/genetics
- Lymphocyte Depletion
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/deficiency
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- Recurrence
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/virology
- West Nile Fever/genetics
- West Nile Fever/immunology
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tian Wang
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
304
|
Samuel MA, Whitby K, Keller BC, Marri A, Barchet W, Williams BRG, Silverman RH, Gale M, Diamond MS. PKR and RNase L contribute to protection against lethal West Nile Virus infection by controlling early viral spread in the periphery and replication in neurons. J Virol 2006; 80:7009-19. [PMID: 16809306 PMCID: PMC1489062 DOI: 10.1128/jvi.00489-06] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
West Nile virus (WNV) is a neurotropic, mosquito-borne flavivirus that can cause lethal meningoencephalitis. Type I interferon (IFN) plays a critical role in controlling WNV replication, spread, and tropism. In this study, we begin to examine the effector mechanisms by which type I IFN inhibits WNV infection. Mice lacking both the interferon-induced, double-stranded-RNA-activated protein kinase (PKR) and the endoribonuclease of the 2',5'-oligoadenylate synthetase-RNase L system (PKR(-/-) x RL(-/-)) were highly susceptible to subcutaneous WNV infection, with a 90% mortality rate compared to the 30% mortality rate observed in congenic wild-type mice. PKR(-/-) x RL(-/-) mice had increased viral loads in their draining lymph nodes, sera, and spleens, which led to early viral entry into the central nervous system (CNS) and higher viral burden in neuronal tissues. Although mice lacking RNase L showed a higher CNS viral burden and an increased mortality, they were less susceptible than the PKR(-/-) x RL(-/-) mice; thus, we also infer an antiviral role for PKR in the control of WNV infection. Notably, a deficiency in both PKR and RNase L resulted in a decreased ability of type I IFN to inhibit WNV in primary macrophages and cortical neurons. In contrast, the peripheral neurons of the superior cervical ganglia of PKR(-/-) x RL(-/-) mice showed no deficiency in the IFN-mediated inhibition of WNV. Our data suggest that PKR and RNase L contribute to IFN-mediated protection in a cell-restricted manner and control WNV infection in peripheral tissues and some neuronal subtypes.
Collapse
Affiliation(s)
- Melanie A Samuel
- Department of Molecular Microbiology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
305
|
Throsby M, Geuijen C, Goudsmit J, Bakker AQ, Korimbocus J, Kramer RA, Clijsters-van der Horst M, de Jong M, Jongeneelen M, Thijsse S, Smit R, Visser TJ, Bijl N, Marissen WE, Loeb M, Kelvin DJ, Preiser W, ter Meulen J, de Kruif J. Isolation and characterization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol 2006; 80:6982-92. [PMID: 16809304 PMCID: PMC1489037 DOI: 10.1128/jvi.00551-06] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Monoclonal antibodies (MAbs) neutralizing West Nile Virus (WNV) have been shown to protect against infection in animal models and have been identified as a correlate of protection in WNV vaccine studies. In the present study, antibody repertoires from three convalescent WNV-infected patients were cloned into an scFv phage library, and 138 human MAbs binding to WNV were identified. One hundred twenty-one MAbs specifically bound to the viral envelope (E) protein and four MAbs to the premembrane (prM) protein. Enzyme-linked immunosorbent assay-based competitive-binding assays with representative E protein-specific MAbs demonstrated that 24/51 (47%) bound to domain II while only 4/51 (8%) targeted domain III. In vitro neutralizing activity was demonstrated for 12 MAbs, and two of these, CR4374 and CR4353, protected mice from lethal WNV challenge at 50% protective doses of 12.9 and 357 mug/kg of body weight, respectively. Our data analyzing three infected individuals suggest that the human anti-WNV repertoire after natural infection is dominated by nonneutralizing or weakly neutralizing MAbs binding to domain II of the E protein, while domain III-binding MAbs able to potently neutralize WNV in vitro and in vivo are rare.
Collapse
Affiliation(s)
- Mark Throsby
- Crucell Holland B.V., P.O. Box 2048, 2301 CA, Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
306
|
Hunsperger EA, Roehrig JT. Temporal analyses of the neuropathogenesis of a West Nile virus infection in mice. J Neurovirol 2006; 12:129-39. [PMID: 16798674 DOI: 10.1080/13550280600758341] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A West Nile virus (WNV) infection in humans can produce neurological symptoms including acute flaccid paralysis, encephalitis, meningitis and myelitis. To investigate the pathogenesis of WNV in the peripheral and the central nervous system (PNS and CNS), the authors used a murine footpad inoculation model of WNV infection. Survival curves of virus-infected animals of ages 4- to 6-weeks-old demonstrated age-dependent mortality where older animals (6-weeks-old) had a higher mortality rate compared to younger animals (4- and 5-weeks-old). The mice that survived the virus infection formed WNV-reactive antibodies, confirming viral infection and clearance. The localization of viral RNA (vRNA) and antigen in infected murine tissues was investigated using TaqMan and immunohistochemistry (IHC) respectively. During a nine day infection, vRNA levels in the spinal cord and brainstem fluctuated, suggesting early viral clearance from these tissues by days 3-4 p.i. with later re-introduction. Viral antigens detected using IHC were primarily observed in three main regions of the brain: cortex, hippocampus and brainstem. Additionally, the dorsal root ganglion neurons of the PNS stained positive for viral antigens. These data are consistent with multiple routes of neuroinvasion following a peripheral inoculation of virus and do not preclude the previous observation that virus-infected peripheral neurons can introduce virus into the CNS by a retrograde transport mechanism.
Collapse
Affiliation(s)
- Elizabeth A Hunsperger
- Division of Vector-Borne Infectious Disease, Centers for Disease Control and Prevention/National Center for Infectious Diseases, Ft. Collins, Colorado, USA.
| | | |
Collapse
|
307
|
Wolf RF, Papin JF, Hines-Boykin R, Chavez-Suarez M, White GL, Sakalian M, Dittmer DP. Baboon model for West Nile virus infection and vaccine evaluation. Virology 2006; 355:44-51. [PMID: 16904151 DOI: 10.1016/j.virol.2006.06.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2006] [Revised: 05/16/2006] [Accepted: 06/30/2006] [Indexed: 12/20/2022]
Abstract
Animal models that closely mimic the human condition are of paramount significance to study pathogenic mechanisms, vaccine and therapy scenarios. This is particularly true for investigations that involve emerging infectious diseases. Nonhuman primate species represent an alternative to the more intensively investigated rodent animal models and in a number of instances have been shown to represent a more reliable predictor of the human response to infection. West Nile virus (WNV) has emerged as a new pathogen in the Americas. It has a 5% fatality rate, predominantly in the elderly and immune compromised. Typically, infections are cleared by neutralizing antibodies, which suggests that a vaccine would be efficacious. Previously, only macaques had been evaluated as a primate model for WNV vaccine design. The macaques did not develop WNV disease nor express the full complement of IgG subclasses that is found in humans. We therefore explored baboons, which exhibit the similar four IgG subclasses observed in humans as a new model for WNV infection and vaccine evaluation. In this present report, we describe the experimental infection of baboons with WNV and test the efficacy of an inactivated WNV vaccination strategy. All experimentally infected animals developed transient viremia and subsequent neutralizing antibodies. Anti-WNV IgM antibodies peaked at 20 days post-infection. Anti-WNV IgG antibodies appeared later and persisted past 60 days. Prior vaccination with chemically inactivated virus induced neutralizing titers and a fast, high titer IgG recall response, which resulted in lower viremia upon challenge. This report is the first to describe the development of the baboon model for WNV experimental infection and the utility of this model to characterize the immunologic response against WNV and a candidate WNV vaccine.
Collapse
Affiliation(s)
- Roman F Wolf
- Department of Comparative Medicine Science, University of Oklahoma Health Sciences Center, USA
| | | | | | | | | | | | | |
Collapse
|
308
|
Abstract
In the Damage-response framework of microbial pathogenesis, infectious diseases are one outcome of a host-microorganism interaction in a susceptible host. In cryptococcal disease, damage to the host is caused by Cryptococcus neoformans virulence determinants, the nature of the host response, or both. Further, the disease may be acute or reactivated from a latent state. Hence, a vaccine for C. neoformans would need to prevent disease resulting from either acute or reactivated infection. The evidence to support the development of a vaccine for C. neoformans that induces antibody-mediated immunity is discussed herein.
Collapse
Affiliation(s)
- Kausik Datta
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
309
|
Abstract
Since its entry into North America in 1999, West Nile virus has spread throughout the USA and Canada, and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to potentially lethal encephalitis. Although no therapy is currently approved for use in humans, several strategies are being pursued to develop effective prophylaxis and treatments. This review describes the epidemiology, clinical presentation and pathogenesis of West Nile virus infection, and highlights recent progress towards an effective therapy.
Collapse
Affiliation(s)
- Michael S Diamond
- Department of Medicine, Washington University School of Medicine, Box 8051, St Louis, MO 63110, USA.
| |
Collapse
|
310
|
Lim JK, Glass WG, McDermott DH, Murphy PM. CCR5: no longer a ‘good for nothing’ gene – chemokine control of West Nile virus infection. Trends Immunol 2006; 27:308-12. [PMID: 16753343 DOI: 10.1016/j.it.2006.05.007] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 04/25/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022]
Abstract
The chemokine receptor CCR5 was identified in 1996 as a crucial host factor exploited by HIV for cell entry. CCR5 presumably functions normally in antimicrobial host defense because it generally mediates leukocyte chemotactic responses; however, evidence of antimicrobial functions for CCR5 in humans has been elusive. Recently, genetic analyses in mice and humans have provided strong evidence for the CCR5 control of infection by West Nile virus (WNV), a re-emerging pathogen capable of causing fatal encephalitis. Thus, the same receptor can benefit or harm the host, depending on the virus. Although CCR5 might be a logical target for new drug development in HIV/AIDS, the benefits of blocking CCR5 could carry the cost of an increased risk of WNV disease in co-infected patients.
Collapse
Affiliation(s)
- Jean K Lim
- Molecular Signaling Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
311
|
Rios M, Zhang MJ, Grinev A, Srinivasan K, Daniel S, Wood O, Hewlett IK, Dayton AI. Monocytes-macrophages are a potential target in human infection with West Nile virus through blood transfusion. Transfusion 2006; 46:659-67. [PMID: 16584445 DOI: 10.1111/j.1537-2995.2006.00769.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND West Nile virus (WNV) transmission by transfusion was documented in 2002. Approximately 80 percent of WNV infections are asymptomatic and 1 percent develop severe neurological illness. In animals, Langerhans-dendritic cells support initial viral replication, followed by replication in lymphoid tissues and dissemination to organs and possibly to the CNS. The cellular tropism of WNV infection after transfusion and the particular human blood cells that sustain viral replication remain largely unknown. Whether primary monocyte-derived macrophages (MDMs) support WNV infection-replication and produce infectious virions, with an in vitro system, was investigated. STUDY DESIGN AND METHODS Elutriated monocytes (CD33+/CD14+) from suitable blood donors were cultured in the presence of macrophage-colony-stimulating factor, infected with WNV-NY99 at different time points, washed, and cultivated for up to 47 days. Supernatants were tested for WNV replication by TaqMan reverse transcription-polymerase chain reaction (RT-PCR), with primers for the envelope and/or 3'NC regions, and by cDNA-PCR to detect WNV minus-strand RNA and for the presence of functional virions by infectivity assays in Vero cells. RESULTS RT-PCR TaqMan of supernatants demonstrated productive infection of MDMs. Viral load reached 2 to 5 log above baseline in 3 to 6 days and then declined, with detectable viral replication persisting for up to 47 days. WNV minus-strand RNA was detected in Day 4 cultures, indicating active viral replication. Infected MDM cultures showed no cytopathic changes. Supernatants that were TaqMan-positive for the presence of WNV-infected Vero cells and produced cytopathic effects within 3 to 5 days of culture. CONCLUSION The susceptibility of monocytes-macrophages to productive infection in vitro is compatible with a potential role in initial WNV replication and propagation after transmission by transfusion.
Collapse
Affiliation(s)
- Maria Rios
- Laboratory of Molecular Virology (LMV), Division of Emerging Transfusion Transmitted Diseases (DETTD), Center for Biologics Evaluation and Research (CBER), Food and Drug Administration (FDA), Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
312
|
Shrestha B, Wang T, Samuel MA, Whitby K, Craft J, Fikrig E, Diamond MS. Gamma interferon plays a crucial early antiviral role in protection against West Nile virus infection. J Virol 2006; 80:5338-48. [PMID: 16699014 PMCID: PMC1472130 DOI: 10.1128/jvi.00274-06] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Accepted: 03/08/2006] [Indexed: 12/17/2022] Open
Abstract
West Nile virus (WNV) causes a severe central nervous system (CNS) infection in humans, primarily in the elderly and immunocompromised. Prior studies have established an essential protective role of several innate immune response elements, including alpha/beta interferon (IFN-alpha/beta), immunoglobulin M, gammadelta T cells, and complement against WNV infection. In this study, we demonstrate that a lack of IFN-gamma production or signaling results in increased vulnerability to lethal WNV infection by a subcutaneous route in mice, with a rise in mortality from 30% (wild-type mice) to 90% (IFN-gamma(-/-) or IFN-gammaR(-/-) mice) and a decrease in the average survival time. This survival pattern in IFN-gamma(-/-) and IFN-gammaR(-/-) mice correlated with higher viremia and greater viral replication in lymphoid tissues. The increase in peripheral infection led to early CNS seeding since infectious WNV was detected several days earlier in the brains and spinal cords of IFN-gamma(-/-) or IFN-gammaR(-/-) mice. Bone marrow reconstitution experiments showed that gammadelta T cells require IFN-gamma to limit dissemination by WNV. Moreover, treatment of primary dendritic cells with IFN-gamma reduced WNV production by 130-fold. Collectively, our experiments suggest that the dominant protective role of IFN-gamma against WNV is antiviral in nature, occurs in peripheral lymphoid tissues, and prevents viral dissemination to the CNS.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Ave., Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
313
|
Paddock CD, Nicholson WL, Bhatnagar J, Goldsmith CS, Greer PW, Hayes EB, Risko JA, Henderson C, Blackmore CG, Lanciotti RS, Campbell GL, Zaki SR. Fatal Hemorrhagic Fever Caused by West Nile Virus in the United States. Clin Infect Dis 2006; 42:1527-35. [PMID: 16652309 DOI: 10.1086/503841] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 01/24/2006] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Most West Nile virus (WNV) infections in humans are asymptomatic; severe disease occurs in relatively few patients and typically manifests as encephalitis, meningitis, or acute flaccid paralysis. A few cases of life-threatening disease with diffuse hemorrhagic manifestations have been reported in Africa; however, this clinical presentation has not been documented for any of the >16,700 cases of WNV disease reported in the United States during 1999-2004. We describe a case of fulminant WNV infection in a 59-year-old Florida man who died following a brief illness that resembled hemorrhagic disease caused by Rickettsia reckettsii, dengue virus or yellow fever virus. METHODS Traditional and contemporary diagnostic assays, including culture isolation, electron microscopic examination, reverse-transcriptase polymerase chain reaction amplification, and immunohistochemical stains, were used to confirm systemic WNV infection in the patient. RESULTS WNV was isolated in a cell culture from a skin biopsy specimen obtained from the patient shortly prior to death. Electron microscopic examination identified the isolate as a flavivirus, and reverse-transcriptase polymerase chain reaction amplified specific WNV sequences from the isolate and patient tissue. Quantitative polymerase chain reaction identified approximately 1x10(7) viral copies/mL in the patient's serum. WNV antigens were detected by immunohistochemical stains in intravascular mononuclear cells and endothelium in skin, lung, liver, kidney, spleen, bone marrow, and central nervous system; no viral antigens were identified in neurons or glial cells of the central nervous system. CONCLUSIONS Although hemorrhagic disease is a rare manifestation of WNV infection, the findings provided by this report may offer new insights regarding the clinical spectrum and pathogenesis of WNV disease in humans.
Collapse
Affiliation(s)
- Christopher D Paddock
- Infectious Disease Pathology Activity, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
314
|
Glass WG, Lim JK, Cholera R, Pletnev AG, Gao JL, Murphy PM. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. ACTA ACUST UNITED AC 2006; 202:1087-98. [PMID: 16230476 PMCID: PMC2213214 DOI: 10.1084/jem.20042530] [Citation(s) in RCA: 298] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The molecular immunopathogenesis of West Nile virus (WNV) infection is poorly understood. Here, we characterize a mouse model for WNV using a subcutaneous route of infection and delineate leukocyte subsets and immunoregulatory factors present in the brains of infected mice. Central nervous system (CNS) expression of the chemokine receptor CCR5 and its ligand CCL5 was prominently up-regulated by WNV, and this was associated with CNS infiltration of CD4+ and CD8+ T cells, NK1.1+ cells and macrophages expressing the receptor. The significance of CCR5 in pathogenesis was established by mortality studies in which infection of CCR5-/- mice was rapidly and uniformly fatal. In the brain, WNV-infected CCR5-/- mice had increased viral burden but markedly reduced NK1.1+ cells, macrophages, and CD4+ and CD8+ T cells compared with WNV-infected CCR5+/+ mice. Adoptive transfer of splenocytes from WNV-infected CCR5+/+ mice into infected CCR5-/- mice increased leukocyte accumulation in the CNS compared with transfer of splenocytes from infected CCR5-/- mice into infected CCR5-/- mice, and increased survival to 60%, the same as in infected CCR5+/+ control mice. We conclude that CCR5 is a critical antiviral and survival determinant in WNV infection of mice that acts by regulating trafficking of leukocytes to the infected brain.
Collapse
Affiliation(s)
- William G Glass
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
315
|
Mehlhop E, Diamond MS. Protective immune responses against West Nile virus are primed by distinct complement activation pathways. ACTA ACUST UNITED AC 2006; 203:1371-81. [PMID: 16651386 PMCID: PMC2121216 DOI: 10.1084/jem.20052388] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV) causes a severe infection of the central nervous system in several vertebrate animals including humans. Prior studies have shown that complement plays a critical role in controlling WNV infection in complement (C) 3(-/-) and complement receptor 1/2(-/-) mice. Here, we dissect the contributions of the individual complement activation pathways to the protection from WNV disease. Genetic deficiencies in C1q, C4, factor B, or factor D all resulted in increased mortality in mice, suggesting that all activation pathways function together to limit WNV spread. In the absence of alternative pathway complement activation, WNV disseminated into the central nervous system at earlier times and was associated with reduced CD8+ T cell responses yet near normal anti-WNV antibody profiles. Animals lacking the classical and lectin pathways had deficits in both B and T cell responses to WNV. Finally, and somewhat surprisingly, C1q was required for productive infection in the spleen but not for development of adaptive immune responses after WNV infection. Our results suggest that individual pathways of complement activation control WNV infection by priming adaptive immune responses through distinct mechanisms.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | |
Collapse
|
316
|
Tschen S, Stohlman S, Ramakrishna C, Hinton D, Atkinson R, Bergmann C. CNS viral infection diverts homing of antibody-secreting cells from lymphoid organs to the CNS. Eur J Immunol 2006; 36:603-12. [PMID: 16437540 PMCID: PMC7163565 DOI: 10.1002/eji.200535123] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Neurotropic coronavirus infection of mice results in acute encephalomyelitis followed by viral persistence. Whereas cellular immunity controls acute infection, humoral immunity regulates central nervous system (CNS) persistence. Maintenance of serum Ab was correlated with tissue distribution of virus-specific Ab-secreting cells (ASC). Although virus-specific ASC declined in cervical lymph node and spleen after infectious virus clearance, virus-specific serum Ab was sustained at steady levels, with a delay in neutralizing Ab. Virus-specific ASC within the CNS peaked rapidly 1 wk after control of infectious virus and were retained throughout chronic infection, consistent with intrathecal Ab synthesis. Surprisingly, frequencies of ASC in the BM remained low and only increased gradually. Nevertheless, virus-specific ASC induced by peripheral infection localized to both spleen and BM. The data suggest that CNS infection provides strong stimuli to recruit ASC into the inflamed tissue through sustained up-regulation of the CXCR3 ligands CXCL9 and CXCL10. Irrespective of Ag deprivation, CNS retention of ASC coincided with elevated BAFF expression and ongoing differentiation of class II+ to class II-CD138+CD19+ plasmablasts. These results confirm the CNS as a major ASC-supporting environment, even after resolution of viral infection and in the absence of chronic ongoing inflammation.
Collapse
Affiliation(s)
- Shuen‐Ing Tschen
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Stephen A. Stohlman
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Departments of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Departments of Molecular Microbiology and Immunology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Department of Neurosciences, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chandran Ramakrishna
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Departments of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Department of Neurosciences, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, OH, USA
| | - David R. Hinton
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Roscoe D. Atkinson
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
| | - Cornelia C. Bergmann
- Departments of Pathology,University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Departments of Neurology, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA
- Department of Neurosciences, Lerner Research Institute Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
317
|
Mawhorter SD, Sierk A, Staugaitis SM, Avery RK, Sobecks R, Prayson RA, Procop GW, Yen-Lieberman B. Fatal West Nile Virus infection after rituximab/fludarabine--induced remission for non-Hodgkin's lymphoma. ACTA ACUST UNITED AC 2006; 6:248-50. [PMID: 16354331 DOI: 10.3816/clm.2005.n.053] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
West Nile virus (WNV) infections are potentially life threatening in immunocompromised hosts. Currently, the best diagnostic test is serology. Reverse-transcriptase polymerase chain reaction (RT-PCR) testing has a role, but, because WNV is a cell-associated neurotropic virus, RT-PCR results are frequently negative even in cases of active infection. We present a case in which serology results were persistently negative because the patient was immunocompromised following lymphoma treatment. The role of humoral immunity in resolution of WNV is also discussed.
Collapse
Affiliation(s)
- Steven D Mawhorter
- Department of Infectious Disease, Cleveland Clinic Foundation, Cleveland, OH 44195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
318
|
Davis CW, Nguyen HY, Hanna SL, Sánchez MD, Doms RW, Pierson TC. West Nile virus discriminates between DC-SIGN and DC-SIGNR for cellular attachment and infection. J Virol 2006; 80:1290-301. [PMID: 16415006 PMCID: PMC1346927 DOI: 10.1128/jvi.80.3.1290-1301.2006] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The C-type lectins DC-SIGN and DC-SIGNR bind mannose-rich glycans with high affinity. In vitro, cells expressing these attachment factors efficiently capture, and are infected by, a diverse array of appropriately glycosylated pathogens, including dengue virus. In this study, we investigated whether these lectins could enhance cellular infection by West Nile virus (WNV), a mosquito-borne flavivirus related to dengue virus. We discovered that DC-SIGNR promoted WNV infection much more efficiently than did DC-SIGN, particularly when the virus was grown in human cell types. The presence of a single N-linked glycosylation site on either the prM or E glycoprotein of WNV was sufficient to allow DC-SIGNR-mediated infection, demonstrating that uncleaved prM protein present on a flavivirus virion can influence viral tropism under certain circumstances. Preferential utilization of DC-SIGNR was a specific property conferred by the WNV envelope glycoproteins. Chimeras between DC-SIGN and DC-SIGNR demonstrated that the ability of DC-SIGNR to promote WNV infection maps to its carbohydrate recognition domain. WNV virions and subviral particles bound to DC-SIGNR with much greater affinity than DC-SIGN. We believe this is the first report of a pathogen interacting more efficiently with DC-SIGNR than with DC-SIGN. Our results should lead to the discovery of new mechanisms by which these well-studied lectins discriminate among ligands.
Collapse
Affiliation(s)
- Carl W Davis
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
319
|
Chung KM, Nybakken GE, Thompson BS, Engle MJ, Marri A, Fremont DH, Diamond MS. Antibodies against West Nile Virus nonstructural protein NS1 prevent lethal infection through Fc gamma receptor-dependent and -independent mechanisms. J Virol 2006; 80:1340-51. [PMID: 16415011 PMCID: PMC1346945 DOI: 10.1128/jvi.80.3.1340-1351.2006] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 11/11/2005] [Indexed: 11/20/2022] Open
Abstract
The flavivirus nonstructural protein NS1 is a highly conserved secreted glycoprotein that does not package with the virion. Immunization with NS1 elicits a protective immune response against yellow fever, dengue, and tick-borne encephalitis flaviviruses through poorly defined mechanisms. In this study, we purified a recombinant, secreted form of West Nile virus (WNV) NS1 glycoprotein from baculovirus-infected insect cells and generated 22 new NS1-specific monoclonal antibodies (MAbs). By performing competitive binding assays and expressing truncated NS1 proteins on the surface of yeast (Saccharomyces cerevisiae) and in bacteria, we mapped 21 of the newly generated MAbs to three NS1 fragments. Prophylaxis of C57BL/6 mice with any of four MAbs (10NS1, 14NS1, 16NS1, and 17NS1) strongly protected against lethal WNV infection (75 to 95% survival, respectively) compared to saline-treated controls (17% survival). In contrast, other anti-NS1 MAbs of the same isotype provided no significant protection. Notably, 14NS1 and 16NS1 also demonstrated marked efficacy as postexposure therapy, even when administered as a single dose 4 days after infection. Virologic analysis showed that 17NS1 protects at an early stage in infection through a C1q-independent and Fc gamma receptor-dependent pathway. Interestingly, 14NS1, which maps to a distinct region on NS1, protected through a C1q- and Fc gamma receptor-independent mechanism. Overall, our data suggest that distinct regions of NS1 can elicit protective humoral immunity against WNV through different mechanisms.
Collapse
Affiliation(s)
- Kyung Min Chung
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
320
|
Abstract
Since its introduction to North America in 1999, West Nile virus, an arthropod-borne flavivirus, has become the most significant cause of epidemic encephalitis in the western hemisphere. While most human infections with the virus are asymptomatic and the majority of symptomatic persons experience febrile illness, severe neurologic manifestations, including meningitis, encephalitis, and poliomyelitis may be seen. This review summarizes the virology, epidemiology and pathogenesis of human infection with West Nile virus, and details recent advances in our understanding of the pathophysiology and various clinical manifestations of infection.
Collapse
Affiliation(s)
- James J Sejvar
- Division of Vector-Borne Infectious Diseases and Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases (NCID), Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA.
| | | |
Collapse
|
321
|
Iglesias MC, Frenkiel MP, Mollier K, Souque P, Despres P, Charneau P. A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J Gene Med 2006; 8:265-74. [PMID: 16308885 DOI: 10.1002/jgm.837] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lentiviral vectors, due to their capacity to transduce non-dividing cells, have become precious and worldwide used gene transfer systems. Their ability to efficiently and stably transduce dendritic cells (DCs) has led to their successful use as vaccination vectors for eliciting strong, specific and protective cellular immune responses mostly in anti-tumoral but also in anti-viral applications. However, the ability of lentiviral vectors to elicit an antibody-based protective immunity has, to date, not been evaluated. In the present study, we evaluated the potential of a lentiviral vector-based vaccine to elicit humoral immunity against West Nile virus (WNV). WNV is a mosquito-borne flavivirus that emerged in North America and causes encephalitis in humans, birds and horses. Neutralizing anti-WNV antibodies have been shown to be crucial for protection against WNV encephalitis. METHODS The ability of lentiviral vector TRIP/sE(WNV), expressing the secreted soluble form of the envelope E-glycoprotein (sE(WNV)) from the highly virulent IS-98-ST1 strain of WNV, to induce a specific humoral response and protection against WNV infection was assessed in a mouse model of WNV encephalitis. RESULTS Remarkably, a single immunization with a minute dose of TRIP/sE(WNV) was efficient at eliciting a long-lasting, protective and sterilizing humoral immunity, only 1 week after priming. CONCLUSIONS This study broadens the applicability of lentiviral vectors as efficient non-replicating vaccines against pathogens for which a neutralizing humoral response is one active arm of the protective immunity. The TRIP/sE(WNV) lentiviral vector appears to be a promising tool for veterinary vaccination against zoonotic WNV.
Collapse
Affiliation(s)
- Maria Candela Iglesias
- Groupe de Virologie Moléculaire et Vectorologie, Institut Pasteur, 28 rue du Dr. Roux. 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
322
|
Shrestha B, Samuel MA, Diamond MS. CD8+ T cells require perforin to clear West Nile virus from infected neurons. J Virol 2006; 80:119-29. [PMID: 16352536 PMCID: PMC1317548 DOI: 10.1128/jvi.80.1.119-129.2006] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 10/05/2005] [Indexed: 11/20/2022] Open
Abstract
Injury to neurons after West Nile virus (WNV) infection is believed to occur because of viral and host immune-mediated effects. Previously, we demonstrated that CD8+ T cells are required for the resolution of WNV infection in the central nervous system (CNS). CD8+ T cells can control infection by producing antiviral cytokines (e.g., gamma interferon or tumor necrosis factor alpha) or by triggering death of infected cells through perforin- or Fas ligand-dependent pathways. Here, we directly evaluated the role of perforin in controlling infection of a lineage I New York isolate of WNV in mice. A genetic deficiency of perforin molecules resulted in higher viral burden in the CNS and increased mortality after WNV infection. In the few perforin-deficient mice that survived initial challenge, viral persistence was observed in the CNS for several weeks. CD8+ T cells required perforin to control WNV infection as adoptive transfer of WNV-primed wild-type but not perforin-deficient CD8+ T cells greatly reduced infection in the brain and spinal cord and enhanced survival of CD8-deficient mice. Analogous results were obtained when wild-type or perforin-deficient CD8+ T cells were added to congenic primary cortical neuron cultures. Taken together, our data suggest that despite the risk of immunopathogenesis, CD8+ T cells use a perforin-dependent mechanism to clear WNV from infected neurons.
Collapse
Affiliation(s)
- Bimmi Shrestha
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave., Box 8051, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
323
|
Garcia-Tapia D, Loiacono CM, Kleiboeker SB. Replication of West Nile virus in equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2005; 110:229-44. [PMID: 16310859 DOI: 10.1016/j.vetimm.2005.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 10/05/2005] [Indexed: 10/25/2022]
Abstract
A cell model of primary monocytes and other mononuclear cells isolated from equine blood was used to study the kinetics of West Nile virus (WNV) replication in a natural host. West Nile virus has emerged on the North American continent as a significant cause of morbidity and mortality in a wide range of avian and mammalian species. While other flaviviruses are known to infect monocytes and lymphocytes, the ability of WNV to productively replicate in specific immune cells of peripheral blood has not been assessed. In this study, enriched populations of monocytes and lymphocytes as well as purified monocytes, CD4+, CD8+ and B lymphocytes were obtained from equine blood. Productive WNV replication was demonstrated by viral growth curves, quantitative RT-PCR for WNV RNA, and indirect immunofluorescence detection of a non-structural WNV protein. Enriched and purified monocytes consistently supported productive viral replication in blood from nine of nine horses tested while a minor subset of CD4+ lymphocytes supported productive replication in cells from three of the nine horses tested. Peak viral titers of 3.2-6.6 log10 PFU/ml were reached at 6 days post-inoculation (p.i.) and titers were maintained through 10-15 days p.i. Activation of monocytes with bacterial lipopolysaccharide, which resulted in activation of nuclear transcription factor kappaB (NF-kappaB) plus elevation of nitric oxide and type I interferon levels, reduced or eliminated WNV replication. These results suggest that immune cells of the peripheral blood may serve as target cells for initial replication of WNV and may play a role in subsequent viral dissemination. Furthermore, primary equine immune cell cultures represent a potentially useful model of a natural WNV host when testing compounds such as antivirals for use in WNV treatment.
Collapse
Affiliation(s)
- David Garcia-Tapia
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
324
|
Samuel MA, Diamond MS. Alpha/beta interferon protects against lethal West Nile virus infection by restricting cellular tropism and enhancing neuronal survival. J Virol 2005; 79:13350-61. [PMID: 16227257 PMCID: PMC1262587 DOI: 10.1128/jvi.79.21.13350-13361.2005] [Citation(s) in RCA: 332] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is neurotropic in humans, birds, and other animals. While adaptive immunity plays an important role in preventing WNV spread to the central nervous system (CNS), little is known about how alpha/beta interferon (IFN-alpha/beta) protects against peripheral and CNS infection. In this study, we examine the virulence and tropism of WNV in IFN-alpha/beta receptor-deficient (IFN- alpha/betaR-/-) mice and primary neuronal cultures. IFN-alpha/betaR-/- mice were acutely susceptible to WNV infection through subcutaneous inoculation, with 100% mortality and a mean time to death (MTD) of 4.6 +/- 0.7 and 3.8+/- 0.5 days after infection with 10(0) and 10(2) PFU, respectively. In contrast, congenic wild-type 129Sv/Ev mice infected with 10(2) PFU showed 62% mortality and a MTD of 11.9 +/- 1.9 days. IFN-alpha/betaR-/- mice developed high viral loads by day 3 after infection in nearly all tissues assayed, including many that were not infected in wild-type mice. IFN-alpha/betaR-/- mice also demonstrated altered cellular tropism, with increased infection in macrophages, B cells, and T cells in the spleen. Additionally, treatment of primary wild-type neurons in vitro with IFN-beta either before or after infection increased neuronal survival independent of its effect on WNV replication. Collectively, our data suggest that IFN-alpha/beta controls WNV infection by restricting tropism and viral burden and by preventing death of infected neurons.
Collapse
Affiliation(s)
- Melanie A Samuel
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | |
Collapse
|
325
|
Nybakken GE, Oliphant T, Johnson S, Burke S, Diamond MS, Fremont DH. Structural basis of West Nile virus neutralization by a therapeutic antibody. Nature 2005; 437:764-9. [PMID: 16193056 PMCID: PMC7095628 DOI: 10.1038/nature03956] [Citation(s) in RCA: 294] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2005] [Accepted: 06/24/2005] [Indexed: 11/19/2022]
Abstract
West Nile virus is closely related to the human epidemic-causing dengue, yellow fever and Japanese encephalitis viruses. The study of a particularly effective monoclonal antibody, capable of protecting mice from lethal West Nile virus challenge even if administered 5 days after infection, has provided important information on the structural basis of viral neutralization. The work highlights the domain III region of the viral envelope protein as a potential target for both therapeutic antibodies and vaccines. West Nile virus is a mosquito-borne flavivirus closely related to the human epidemic-causing dengue, yellow fever and Japanese encephalitis viruses1. In establishing infection these icosahedral viruses undergo endosomal membrane fusion catalysed by envelope glycoprotein rearrangement of the putative receptor-binding domain III (DIII) and exposure of the hydrophobic fusion loop2,3,4. Humoral immunity has an essential protective function early in the course of West Nile virus infection5,6. Here, we investigate the mechanism of neutralization by the E16 monoclonal antibody that specifically binds DIII. Structurally, the E16 antibody Fab fragment engages 16 residues positioned on four loops of DIII, a consensus neutralizing epitope sequence conserved in West Nile virus and distinct in other flaviviruses. The E16 epitope protrudes from the surface of mature virions in three distinct environments7, and docking studies predict Fab binding will leave five-fold clustered epitopes exposed. We also show that E16 inhibits infection primarily at a step after viral attachment, potentially by blocking envelope glycoprotein conformational changes. Collectively, our results suggest that a vaccine strategy targeting the dominant DIII epitope may elicit safe and effective immune responses against flaviviral diseases.
Collapse
Affiliation(s)
- Grant E. Nybakken
- Departments of Pathology & Immunology, Washington University School of Medicine, Missouri 63110 St Louis, USA
| | - Theodore Oliphant
- Departments of Molecular Microbiology, Washington University School of Medicine, Missouri 63110 St Louis, USA
| | | | | | - Michael S. Diamond
- Departments of Pathology & Immunology, Washington University School of Medicine, Missouri 63110 St Louis, USA
- Departments of Molecular Microbiology, Washington University School of Medicine, Missouri 63110 St Louis, USA
- Departments of Medicine, Washington University School of Medicine, Missouri 63110 St Louis, USA
| | - Daved H. Fremont
- Departments of Pathology & Immunology, Washington University School of Medicine, Missouri 63110 St Louis, USA
- Departments of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Missouri 63110 St Louis, USA
| |
Collapse
|
326
|
Tangy F, Naim HY. Live attenuated measles vaccine as a potential multivalent pediatric vaccination vector. Viral Immunol 2005; 18:317-26. [PMID: 16035943 DOI: 10.1089/vim.2005.18.317] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Live attenuated RNA viruses make highly efficient vaccines. Among them is the live attenuated measles virus (MV) vaccine that has been given to a very large number of children and has been shown to be highly efficacious and safe. MV vaccine induces a life-long immunity after a single injection or two low-dose injections. It is easily produced on a large scale in most countries and can be distributed at low cost. Reversion to pathogenicity has never been observed with this vaccine. For all of these characteristics, developing of MV vaccine vector as a multivalent vaccine to immunize children against both measles and other infectious agents such as human immunodeficiency virus (HIV), flaviviruses, or malaria might be very promising for worldwide use. As MV vaccine is inexpensive to produce, the generation of recombinant vaccines may remain affordable and attractive for the developing word. In this article, we describe the development of MV vector and present some recent data showing the capacity of recombinant MV vaccine to express various proteins from HIV and West Nile virus. In addition, the ability of recombinant MV to induce specific immune responses against these different pathogens are presented and discussed.
Collapse
Affiliation(s)
- Frédéric Tangy
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France.
| | | |
Collapse
|
327
|
Klein RS, Lin E, Zhang B, Luster AD, Tollett J, Samuel MA, Engle M, Diamond MS. Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 2005; 79:11457-66. [PMID: 16103196 PMCID: PMC1193600 DOI: 10.1128/jvi.79.17.11457-11466.2005] [Citation(s) in RCA: 333] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The activation and entry of antigen-specific CD8(+) T cells into the central nervous system is an essential step towards clearance of West Nile virus (WNV) from infected neurons. The molecular signals responsible for the directed migration of virus-specific T cells and their cellular sources are presently unknown. Here we demonstrate that in response to WNV infection, neurons secrete the chemokine CXCL10, which recruits effector T cells via the chemokine receptor CXCR3. Neutralization or a genetic deficiency of CXCL10 leads to a decrease in CXCR3(+) CD8(+) T-cell trafficking, an increase in viral burden in the brain, and enhanced morbidity and mortality. These data support a new paradigm in chemokine neurobiology, as neurons are not generally considered to generate antiviral immune responses, and CXCL10 may represent a novel neuroprotective agent in response to WNV infection in the central nervous system.
Collapse
Affiliation(s)
- Robyn S Klein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|
328
|
Lorin C, Combredet C, Labrousse V, Mollet L, Desprès P, Tangy F. A paediatric vaccination vector based on live attenuated measles vaccine. Therapie 2005; 60:227-33. [PMID: 16128264 DOI: 10.2515/therapie:2005029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and shown to be highly effective and safe. MV vaccine induces a life-long immunity after a single or two low-dose injections. It is easily produced on a large scale in most countries and can be distributed at low cost. Reversion to pathogenicity has never been observed with this vaccine. Because of all these characteristics, MV vaccine might be a very promising vector to immunise children against both measles and other infectious agents, such as HIV or flaviviruses, in the developing world. In this article, we describe recent data that we obtained showing the capacity of recombinant Schwarz MVs to express proteins from human immunodeficiency or West Nile viruses, and to induce specific immune responses able, in the case of West Nile virus, to protect from an experimental challenge.
Collapse
Affiliation(s)
- Clarisse Lorin
- Unité des Virus Lents, CNRS URA 1930, Institut Pasteur, Paris, France
| | | | | | | | | | | |
Collapse
|
329
|
Sánchez-Seco MP, Navarro JM. Infecciones por el virus de Toscana, el virus del Nilo occidental y otros arbovirus de interés en Europa. Enferm Infecc Microbiol Clin 2005; 23:560-8. [PMID: 16324569 DOI: 10.1157/13080267] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Arbovirosis, viral infection transmitted by arthropods, is a widespread health problem. Recurrent outbreaks caused by some of these viruses such as dengue or West Nile strains in regions where they do not appear frequently, justify the establishment of global control measures. Tick-borne encephalitis viruses, sand fly fever viruses (Toscana, Naples and Sicily) and occasionally West Nile and Crimean-Congo fever viruses are the most frequent causes of arbovirosis in Europe, although circulation of other potentially pathogenetic viruses such as Chikungunya has also been detected. The only native arbovirosis described in Spain is infection produced by Toscana virus, which causes aseptic, usually benign meningitis. Nevertheless, some West Nile virus-associated meningo-encephalitis cases have been described in France, Portugal and countries in the Magreb region, increasing the risk of sporadic occurrence of these processes in our country. To achieve an accurate diagnosis, high clinical suspicion is required as well as highly specific laboratory techniques, mainly based on IgM detection, RT-PCR and viral culture of CSF and/or serum.
Collapse
Affiliation(s)
- Mari Paz Sánchez-Seco
- Laboratorio de Arbovirus y Enfermedades Víricas Importadas, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain.
| | | |
Collapse
|
330
|
Venter M, Myers TG, Wilson MA, Kindt TJ, Paweska JT, Burt FJ, Leman PA, Swanepoel R. Gene expression in mice infected with West Nile virus strains of different neurovirulence. Virology 2005; 342:119-40. [PMID: 16125213 DOI: 10.1016/j.virol.2005.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 06/01/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
West Nile virus causes febrile illness in humans with a proportion of cases progressing to meningoencephalitis, encephalitis, hepatitis, and death. Isolates of the virus fall into two genetic lineages, with differences in neuroinvasiveness for mice occurring between strains within both lineages. We used DNA microarrays to compare gene expression in mice infected peripherally with seven lineage 1 and 2 strains confirmed to be of either high or low neuroinvasiveness in mice and associated with severe or benign infection in humans and birds. The 4 strains with highest neuroinvasiveness induced increased expression of 47 genes in the brain, 111 genes in the liver, and 70 genes in the spleen, relative to the 3 least neuroinvasive strains. Genes involved in interferon signaling pathways, protein degradation, T-cell recruitment, MHC class I and II antigen presentation, and apoptosis were identified that may have both pathogenic and protective effects, but increased expression of certain acute proteins, central nervous system specific proteins and proteins associated with T-cell hepatitis, implicate mechanisms related to exalted virulence.
Collapse
Affiliation(s)
- Marietjie Venter
- Special Pathogens Unit, National Institute for Communicable Diseases, Private Bag X4, Sandringham 2131, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
331
|
Scholle F, Mason PW. West Nile virus replication interferes with both poly(I:C)-induced interferon gene transcription and response to interferon treatment. Virology 2005; 342:77-87. [PMID: 16111732 DOI: 10.1016/j.virol.2005.07.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2005] [Revised: 06/06/2005] [Accepted: 07/16/2005] [Indexed: 10/25/2022]
Abstract
West Nile virus (WNV), the leading cause of viral encephalitis in the United States, is an arthropod-transmitted member of the family Flaviviridae. We have explored the interaction of this positive-strand RNA virus with signaling pathways involved in induction of the host's innate immune response. Phosphorylation of STAT-1 in response to interferon (IFN) treatment and the ability of IFN to establish an antiviral state were reduced in WNV replicon-bearing cell lines. Similarly, the activation of IRF3 and stimulation of IFN-beta transcription in response to the double-stranded RNA (dsRNA) mimetic poly(I:C) were inhibited in replicon-bearing and WNV-infected HeLa cells. In contrast, WNV replicons did not affect IRF3 activation by Sendai virus infection, suggesting that not all IRF3 activating pathways are inhibited by WNV. Taken together, these findings demonstrate that WNV replication in cultured cells interferes with both the response to IFN and synthesis of IFN-beta in response to dsRNA.
Collapse
Affiliation(s)
- Frank Scholle
- Department of Pathology, 3.206B Mary Moody Northen Pavilion, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-0436, USA
| | | |
Collapse
|
332
|
Abstract
West Nile virus (WNV) is a mosquito-borne flavivirus that is emerging as a global pathogen. In the last decade, virulent strains of the virus have been associated with significant outbreaks of human and animal disease in Europe, the Middle East and North America. Efforts to develop human and veterinary vaccines have taken both traditional and novel approaches. A formalin-inactivated whole virus vaccine has been approved for use in horses. DNA vaccines coding for the structural WNV proteins have also been assessed for veterinary use and have been found to be protective in mice, horses and birds. Live attenuated yellow fever WNV chimeric vaccines have also been successful in animals and are currently undergoing human trials. Additional studies have shown that immunisation with a relatively benign Australian variant of WNV, the Kunjin virus, also provides protective immunity against the virulent North American strain. Levels of efficacy and safety, as well as logistical, economic and environmental issues, must all be carefully considered before vaccine candidates are approved and selected for large-scale manufacture and distribution.
Collapse
Affiliation(s)
- Roy A Hall
- Department of Microbiology and Parasitology, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | |
Collapse
|
333
|
Abstract
West Nile virus (WNV) is a small RNA virus. It was first isolated in the blood of a febrile woman in the West Nile district of Uganda in 1937. Although WNV has caused human disease in Africa and Europe since its identification, the first documented human infections occurred in the United States in 1999. Wild birds are the reservoir for WNV, and most transmission to humans occurs after the bite of an infected mosquito. In humans, 80% of infections are asymptomatic and nearly 20% cause a mild self-limiting illness called WNV fever. Less than 1% will develop central nervous system (CNS) infection, which manifests as meningitis, encephalitis, or acute flaccid paralysis. The case fatality rate for CNS infection is approximately 15%. Human vaccine is not available. Personal mosquito protection remains the best prevention, and treatment is supportive.
Collapse
Affiliation(s)
- James L Dean
- Philadelphia Department of Public Health, Division of Disease Control, 500 South Broad Street, Philadelphia, PA 19146, USA.
| | | |
Collapse
|
334
|
Geiss BJ, Pierson TC, Diamond MS. Actively replicating West Nile virus is resistant to cytoplasmic delivery of siRNA. Virol J 2005; 2:53. [PMID: 15985182 PMCID: PMC1174879 DOI: 10.1186/1743-422x-2-53] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2005] [Accepted: 06/28/2005] [Indexed: 12/24/2022] Open
Abstract
Background West Nile virus is an emerging human pathogen for which specific antiviral therapy has not been developed. Recent studies have suggested that RNA interference (RNAi) has therapeutic potential as a sequence specific inhibitor of viral infection. Here, we examine the ability of exogenous small interfering RNAs (siRNAs) to block the replication of West Nile virus in human cells. Results WNV replication and infection was greatly reduced when siRNA were introduced by cytoplasmic-targeted transfection prior to but not after the establishment of viral replication. WNV appeared to evade rather than actively block the RNAi machinery, as sequence-specific reduction in protein expression of a heterologous transgene was still observed in WNV-infected cells. However, sequence-specific decreases in WNV RNA were observed in cells undergoing active viral replication when siRNA was transfected by an alternate method, electroporation. Conclusion Our results suggest that actively replicating WNV RNA may not be exposed to the cytoplasmic RNAi machinery. Thus, conventional lipid-based siRNA delivery systems may not be adequate for therapy against enveloped RNA viruses that replicate in specialized membrane compartments.
Collapse
Affiliation(s)
- Brian J Geiss
- Departments of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, USA
| | - Theodore C Pierson
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, USA
- Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, USA
- Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, MO 63110, USA
| |
Collapse
|
335
|
Mehlhop E, Whitby K, Oliphant T, Marri A, Engle M, Diamond MS. Complement activation is required for induction of a protective antibody response against West Nile virus infection. J Virol 2005; 79:7466-77. [PMID: 15919902 PMCID: PMC1143684 DOI: 10.1128/jvi.79.12.7466-7477.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 02/15/2005] [Indexed: 01/21/2023] Open
Abstract
Infection with West Nile virus (WNV) causes a severe infection of the central nervous system (CNS) with higher levels of morbidity and mortality in the elderly and the immunocompromised. Experiments with mice have begun to define how the innate and adaptive immune responses function to limit infection. Here, we demonstrate that the complement system, a major component of innate immunity, controls WNV infection in vitro primarily in an antibody-dependent manner by neutralizing virus particles in solution and lysing WNV-infected cells. More decisively, mice that genetically lack the third component of complement or complement receptor 1 (CR1) and CR2 developed increased CNS virus burdens and were vulnerable to lethal infection at a low dose of WNV. Both C3-deficient and CR1- and CR2-deficient mice also had significant deficits in their humoral responses after infection with markedly reduced levels of specific anti-WNV immunoglobulin M (IgM) and IgG. Overall, these results suggest that complement controls WNV infection, in part through its ability to induce a protective antibody response.
Collapse
Affiliation(s)
- Erin Mehlhop
- Department of Medicine, Molecular Microbiology, and Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Ave., Box 8051, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
336
|
Abstract
Antibodies are the primary weapons of the mammalian immune system that are used against the tick-borne borreliae, the causative agents of relapsing fever and Lyme disease worldwide. Some antibody responses have 'traditional' functions, whereas others are more versatile and have novel functions and modes of action. At a time when the multiple functions of antibodies are being increasingly recognized and passive immunization is being revived as therapy for infectious and other diseases, the versatile nature of the antibody response to the borreliae fits well with this antibody renaissance.
Collapse
Affiliation(s)
- Sean E Connolly
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, Stony Brook, New York 11794-5120, USA
| | | |
Collapse
|
337
|
Karaca K, Bowen R, Austgen LE, Teehee M, Siger L, Grosenbaugh D, Loosemore L, Audonnet JC, Nordgren R, Minke JM. Recombinant canarypox vectored West Nile virus (WNV) vaccine protects dogs and cats against a mosquito WNV challenge. Vaccine 2005; 23:3808-13. [PMID: 15893618 DOI: 10.1016/j.vaccine.2005.02.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 02/03/2005] [Accepted: 02/09/2005] [Indexed: 12/01/2022]
Abstract
The safety and efficacy of a canarypox vector expressing PrM and E genes of West Nile virus (WNV) (ALVAC-WNV) was evaluated in dogs and cats. One group of 17 dogs (vaccinated with 10(5.6) TCID(50)) and two groups of cats (groups 1 [n=14] vaccinated with 10(7.5) TCID(50) and 2 [n=8] 10(5.6) TCID(50)) were vaccinated twice at 28-day intervals. Fifteen dogs and eleven cats served as negative controls. The cats and dogs were challenged 120 and 135 days after the second immunization, respectively via the bites of Aedes albopictus mosquitoes infected with WNV. The first dose of vaccine induced a detectable antibody response in four dogs and five cats (one immunized with low and four with high doses). After the second dose, all the vaccinated dogs and all of the cats, immunized with high dose had detectable antibody titers, whereas only four of eight cats in the low dose group were seropositive. None of the vaccinated dogs and one vaccinated cat developed viremia following the WNV mosquito-challenge. In contrast, 14 of the 15 control dogs and 9 of the 11 control cats developed viremia. The experimental vaccine described in this study may be of value in the prevention of WNV infection in dogs and cats.
Collapse
Affiliation(s)
- K Karaca
- Merial Limited, 115 Transtech Drive, Athens, GA 30601, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
338
|
Sánchez MD, Pierson TC, McAllister D, Hanna SL, Puffer BA, Valentine LE, Murtadha MM, Hoxie JA, Doms RW. Characterization of neutralizing antibodies to West Nile virus. Virology 2005; 336:70-82. [PMID: 15866072 DOI: 10.1016/j.virol.2005.02.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 01/30/2005] [Accepted: 02/24/2005] [Indexed: 11/30/2022]
Abstract
We produced nine monoclonal antibodies (MAbs) directed against the West Nile virus E glycoprotein using three different immunization strategies: inactivated virus, naked DNA, and recombinant protein. Most of the MAbs bound to conformation dependent epitopes in domain III of the E protein. Four of the MAbs neutralized WNV infection and bound to the same region of domain III with high affinity. The neutralizing MAbs were obtained from mice immunized with inactivated virus alone or in combination with a DNA plasmid. In contrast, MAbs obtained by immunization with a soluble version of the E glycoprotein did not exhibit neutralizing activity. These non-neutralizing antibodies were cross-reactive with several other flaviviruses, including Saint Louis encephalitis, Japanese encephalitis, Yellow Fever and Powassan viruses. Interestingly, some non-neutralizing MAbs bound with high affinity to domains I or III, indicating that both affinity and the precise epitope recognized by an antibody are important determinants of WNV neutralization.
Collapse
Affiliation(s)
- Melissa D Sánchez
- Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
339
|
Oliphant T, Engle M, Nybakken GE, Doane C, Johnson S, Huang L, Gorlatov S, Mehlhop E, Marri A, Chung KM, Ebel GD, Kramer LD, Fremont DH, Diamond MS. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 2005; 11:522-30. [PMID: 15852016 PMCID: PMC1458527 DOI: 10.1038/nm1240] [Citation(s) in RCA: 418] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2004] [Accepted: 03/30/2005] [Indexed: 02/06/2023]
Abstract
Neutralization of West Nile virus (WNV) in vivo correlates with the development of an antibody response against the viral envelope (E) protein. Using random mutagenesis and yeast surface display, we defined individual contact residues of 14 newly generated monoclonal antibodies against domain III of the WNV E protein. Monoclonal antibodies that strongly neutralized WNV localized to a surface patch on the lateral face of domain III. Convalescent antibodies from individuals who had recovered from WNV infection also detected this epitope. One monoclonal antibody, E16, neutralized 10 different strains in vitro, and showed therapeutic efficacy in mice, even when administered as a single dose 5 d after infection. A humanized version of E16 was generated that retained antigen specificity, avidity and neutralizing activity. In postexposure therapeutic trials in mice, a single dose of humanized E16 protected mice against WNV-induced mortality, and may therefore be a viable treatment option against WNV infection in humans.
Collapse
Affiliation(s)
- Theodore Oliphant
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Michael Engle
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Grant E Nybakken
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Chris Doane
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Syd Johnson
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Ling Huang
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Sergey Gorlatov
- MacroGenics, 1500 East Guide Drive, Rockville, 20850 Maryland USA
| | - Erin Mehlhop
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Anantha Marri
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Kyung Min Chung
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Gregory D Ebel
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, 12159 New York USA
| | - Laura D Kramer
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, 12159 New York USA
| | - Daved H Fremont
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| | - Michael S Diamond
- Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
- Department of Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
- Department of Pathology & Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Box 8051, St. Louis, 63110 Missouri USA
| |
Collapse
|
340
|
Batsis JA, Phy MP. West Nile virus meningitis in a chronic immunosuppressed patient with rheumatoid arthritis. Clin Rheumatol 2005; 24:548-50. [PMID: 15856365 DOI: 10.1007/s10067-005-1085-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2004] [Accepted: 12/06/2004] [Indexed: 11/28/2022]
Abstract
The clinical presentation of West Nile virus (WNV) can be severe in immunosuppressed patients. A 65-year-old with steroid-dependent rheumatoid arthritis on infliximab and methotrexate presented with meningitis and profound muscular weakness. Serum WNV IgM and IgG antibody were positive. WNV should be included in the differential diagnosis of neurological symptoms in peak months.
Collapse
Affiliation(s)
- John A Batsis
- Department of Medicine, Mayo School of Graduate Medical Education, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA.
| | | |
Collapse
|
341
|
Abstract
Over the past five years, West Nile (WN) virus has emerged as an important public health concern in the United States. Recent studies from experimental models of WN virus infection have increased our understanding of its pathogenesis and immunity. These include the demonstration that the gene encoding 2'-5'oligoadenylate synthetase is responsible for murine susceptibility to WN virus, the elucidation of the contributions of B, CD8(+) and gamma T cells in the control of murine WN virus infection, and the use of active immunization with envelope protein and passive transfer of immunoglobulin for immunotherapy. These efforts will facilitate the development of effective vaccines and therapies to combat WN virus.
Collapse
MESH Headings
- 2',5'-Oligoadenylate Synthetase/genetics
- 2',5'-Oligoadenylate Synthetase/immunology
- 2',5'-Oligoadenylate Synthetase/metabolism
- Animals
- B-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Encephalitis/genetics
- Encephalitis/immunology
- Encephalitis/prevention & control
- Encephalitis/virology
- Humans
- Immunity, Innate
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Vaccination
- Vaccines, DNA/immunology
- West Nile virus/genetics
- West Nile virus/immunology
Collapse
Affiliation(s)
- Tian Wang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
342
|
Bregenholt S, Haurum J. Pathogen-specific recombinant human polyclonal antibodies: biodefence applications. Expert Opin Biol Ther 2005; 4:387-96. [PMID: 15006732 DOI: 10.1517/14712598.4.3.387] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The potential use of biological agents such as viruses, bacteria or bacterial toxins as weapons of mass destruction has fuelled significant national and international research and development in novel prophylactic or therapeutic countermeasures. Such measures need to be fast-acting and broadly specific, a hallmark of target-specific polyclonal antibodies (pAbs). As reviewed here, pathogen-specific antibodies in the form of human or animal serum have long been recognised as effective therapies in a number of infectious diseases. This review focuses in particular on the potential biowarfare agents prioritised by the National Institute of Allergy and Infectious Diseases and the Centers for Disease Control and Prevention (CDC), referred to as the category A organisms. Furthermore, it is propose that the last decade of development in recombinant antibody technologies offers the possibility for developing highly specific human monoclonal or polyclonal pathogen-specific antibodies. In particular, pathogen-specific polyclonal human antibodies offer certain advantages over existing hyperimmune serum products, monoclonal antibodies, small molecule drugs and vaccines. Here, the rationale for designing pAb-based therapeutics against the CDC category A microbial agents causing anthrax, botulism, plague, smallpox, tularaemia and viral haemorrhagic fevers, as well as the overall design of such therapeutics, are discussed.
Collapse
|
343
|
Pierson TC, Diamond MS, Ahmed AA, Valentine LE, Davis CW, Samuel MA, Hanna SL, Puffer BA, Doms RW. An infectious West Nile Virus that expresses a GFP reporter gene. Virology 2005; 334:28-40. [PMID: 15749120 DOI: 10.1016/j.virol.2005.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/02/2004] [Accepted: 01/03/2005] [Indexed: 11/23/2022]
Abstract
West Nile virus is a mosquito-borne, neurotropic flavivirus that causes encephalitis in humans and animals. Since being introduced into the Western hemisphere in 1999, WNV has spread rapidly across North America, identifying this virus as an important emerging pathogen. In this study, we developed a DNA-launched infectious molecular clone of WNV that encodes a GFP reporter gene. Transfection of cells with the plasmid encoding this recombinant virus (pWNII-GFP) resulted in the production of infectious WNV capable of expressing GFP at high levels shortly after infection of a variety of cell types, including primary neurons and dendritic cells. Infection of cells with WNII-GFP virus was productive, and could be inhibited with both monoclonal antibodies and interferon-beta, highlighting the potential of this system in the development and characterization of novel inhibitors and therapeutics for WNV infection. As expected, insertion of the reporter gene into the viral genome was associated with a reduced rate of viral replication, providing the selective pressure for the development of variants that no longer encoded the full-length reporter gene cassette. We anticipate this DNA-based, infectious WNV reporter virus will allow novel approaches for the study of WNV infection and its inhibition both in vitro and in vivo.
Collapse
Affiliation(s)
- Theodore C Pierson
- Department of Microbiology, University of Pennsylvania, 225 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
344
|
Mackenzie JS, Gubler DJ, Petersen LR. Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses. Nat Med 2005; 10:S98-109. [PMID: 15577938 DOI: 10.1038/nm1144] [Citation(s) in RCA: 865] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mosquito-borne flaviviruses provide some of the most important examples of emerging and resurging diseases of global significance. Here, we describe three of them: the resurgence of dengue in tropical and subtropical areas of the world, and the spread and establishment of Japanese encephalitis and West Nile viruses in new habitats and environments. These three examples also illustrate the complexity of the various factors that contribute to their emergence, resurgence and spread. Whereas some of these factors are natural, such as bird migration, most are due to human activities, such as changes in land use, water impoundments and transportation, which result in changed epidemiological patterns. The three examples also show the ease with which mosquito-borne viruses can spread to and colonize new areas, and the need for continued international surveillance and improved public health infrastructure to meet future emerging disease threats.
Collapse
Affiliation(s)
- John S Mackenzie
- Australian Biosecurity Cooperative Research Centre, Curtin University of Technology, Perth, Western Australia.
| | | | | |
Collapse
|
345
|
Cheeran MCJ, Hu S, Sheng WS, Rashid A, Peterson PK, Lokensgard JR. Differential responses of human brain cells to West Nile virus infection. J Neurovirol 2005; 11:512-24. [PMID: 16338745 DOI: 10.1080/13550280500384982] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In recent years, West Nile virus (WNV) has emerged as a major cause of encephalitis in the United States. However, the neuropathogenesis of this flavivirus is poorly understood. In the present study, the authors used primary human brain cell cultures to investigate two neuropathogenic features: viral replication and induction of cytokines. Although neurons and astrocytes were found to support productive WNV infection, viral growth was poorly permissive in microglial cells. Compared to neuronal cultures that sustained viral growth for at least 2 weeks, replication peaked in astrocytes by 72 h post infection. In response to viral infection, astrocytes produced chemokines (CXCL10 and CCL5), but none of the cytokines (tumor necrosis factor [TNF]-alpha, interleukin [IL]-1beta, IL-6, interferon alpha or gamma) tested could be detected. Although microglial cells failed to support viral replication, WNV induced production of the proinflammatory cytokines IL-6 and TNF-alpha. Microglial cells also released robust amounts of the chemokines CXCL10 and CCL2, as well as lower levels of CCL5, in response to WNV infection. WNV-induced chemokine and cytokine production by microglia was coupled with activation of mitogen-activated protein kinase (MAPK) intracellular signaling pathways. Inhibition of p38 MAPK decreased chemokine production in response to WNV. Taken together, these findings suggest that microglial cell responses may influence the neuropathogenesis of WNV infection.
Collapse
Affiliation(s)
- Maxim C-J Cheeran
- Neuroimmunology Laboratory, Minneapolis Medical Research Foundation, University of Minnesota Medical School, 55455, USA.
| | | | | | | | | | | |
Collapse
|
346
|
Shirato K, Miyoshi H, Goto A, Ako Y, Ueki T, Kariwa H, Takashima I. Viral envelope protein glycosylation is a molecular determinant of the neuroinvasiveness of the New York strain of West Nile virus. J Gen Virol 2004; 85:3637-3645. [PMID: 15557236 DOI: 10.1099/vir.0.80247-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Two New York (NY) strains of the West Nile (WN) virus were plaque-purified and four variants that had different amino acid sequences at the N-linked glycosylation site in the envelope (E) protein sequence were isolated. The E protein was glycosylated in only two of these strain variants. To determine the relationship between E protein glycosylation and pathogenicity of the WN virus, 6-week-old mice were infected subcutaneously with these variants. Mice infected with viruses that carried the glycosylated E protein developed lethal infection, whereas mice infected with viruses that carried the non-glycosylated E protein showed low mortality. In contrast, intracerebral infection of mice with viruses carrying either the glycosylated or non-glycosylated forms of the E protein resulted in lethal infection. These results suggested that E protein glycosylation is a molecular determinant of neuroinvasiveness in the NY strains of WN virus.
Collapse
Affiliation(s)
- Kazuya Shirato
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hirotsugu Miyoshi
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Akiko Goto
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Yoshihiko Ako
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Tomotaka Ueki
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Hiroaki Kariwa
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| | - Ikuo Takashima
- Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
347
|
Affiliation(s)
- Arturo Casadevall
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA.
| | | |
Collapse
|
348
|
Wadei H, Alangaden GJ, Sillix DH, El-Amm JM, Gruber SA, West MS, Granger DK, Garnick J, Chandrasekar P, Migdal SD, Haririan A. West Nile virus encephalitis: an emerging disease in renal transplant recipients. Clin Transplant 2004; 18:753-8. [PMID: 15516257 DOI: 10.1111/j.1399-0012.2004.00283.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
West Nile virus (WNV) has emerged as an important cause of several outbreaks of febrile illness and encephalitis in North America over the past few years. The most common manifestation in symptomatic patients is a transient febrile illness. Neuroinvasive disease, that can be fatal, occurs most often in elderly and immunocompromised hosts. The role of this virus as a cause of meninoencephalitis in organ transplant recipients is becoming better recognized. We describe herein the clinical course of two renal allograft recipients who developed WNV encephalitis. One patient developed status epilepticus and eventually died, while the other had a full recovery. In both cases, the diagnosis was confirmed by detection of WNV-specific IgM in CSF or serum, with a delayed antibody response in one patient. This viral infection should be considered in all renal transplant recipients who present with a febrile illness associated with neurological symptoms.
Collapse
Affiliation(s)
- Hani Wadei
- Division of Nephrology, Department of Medicine, Wayne State University of School of Medicine, Detroit, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
349
|
Wang T, Town T, Alexopoulou L, Anderson JF, Fikrig E, Flavell RA. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10:1366-73. [PMID: 15558055 DOI: 10.1038/nm1140] [Citation(s) in RCA: 831] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 11/01/2004] [Indexed: 12/31/2022]
Abstract
West Nile virus (WNV), a mosquito-borne single-stranded (ss)RNA flavivirus, causes human disease of variable severity. We investigated the involvement of Toll-like receptor (Tlr) 3, which recognizes viral double-stranded (ds)RNA, on WNV infection. Tlr3-deficient (Tlr3(-/-)) mice were more resistant to lethal WNV infection and had impaired cytokine production and enhanced viral load in the periphery, whereas in the brain, viral load, inflammatory responses and neuropathology were reduced compared to wild-type mice. Peripheral WNV infection led to a breakdown of the blood-brain barrier and enhanced brain infection in wild-type but not in Tlr3(-/-) mice, although both groups were equally susceptible upon intracerebroventricular administration of the virus. Tumor necrosis factor-alpha receptor 1 signaling is vital for blood-brain barrier compromise upon Tlr3 stimulation by dsRNA or WNV. Collectively, WNV infection leads to a Tlr3-dependent inflammatory response, which is involved in brain penetration of the virus and neuronal injury.
Collapse
Affiliation(s)
- Tian Wang
- Section of Rheumatology, Department of Internal Medicine, Yale University School of Medicine, 300 Cedar Street, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
350
|
Lucas M, Frenkiel MP, Mashimo T, Guénet JL, Deubel V, Desprès P, Ceccaldi PE. The Israeli strain IS-98-ST1 of West Nile virus as viral model for West Nile encephalitis in the Old World. Virol J 2004; 1:9. [PMID: 15550172 PMCID: PMC535539 DOI: 10.1186/1743-422x-1-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 11/18/2004] [Indexed: 11/10/2022] Open
Abstract
West Nile virus (WNV) recently became a major public health concern in North America, the Middle East, and Europe. In contrast with the investigations of the North-American isolates, the neurovirulence properties of Middle-Eastern strains of WNV have not been extensively characterized. Israeli WNV strain IS-98-ST1 that has been isolated from a white stork in 1998, was found to be highly neuroinvasive in adult C57BL/6 mice. Strain IS-98-ST1 infects primary neuronal cells from mouse cortex, causing neuronal death. These results demonstrate that Israeli strain IS-98-ST1 provides a suitable viral model for WNV-induced disease associated with recent WNV outbreaks in the Old World.
Collapse
Affiliation(s)
- Marianne Lucas
- Unité des Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | | | - Tomoji Mashimo
- Unité de Génétique des Mammifères, Institut Pasteur, Paris, France
- Institute of Laboratory Animals, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Vincent Deubel
- Unité de Biologie des Infections Virales Emergentes, Institut Pasteur, Lyon, France
- Institut Pasteur of Shangai, Shangai, P.R. China
| | - Philippe Desprès
- Unité des Interactions Moléculaires Flavivirus-Hôtes, Institut Pasteur, Paris, France
| | - Pierre-Emmanuel Ceccaldi
- Département de Virologie, Institut Pasteur, Paris, France
- Unité Epidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, Paris, France
| |
Collapse
|