301
|
Salamone JD, Correa M. The mysterious motivational functions of mesolimbic dopamine. Neuron 2013; 76:470-85. [PMID: 23141060 DOI: 10.1016/j.neuron.2012.10.021] [Citation(s) in RCA: 910] [Impact Index Per Article: 82.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2012] [Indexed: 12/21/2022]
Abstract
Nucleus accumbens dopamine is known to play a role in motivational processes, and dysfunctions of mesolimbic dopamine may contribute to motivational symptoms of depression and other disorders, as well as features of substance abuse. Although it has become traditional to label dopamine neurons as "reward" neurons, this is an overgeneralization, and it is important to distinguish between aspects of motivation that are differentially affected by dopaminergic manipulations. For example, accumbens dopamine does not mediate primary food motivation or appetite, but is involved in appetitive and aversive motivational processes including behavioral activation, exertion of effort, approach behavior, sustained task engagement, Pavlovian processes, and instrumental learning. In this review, we discuss the complex roles of dopamine in behavioral functions related to motivation.
Collapse
Affiliation(s)
- John D Salamone
- Department of Psychology, University of Connecticut, Storrs, CT 06269-1020, USA.
| | | |
Collapse
|
302
|
Bunzeck N, Guitart-Masip M, Dolan RJ, Duzel E. Pharmacological dissociation of novelty responses in the human brain. ACTA ACUST UNITED AC 2013; 24:1351-60. [PMID: 23307638 PMCID: PMC3977623 DOI: 10.1093/cercor/bhs420] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Repeated processing of the same information is associated with decreased neuronal responses, termed repetition suppression (RS). Although RS effects (i.e., the difference in activity between novel and repeated stimuli) have been demonstrated within several brain regions, such as the medial temporal lobe, their precise neural mechanisms still remain unclear. Here, we used functional magnetic resonance imaging together with psychopharmacology in 48 healthy human subjects, demonstrating that RS effects within the mesolimbic system are differentially modulated by cholinergic and dopaminergic stimulation. The dopamine precursor levodopa (100 mg) attenuated RS within the hippocampus, parahippocampal cortex, and substantia nigra/ventral tegmental area, and the degree of this reduction correlated with recognition memory performance 24 h later. The acetylcholinesterase inhibitor galantamine (8 mg), in contrast, reversed RS into repetition enhancement, showing no relationship to subsequent recognition memory. This suggests that novelty sensitive neural populations of the mesolimbic system can dynamically shift their responses depending on the balance of cholinergic and dopaminergic neurotransmission, and these shifts can influence memory retention.
Collapse
Affiliation(s)
- Nico Bunzeck
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | | | | | | |
Collapse
|
303
|
Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 2013; 32:15076-85. [PMID: 23100428 DOI: 10.1523/jneurosci.3128-12.2012] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ventral tegmental area (VTA) has a central role in the neural processes that underlie motivation and behavioral reinforcement. Although thought to contain only dopamine and GABA neurons, the VTA also includes a recently discovered population of glutamate neurons identified through the expression of the vesicular glutamate transporter VGLUT2. A subset of VGLUT2(+) VTA neurons corelease dopamine with glutamate at terminals in the NAc, but others do not express dopaminergic markers and remain poorly characterized. Using transgenic mice that express fluorescent proteins in distinct cell populations, we now find that both dopamine and glutamate neurons in the medial VTA exhibit a smaller hyperpolarization-activated current (I(h)) than more lateral dopamine neurons and less consistent inhibition by dopamine D(2) receptor agonists. In addition, VGLUT2(+) VTA neurons project to the nucleus accumbens (NAc), lateral habenula, ventral pallidum (VP), and amygdala. Optical stimulation of VGLUT2(+) projections expressing channelrhodopsin-2 further reveals functional excitatory synapses in the VP as well as the NAc. Thus, glutamate neurons form a physiologically and anatomically distinct subpopulation of VTA projection neurons.
Collapse
|
304
|
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder of considerable prevalence in individuals who have experienced a traumatic event. Studies of the neural substrate of this disorder have focused on the role of areas such as the hippocampus, the amygdala and the medial prefrontal cortex. We show that the ventral tegmental area (VTA), which directly modulates these areas, is part of this circuitry. Using a rat model of PTSD, we show that a brief but intense foot shock followed by three brief reminders can cause long-term behavioral changes as shown by anxiety-like, nociception, and touch-sensitivity tests. We show that an intraperitoneal injection of a dopamine (DA) antagonist or a bilateral inactivation of the VTA administered immediately before the traumatic event decrease the occurrence or intensity of these behavioral changes. Furthermore, we show that there is a significant decrease of baseline VTA dopaminergic but not GABAergic cell firing rates 2 weeks after trauma. Our data suggest that VTA DA neurons undergo long-term physiological changes after trauma and that this brain area is a crucial part of the circuits involved in PTSD symptomatology.
Collapse
|
305
|
Hendrickson LM, Guildford MJ, Tapper AR. Neuronal nicotinic acetylcholine receptors: common molecular substrates of nicotine and alcohol dependence. Front Psychiatry 2013; 4:29. [PMID: 23641218 PMCID: PMC3639424 DOI: 10.3389/fpsyt.2013.00029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/16/2013] [Indexed: 01/28/2023] Open
Abstract
Alcohol and nicotine are often co-abused. As many as 80-95% of alcoholics are also smokers, suggesting that ethanol and nicotine, the primary addictive component of tobacco smoke, may functionally interact in the central nervous system and/or share a common mechanism of action. While nicotine initiates dependence by binding to and activating neuronal nicotinic acetylcholine receptors (nAChRs), ligand-gated cation channels normally activated by endogenous acetylcholine (ACh), ethanol is much less specific with the ability to modulate multiple gene products including those encoding voltage-gated ion channels, and excitatory/inhibitory neurotransmitter receptors. However, emerging data indicate that ethanol interacts with nAChRs, both directly and indirectly, in the mesocorticolimbic dopaminergic (DAergic) reward circuitry to affect brain reward systems. Like nicotine, ethanol activates DAergic neurons of the ventral tegmental area (VTA) which project to the nucleus accumbens (NAc). Blockade of VTA nAChRs reduces ethanol-mediated activation of DAergic neurons, NAc DA release, consumption, and operant responding for ethanol in rodents. Thus, ethanol may increase ACh release into the VTA driving activation of DAergic neurons through nAChRs. In addition, ethanol potentiates distinct nAChR subtype responses to ACh and nicotine in vitro and in DAergic neurons. The smoking cessation therapeutic and nAChR partial agonist, varenicline, reduces alcohol consumption in heavy drinking smokers and rodent models of alcohol consumption. Finally, single nucleotide polymorphisms in nAChR subunit genes are associated with alcohol dependence phenotypes and smoking behaviors in human populations. Together, results from pre-clinical, clinical, and genetic studies indicate that nAChRs may have an inherent role in the abusive properties of ethanol, as well as in nicotine and alcohol co-dependence.
Collapse
Affiliation(s)
- Linzy M Hendrickson
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School Worcester, MA, USA
| | | | | |
Collapse
|
306
|
Lazarus M, Huang ZL, Lu J, Urade Y, Chen JF. How do the basal ganglia regulate sleep–wake behavior? Trends Neurosci 2012; 35:723-32. [DOI: 10.1016/j.tins.2012.07.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 06/25/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022]
|
307
|
Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 2012. [PMID: 23184995 DOI: 10.1073/pnas.1214605109] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Relief of pain is rewarding. Using a model of experimental postsurgical pain we show that blockade of afferent input from the injury with local anesthetic elicits conditioned place preference, activates ventral tegmental dopaminergic cells, and increases dopamine release in the nucleus accumbens. Importantly, place preference is associated with increased activity in midbrain dopaminergic neurons and blocked by dopamine antagonists injected into the nucleus accumbens. The data directly support the hypothesis that relief of pain produces negative reinforcement through activation of the mesolimbic reward-valuation circuitry.
Collapse
|
308
|
A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci 2012; 35:681-90. [DOI: 10.1016/j.tins.2012.06.007] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 06/18/2012] [Accepted: 06/27/2012] [Indexed: 12/13/2022]
|
309
|
Linnet J, Mouridsen K, Peterson E, Møller A, Doudet DJ, Gjedde A. Striatal dopamine release codes uncertainty in pathological gambling. Psychiatry Res 2012; 204:55-60. [PMID: 22889563 DOI: 10.1016/j.pscychresns.2012.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 01/26/2012] [Accepted: 04/24/2012] [Indexed: 12/13/2022]
Abstract
Two mechanisms of midbrain and striatal dopaminergic projections may be involved in pathological gambling: hypersensitivity to reward and sustained activation toward uncertainty. The midbrain-striatal dopamine system distinctly codes reward and uncertainty, where dopaminergic activation is a linear function of expected reward and an inverse U-shaped function of uncertainty. In this study, we investigated the dopaminergic coding of reward and uncertainty in 18 pathological gambling sufferers and 16 healthy controls. We used positron emission tomography (PET) with the tracer [(11)C]raclopride to measure dopamine release, and we used performance on the Iowa Gambling Task (IGT) to determine overall reward and uncertainty. We hypothesized that we would find a linear function between dopamine release and IGT performance, if dopamine release coded reward in pathological gambling. If, on the other hand, dopamine release coded uncertainty, we would find an inversely U-shaped function. The data supported an inverse U-shaped relation between striatal dopamine release and IGT performance if the pathological gambling group, but not in the healthy control group. These results are consistent with the hypothesis of dopaminergic sensitivity toward uncertainty, and suggest that dopaminergic sensitivity to uncertainty is pronounced in pathological gambling, but not among non-gambling healthy controls. The findings have implications for understanding dopamine dysfunctions in pathological gambling and addictive behaviors.
Collapse
Affiliation(s)
- Jakob Linnet
- Research Clinic on Gambling Disorders, Aarhus University Hospital, Nørrebrogade 44, Building 30, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
310
|
Steinberg EE, Janak PH. Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 2012; 1511:46-64. [PMID: 23031636 DOI: 10.1016/j.brainres.2012.09.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 09/17/2012] [Accepted: 09/21/2012] [Indexed: 12/15/2022]
Abstract
Dopamine (DA) is known to play essential roles in neural function and behavior. Accordingly, DA neurons have been the focus of intense experimental investigation that has led to many important advances in our understanding of how DA influences these processes. However, it is becoming increasingly appreciated that delineating the precise contributions of DA neurons to cellular, circuit, and systems-level phenomena will require more sophisticated control over their patterns of activity than conventional techniques can provide. Specifically, the roles played by DA neurons are likely to depend on their afferent and efferent connectivity, the timing and length of their neural activation, and the nature of the behavior under investigation. Recently developed optogenetic tools hold great promise for disentangling these complex issues. Here we discuss the use of light-sensitive microbial opsins in the context of outstanding questions in DA research. A major technical advance offered by these proteins is the ability to bidirectionally modulate DA neuron activity in in vitro and in vivo preparations on a time scale that more closely approximates those of neural, perceptual and behavioral events. In addition, continued advances in rodent genetics and viral-mediated gene delivery have contributed to the ability to selectively target DA neurons or their individual afferent and efferent connections. Further, these tools are suitable for use in experimental subjects engaged in complex behaviors. After reviewing the strengths and limitations of optogenetic methodologies, we conclude by describing early efforts in the application of this valuable new approach that demonstrate its potential to improve our understanding of the neural and behavioral functions of DA. This article is part of a Special Issue entitled Optogenetics (7th BRES).
Collapse
Affiliation(s)
- Elizabeth E Steinberg
- Ernest Gallo Clinic and Research Center, University of California, San Francisco, Emeryville, CA 94608, USA
| | | |
Collapse
|
311
|
Sirohi S, Bakalkin G, Walker BM. Alcohol-induced plasticity in the dynorphin/kappa-opioid receptor system. Front Mol Neurosci 2012; 5:95. [PMID: 23060746 PMCID: PMC3459013 DOI: 10.3389/fnmol.2012.00095] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/29/2012] [Indexed: 01/02/2023] Open
Abstract
Alcoholism is a chronic relapsing disorder characterized by continued alcohol use despite numerous adverse consequences. Alcohol has been shown to interact with numerous neurotransmitter systems to exert its pharmacological effects. The endogenous opioid system (EOS) has been strongly implicated in the positive and negative reinforcing effects of alcohol. Traditionally recognized as dysphoric/anhedonic in nature, the dynorphin/kappa-opioid receptor (DYN/KOR) system has recently received considerable attention due to evidence suggesting that an upregulated DYN/KOR system may be a critical contributor to the complex factors that result in escalated alcohol consumption once dependent. The present review will discuss alcohol-induced plasticity in the DYN/KOR system and how these neuroadaptations could contribute to excessive alcohol seeking and consumption.
Collapse
Affiliation(s)
- Sunil Sirohi
- Laboratory of Alcoholism and Addictions Neuroscience, Department of Psychology, Washington State University Pullman, WA, USA
| | | | | |
Collapse
|
312
|
McCutcheon JE, Ebner SR, Loriaux AL, Roitman MF. Encoding of aversion by dopamine and the nucleus accumbens. Front Neurosci 2012; 6:137. [PMID: 23055953 PMCID: PMC3457027 DOI: 10.3389/fnins.2012.00137] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Adaptive motivated behavior requires rapid discrimination between beneficial and harmful stimuli. Such discrimination leads to the generation of either an approach or rejection response, as appropriate, and enables organisms to maximize reward and minimize punishment. Classically, the nucleus accumbens (NAc) and the dopamine projection to it are considered an integral part of the brain's reward circuit, i.e., they direct approach and consumption behaviors and underlie positive reinforcement. This reward-centered framing ignores important evidence about the role of this system in encoding aversive events. One reason for bias toward reward is the difficulty in designing experiments in which animals repeatedly experience punishments; another is the challenge in dissociating the response to an aversive stimulus itself from the reward/relief experienced when an aversive stimulus is terminated. Here, we review studies that employ techniques with sufficient time resolution to measure responses in ventral tegmental area and NAc to aversive stimuli as they are delivered. We also present novel findings showing that the same stimulus - intra-oral infusion of sucrose - has differing effects on NAc shell dopamine release depending on the prior experience. Here, for some rats, sucrose was rendered aversive by explicitly pairing it with malaise in a conditioned taste aversion paradigm. Thereafter, sucrose infusions led to a suppression of dopamine with a similar magnitude and time course to intra-oral infusions of a bitter quinine solution. The results are discussed in the context of regional differences in dopamine signaling and the implications of a pause in phasic dopamine release within the NAc shell. Together with our data, the emerging literature suggests an important role for differential phasic dopamine signaling in aversion vs. reward.
Collapse
Affiliation(s)
- James E McCutcheon
- Department of Psychology, University of Illinois at Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
313
|
Holstein SE, Li N, Eshleman AJ, Phillips TJ. GABAB receptor activation attenuates the stimulant but not mesolimbic dopamine response to ethanol in FAST mice. Behav Brain Res 2012; 237:49-58. [PMID: 22982185 DOI: 10.1016/j.bbr.2012.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 08/14/2012] [Accepted: 09/05/2012] [Indexed: 12/20/2022]
Abstract
Neural processes influenced by γ-aminobutyric acid B (GABA(B)) receptors appear to contribute to acute ethanol sensitivity, including the difference between lines of mice bred for extreme sensitivity (FAST) or insensitivity (SLOW) to the locomotor stimulant effect of ethanol. One goal of the current study was to determine whether selection of the FAST and SLOW lines resulted in changes in GABA(B) receptor function, since the lines differ in sensitivity to the GABA(B) receptor agonist baclofen and baclofen attenuates the stimulant response to ethanol in FAST mice. A second goal was to determine whether the baclofen-induced reduction in ethanol stimulation in FAST mice is associated with an attenuation of the mesolimbic dopamine response to ethanol. In Experiment 1, the FAST and SLOW lines were found to not differ in GABA(B) receptor function (measured by baclofen-stimulated [(35)S]GTPγS binding) in whole brain or in several regional preparations, except in the striatum in one of the two replicate sets of selected lines. In Experiment 2, baclofen-induced attenuation of the locomotor stimulant response to ethanol in FAST mice was not accompanied by a reduction in dopamine levels in the nucleus accumbens, as measured by microdialysis. These data suggest that, overall, GABA(B) receptor function does not play an integral role in the genetic difference in ethanol sensitivity between the FAST and SLOW lines. Further, although GABA(B) receptors do modulate the locomotor stimulant response to ethanol in FAST mice, this effect does not appear to be due to a reduction in tonic dopamine signaling in the nucleus accumbens.
Collapse
Affiliation(s)
- Sarah E Holstein
- Dept of Behavioral Neuroscience and Portland Alcohol Research Center, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
314
|
Nin MS, Ferri MK, Couto-Pereira NS, Souza MF, Azeredo LA, Agnes G, Gomez R, Barros HMT. The effect of intra-nucleus accumbens administration of allopregnanolone on δ and γ2 GABA(A) receptor subunit mRNA expression in the hippocampus and on depressive-like and grooming behaviors in rats. Pharmacol Biochem Behav 2012; 103:359-66. [PMID: 22981694 DOI: 10.1016/j.pbb.2012.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 08/24/2012] [Accepted: 09/01/2012] [Indexed: 10/27/2022]
Abstract
Alterations in GABA(A) receptor expression have been associated with the allopregnanolone (3α-hydroxy-5α-pregnan-20-one; 3α,5α-THP) antidepressant-like effect in rats. The present study aimed to verify the effect of bilateral, intra-nucleus accumbens core (intra-AcbC) administration of the neurosteroid allopregnanolone on behaviors in the forced swim and grooming microstructure tests and in the δ and γ2 GABA(A) receptor subunit mRNA expression in right and left hippocampus of rats. The results of this study showed that bilateral, intra-AcbC allopregnanolone administration (5μg/rat) presented antidepressant-like activity in the forced swim test concomitant with an increase in climbing. Allopregnanolone at doses of 1.25 and 5μg/rat also decreased the percentage of correct transitions in the grooming microstructure test. Both δ and γ2 GABA(A) subunit expressions increased in the rat hippocampus after allopregnanolone intra-AcbC treatment. Our findings point to asymmetrical GABA(A) receptor expression changes in the hippocampus of animals treated with allopregnanolone. Further investigation should evaluate the antidepressant-like effect of allopregnanolone not only in other directly infused regions but also with respect to changes in other brain areas of the limbic system to understand allopregnanolone's mechanism of action.
Collapse
Affiliation(s)
- Maurício S Nin
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
315
|
Woodside B, Budin R, Wellman MK, Abizaid A. Many mouths to feed: the control of food intake during lactation. Front Neuroendocrinol 2012; 33:301-14. [PMID: 23000403 DOI: 10.1016/j.yfrne.2012.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 01/07/2023]
Abstract
Providing nutrients to their developing young is perhaps the most energetically demanding task facing female mammals. In this paper we focus primarily on studies carried out in rats to describe the changes in the maternal brain that enable the dam to meet the energetic demands of her offspring. In rats, providing milk for their litter is associated with a dramatic increase in caloric intake, a reduction in energy expenditure and changes in the pattern of energy utilization as well as storage. These behavioral and physiological adaptations result, in part, from alterations in the central pathways controlling energy balance. Differences in circulating levels of metabolic hormones such as leptin, ghrelin and insulin as well as in responsiveness to these signals between lactating and nonlactating animals, contribute to the modifications in energy balance pathways seen postpartum. Suckling stimulation from the pups both directly, and through the hormonal state that it induces in the mother, plays a key role in facilitating these adaptations.
Collapse
Affiliation(s)
- Barbara Woodside
- Center for Studies in Behavioral Neurobiology/Groupe de recherches en neurobiologie comportementale, Concordia University, Montreal, Canada.
| | | | | | | |
Collapse
|
316
|
Contribution of the mesolimbic dopamine system in mediating the effects of leptin and ghrelin on feeding. Proc Nutr Soc 2012; 71:435-45. [DOI: 10.1017/s0029665112000614] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Feeding behaviour is crucial for the survival of an organism and is regulated by different brain circuits. Among these circuits the mesolimbic dopamine (DA) system is implicated in the anticipation and motivation for food rewards. This system consists of the dopaminergic neurons in the ventral tegmental area (VTA), and their projections to different cortico-limbic structures such as the nucleus accumbens and medial prefrontal cortex. While the importance of this system in motivational drive for different rewards, including drugs of abuse, has been clearly established, its role in energy balance remains largely unexplored. Evidence suggests that peripheral hormones such as leptin and ghrelin are involved in the anticipation and motivation for food and this might be partially mediated through their effects on the VTA. Yet, it remains to be determined whether these effects are direct effects of ghrelin and leptin onto VTA DA neurons, and to what extent indirect effects through other brain areas contribute. Elucidation of the role of leptin and ghrelin signalling on VTA DA neurons in relation to disruptions of energy balance might provide important insights into the role of this neural circuit in obesity and anorexia nervosa.
Collapse
|
317
|
Saunders BT, Robinson TE. The role of dopamine in the accumbens core in the expression of Pavlovian-conditioned responses. Eur J Neurosci 2012; 36:2521-32. [PMID: 22780554 DOI: 10.1111/j.1460-9568.2012.08217.x] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The role of dopamine in reward is a topic of debate. For example, some have argued that phasic dopamine signaling provides a prediction-error signal necessary for stimulus-reward learning, whereas others have hypothesized that dopamine is not necessary for learning per se, but for attributing incentive motivational value ('incentive salience') to reward cues. These psychological processes are difficult to tease apart, because they tend to change together. To disentangle them we took advantage of natural individual variation in the extent to which reward cues are attributed with incentive salience, and asked whether dopamine (specifically in the core of the nucleus accumbens) is necessary for the expression of two forms of pavlovian-conditioned approach behavior--one in which the cue acquires powerful motivational properties (sign-tracking) and another closely related one in which it does not (goal-tracking). After acquisition of these conditioned responses (CRs), intra-accumbens injection of the dopamine receptor antagonist flupenthixol markedly impaired the expression of a sign-tracking CR, but not a goal-tracking CR. Furthermore, dopamine antagonism did not produce a gradual extinction-like decline in behavior, but maximally impaired expression of a sign-tracking CR on the very first trial, indicating the effect was not due to new learning (i.e. it occurred in the absence of new prediction-error computations). The data support the view that dopamine in the accumbens core is not necessary for learning stimulus-reward associations, but for attributing incentive salience to reward cues, transforming predictive conditional stimuli into incentive stimuli with powerful motivational properties.
Collapse
Affiliation(s)
- Benjamin T Saunders
- Department of Psychology (Biopsychology Program), University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
318
|
Puglisi-Allegra S, Ventura R. Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci 2012; 6:31. [PMID: 22754514 PMCID: PMC3384081 DOI: 10.3389/fnbeh.2012.00031] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/02/2012] [Indexed: 12/24/2022] Open
Abstract
Motivational salience regulates the strength of goal seeking, the amount of risk taken, and the energy invested from mild to extreme. Highly motivational experiences promote highly persistent memories. Although this phenomenon is adaptive in normal conditions, experiences with extremely high levels of motivational salience can promote development of memories that can be re-experienced intrusively for long time resulting in maladaptive outcomes. Neural mechanisms mediating motivational salience attribution are, therefore, very important for individual and species survival and for well-being. However, these neural mechanisms could be implicated in attribution of abnormal motivational salience to different stimuli leading to maladaptive compulsive seeking or avoidance. We have offered the first evidence that prefrontal cortical norepinephrine (NE) transmission is a necessary condition for motivational salience attribution to highly salient stimuli, through modulation of dopamine (DA) in the nucleus accumbens (NAc), a brain area involved in all motivated behaviors. Moreover, we have shown that prefrontal-accumbal catecholamine (CA) system determines approach or avoidance responses to both reward- and aversion-related stimuli only when the salience of the unconditioned stimulus (UCS) is high enough to induce sustained CA activation, thus affirming that this system processes motivational salience attribution selectively to highly salient events.
Collapse
Affiliation(s)
- Stefano Puglisi-Allegra
- Dipartimento di Psicologia and Centro "Daniel Bovet", "Sapienza" University of Rome Rome, Italy
| | | |
Collapse
|
319
|
Stuber GD, Britt JP, Bonci A. Optogenetic modulation of neural circuits that underlie reward seeking. Biol Psychiatry 2012; 71:1061-7. [PMID: 22196983 PMCID: PMC3332148 DOI: 10.1016/j.biopsych.2011.11.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 11/04/2011] [Accepted: 11/08/2011] [Indexed: 01/30/2023]
Abstract
The manifestation of complex neuropsychiatric disorders, such as drug and alcohol addiction, is thought to result from progressive maladaptive alterations in neural circuit function. Clearly, repeated drug exposure alters a distributed network of neural circuit elements. However, a more precise understanding of addiction has been hampered by an inability to control and, consequently, identify specific circuit components that underlie addictive behaviors. The development of optogenetic strategies for selectively modulating the activity of genetically defined neuronal populations has provided a means for determining the relationship between circuit function and behavior with a level of precision that has been previously unobtainable. Here, we briefly review the main optogenetic studies that have contributed to elucidate neural circuit connectivity within the ventral tegmental area and the nucleus accumbens, two brain nuclei that are essential for the manifestation of addiction-related behaviors. Additional targeted manipulation of genetically defined neural populations in these brain regions, as well as afferent and efferent structures, promises to delineate the cellular mechanisms and circuit components required for the transition from natural goal-directed behavior to compulsive reward seeking despite negative consequences.
Collapse
Affiliation(s)
- Garret D Stuber
- Department of Psychiatry, University of North Carolina Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
320
|
Walker BM, Valdez GR, McLaughlin JP, Bakalkin G. Targeting dynorphin/kappa opioid receptor systems to treat alcohol abuse and dependence. Alcohol 2012; 46:359-70. [PMID: 22459870 DOI: 10.1016/j.alcohol.2011.10.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 10/28/2022]
Abstract
This review represents the focus of a symposium that was presented at the "Alcoholism and Stress: A Framework for Future Treatment Strategies" conference in Volterra, Italy on May 3-6, 2011 and organized/chaired by Dr. Brendan M. Walker. The primary goal of the symposium was to evaluate and disseminate contemporary findings regarding the emerging role of kappa-opioid receptors (KORs) and their endogenous ligands dynorphins (DYNs) in the regulation of escalated alcohol consumption, negative affect and cognitive dysfunction associated with alcohol dependence, as well as DYN/KOR mediation of the effects of chronic stress on alcohol reward and seeking behaviors. Dr. Glenn Valdez described a role for KORs in the anxiogenic effects of alcohol withdrawal. Dr. Jay McLaughlin focused on the role of KORs in repeated stress-induced potentiation of alcohol reward and increased alcohol consumption. Dr. Brendan Walker presented data characterizing the effects of KOR antagonism within the extended amygdala on withdrawal-induced escalation of alcohol self-administration in dependent animals. Dr. Georgy Bakalkin concluded with data indicative of altered DYNs and KORs in the prefrontal cortex of alcohol dependent humans that could underlie diminished cognitive performance. Collectively, the data presented within this symposium identified the multifaceted contribution of KORs to the characteristics of acute and chronic alcohol-induced behavioral dysregulation and provided a foundation for the development of pharmacotherapeutic strategies to treat certain aspects of alcohol use disorders.
Collapse
|
321
|
Klimecki OM, Leiberg S, Lamm C, Singer T. Functional Neural Plasticity and Associated Changes in Positive Affect After Compassion Training. Cereb Cortex 2012; 23:1552-61. [DOI: 10.1093/cercor/bhs142] [Citation(s) in RCA: 347] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
322
|
Achim K, Peltopuro P, Lahti L, Li J, Salminen M, Partanen J. Distinct developmental origins and regulatory mechanisms for GABAergic neurons associated with dopaminergic nuclei in the ventral mesodiencephalic region. Development 2012; 139:2360-70. [PMID: 22627282 DOI: 10.1242/dev.076380] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
GABAergic neurons in the ventral mesodiencephalic region are highly important for the function of dopaminergic pathways that regulate multiple aspects of behavior. However, development of these neurons is poorly understood. We recently showed that molecular regulation of differentiation of the GABAergic neurons associated with the dopaminergic nuclei in the ventral midbrain (VTA and SNpr) is distinct from the rest of midbrain, but the reason for this difference remained elusive. Here, we have analyzed the developmental origin of the VTA and SNpr GABAergic neurons by genetic fate mapping. We demonstrate that the majority of these GABAergic neurons originate outside the midbrain, from rhombomere 1, and move into the ventral midbrain only as postmitotic neuronal precursors. We further show that Gata2, Gata3 and Tal1 define a subpopulation of GABAergic precursors in ventral rhombomere 1. A failure in GABAergic neuron differentiation in this region correlates with loss of VTA and SNpr GABAergic neurons in Tal1 mutant mice. In contrast to midbrain, GABAergic neurons of the anterior SNpr in the diencephalon are not derived from the rhombomere 1. These results suggest unique migratory pathways for the precursors of important GABAergic neuron subpopulations, and provide the basis for understanding diversity within midbrain GABAergic neurons.
Collapse
Affiliation(s)
- Kaia Achim
- Department of Biosciences, PO Box 56, Viikinkaari 5, FIN00014-University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
323
|
Puschmann S, Brechmann A, Thiel CM. Learning-dependent plasticity in human auditory cortex during appetitive operant conditioning. Hum Brain Mapp 2012; 34:2841-51. [PMID: 22610479 DOI: 10.1002/hbm.22107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 03/26/2012] [Indexed: 11/08/2022] Open
Abstract
Animal experiments provide evidence that learning to associate an auditory stimulus with a reward causes representational changes in auditory cortex. However, most studies did not investigate the temporal formation of learning-dependent plasticity during the task but rather compared auditory cortex receptive fields before and after conditioning. We here present a functional magnetic resonance imaging study on learning-related plasticity in the human auditory cortex during operant appetitive conditioning. Participants had to learn to associate a specific category of frequency-modulated tones with a reward. Only participants who learned this association developed learning-dependent plasticity in left auditory cortex over the course of the experiment. No differential responses to reward predicting and nonreward predicting tones were found in auditory cortex in nonlearners. In addition, learners showed similar learning-induced differential responses to reward-predicting and nonreward-predicting tones in the ventral tegmental area and the nucleus accumbens, two core regions of the dopaminergic neurotransmitter system. This may indicate a dopaminergic influence on the formation of learning-dependent plasticity in auditory cortex, as it has been suggested by previous animal studies.
Collapse
Affiliation(s)
- Sebastian Puschmann
- Department of Psychology, Biological Psychology, Carl-von-Ossietzky Universität Oldenburg, Oldenburg, Germany
| | | | | |
Collapse
|
324
|
Xie G, Ye JH. Salsolinol facilitates glutamatergic transmission to dopamine neurons in the posterior ventral tegmental area of rats. PLoS One 2012; 7:e36716. [PMID: 22590592 PMCID: PMC3349709 DOI: 10.1371/journal.pone.0036716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022] Open
Abstract
Although in vivo evidence indicates that salsolinol, the condensation product of acetaldehyde and dopamine, has properties that may contribute to alcohol abuse, the underlying mechanisms have not been fully elucidated. We have reported previously that salsolinol stimulates dopamine neurons in the posterior ventral tegmental area (p-VTA) partly by reducing inhibitory GABAergic transmission, and that ethanol increases glutamatergic transmission to VTA-dopamine neurons via the activation of dopamine D(1) receptors (D(1)Rs). In this study, we tested the hypothesis that salsolinol stimulates dopamine neurons involving activation of D(1)Rs. By using whole-cell recordings on p-VTA-dopamine neurons in acute brain slices of rats, we found that salsolinol-induced increase in spike frequency of dopamine neurons was substantially attenuated by DL-2-amino-5-phosphono-valeric acid and 6, 7-dinitroquinoxaline-2, 3-dione, the antagonists of glutamatergic N-Methyl-D-aspartic acid and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Moreover, salsolinol increased the amplitude of evoked excitatory postsynaptic currents (EPSCs) and the frequency but not the amplitude of spontaneous EPSCs. Additionally, SKF83566, a D(1)R antagonist attenuated the salsolinol-induced facilitation of EPSCs and of spontaneous firing of dopamine neurons. Our data reveal that salsolinol enhances glutamatergic transmission onto dopamine neurons via activation of D(1)Rs at the glutamatergic afferents in dopamine neurons, which contributes to salsolinol's stimulating effect on p-VTA dopamine neurons. This appears to be a novel mechanism which contributes toward rewarding properties of salsolinol.
Collapse
Affiliation(s)
- Guiqin Xie
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
325
|
Abstract
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.
Collapse
|
326
|
Tan KR, Yvon C, Turiault M, Mirzabekov JJ, Doehner J, Labouèbe G, Deisseroth K, Tye KM, Lüscher C. GABA neurons of the VTA drive conditioned place aversion. Neuron 2012; 73:1173-83. [PMID: 22445344 DOI: 10.1016/j.neuron.2012.02.015] [Citation(s) in RCA: 445] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2012] [Indexed: 12/19/2022]
Abstract
Salient but aversive stimuli inhibit the majority of dopamine (DA) neurons in the ventral tegmental area (VTA) and cause conditioned place aversion (CPA). The cellular mechanism underlying DA neuron inhibition has not been investigated and the causal link to behavior remains elusive. Here, we show that GABA neurons of the VTA inhibit DA neurons through neurotransmission at GABA(A) receptors. We also observe that GABA neurons increase their firing in response to a footshock and provide evidence that driving GABA neurons with optogenetic effectors is sufficient to affect behavior. Taken together, our data demonstrate that synaptic inhibition of DA neurons drives place aversion.
Collapse
Affiliation(s)
- Kelly R Tan
- Department of Basic Neurosciences, University of Geneva, 1211 Geneva, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
327
|
Güler AD, Rainwater A, Parker JG, Jones GL, Argilli E, Arenkiel BR, Ehlers MD, Bonci A, Zweifel LS, Palmiter RD. Transient activation of specific neurons in mice by selective expression of the capsaicin receptor. Nat Commun 2012; 3:746. [PMID: 22434189 DOI: 10.1038/ncomms1749] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/13/2012] [Indexed: 01/30/2023] Open
Abstract
The ability to control the electrical activity of a neuronal subtype is a valuable tool in deciphering the role of discreet cell populations in complex neural circuits. Recent techniques that allow remote control of neurons are either labor intensive and invasive or indirectly coupled to neural electrical potential with low temporal resolution. Here we show the rapid, reversible and direct activation of genetically identified neuronal subpopulations by generating two inducible transgenic mouse models. Confined expression of the capsaicin receptor, TRPV1, allows cell-specific activation after peripheral or oral delivery of ligand in freely moving mice. Capsaicin-induced activation of dopaminergic or serotonergic neurons reversibly alters both physiological and behavioural responses within minutes, and lasts ~10 min. These models showcase a robust and remotely controllable genetic tool that modulates a distinct cell population without the need for invasive and labour-intensive approaches.
Collapse
Affiliation(s)
- Ali D Güler
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, 1959 NE Pacific Street, Box 357370, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
328
|
Francois J, Conway MW, Lowry JP, Tricklebank MD, Gilmour G. Changes in reward-related signals in the rat nucleus accumbens measured by in vivo oxygen amperometry are consistent with fMRI BOLD responses in man. Neuroimage 2012; 60:2169-81. [PMID: 22361256 DOI: 10.1016/j.neuroimage.2012.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 02/06/2012] [Accepted: 02/08/2012] [Indexed: 12/30/2022] Open
Abstract
Real-time in vivo oxygen amperometry, a technique that allows measurement of regional brain tissue oxygen (O(2)) has been previously shown to bear relationship to the BOLD signal measured with functional magnetic resonance imaging (fMRI) protocols. In the present study, O(2) amperometry was applied to the study of reward processing in the rat nucleus accumbens to validate the technique with a behavioural process known to cause robust signals in human neuroimaging studies. After acquisition of a cued-lever pressing task a robust increase in O(2) tissue levels was observed in the nucleus accumbens specifically following a correct lever press to the rewarded cue. This O(2) signal was modulated by cue reversal but not lever reversal, by differences in reward magnitudes and by the motivational state of the animal consistent with previous reports of the role of the nucleus accumbens in both the anticipation and representation of reward value. Moreover, this modulation by reward value was related more to the expected incentive value rather than the hedonic value of reward, also consistent with previous reports of accumbens coding of "wanting" of reward. Altogether, these results show striking similarities to those obtained in human fMRI studies suggesting the use of oxygen amperometry as a valid surrogate for fMRI in animals performing cognitive tasks, and a powerful approach to bridge between different techniques of measurement of brain function.
Collapse
Affiliation(s)
- Jennifer Francois
- Lilly Centre for Cognitive Neuroscience, Lilly Research Laboratories, Eli Lilly & Co Ltd, Erl Wood Manor, Windlesham, Surrey, UK.
| | | | | | | | | |
Collapse
|
329
|
Cui H, Mason BL, Lee C, Nishi A, Elmquist JK, Lutter M. Melanocortin 4 receptor signaling in dopamine 1 receptor neurons is required for procedural memory learning. Physiol Behav 2012; 106:201-10. [PMID: 22342812 DOI: 10.1016/j.physbeh.2012.01.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 11/24/2022]
Abstract
It is now widely recognized that exposure to palatable foods engages reward circuits that promote over-eating and facilitate the development of obesity. While the melanocortin 4 receptor (MC4R) has previously been shown to regulate food intake and energy expenditure, little is known about its role in food reward. We demonstrate that MC4R is co-expressed with the dopamine 1 receptor (D1R) in the ventral striatum. While MC4R-null mice are hyperphagic and obese, they exhibit impairments in acquisition of operant responding for a high fat reinforcement. Restoration of MC4R signaling in D1R neurons normalizes procedural learning without affecting motivation to obtain high fat diet. MC4R signaling in D1R neurons is also required for learning in a non-food-reinforced version of the cued water maze. Finally, MC4R signaling in neostriatal slices increases phosphorylation of the Thr34 residue of DARPP-32, a protein phosphatase-1 inhibitor that regulates synaptic plasticity. These data identify a novel requirement for MC4R signaling in procedural memory learning.
Collapse
Affiliation(s)
- Huxing Cui
- Department of Internal Medicine (Division of Hypothalamic Research), University of Texas Southwestern Medical Center Dallas, Dallas, TX 75390-9127, United States
| | | | | | | | | | | |
Collapse
|
330
|
|
331
|
Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 2012; 72:721-33. [PMID: 22153370 DOI: 10.1016/j.neuron.2011.10.028] [Citation(s) in RCA: 471] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
Abstract
Currently there is no general approach for achieving specific optogenetic control of genetically defined cell types in rats, which provide a powerful experimental system for numerous established neurophysiological and behavioral paradigms. To overcome this challenge we have generated genetically restricted recombinase-driver rat lines suitable for driving gene expression in specific cell types, expressing Cre recombinase under the control of large genomic regulatory regions (200-300 kb). Multiple tyrosine hydroxylase (Th)::Cre and choline acetyltransferase (Chat)::Cre lines were produced that exhibited specific opsin expression in targeted cell types. We additionally developed methods for utilizing optogenetic tools in freely moving rats and leveraged these technologies to clarify the causal relationship between dopamine (DA) neuron firing and positive reinforcement, observing that optical stimulation of DA neurons in the ventral tegmental area (VTA) of Th::Cre rats is sufficient to support vigorous intracranial self-stimulation (ICSS). These studies complement existing targeting approaches by extending the generalizability of optogenetics to traditionally non-genetically-tractable but vital animal models.
Collapse
Affiliation(s)
- Ilana B Witten
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
332
|
Melis M, Muntoni AL, Pistis M. Endocannabinoids and the processing of value-related signals. Front Pharmacol 2012; 3:7. [PMID: 22347186 PMCID: PMC3270484 DOI: 10.3389/fphar.2012.00007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 01/12/2012] [Indexed: 12/23/2022] Open
Abstract
Endocannabinoids serve as retrograde signaling molecules at many synapses within the CNS, particularly GABAergic and glutamatergic synapses. Synapses onto midbrain dopamine (DA) neurons in the ventral tegmental area (VTA) make no exception to this rule. In fact, the effects of cannabinoids on dopamine transmission as well as DA-related behaviors are generally exerted through the modulation of inhibitory and excitatory afferents impinging onto DA neurons. Endocannabinoids, by regulating different forms of synaptic plasticity in the VTA, provide a critical modulation of the DA neuron output and, ultimately, of the systems driving and regulating motivated behaviors. Because DA cells exhibit diverse states of activity, which crucially depend on their intrinsic properties and afferent drive, the understanding of the role played by endocannabinoids in synaptic modulations is critical for their overall functions. Particularly, endocannabinoids by selectively inhibiting afferent activity may alter the functional states of DA neurons and potentiate the responsiveness of the reward system to phasic DA.
Collapse
Affiliation(s)
- Miriam Melis
- B.B. Brodie Department of Neuroscience, University of Cagliari Monserrato, Italy
| | | | | |
Collapse
|
333
|
A new three-dimensional model for emotions and monoamine neurotransmitters. Med Hypotheses 2012; 78:341-8. [DOI: 10.1016/j.mehy.2011.11.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 11/02/2011] [Accepted: 11/13/2011] [Indexed: 12/31/2022]
|
334
|
Misono K, Lessard A. Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area. Neuroscience 2012; 203:27-38. [DOI: 10.1016/j.neuroscience.2011.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/06/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022]
|
335
|
Looi JCL, Macfarlane MD, Walterfang M, Styner M, Velakoulis D, Lätt J, van Westen D, Nilsson C. Morphometric analysis of subcortical structures in progressive supranuclear palsy: In vivo evidence of neostriatal and mesencephalic atrophy. Psychiatry Res 2011; 194:163-75. [PMID: 21899988 PMCID: PMC3204393 DOI: 10.1016/j.pscychresns.2011.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 06/25/2011] [Accepted: 07/02/2011] [Indexed: 01/17/2023]
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disease characterized by gait and postural disturbance, gaze palsy, apathy, decreased verbal fluency and dysexecutive symptoms, with some of these clinical features potentially having origins in degeneration of frontostriatal circuits and the mesencephalon. This hypothesis was investigated by manual segmentation of the caudate and putamen on MRI scans, using previously published protocols, in 15 subjects with PSP and 15 healthy age-matched controls. Midbrain atrophy was assessed by measurement of mid-sagittal area of the midbrain and pons. Shape analysis of the caudate and putamen was performed using spherical harmonics (SPHARM-PDM, University of North Carolina). The sagittal pons area/midbrain area ratio (P/M ratio) was significantly higher in the PSP group, consistent with previous findings. Significantly smaller striatal volumes were found in the PSP group - putamina were 10% smaller and caudate volumes were 17% smaller than in controls after controlling for age and intracranial volume. Shape analysis revealed significant shape deflation in PSP in the striatum, compared to controls; with regionally significant change relevant to frontostriatal and corticostriatal circuits in the caudate. Thus, in a clinically diagnosed and biomarker-confirmed cohort with early PSP, we demonstrate that neostriatal volume and shape are significantly reduced in vivo. The findings suggest a neostriatal and mesencephalic structural basis for the clinical features of PSP leading to frontostriatal and mesocortical-striatal circuit disruption.
Collapse
Affiliation(s)
- Jeffrey Chee Leong Looi
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychological Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia, Correspondence: Associate Professor Jeffrey Looi, Academic Unit of Psychological Medicine, ANU Medical School, Building 4, Level 2, Canberra Hospital, Garran A.C.T. 2605,
| | - Matthew D. Macfarlane
- Research Centre for the Neurosciences of Ageing, Academic Unit of Psychological Medicine, School of Clinical Medicine, Australian National University Medical School, Canberra, Australia
| | - Mark Walterfang
- Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | - Martin Styner
- Department of Psychiatry and Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Danielle van Westen
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden,Diagnostic Radiology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Christer Nilsson
- Geriatric Psychiatry, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
336
|
Mediavilla C, Mahía J, Bernal A, Puerto A. The D2/D3-receptor antagonist tiapride impairs concurrent but not sequential taste aversion learning. Brain Res Bull 2011; 87:346-9. [PMID: 22085742 DOI: 10.1016/j.brainresbull.2011.10.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 10/15/2022]
Abstract
Taste aversion learning (TAL) is a learning modality in which the animals reject a gustatory stimulus associated with the administration of noxious visceral substances. This learning can be established by concurrent or sequential procedures that involve different anatomical and functional mechanisms and may constitute distinct learning modalities. The dopaminergic system has been related to various learning processes and goal-directed behaviours. The present study examined the effect of the administration of tiapride, a D(2)/D(3) dopaminergic antagonist, on concurrent and sequential TAL. Results obtained showed that pre-treatment with tiapride blocks the acquisition of concurrent TAL but does not affect sequential TAL, including reversal learning tasks. These results demonstrate the involvement of the D(2)/D(3) dopaminergic receptors in the former but not the latter learning process. The dopaminergic system appears to participate in concurrent TAL, an "implicit" learning modality, but not in sequential TAL, which is considered a relational/explicit acquisition process.
Collapse
|
337
|
Pereira M, Morrell JI. Functional mapping of the neural circuitry of rat maternal motivation: effects of site-specific transient neural inactivation. J Neuroendocrinol 2011; 23:1020-35. [PMID: 21815954 PMCID: PMC3196804 DOI: 10.1111/j.1365-2826.2011.02200.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The present review focuses on recent studies from our laboratory examining the neural circuitry subserving rat maternal motivation across postpartum. We employed a site-specific neural inactivation method by infusion of bupivacaine to map the maternal motivation circuitry using two complementary behavioural approaches: unconditioned maternal responsiveness and choice of pup- over cocaine-conditioned incentives in a concurrent pup/cocaine choice conditioned place preference task. Our findings revealed that, during the early postpartum period, distinct brain structures, including the medial preoptic area, ventral tegmental area and medial prefrontal cortex infralimbic and anterior cingulate subregions, contribute a pup-specific bias to the motivational circuitry. As the postpartum period progresses and the pups grow older, it is further revealed that maternal responsiveness becomes progressively less dependent on the medial preoptic area and medial prefrontal cortex infralimbic activity, and more distributed in the maternal circuitry, such that additional network components, including the medial prefrontal cortex prelimbic subregion, are recruited with maternal experience, and contribute to the expression of late postpartum maternal behaviour. Collectively, our findings provide strong evidence that the remarkable ability of postpartum females to successfully care for their developing infants is subserved by a distributed neural network that carries out efficient and dynamic processing of complex, constantly changing incoming environmental and pup-related stimuli, ultimately allowing the progression of appropriate expression and waning of maternal responsiveness across the postpartum period.
Collapse
Affiliation(s)
- M Pereira
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark Campus, Newark, NJ 07102, USA.
| | | |
Collapse
|
338
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
339
|
Neuronal circuits underlying acute morphine action on dopamine neurons. Proc Natl Acad Sci U S A 2011; 108:16446-50. [PMID: 21930931 DOI: 10.1073/pnas.1105418108] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Morphine is a highly potent analgesic with high addictive potential in specific contexts. Although dopamine neurons of the ventral tegmental area (VTA) are widely believed to play an essential role in the development of drug addiction, neuronal circuits underlying morphine action on dopamine neurons have not been fully elucidated. Here we combined in vivo electrophysiology, tract-tracing experiments, and targeted neuronal inactivation to dissect a neural circuit for acute morphine action on dopamine neurons in rats. We found that in vivo, morphine targets the GABAergic tail of the VTA, also called the rostromedial tegmental nucleus, to increase the firing of dopamine neurons through the activation of VTA μ opioid receptors expressed on tail of the VTA/rostromedial tegmental nucleus efferents. Our data also reveal that in the absence of VTA glutamatergic tone, there is no morphine-induced activation of dopamine neurons. These results define the anatomical organization and functional role of a neural circuit for acute morphine action on dopamine neurons.
Collapse
|
340
|
Dobbs LK, Mark GP. Acetylcholine from the mesopontine tegmental nuclei differentially affects methamphetamine induced locomotor activity and neurotransmitter levels in the mesolimbic pathway. Behav Brain Res 2011; 226:224-34. [PMID: 21945297 DOI: 10.1016/j.bbr.2011.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2011] [Revised: 09/09/2011] [Accepted: 09/12/2011] [Indexed: 12/21/2022]
Abstract
Methamphetamine (MA) increases dopamine (DA) levels within the mesolimbic pathway and acetylcholine (ACh), a neurotransmitter known to increase DA cell firing and release and mediate reinforcement, within the ventral tegmental area (VTA). The laterodorsal tegmental (LDT) and pedunculopontine tegmental (PPT) nuclei provide cholinergic input to the VTA; however, the contribution of LDT- and PPT-derived ACh to MA-induced DA and ACh levels and locomotor activation remains unknown. The first experiment examined the role of LDT-derived ACh in MA locomotor activation by reversibly inhibiting these neurons with bilateral intra-LDT microinjections of the M2 receptor agonist oxotremorine (OXO). Male C57BL/6J mice were given a bilateral 0.1μl OXO (0, 1, or 10nM/side) microinjection immediately prior to IP saline or MA (2mg/kg). The highest OXO concentration significantly inhibited both saline- and MA-primed locomotor activity. In a second set of experiments we characterized the individual contributions of ACh originating in the LDT or pedunculopontine tegmental nucleus (PPT) to MA-induced levels of ACh and DA by administering intra-LDT or PPT OXO and performing in vivo microdialysis in the VTA and NAc. Intra-LDT OXO dose-dependently attenuated the MA-induced increase in ACh within the VTA but had no effect on DA in NAc. Intra-PPT OXO had no effect on ACh or DA levels within the VTA or NAc, respectively. We conclude that LDT, but not PPT, ACh is important in locomotor behavior and the cholinergic, but not dopaminergic, response to systemic MA.
Collapse
Affiliation(s)
- Lauren K Dobbs
- Department of Behavioral Neuroscience, Oregon Health & Sciences University, School of Medicine, 3181 Sam Jackson Park Rd., Portland, OR 97239, United States.
| | | |
Collapse
|
341
|
Dorsolateral prefrontal cortex drives mesolimbic dopaminergic regions to initiate motivated behavior. J Neurosci 2011; 31:10340-6. [PMID: 21753011 DOI: 10.1523/jneurosci.0895-11.2011] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
How does the brain translate information signaling potential rewards into motivation to get them? Motivation to obtain reward is thought to depend on the midbrain [particularly the ventral tegmental area (VTA)], the nucleus accumbens (NAcc), and the dorsolateral prefrontal cortex (dlPFC), but it is not clear how the interactions among these regions relate to reward-motivated behavior. To study the influence of motivation on these reward-responsive regions and on their interactions, we used dynamic causal modeling to analyze functional magnetic resonance imaging (fMRI) data from humans performing a simple task designed to isolate reward anticipation. The use of fMRI permitted the simultaneous measurement of multiple brain regions while human participants anticipated and prepared for opportunities to obtain reward, thus allowing characterization of how information about reward changes physiology underlying motivational drive. Furthermore, we modeled the impact of external reward cues on causal relationships within this network, thus elaborating a link between physiology, connectivity, and motivation. Specifically, our results indicated that dlPFC was the exclusive entry point of information about reward in this network, and that anticipated reward availability caused VTA activation only via its effect on the dlPFC. Anticipated reward thus increased dlPFC activation directly, whereas it influenced VTA and NAcc only indirectly, by enhancing intrinsically weak or inactive pathways from the dlPFC. Our findings of a directional prefrontal influence on dopaminergic regions during reward anticipation suggest a model in which the dlPFC integrates and transmits representations of reward to the mesolimbic and mesocortical dopamine systems, thereby initiating motivated behavior.
Collapse
|
342
|
Shin JW, Geerling JC, Stein MK, Miller RL, Loewy AD. FoxP2 brainstem neurons project to sodium appetite regulatory sites. J Chem Neuroanat 2011; 42:1-23. [PMID: 21605659 PMCID: PMC3148274 DOI: 10.1016/j.jchemneu.2011.05.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 02/07/2023]
Abstract
The transcription factor Forkhead box protein 2 (FoxP2) is expressed in two cell groups of the brainstem that have been implicated in sodium appetite regulation: the pre-locus coeruleus (pre-LC) and parabrachial nucleus--external lateral-inner subdivision (PBel-inner). Because the connections of these two groups are unknown, neuroanatomical tracing methods were used to define their central projections. The pre-LC outputs were first analyzed using an anterograde axonal tracer--Phaseolus vulgaris leucoagglutinin (PHAL) to construct a brain map. Next, we examined whether the FoxP2 immunoreactive (FoxP2+) neurons of the pre-LC contribute to these projections using a retrograde neuronal tracer--cholera toxin β-subunit (CTb). CTb was injected into selected brain regions identified in the anterograde tracing study. One week later the rats were killed, and brainstem sections were processed by a double immunohistochemical procedure to determine whether the FoxP2+ neurons in the pre-LC and/or PBel-inner contained CTb. FoxP2+ pre-LC neurons project to: (1) ventral pallidum; (2) substantia innominata and bed nucleus of the stria terminalis; (3) paraventricular, central medial, parafascicular, and subparafascicular parvicellular thalamic nuclei; (4) paraventricular (PVH), lateral, perifornical, dorsomedial (DMH), and parasubthalamic hypothalamic nuclei; and (5) ventral tegmental area (VTA), periaqueductal gray matter (PAG), dorsal and central linear raphe nuclei. FoxP2+ PBel-inner neurons project to the PVH and DMH, with weaker connections to the LHA, VTA, and PAG. Both the pre-LC and PBel-inner project to central sites implicated in sodium appetite, and related issues, including foraging behavior, hedonic responses to salt intake, sodium balance, and cardiovascular regulation, are discussed.
Collapse
Affiliation(s)
| | - Joel C. Geerling
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew K. Stein
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca L. Miller
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arthur D. Loewy
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
343
|
Roles of nucleus accumbens core and shell in incentive-cue responding and behavioral inhibition. J Neurosci 2011; 31:6820-30. [PMID: 21543612 DOI: 10.1523/jneurosci.6491-10.2011] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The nucleus accumbens (NAc) is involved in many reward-related behaviors. The NAc has two major components, the core and the shell. These two areas have different inputs and outputs, suggesting that they contribute differentially to goal-directed behaviors. Using a discriminative stimulus (DS) task in rats and inactivating the NAc by blocking excitatory inputs with glutamate antagonists, we dissociated core and shell contributions to task performance. NAc core but not shell inactivation decreased responding to a reward-predictive cue. In contrast, inactivation of either subregion induced a general behavioral disinhibition. This reveals that the NAc actively suppresses actions inappropriate to the DS task. Importantly, selective inactivation of the shell but not core significantly increased responding to the nonrewarded cue. To determine whether the different contributions of the NAc core and shell depend on the information encoded in their constituent neurons, we performed electrophysiological recording in rats performing the DS task. Although there was no firing pattern unique to either core or shell, the reward-predictive cue elicited more frequent and larger magnitude responses in the NAc core than in the shell. Conversely, more NAc shell neurons selectively responded to the nonrewarded stimulus. These quantitative differences might account for the different behavioral patterns that require either core or shell. Neurons with similar firing patterns could also have different effects on behavior due to their distinct projection targets.
Collapse
|
344
|
Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci 2011; 31:7811-6. [PMID: 21613494 DOI: 10.1523/jneurosci.1504-11.2011] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The midbrain ventral tegmental area (VTA) projection to the nucleus accumbens (NAc) is implicated in motivation and reinforcement. A significant number of NAc medium spiny neurons (MSNs) project back to the VTA, although the nature of this projection is essentially unknown. For example, do NAc MSNs directly target accumbens-projecting dopamine neurons and do they act via the GABA(A) or GABA(B) receptor? To address these issues, we expressed the light-sensitive channel rhodopsin-2 in the rat NAc and made electrophysiological recordings from VTA neurons ex vivo. We found that the NAc directly targets non-dopaminergic VTA neurons, including some that project back to the NAc. These MSN GABAergic terminals are opioid sensitive and act via GABA(A) receptors.
Collapse
|
345
|
ALLISON DAVIDW, WILCOX REBECCAS, ELLEFSEN KYLEL, ASKEW CAITLINE, HANSEN DAVIDM, WILCOX JEFFREYD, SANDOVAL STEPHANIES, EGGETT DENNISL, YANAGAWA YUCHIO, STEFFENSEN SCOTTC. Mefloquine effects on ventral tegmental area dopamine and GABA neuron inhibition: a physiologic role for connexin-36 GAP junctions. Synapse 2011; 65:804-13. [PMID: 21218452 PMCID: PMC4056588 DOI: 10.1002/syn.20907] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/11/2010] [Indexed: 11/10/2022]
Abstract
Connexin-36 (Cx36) gap junctions (GJs) appear to be involved in the synchronization of GABA interneurons in many brain areas. We have previously identified a population of Cx36-connected ventral tegmental area (VTA) GABA neurons that may regulate mesolimbic dopamine (DA) neurotransmission, a system implicated in reward from both natural behaviors and drugs of abuse. The aim of this study was to determine the effect mefloquine (MFQ) has on midbrain DA and GABA neuron inhibition, and the role Cx36 GJs play in regulating midbrain VTA DA neuron activity in mice. In brain slices from adolescent wild-type (WT) mice the Cx36-selective GJ blocker mefloquine (MFQ, 25 μM) increased VTA DA neuron sIPSC frequency sixfold, and mIPSC frequency threefold. However, in Cx36 KO mice, MFQ only increased sIPSC and mIPSC frequency threefold. The nonselective GJ blocker carbenoxolone (CBX, 100 μM) increased DA neuron sIPSC frequency twofold in WT mice, did not affect Cx36 KO mouse sIPSCs, and did not affect mIPSCs in WT or Cx36 KO mice. Interestingly, MFQ had no effect on VTA GABA neuron sIPSC frequency. We also examined MFQ effects on VTA DA neuron firing rate and current-evoked spiking in WT and Cx36 KO mice, and found that MFQ decreased WT DA neuron firing rate and current-evoked spiking, but did not alter these measures in Cx36 KO mice. Taken together these findings suggest that blocking Cx36 GJs increases VTA DA neuron inhibition, and that GJs play in key role in regulating inhibition of VTA DA neurons. Synapse, 2011. © 2011 Wiley-Liss, Inc.
Collapse
|
346
|
Miklavc P, Valentinčič T. Chemotopy of amino acids on the olfactory bulb predicts olfactory discrimination capabilities of zebrafish Danio rerio. Chem Senses 2011; 37:65-75. [PMID: 21778519 DOI: 10.1093/chemse/bjr066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Amino acids reliably evoke strong responses in fish olfactory system. The molecular olfactory receptors (ORs) are located in the membrane of cilia and microvilli of the olfactory receptor neurons (ORNs). Axons of ORNs converge on specific olfactory bulb (OB) glomeruli and the neural responses of ORNs expressing single Ors activate glomerular activity patterns typical for each amino acid. Chemically similar amino acids activate more similar glomerular activity patterns then chemically different amino acids. Differential glomerular activity patterns are the structural basis for amino acid perception and discrimination. We studied olfactory discrimination in zebrafish Danio rerio (Hamilton 1822) by conditioning them to respond to each of the following amino acids: L-Ala, L-Val, L-Leu, L-Arg, and L-Phe. Subsequently, zebrafish were tested for food searching activities with 18 nonconditioned amino acids. The food searching activity during 90 s of the test period was significantly greater after stimulation with the conditioned stimulus than with the nonconditioned amino acid. Zebrafish were able to discriminate all the tested amino acids except L-Ile from L-Val and L-Phe from L-Tyr. We conclude that zebrafish have difficulties discriminating amino acid odorants that evoke highly similar chemotopic patterns of activity in the OB.
Collapse
Affiliation(s)
- Pika Miklavc
- Institute of General Physiology, University of Ulm, Albert-Einstein Allee 11, Ulm, D-89081, Germany
| | | |
Collapse
|
347
|
Tremblay AM, Desmond RC, Poulos CX, Zack M. Haloperidol modifies instrumental aspects of slot machine gambling in pathological gamblers and healthy controls. Addict Biol 2011; 16:467-84. [PMID: 20331559 DOI: 10.1111/j.1369-1600.2010.00208.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Instrumental conditioning has been implicated in persistence at slot machine gambling, but its specific role remains unclear. Dopamine (DA) mediates aspects of instrumental responding, and D2 antagonists reliably alter this process. This study investigated the effects of the preferential D2 antagonist, haloperidol (3 mg) on reward-related betting behavior in 20 subjects with pathological gambling (PG) and 18 healthy controls. Hierarchical regression assessed the prospective relationship between Payoff and Bet Size on consecutive trials, along with potential moderating effects of Cumulative Winnings and Phase of game (early/late) under drug and placebo. Payoff predicted Bet Size on the next trial regardless of other factors, consistent with an instrumental view of slot machine gambling. Under placebo, this correlation varied as a function of Winnings and Phase in PG subjects but was strong and invariant in Controls. Under haloperidol, the Payoff-Bet Size correlation in PG subjects resembled the invariant pattern of Controls under placebo. In contrast, the Payoff-Bet Size correlation rose then fell sharply over trials under haloperidol in controls. The correlation of Payoff with Bet Size is remarkable given that there is no actual contingency between winning and betting, and suggests that reward expectancies largely drive slot machine gambling. By blocking inhibitory D2 receptors, haloperidol may have reversed 'tolerance' to monetary reward mediated by increased tonic DA in PG subjects. Disturbance of the Payoff-Bet Size correlation in controls may reflect indiscriminate reward signaling under haloperidol in subjects with normal DA function. Indirect enhancement of DA transmission may reduce undue reward-related responding in PG subjects.
Collapse
Affiliation(s)
- Anne-Marie Tremblay
- Clinical Neuroscience Section, Centre for Addiction and Mental Health, 33 Russell Street, Toronto, Canada
| | | | | | | |
Collapse
|
348
|
Sleep deprivation amplifies reactivity of brain reward networks, biasing the appraisal of positive emotional experiences. J Neurosci 2011; 31:4466-74. [PMID: 21430147 DOI: 10.1523/jneurosci.3220-10.2011] [Citation(s) in RCA: 299] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Appropriate interpretation of pleasurable, rewarding experiences favors decisions that enhance survival. Conversely, dysfunctional affective brain processing can lead to life-threatening risk behaviors (e.g., addiction) and emotion imbalance (e.g., mood disorders). The state of sleep deprivation continues to be associated with maladaptive emotional regulation, leading to exaggerated neural and behavioral reactivity to negative, aversive experiences. However, such detrimental consequences are paradoxically aligned with the perplexing antidepressant benefit of sleep deprivation, elevating mood in a proportion of patients with major depression. Nevertheless, it remains unknown how sleep loss alters the dynamics of brain and behavioral reactivity to rewarding, positive emotional experiences. Using functional magnetic resonance imaging (fMRI), here we demonstrate that sleep deprivation amplifies reactivity throughout human mesolimbic reward brain networks in response to pleasure-evoking stimuli. In addition, this amplified reactivity was associated with enhanced connectivity in early primary visual processing pathways and extended limbic regions, yet with a reduction in coupling with medial frontal and orbitofrontal regions. These neural changes were accompanied by a biased increase in the number of emotional stimuli judged as pleasant in the sleep-deprived group, the extent of which exclusively correlated with activity in mesolimbic regions. Together, these data support a view that sleep deprivation not only is associated with enhanced reactivity toward negative stimuli, but imposes a bidirectional nature of affective imbalance, associated with amplified reward-relevant reactivity toward pleasure-evoking stimuli also. Such findings may offer a neural foundation on which to consider interactions between sleep loss and emotional reactivity in a variety of clinical mood disorders.
Collapse
|
349
|
Altamirano LJ, Fields HL, D'Esposito M, Boettiger CA. Interaction between family history of alcoholism and Locus of Control in the opioid regulation of impulsive responding under the influence of alcohol. Alcohol Clin Exp Res 2011; 35:1905-14. [PMID: 21569055 DOI: 10.1111/j.1530-0277.2011.01535.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Naltrexone (NTX) is an opioid antagonist indicated for the treatment of alcoholism, which is not universally effective. Thus, identifying individual predictors of NTX's behavioral effects is critical to optimizing its therapeutic use. Moreover, given the high rate of relapse during treatment for alcoholism, understanding NTX's behavioral effects when combined with moderate ethanol intake is important. Our previous study of abstinent alcoholics and control subjects showed that a more internal Locus of Control score predicted increased impulsive choice on NTX (Mitchell et al., 2007, Neuropsychopharmacology 32:439-449). Here, we tested whether this predictive relationship remains in the context of moderate alcohol intake. METHODS In this study, we tested the effect of acute NTX (50 mg) on impulsive choice, motor inhibition, and attentional bias after ingestion of moderate ethanol (∼0.3 g/kg, n = 30 subjects). Subjects included those recruited from a pool of ∼1,200 UC Berkeley undergraduates on the basis of scores on the Barratt Impulsiveness Scale (BIS). RESULTS Impulsive choice was positively correlated with breath alcohol concentration in placebo sessions. Locus of Control was again the sole predictor of NTX's effect on decision making among subjects with a family history of alcoholism. We also found a weak interaction between BIS scores and NTX's effect on impulsive choice. CONCLUSIONS Our results reinforce the predictive relationship between Locus of Control and NTX's effect on decision making in those with a family history of alcoholism, suggesting a possible biological basis to this relationship.
Collapse
Affiliation(s)
- Lee J Altamirano
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | | | | | | |
Collapse
|
350
|
Iñiguez SD, Charntikov S, Baella SA, Herbert MS, Bolaños-Guzmán CA, Crawford CA. Post-training cocaine exposure facilitates spatial memory consolidation in C57BL/6 mice. Hippocampus 2011; 22:802-13. [PMID: 21542053 DOI: 10.1002/hipo.20941] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2011] [Indexed: 01/07/2023]
Abstract
In this study, we examined the ability of post-training injections of cocaine to facilitate spatial memory performance using the Morris water maze (MWM). We also investigated the role that hippocampal protein kinase A (PKA) and extracellular signal-regulated kinase 1/2 (ERK) signaling may play in cocaine-mediated spatial memory consolidation processes. Male and female C57BL/6 mice were first trained in a MWM task (eight consecutive trials) then injected with cocaine (0, 1.25, 2.5, 5, or 20 mg/kg), and memory for the platform location was retested after a 24 h delay. Cocaine had a dose-dependent effect on spatial memory performance because only the mice receiving 2.5 mg/kg cocaine displayed a significant reduction in latency to locate the platform. No sex differences in MWM performance were observed; however, females showed higher hippocampal levels of PKA when compared with males. A second experiment demonstrated that 2.5 mg/kg cocaine enhanced MWM performance only when administered within 2, but not 4 h after spatial training. We also found that cocaine (2.5 mg/kg) increased ERK2 phosphorylation within the hippocampus and one of its downstream targets (ribosomal S6 kinase), a mechanism that may be responsible, at least in part, for the enhanced cocaine-mediated spatial memory performance. Overall, these data demonstrate that a low dose of cocaine (2.5 mg/kg) administered within 2 h after training facilitates MWM spatial memory performance in C57BL/6 mice.
Collapse
Affiliation(s)
- Sergio D Iñiguez
- Department of Psychology, California State University, San Bernardino, California 92407, USA
| | | | | | | | | | | |
Collapse
|