301
|
Xu W, Hiếu T, Malarkannan S, Wang L. The structure, expression, and multifaceted role of immune-checkpoint protein VISTA as a critical regulator of anti-tumor immunity, autoimmunity, and inflammation. Cell Mol Immunol 2018; 15:438-446. [PMID: 29375120 DOI: 10.1038/cmi.2017.148] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 11/08/2017] [Accepted: 11/09/2017] [Indexed: 12/26/2022] Open
Abstract
Among various immunoregulatory molecules, the B7 family of immune-checkpoint receptors consists of highly valuable targets for cancer immunotherapy. Antibodies targeting two B7 family co-inhibitory receptors, CTLA-4 and PD-1, have elicited long-term clinical outcomes in previously refractory cancer types and are considered a breakthrough in cancer therapy. Despite the success, the relatively low response rate (20-30%) warrants efforts to identify and overcome additional immune-suppressive pathways. Among the expanding list of T cell inhibitory regulators, V domain immunoglobulin suppressor of T cell activation (VISTA) is a unique B7 family checkpoint that regulates a broad spectrum of immune responses. Here, we summarize recent advances that highlight the structure, expression, and multi-faceted immunomodulatory mechanisms of VISTA in the context of autoimmunity, inflammation, and anti-tumor immunity.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - TạMinh Hiếu
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.,Department of Medicine, Milwaukee, WI 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Blood Research Institute, 53226, Milwaukee, WI, USA
| | - Li Wang
- Department of Microbiology and Immunology, Milwaukee, WI 53226, USA.
| |
Collapse
|
302
|
Borrie AE, Maleki Vareki S. T Lymphocyte–Based Cancer Immunotherapeutics. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 341:201-276. [DOI: 10.1016/bs.ircmb.2018.05.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
303
|
Villanueva N, Bazhenova L. New strategies in immunotherapy for lung cancer: beyond PD-1/PD-L1. Ther Adv Respir Dis 2018; 12:1753466618794133. [PMID: 30215300 PMCID: PMC6144513 DOI: 10.1177/1753466618794133] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy has significantly altered the treatment landscape for many cancers, including non-small cell lung cancer (NSCLC). Currently approved immuno-oncology agents for lung cancer are aimed at the reversal of immune checkpoints, programmed death protein-1 (PD-1) and programmed death ligand-1 (PD-L1). Although responses to checkpoint inhibitors are encouraging, and in some cases durable, these successes are not universal among all treated patients. In order to optimize our treatment approach utilizing immunotherapy, we must better understand the interaction between cancer and the immune system and evasion mechanisms. In this review, we will provide an overview of the immune system and cancer, and review novel therapies that promote tumor antigen release for immune system detection, activate the effector T-cell response, and reverse inhibitory antitumor signals.
Collapse
Affiliation(s)
- Nicolas Villanueva
- University of California, San Diego, Moore’s Cancer Center, San Diego, CA, USA
| | - Lyudmila Bazhenova
- 3855 Health Sciences Drive, #0987 La Jolla, University of California, San Diego, Moore’s Cancer Center, San Diego, CA 92093, USA
| |
Collapse
|
304
|
Ceeraz S, Eszterhas SK, Sergent PA, Armstrong DA, Ashare A, Broughton T, Wang L, Pechenick D, Burns CM, Noelle RJ, Vincenti MP, Fava RA. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene expression in response to simulated immune complexes. Arthritis Res Ther 2017; 19:270. [PMID: 29216931 PMCID: PMC5721690 DOI: 10.1186/s13075-017-1474-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022] Open
Abstract
Background In addition to activated T cells, the immune checkpoint inhibitor “V domain-containing Ig suppressor of T-cell activation” (VISTA) is expressed by myeloid cell types, including macrophages and neutrophils. The importance of VISTA expression by myeloid cells to antibody-induced arthritis and its potential for relevance in human disease was evaluated. Methods VISTA was immunolocalized in normal and arthritic human synovial tissue sections and synovial tissue lysates were subjected to western blot analysis. The collagen antibody-induced arthritis model (CAIA) was performed with DBA/1 J mice treated with antibodies against VISTA and with VISTA-deficient mice (V-KO). Total mRNA from arthritic joints, spleens, and cultured macrophages was analyzed with NanoString arrays. Cytokines secreted by splenic inflammatory macrophages were determined. In-vitro chemotaxis and signal transduction assays were performed with cultured macrophages. Results VISTA protein was localized to synovial membrane cells, neutrophils, and scattered cells in lymphocyte-rich foci and was detected by western blot analysis in normal synovium and synovium from rheumatoid arthritis patients. Deficiency of VISTA or treatment of mice with anti-VISTA monoclonal antibodies attenuated CAIA. Joint damage and MMP-3 expression were significantly reduced in V-KO mice. Surface expression of C5a receptor was reduced on monocytes, neutrophils, and cultured macrophages from V-KO. Upon Fc receptor engagement in vitro, gene expression by V-KO macrophages was altered profoundly compared to WT, including a significant induction of IL-1 receptor antagonist (IL1rn). Conclusions VISTA expression supports immune-complex inflammation in CAIA and VISTA is expressed in human synovium. VISTA supports optimal responses to C5a and modulates macrophage responses to immune complexes. Electronic supplementary material The online version of this article (doi:10.1186/s13075-017-1474-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sabrina Ceeraz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Susan K Eszterhas
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA
| | - Petra A Sergent
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - David A Armstrong
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Alix Ashare
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Thomas Broughton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Li Wang
- Microbiology and Immunology & Cancer Center Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dov Pechenick
- ImmuNext INC, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Christopher M Burns
- Department of Medicine, Section of Rheumatology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, 03756, USA.,Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.,ImmuNext INC, 1 Medical Center Drive, Lebanon, NH, 03756, USA
| | - Matthew P Vincenti
- Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA.,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA
| | - Roy A Fava
- Department of Veterans Affairs, Research Service, White River Junction, VT, 05009, USA. .,Department of Medicine, Geisel School of Medicine at Dartmouth, Dartmouth Hitchcock Medical Center, Lebanon, NH, 03756, USA.
| |
Collapse
|
305
|
Kakavand H, Jackett LA, Menzies AM, Gide TN, Carlino MS, Saw RPM, Thompson JF, Wilmott JS, Long GV, Scolyer RA. Negative immune checkpoint regulation by VISTA: a mechanism of acquired resistance to anti-PD-1 therapy in metastatic melanoma patients. Mod Pathol 2017; 30:1666-1676. [PMID: 28776578 DOI: 10.1038/modpathol.2017.89] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 12/20/2022]
Abstract
Understanding the mechanisms of acquired resistance to anti-PD-1 will allow development of better treatment strategies for cancer patients. This study evaluated potential mechanisms of acquired resistance to anti-PD-1 in longitudinally collected metastatic melanoma patient biopsies. Thirty-four metastatic melanoma biopsies were collected from 16 patients who had initially responded to either anti-PD-1 (n=13) alone or combination of anti-PD-1 and ipilimumab (n=3) and then progressed. Biopsies were taken prior to treatment (PRE, n=12) and following progression of disease (PROG, n=22). Immunohistochemistry was performed on all biopsies to detect CD8, FOXP3, PD-1 and VISTA expression on T-cells and PTEN, β-catenin, PD-L1, HLA-A, and HLA-DPB1 expression in the tumor. The majority of patients showed significantly increased density of VISTA+ lymphocytes from PRE to PROG (12/18) (P=0.009) and increased expression of tumor PD-L1 from PRE to PROG (11/18). Intratumoral expression of FOXP3+ lymphocytes significantly increased (P=0.018) from PRE to PROG (10/18). Loss of tumor PTEN and downregulation of tumor HLA-A from PRE to PROG were each identified in 5/18 and 4/18 PROG biopsies, respectively. Downregulation of HLA-DPB1 from PRE to PROG was present in 3/18 PROG biopsies, whereas nuclear β-catenin activation was only identified in 2/18 PROG biopsies. Negative immune checkpoint regulation by VISTA represents an important potential mechanism of acquired resistance in melanoma patients treated with anti-PD-1. Downregulation of HLA-associated antigen presentation also occurs with acquired resistance. Augmentation of the VISTA immune checkpoint pathway may hold promise as a therapeutic strategy in metastatic melanoma patients, particularly those failing anti-PD-1 therapy, and warrants assessment in clinical trials.
Collapse
Affiliation(s)
- Hojabr Kakavand
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Louise A Jackett
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal North Shore and Mater Hospitals, St. Leonards, NSW, Australia
| | - Tuba N Gide
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, NSW, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Department of Melanoma and Surgical Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Royal North Shore and Mater Hospitals, St. Leonards, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, North Sydney, NSW, Australia.,Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|
306
|
Varricchi G, Galdiero MR, Marone G, Criscuolo G, Triassi M, Bonaduce D, Marone G, Tocchetti CG. Cardiotoxicity of immune checkpoint inhibitors. ESMO Open 2017; 2:e000247. [PMID: 29104763 PMCID: PMC5663252 DOI: 10.1136/esmoopen-2017-000247] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiac toxicity after conventional antineoplastic drugs (eg, anthracyclines) has historically been a relevant issue. In addition, targeted therapies and biological molecules can also induce cardiotoxicity. Immune checkpoint inhibitors are a novel class of anticancer drugs, distinct from targeted or tumour type-specific therapies. Cancer immunotherapy with immune checkpoint blockers (ie, monoclonal antibodies targeting cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and its ligand (PD-L1)) has revolutionised the management of a wide variety of malignancies endowed with poor prognosis. These inhibitors unleash antitumour immunity, mediate cancer regression and improve the survival in a percentage of patients with different types of malignancies, but can also produce a wide spectrum of immune-related adverse events. Interestingly, PD-1 and PD-L1 are expressed in rodent and human cardiomyocytes, and early animal studies have demonstrated that CTLA-4 and PD-1 deletion can cause autoimmune myocarditis. Cardiac toxicity has largely been underestimated in recent reviews of toxicity of checkpoint inhibitors, but during the last years several cases of myocarditis and fatal heart failure have been reported in patients treated with checkpoint inhibitors alone and in combination. Here we describe the mechanisms of the most prominent checkpoint inhibitors, specifically ipilimumab (anti-CTLA-4, the godfather of checkpoint inhibitors) patient and monoclonal antibodies targeting PD-1 (eg, nivolumab, pembrolizumab) and PD-L1 (eg, atezolizumab). We also discuss what is known and what needs to be done about cardiotoxicity of checkpoint inhibitors in patients with cancer. Severe cardiovascular effects associated with checkpoint blockade introduce important issues for oncologists, cardiologists and immunologists.
Collapse
Affiliation(s)
- Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Galdiero
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Giancarlo Marone
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy.,Monaldi Hospital Pharmacy, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Triassi
- Department of Public Health, Section of Hygiene, University of Naples Federico II, Naples, Italy
| | - Domenico Bonaduce
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy.,Institute of Experimental Endocrinology and Oncology 'Gaetano Salvatore', National Research Council (CNR), Naples, Italy
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy.,Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy.,WAO Center of Excellence, University of Naples Federico II, Naples, Italy
| |
Collapse
|
307
|
Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, Liebler DC. Quantitative Mass Spectrometry Analysis of PD-L1 Protein Expression, N-glycosylation and Expression Stoichiometry with PD-1 and PD-L2 in Human Melanoma. Mol Cell Proteomics 2017; 16:1705-1717. [PMID: 28546465 PMCID: PMC5629259 DOI: 10.1074/mcp.ra117.000037] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Indexed: 01/05/2023] Open
Abstract
Quantitative assessment of key proteins that control the tumor-immune interface is one of the most formidable analytical challenges in immunotherapeutics. We developed a targeted MS platform to quantify programmed cell death-1 (PD-1), programmed cell death 1 ligand 1 (PD-L1), and programmed cell death 1 ligand 2 (PD-L2) at fmol/microgram protein levels in formalin fixed, paraffin-embedded sections from 22 human melanomas. PD-L1 abundance ranged 50-fold, from ∼0.03 to 1.5 fmol/microgram protein and the parallel reaction monitoring (PRM) data were largely concordant with total PD-L1-positive cell content, as analyzed by immunohistochemistry (IHC) with the E1L3N antibody. PD-1 was measured at levels up to 20-fold lower than PD-L1, but the abundances were not significantly correlated (r2 = 0.062, p = 0.264). PD-1 abundance was weakly correlated (r2 = 0.3057, p = 0.009) with the fraction of lymphocytes and histiocytes in sections. PD-L2 was measured from 0.03 to 1.90 fmol/microgram protein and the ratio of PD-L2 to PD-L1 abundance ranged from 0.03 to 2.58. In 10 samples, PD-L2 was present at more than half the level of PD-L1, which suggests that PD-L2, a higher affinity PD-1 ligand, is sufficiently abundant to contribute to T-cell downregulation. We also identified five branched mannose and N-acetylglucosamine glycans at PD-L1 position N192 in all 22 samples. Extent of PD-L1 glycan modification varied by ∼10-fold and the melanoma with the highest PD-L1 protein abundance and most abundant glycan modification yielded a very low PD-L1 IHC estimate, thus suggesting that N-glycosylation may affect IHC measurement and PD-L1 function. Additional PRM analyses quantified immune checkpoint/co-regulator proteins LAG3, IDO1, TIM-3, VISTA, and CD40, which all displayed distinct expression independent of PD-1, PD-L1, and PD-L2. Targeted MS can provide a next-generation analysis platform to advance cancer immuno-therapeutic research and diagnostics.
Collapse
Affiliation(s)
- Carlos A Morales-Betanzos
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Hyoungjoo Lee
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Paula I Gonzalez Ericsson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Justin M Balko
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Douglas B Johnson
- §Hematology/Oncology Division, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Lisa J Zimmerman
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Daniel C Liebler
- From the ‡Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee;
| |
Collapse
|
308
|
Prodeus A, Abdul-Wahid A, Sparkes A, Fischer NW, Cydzik M, Chiang N, Alwash M, Ferzoco A, Vacaresse N, Julius M, Gorczysnki RM, Gariépy J. VISTA.COMP - an engineered checkpoint receptor agonist that potently suppresses T cell-mediated immune responses. JCI Insight 2017; 2:94308. [PMID: 28931757 DOI: 10.1172/jci.insight.94308] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/10/2017] [Indexed: 01/25/2023] Open
Abstract
V-domain immunoglobulin suppressor of T cell activation (VISTA) is a recently discovered immune checkpoint ligand that functions to suppress T cell activity. The therapeutic potential of activating this immune checkpoint pathway to reduce inflammatory responses remains untapped, largely due to the inability to derive agonists targeting its unknown receptor. A dimeric construct of the IgV domain of VISTA (VISTA-Fc) was shown to suppress the activation of T cells in vitro. However, this effect required its immobilization on a solid surface, suggesting that VISTA-Fc may display limited efficacy as a VISTA-receptor agonist in vivo. Herein, we have designed a stable pentameric VISTA construct (VISTA.COMP) by genetically fusing its IgV domain to the pentamerization domain from the cartilage oligomeric matrix protein (COMP). In contrast to VISTA-Fc, VISTA.COMP does not require immobilization to inhibit the proliferation of CD4+ T cells undergoing polyclonal activation. Furthermore, we show that VISTA.COMP, but not VISTA-Fc, functions as an immunosuppressive agonist in vivo capable of prolonging the survival of skin allografts in a mouse transplant model as well as rescuing mice from acute concanavalin-A-induced hepatitis. Collectively, we believe our data demonstrate that VISTA.COMP is a checkpoint receptor agonist and the first agent to our knowledge targeting the putative VISTA-receptor to suppress T cell-mediated immune responses.
Collapse
Affiliation(s)
- Aaron Prodeus
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | - Nicholas W Fischer
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Nicholas Chiang
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| | - Mays Alwash
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| | - Alessandra Ferzoco
- Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Julius
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Reginald M Gorczysnki
- Department of Pharmaceutical Sciences and.,Transplant Research Division, University Health Network, Toronto, Ontario, Canada
| | - Jean Gariépy
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Research Institute, Toronto, Ontario, Canada.,Department of Pharmaceutical Sciences and
| |
Collapse
|
309
|
Construction of a versatile expression library for all human single-pass transmembrane proteins for receptor pairings by high throughput screening. J Biotechnol 2017; 260:18-30. [PMID: 28867483 DOI: 10.1016/j.jbiotec.2017.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/28/2017] [Accepted: 08/28/2017] [Indexed: 12/19/2022]
Abstract
Interactions between protein ligands and receptors play crucial roles in cell-cell signalling. Most of the human cell surface receptors have been identified in the post-Human Genome Project era but many of their corresponding ligands remain unknown. To facilitate the pairing of orphan receptors, 2762 sequences encoding all human single-pass transmembrane proteins were selected for inclusion into a mammalian-cell expression library. This expression library, consisting of all the individual extracellular domains (ECDs), was constructed as a Fab fusion for each protein. In this format, individual ECD can be produced as a soluble protein or displayed on cell surface, depending on the applied heavy-chain Fab configuration. The unique design of the Fab fusion concept used in the library led to not only superior success rate of protein production, but also versatile applications in various high-throughput screening paradigms including protein-protein binding assays as well as cell binding assays, which were not possible for any other existing expression libraries. The protein library was screened against human coagulation factor VIIa (FVIIa), an approved therapeutic for the treatment of hemophilia, for binding partners by AlphaScreen and ForteBio assays. Two previously known physiological ligands of FVIIa, tissue factor (TF) and endothelial protein C receptor (EPCR) were identified by both assays. The cell surface displayed library was screened against V-domain Ig suppressor of T-cell activation (VISTA), an important immune-checkpoint regulator. Immunoglobulin superfamily member 11 (IgSF11), a potential target for cancer immunotherapy, was identified as a new and previously undescribed binding partner for VISTA. The specificity of the binding was confirmed and validated by both fluorescence-activated cell sorting (FACS) and surface plasmon resonance (SPR) assays in different experimental setups.
Collapse
|
310
|
Abstract
The recent demonstration of the antitumor efficacy of checkpoint protein inhibition has resulted in the approval of blocking antibodies against the programmed cell death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway in multiple different histologic findings. Therapeutic successes with PD-1/PD-L1 antibodies in melanoma and lung cancer have been followed by approvals in bladder, renal, and head and neck cancers and Hodgkin lymphoma, with others undoubtedly to come. However, PD-1 is only one of many checkpoints and agonistic regulatory molecules expressed on T cells by which maintenance of the balance between costimulatory and coinhibitory signaling pathways is perturbed in cancer. The manipulation of many of these molecules in cancer patients might be associated with clinical benefit. The majority of the T-cell cosignaling receptors belong to either the immunoglobulin superfamily or the tumor necrosis factor receptor superfamily. A total of 29 immunoglobulin superfamily and 26 tumor necrosis factor receptor superfamily cosignaling receptors have been identified that are expressed on T cells, providing fertile ground for development of inhibitory or agonistic antibodies and small molecules as cancer therapeutics. In the current work, we focus on some of the most promising new checkpoints and agonistic or cosignaling molecules that are in early clinical development as single agents or in combinations with PD-1/PD-L1, cytotoxic T-lymphocyte-associated protein 4 blockade, or chemotherapy with an emphasis on those that have reached the clinic and on important targets that are in late preclinical development.
Collapse
|
311
|
Programmed death one homolog maintains the pool size of regulatory T cells by promoting their differentiation and stability. Sci Rep 2017; 7:6086. [PMID: 28729608 PMCID: PMC5519767 DOI: 10.1038/s41598-017-06410-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 06/14/2017] [Indexed: 12/25/2022] Open
Abstract
Programmed death one homolog (PD-1H) is an immunoglobulin superfamily molecule and primarily acts as a coinhibitor in the initiation of T cell response to antigens. Here, we report that genetic ablation of PD-1H in mice blocks the differentiation of naive T cells to Foxp3+ inducible Treg cells (iTreg) with a significant decrease of iTreg in lymphoid organs. This effect of PD-1H is highly specific for iTreg because both naturally generated iTreg in gut-related tissues and in vitro induced iTreg by TGF-β were decreased whereas the genesis of natural Treg (nTreg) remains normal. The suppressive function of both iTreg and nTreg, however, is not affected by the loss of PD-1H. In addition to decreased production, PD-1H deficient iTreg could also rapidly convert to CD4+ T helper 1 or T helper 17 cells in an inflammatory environment. Our results indicate that PD-1H is required for maintenance of iTreg pool size by promoting its differentiation and preventing its conversion to other CD4+ T cell subsets. These findings may have important implications for manipulating Tregs to control inflammation.
Collapse
|
312
|
Ceeraz S, Sergent PA, Plummer SF, Schned AR, Pechenick D, Burns CM, Noelle RJ. VISTA Deficiency Accelerates the Development of Fatal Murine Lupus Nephritis. Arthritis Rheumatol 2017; 69:814-825. [PMID: 27992697 DOI: 10.1002/art.40020] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The targeting of negative checkpoint regulators as a means of augmenting antitumor immune responses is now an increasingly used and remarkably effective approach to the treatment of several human malignancies. The negative checkpoint regulator VISTA (V-domain Ig-containing suppressor of T cell activation; also known as programmed death 1 homolog or as death domain 1α) suppresses T cell responses and regulates myeloid activities. We proposed that exploitation of the VISTA pathway is a novel strategy for the treatment of human autoimmune disease, and therefore we undertook this study to determine the impact of VISTA genetic deficiency on lupus development in a lupus-prone mouse strain. METHODS To evaluate whether genetic deficiency of VISTA affects the development of lupus, we interbred VISTA-deficient mice with Sle1.Sle3 mice, a well-characterized model of systemic lupus erythematosus (SLE). RESULTS We demonstrated that the development of proteinuria and glomerulonephritis in these mice, designated Sle1.Sle3 VISTA-/- mice, was greatly accelerated and more severe compared to that in Sle1.Sle3 and C57BL/6 VISTA-/- mice. Analysis of cells from Sle1.Sle3 VISTA-/- mice showed enhanced activation of splenic CD4+ T cells and myeloid cell populations. No increase in titers of autoantibodies was seen in Sle1.Sle3 VISTA-/- mice. Most striking was a significant increase in proinflammatory cytokines, chemokines, and interferon (IFN)-regulated genes associated with SLE, such as IFNα, IFNγ, tumor necrosis factor, interleukin-10, and CXCL10, in Sle1.Sle3 VISTA-/- mice. CONCLUSION This study demonstrates for the first time that loss of VISTA in murine SLE exacerbates disease due to enhanced myeloid and T cell activation and cytokine production, including a robust IFNα signature, and supports a strategy of enhancement of the immunosuppressive activity of VISTA for the treatment of human lupus.
Collapse
Affiliation(s)
- Sabrina Ceeraz
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Petra A Sergent
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Sean F Plummer
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Alan R Schned
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | | | | | - Randolph J Noelle
- Geisel School of Medicine at Dartmouth, and ImmuNext, Inc., Lebanon, New Hampshire
| |
Collapse
|
313
|
Ohno T, Kondo Y, Zhang C, Kang S, Azuma M. Immune Checkpoint Molecule, VISTA Regulates T-Cell-Mediated Skin Inflammatory Responses. J Invest Dermatol 2017; 137:1384-1386. [DOI: 10.1016/j.jid.2016.10.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 10/20/2022]
|
314
|
Flies AS, Blackburn NB, Lyons AB, Hayball JD, Woods GM. Comparative Analysis of Immune Checkpoint Molecules and Their Potential Role in the Transmissible Tasmanian Devil Facial Tumor Disease. Front Immunol 2017; 8:513. [PMID: 28515726 PMCID: PMC5413580 DOI: 10.3389/fimmu.2017.00513] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoint molecules function as a system of checks and balances that enhance or inhibit immune responses to infectious agents, foreign tissues, and cancerous cells. Immunotherapies that target immune checkpoint molecules, particularly the inhibitory molecules programmed cell death 1 and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), have revolutionized human oncology in recent years, yet little is known about these key immune signaling molecules in species other than primates and rodents. The Tasmanian devil facial tumor disease is caused by transmissible cancers that have resulted in a massive decline in the wild Tasmanian devil population. We have recently demonstrated that the inhibitory checkpoint molecule PD-L1 is upregulated on Tasmanian devil (Sarcophilus harrisii) facial tumor cells in response to the interferon-gamma cytokine. As this could play a role in immune evasion by tumor cells, we performed a thorough comparative analysis of checkpoint molecule protein sequences among Tasmanian devils and eight other species. We report that many of the key signaling motifs and ligand-binding sites in the checkpoint molecules are highly conserved across the estimated 162 million years of evolution since the last common ancestor of placental and non-placental mammals. Specifically, we discovered that the CTLA-4 (MYPPPY) ligand-binding motif and the CTLA-4 (GVYVKM) inhibitory domain are completely conserved across all nine species used in our comparative analysis, suggesting that the function of CTLA-4 is likely conserved in these species. We also found that cysteine residues for intra- and intermolecular disulfide bonds were also highly conserved. For instance, all 20 cysteine residues involved in disulfide bonds in the human 4-1BB molecule were also present in devil 4-1BB. Although many key sequences were conserved, we have also identified immunoreceptor tyrosine-based inhibitory motifs (ITIMs) and immunoreceptor tyrosine-based switch motifs (ITSMs) in genes and protein domains that have not been previously reported in any species. This checkpoint molecule analysis and review of salient features for each of the molecules presented here can serve as road map for the development of a Tasmanian devil facial tumor disease immunotherapy. Finally, the strategies can be used as a guide for veterinarians, ecologists, and other researchers willing to venture into the nascent field of wild immunology.
Collapse
Affiliation(s)
- Andrew S. Flies
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Nicholas B. Blackburn
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- School of Medicine, South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Alan Bruce Lyons
- School of Medicine, University of Tasmania, Hobart, TAS, Australia
| | - John D. Hayball
- Department of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory M. Woods
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
315
|
Li N, Xu W, Yuan Y, Ayithan N, Imai Y, Wu X, Miller H, Olson M, Feng Y, Huang YH, Jo Turk M, Hwang ST, Malarkannan S, Wang L. Immune-checkpoint protein VISTA critically regulates the IL-23/IL-17 inflammatory axis. Sci Rep 2017; 7:1485. [PMID: 28469254 PMCID: PMC5431161 DOI: 10.1038/s41598-017-01411-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 04/04/2017] [Indexed: 01/01/2023] Open
Abstract
V-domain Immunoglobulin Suppressor of T cell Activation (VISTA) is an inhibitory immune-checkpoint molecule that suppresses CD4+ and CD8+ T cell activation when expressed on antigen-presenting cells. Vsir -/- mice developed loss of peripheral tolerance and multi-organ chronic inflammatory phenotypes. Vsir -/- CD4+ and CD8+ T cells were hyper-responsive towards self- and foreign antigens. Whether or not VISTA regulates innate immunity is unknown. Using a murine model of psoriasis induced by TLR7 agonist imiquimod (IMQ), we show that VISTA deficiency exacerbated psoriasiform inflammation. Enhanced TLR7 signaling in Vsir -/- dendritic cells (DCs) led to the hyper-activation of Erk1/2 and Jnk1/2, and augmented the production of IL-23. IL-23, in turn, promoted the expression of IL-17A in both TCRγδ+ T cells and CD4+ Th17 cells. Furthermore, VISTA regulates the peripheral homeostasis of CD27- γδ T cells and their activation upon TCR-mediated or cytokine-mediated stimulation. IL-17A-producing CD27- γδ T cells were expanded in the Vsir -/- mice and amplified the inflammatory cascade. In conclusion, this study has demonstrated that VISTA critically regulates the inflammatory responses mediated by DCs and IL-17-producing TCRγδ+ and CD4+ Th17 T cells following TLR7 stimulation. Our finding provides a rationale for therapeutically enhancing VISTA-mediated pathways to benefit the treatment of autoimmune and inflammatory disorders.
Collapse
Affiliation(s)
- Na Li
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Department of Histology and Embryology, Harbin Medical University, Harbin, 150086, P. R. China
| | - Wenwen Xu
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Ying Yuan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Shanghai University of Traditional Chinese Medicine, College of Pharmacy, Shanghai, 201203, P. R. China
| | - Natarajan Ayithan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Yasutomo Imai
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Dermatology, Hyogo College of Medicine 1-1, Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Xuesong Wu
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Halli Miller
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Michael Olson
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA
| | - Yunfeng Feng
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Mary Jo Turk
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Samuel T Hwang
- Department of Dermatology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Dermatology, University of California Davis, Sacramento, CA, 95816, USA
| | - Subramaniam Malarkannan
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Blood Research Institute, Milwaukee, WI, 53226, USA
| | - Li Wang
- Department of Microbiology and Immunology, Milwaukee, WI, 53226, USA.
| |
Collapse
|
316
|
Wu L, Deng WW, Huang CF, Bu LL, Yu GT, Mao L, Zhang WF, Liu B, Sun ZJ. Expression of VISTA correlated with immunosuppression and synergized with CD8 to predict survival in human oral squamous cell carcinoma. Cancer Immunol Immunother 2017; 66:627-636. [PMID: 28236118 PMCID: PMC11028774 DOI: 10.1007/s00262-017-1968-0] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 02/01/2017] [Indexed: 12/14/2022]
Abstract
V-domain Ig suppressor of T cell activation (VISTA), a novel immune checkpoint regulatory molecule, suppresses T cell mediated immune responses. The aim of the present study was to profile the immunological expression, clinical significance and correlation of VISTA in human oral squamous cell carcinoma (OSCC). Human tissue microarrays, containing 165 primary OSCCs, 48 oral epithelial dysplasias and 43 normal oral mucosae, were applied to investigate the expression levels of VISTA, CD8, cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), programmed death ligand 1 (PD-L1), PI3Kα p110, IL13Rα2, phospho-STAT3 at tyrosine 705 (p-STAT3) and myeloid-derived suppressor cell (MDSC) markers (CD11b and CD33) by immunohistochemistry and digital pathology analysis. The results demonstrated that the protein level of VISTA was significantly higher in human OSCC specimens, and that VISTA expression in primary OSCCs was correlated with lymph node status. VISTA expression did not serve as an independent predictor for poor prognosis, while patient subgroup with VISTA high and CD8 low expression (22/165) had significantly poorer overall survival compared with other subgroups based on the multivariate and Cox hazard analyses among the primary OSCC patients in the present cohort. Additionally, the expression of VISTA was significantly correlated with PD-L1, CTLA-4, IL13Rα2, PI3K, p-STAT3, CD11b and CD33 according to Pearson's correlation coefficient test. Taken together, the results indicated that the VISTA high and CD8 low group, as an immunosuppressive subgroup, might be associated with a poor prognosis in primary OSCC. These findings indicated that VISTA might be a potential immunotherapeutic target in OSCC treatment.
Collapse
Affiliation(s)
- Lei Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Wei-Wei Deng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Cong-Fa Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Lin-Lin Bu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Guang-Tao Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Liang Mao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
| | - Wen-Feng Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bing Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology and Key Laboratory of Oral Biomedicine, Ministry of Education, Wuhan University, Wuhan, China.
- Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
317
|
Lohmueller J, Finn OJ. Current modalities in cancer immunotherapy: Immunomodulatory antibodies, CARs and vaccines. Pharmacol Ther 2017; 178:31-47. [PMID: 28322974 DOI: 10.1016/j.pharmthera.2017.03.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Successes of immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cell therapy in curing patients with otherwise lethal cancers have validated immunotherapy as a treatment for cancer and have inspired excitement for its broader potential. Most promising is the ability of each approach to eliminate bulky and advanced-stage cancers and to achieve durable cures. Despite this success, to date only a subset of cancer patients and a limited number of cancer types respond to these therapies. A major goal now is to expand the types of cancer and number of patients who can be successfully treated. To this end a multitude of immunotherapies are being tested clinically in new combinations, and many new immunomodulatory antibodies and CARs are in development. A third major immunotherapeutic approach with renewed interest is cancer vaccines. While over 20years of therapeutic cancer vaccine trials have met with limited success, these studies have laid the groundwork for the use of therapeutic vaccines in combination with other immunotherapies or alone as prophylactic cancer vaccines. Prophylactic vaccines are now poised to revolutionize cancer prevention as they have done for the prevention of infectious diseases. In this review we examine three major cancer immunotherapy modalities: immunomodulatory antibodies, CAR T cell therapy and vaccines. For each we describe the current state of the art and outline major challenges and research directions forward.
Collapse
Affiliation(s)
- Jason Lohmueller
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA
| | - Olivera J Finn
- University of Pittsburgh School of Medicine, Department of Immunology, Pittsburgh, PA, USA.
| |
Collapse
|
318
|
Varn FS, Wang Y, Mullins DW, Fiering S, Cheng C. Systematic Pan-Cancer Analysis Reveals Immune Cell Interactions in the Tumor Microenvironment. Cancer Res 2017; 77:1271-1282. [PMID: 28126714 PMCID: PMC5798883 DOI: 10.1158/0008-5472.can-16-2490] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 12/29/2022]
Abstract
With the recent advent of immunotherapy, there is a critical need to understand immune cell interactions in the tumor microenvironment in both pan-cancer and tissue-specific contexts. Multidimensional datasets have enabled systematic approaches to dissect these interactions in large numbers of patients, furthering our understanding of the patient immune response to solid tumors. Using an integrated approach, we inferred the infiltration levels of distinct immune cell subsets in 23 tumor types from The Cancer Genome Atlas. From these quantities, we constructed a coinfiltration network, revealing interactions between cytolytic cells and myeloid cells in the tumor microenvironment. By integrating patient mutation data, we found that while mutation burden was associated with immune infiltration differences between distinct tumor types, additional factors likely explained differences between tumors originating from the same tissue. We concluded this analysis by examining the prognostic value of individual immune cell subsets as well as how coinfiltration of functionally discordant cell types associated with patient survival. In multiple tumor types, we found that the protective effect of CD8+ T cell infiltration was heavily modulated by coinfiltration of macrophages and other myeloid cell types, suggesting the involvement of myeloid-derived suppressor cells in tumor development. Our findings illustrate complex interactions between different immune cell types in the tumor microenvironment and indicate these interactions play meaningful roles in patient survival. These results demonstrate the importance of personalized immune response profiles when studying the factors underlying tumor immunogenicity and immunotherapy response. Cancer Res; 77(6); 1271-82. ©2017 AACR.
Collapse
Affiliation(s)
- Frederick S Varn
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Yue Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - David W Mullins
- Department of Medical Education, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Steven Fiering
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
- Norris Cotton Cancer Center, Lebanon, New Hampshire
| | - Chao Cheng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
- Norris Cotton Cancer Center, Lebanon, New Hampshire
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| |
Collapse
|
319
|
Affiliation(s)
- Ling Ni
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| | - Chen Dong
- Institute for Immunology and School of Medicine; Tsinghua University; Beijing China
| |
Collapse
|
320
|
Nowak EC, Lines JL, Varn FS, Deng J, Sarde A, Mabaera R, Kuta A, Le Mercier I, Cheng C, Noelle RJ. Immunoregulatory functions of VISTA. Immunol Rev 2017; 276:66-79. [PMID: 28258694 PMCID: PMC5702497 DOI: 10.1111/imr.12525] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Utilization of negative checkpoint regulators (NCRs) for cancer immunotherapy has garnered significant interest with the completion of clinical trials demonstrating efficacy. While the results of monotherapy treatments are compelling, there is increasing emphasis on combination treatments in an effort to increase response rates to treatment. One of the most recently discovered NCRs is VISTA (V-domain Ig-containing Suppressor of T cell Activation). In this review, we describe the functions of this molecule in the context of cancer immunotherapy. We also discuss factors that may influence the use of anti-VISTA antibody in combination therapy and how genomic analysis may assist in providing indications for treatment.
Collapse
Affiliation(s)
- Elizabeth C. Nowak
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - J. Louise Lines
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Frederick S. Varn
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jie Deng
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Aurelien Sarde
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Rodwell Mabaera
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | | - Chao Cheng
- Department of Biomedical Data Science and Department of Molecular and Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Randolph J. Noelle
- Department of Microbiology and Immunology, Norris Cotton Cancer Center Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
321
|
Böger C, Behrens HM, Krüger S, Röcken C. The novel negative checkpoint regulator VISTA is expressed in gastric carcinoma and associated with PD-L1/PD-1: A future perspective for a combined gastric cancer therapy? Oncoimmunology 2017; 6:e1293215. [PMID: 28507801 PMCID: PMC5414883 DOI: 10.1080/2162402x.2017.1293215] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 12/18/2022] Open
Abstract
A combined blockade of V-domain Ig suppressor of T-cell activation (VISTA) and PD-1 is a promising new cancer treatment option, which was efficient in murine tumor models and is currently tested in first phase I studies. Here, we analyzed the VISTA expression in a large and well-characterized gastric cancer (GC) cohort on 464 therapy-naive GC samples and 14 corresponding liver metastases using immunohistochemistry. Staining results were correlated with clinico-pathological characteristics, genetic alterations and survival. VISTA expression in tumor cells was detected in 41 GCs (8.8%) and 2 corresponding liver metastases (14.3%). Moreover, VISTA expression in immune cells was observed in 388 GCs (83.6%) and 6 liver metastases (42.9%). VISTA expression was associated with the Laurén phenotype, tumor localization, Epstein–Barr virus infection, KRAS- and PIK3CA-mutational status and PD-L1 expression. There was no significant correlation with patient outcome. Moreover, a change of VISTA expression in immune cells during tumor progression was observed. The co-incidence of VISTA and PD-L1 expression indicates a dual immune evasion mechanism of GC tumor cells and makes GC an interesting target for novel combined immune checkpoint inhibitor treatments.
Collapse
Affiliation(s)
- Christine Böger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | | | - Sandra Krüger
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
322
|
Zhang X, Zhu S, Li T, Liu YJ, Chen W, Chen J. Targeting immune checkpoints in malignant glioma. Oncotarget 2017; 8:7157-7174. [PMID: 27756892 PMCID: PMC5351697 DOI: 10.18632/oncotarget.12702] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 10/12/2016] [Indexed: 12/31/2022] Open
Abstract
Malignant glioma is the most common and a highly aggressive cancer in the central nervous system (CNS). Cancer immunotherapy, strategies to boost the body's anti-cancer immune responses instead of directly targeting tumor cells, recently achieved great success in treating several human solid tumors. Although once considered "immune privileged" and devoid of normal immunological functions, CNS is now considered a promising target for cancer immunotherapy, featuring the recent progresses in neurobiology and neuroimmunology and a highly immunosuppressive state in malignant glioma. In this review, we focus on immune checkpoint inhibitors, specifically, antagonizing monoclonal antibodies for programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4), and indoleamine 2,3-dioxygenase (IDO). We discuss advances in the working mechanisms of these immune checkpoint molecules, their status in malignant glioma, and current preclinical and clinical trials targeting these molecules in malignant glioma.
Collapse
Affiliation(s)
- Xuhao Zhang
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Tete Li
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Jun Liu
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
- Sanofi Research and Development, Cambridge, MA, USA
| | - Wei Chen
- ADC Biomedical Research Institute, Saint Paul, MN, USA
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
323
|
Catakovic K, Klieser E, Neureiter D, Geisberger R. T cell exhaustion: from pathophysiological basics to tumor immunotherapy. Cell Commun Signal 2017; 15:1. [PMID: 28073373 PMCID: PMC5225559 DOI: 10.1186/s12964-016-0160-z] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/22/2016] [Indexed: 12/13/2022] Open
Abstract
The immune system is capable of distinguishing between danger- and non-danger signals, thus inducing either an appropriate immune response against pathogens and cancer or inducing self-tolerance to avoid autoimmunity and immunopathology. One of the mechanisms that have evolved to prevent destruction by the immune system, is to functionally silence effector T cells, termed T cell exhaustion, which is also exploited by viruses and cancers for immune escape In this review, we discuss some of the phenotypic markers associated with T cell exhaustion and we summarize current strategies to reinvigorate exhausted T cells by blocking these surface marker using monoclonal antibodies.
Collapse
Affiliation(s)
- Kemal Catakovic
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria.,Salzburg Cancer Research Institute, Salzburg, Austria
| | - Eckhard Klieser
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Daniel Neureiter
- Salzburg Cancer Research Institute, Salzburg, Austria.,Department of Pathology, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria
| | - Roland Geisberger
- Laboratory for Immunological and Molecular Cancer Research, Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Paracelsus Medical University, Müllner Hauptstrasse 48, Salzburg, 5020, Austria. .,Salzburg Cancer Research Institute, Salzburg, Austria.
| |
Collapse
|
324
|
Deng J, Le Mercier I, Kuta A, Noelle RJ. A New VISTA on combination therapy for negative checkpoint regulator blockade. J Immunother Cancer 2016; 4:86. [PMID: 28031817 PMCID: PMC5168856 DOI: 10.1186/s40425-016-0190-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/07/2016] [Indexed: 01/22/2023] Open
Abstract
Negative checkpoint regulators function to restrain T cell responses to maintain tolerance and limit immunopathology. However, in the setting of malignancy, these pathways work in concert to promote immune-mediate escape leading to the development of a clinically overt cancer. In the recent years, clinical trials demonstrating the efficacy of blocking antibodies against these molecules have invigorated the field of immunotherapy. In this review, we discuss the current understanding on established NCR blockade and how strategic combination therapy with anti-VISTA antibody can be used to target multiple non-redundant NCR pathways.
Collapse
Affiliation(s)
- Jie Deng
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA
| | - Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA ; ImmuNext, Inc., One Medical Center Drive, Lebanon, NH 03756 USA
| | - Anna Kuta
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Norris Cotton Cancer Center, One Medical Center Drive, Room 730, Lebanon, NH 03756 USA ; ImmuNext, Inc., One Medical Center Drive, Lebanon, NH 03756 USA
| |
Collapse
|
325
|
Is There Still Room for Cancer Vaccines at the Era of Checkpoint Inhibitors. Vaccines (Basel) 2016; 4:vaccines4040037. [PMID: 27827885 PMCID: PMC5192357 DOI: 10.3390/vaccines4040037] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 10/23/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Checkpoint inhibitor (CPI) blockade is considered to be a revolution in cancer therapy, although most patients (70%–80%) remain resistant to this therapy. It has been hypothesized that only tumors with high mutation rates generate a natural antitumor T cell response, which could be revigorated by this therapy. In patients with no pre-existing antitumor T cells, a vaccine-induced T cell response is a rational option to counteract clinical resistance. This hypothesis has been validated in preclinical models using various cancer vaccines combined with inhibitory pathway blockade (PD-1-PDL1-2, CTLA-4-CD80-CD86). Enhanced T cell infiltration of various tumors has been demonstrated following this combination therapy. The timing of this combination appears to be critical to the success of this therapy and multiple combinations of immunomodulating antibodies (CPI antagonists or costimulatory pathway agonists) have reinforced the synergy with cancer vaccines. Only limited results are available in humans and this combined approach has yet to be validated. Comprehensive monitoring of the regulation of CPI and costimulatory molecules after administration of immunomodulatory antibodies (anti-PD1/PD-L1, anti-CTLA-4, anti-OX40, etc.) and cancer vaccines should help to guide the selection of the best combination and timing of this therapy.
Collapse
|
326
|
Dies1/VISTA expression loss is a recurrent event in gastric cancer due to epigenetic regulation. Sci Rep 2016; 6:34860. [PMID: 27721458 PMCID: PMC5056517 DOI: 10.1038/srep34860] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022] Open
Abstract
Dies1/VISTA induces embryonic stem-cell differentiation, via BMP-pathway, but also acts as inflammation regulator and immune-response modulator. Dies1 inhibition in a melanoma-mouse model led to increased tumour-infiltrating T-cells and decreased tumour growth, emphasizing Dies1 relevance in tumour-microenvironment. Dies1 is involved in cell de/differentiation, inflammation and cancer processes, which mimic those associated with Epithelial-to-Mesenchymal-Transition (EMT). Despite this axis linking Dies1 with EMT and cancer, its expression, modulation and relevance in these contexts is unknown. To address this, we analysed Dies1 expression, its regulation by promoter-methylation and miR-125a-5p overexpression, and its association with BMP-pathway downstream-effectors, in a TGFβ1-induced EMT-model, cancer cell-lines and primary samples. We detected promoter-methylation as a mechanism controlling Dies1 expression in our EMT-model and in several cancer cell-lines. We showed that the relationship between Dies1 expression and BMP-pathway effectors observed in the EMT-model, was not present in all cell-lines, suggesting that Dies1 has other cell-specific effectors, beyond the BMP-pathway. We further demonstrated that: Dies1 expression loss is a recurrent event in GC, caused by promoter methylation and/or miR-125a-5p overexpression and; GC-microenvironment myofibroblasts overexpress Dies1. Our findings highlight Dies1 as a novel player in GC, with distinct roles within tumour cells and in the tumour-microenvironment.
Collapse
|
327
|
Mie M, Takahashi T. Current condition and issues of animal evaluation models for cancer immunotherapy. Nihon Yakurigaku Zasshi 2016; 148:144-8. [PMID: 27581962 DOI: 10.1254/fpj.148.144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
328
|
Recent developments and future challenges in immune checkpoint inhibitory cancer treatment. Curr Opin Oncol 2016; 27:482-8. [PMID: 26352539 DOI: 10.1097/cco.0000000000000221] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE OF REVIEW In this review, we focus on the recent findings and future challenges in cancer treatment with immune checkpoint inhibitors. RECENT FINDINGS Major progress has been made in recent years as the first immune checkpoint inhibitors are approved by the US Food and Drug Administration for the treatment of cancer patients. Anticytotoxic T-lymphocyte-associated protein 4 and antiprogrammed death protein 1/programmed death-ligand 1 (PD-L1) monoclonal antibodies are being extensively studied in many different tumor types, often showing impressive response rates, but also a typical serious toxicity profile in the form of auto-immunity. Unfortunately, it is not yet possible to prevent or predict these immune-related adverse events. Studies on mutational load, neo-epitopes, lactate dehydrogenase, PD-L1 expression, and T-cell infiltration suggest that these markers are correlating with efficacy, but have not yet reached the status of a validated biomarker for checkpoint inhibitors. Other immune checkpoints are being investigated and new checkpoint inhibitors are on the brink of being evaluated in clinical trials. SUMMARY The main challenge for the near future will be to predict efficacy of immune checkpoint blockade and to predict and prevent immune-related adverse events. More research should be done in order to find potential biomarkers that predict treatment response and/or toxicity; the optimal administration route, dosage, and frequency; and possible combinations of therapies that have an added or synergetic effect.
Collapse
|
329
|
Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 2016; 57:54-60. [DOI: 10.1016/j.oraloncology.2016.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/16/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
|
330
|
Park AJ, Rendini T, Martiniuk F, Levis WR. Leprosy as a model to understand cancer immunosurveillance and T cell anergy. J Leukoc Biol 2016; 100:47-54. [PMID: 27106673 DOI: 10.1189/jlb.5ru1215-537rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
Leprosy is a disease caused by Mycobacterium leprae that presents on a spectrum of both clinical manifestations and T cell response. On one end of this spectrum, tuberculoid leprosy is a well-controlled disease, characterized by a cell-mediated immunity and immunosurveillance. On the opposite end of the spectrum, lepromatous leprosy is characterized by M. leprae proliferation and T cell anergy. Similar to progressive tumor cells, M. leprae escapes immunosurveillance in more severe forms of leprosy. The mechanisms by which M. leprae is able to evade the host immune response involve many, including the alterations of lipid droplets, microRNA, and Schwann cells, and involve the regulation of immune regulators, such as the negative checkpoint regulators CTLA-4, programmed death 1, and V-domain Ig suppressor of T cell activation-important targets in today's cancer immunotherapies. The means by which tumor cells become able to escape immunosurveillance through negative checkpoint regulators are evidenced by the successes of treatments, such as nivolumab and ipilimumab. Many parallels can be drawn between the immune responses seen in leprosy and cancer. Therefore, the understanding of how M. leprae encourages immune escape during proliferative disease states has potential to add to our understanding of cancer immunotherapy.
Collapse
Affiliation(s)
- Andrew J Park
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Tina Rendini
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| | | | - William R Levis
- Bellevue Hospital Center, National Hansen's Disease Program, New York, New York, USA; and
| |
Collapse
|
331
|
Abstract
INTRODUCTION Immune checkpoint inhibitors, like anti-PD-1/PD-L1 antibodies, are revolutionizing therapeutic concepts in the treatment of cancer. Said class of drugs will represent a multi-billion dollar market over the coming decade. Many companies have therefore developed important patent activities in the field. AREAS COVERED The present review gives an overview of the patent literature during the period 2010-2015 in the field of immune checkpoint inhibitors. In particular, the review presents a selection of international patent applications related to inhibitors of PD-1/PD-L1, CTLA-4, IDO, TIM3, LAG3, TIGIT, BTLA, VISTA, ICOS, KIRs and CD39. EXPERT OPINION Immune checkpoint inhibitors are now widely accepted as a key component of the therapeutic strategies in cancer. This fervent activity creates a maze of third-party patents that pose considerable risks for both newcomers and established companies. We can thus anticipate that the number of patent conflicts and disputes will increase in the near future. Treatments will involve combination therapy comprising at least one immune checkpoint inhibitor and companies will multiply patent filings in this field. Finally, we can expect that patents related to biomarkers that will render a patient eligible to a treatment with an immune checkpoint inhibitor will have tremendous commercial value.
Collapse
Affiliation(s)
- Matthieu Collin
- a Intellectual Property Department , Inserm Transfert , Paris , France
| |
Collapse
|
332
|
|
333
|
Abstract
The immune system is capable of recognizing tumors and eliminates many early malignant cells. However, tumors evolve to evade immune attack, and the tumor microenvironment is immunosuppressive. Immune responses are regulated by a number of immunological checkpoints that promote protective immunity and maintain tolerance. T cell coinhibitory pathways restrict the strength and duration of immune responses, thereby limiting immune-mediated tissue damage, controlling resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors exploit these coinhibitory pathways to evade immune eradication. Blockade of the PD-1 and CTLA-4 checkpoints is proving to be an effective and durable cancer immunotherapy in a subset of patients with a variety of tumor types, and additional combinations are further improving response rates. In this review we discuss the immunoregulatory functions of coinhibitory pathways and their translation to effective immunotherapies for cancer.
Collapse
Affiliation(s)
- Susanne H Baumeister
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Division of Pediatric Hematology-Oncology, Boston Children's Hospital, Boston, Massachusetts 02115.,Harvard Medical School, Boston, Massachusetts 02115
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Harvard Medical School, Boston, Massachusetts 02115
| | - Glenn Dranoff
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215.,Novartis Institutes for BioMedical Research, Exploratory Immuno-oncology, Cambridge, Massachusetts 02139
| | - Arlene H Sharpe
- Department of Microbiology and Immunobiology, and Evergrande Center for Immunologic Diseases, Harvard Medical School, Boston, Massachusetts 02115;
| |
Collapse
|
334
|
Wurz GT, Kao CJ, DeGregorio MW. Novel cancer antigens for personalized immunotherapies: latest evidence and clinical potential. Ther Adv Med Oncol 2016; 8:4-31. [PMID: 26753003 DOI: 10.1177/1758834015615514] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The clinical success of monoclonal antibody immune checkpoint modulators such as ipilimumab, which targets cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), and the recently approved agents nivolumab and pembrolizumab, which target programmed cell death receptor 1 (PD-1), has stimulated renewed enthusiasm for anticancer immunotherapy, which was heralded by Science as 'Breakthrough of the Year' in 2013. As the potential of cancer immunotherapy has been recognized since the 1890s when William Coley showed that bacterial products could be beneficial in cancer patients, leveraging the immune system in the treatment of cancer is certainly not a new concept; however, earlier attempts to develop effective therapeutic vaccines and antibodies against solid tumors, for example, melanoma, frequently met with failure due in part to self-tolerance and the development of an immunosuppressive tumor microenvironment. Increased knowledge of the mechanisms through which cancer evades the immune system and the identification of tumor-associated antigens (TAAs) and negative immune checkpoint regulators have led to the development of vaccines and monoclonal antibodies targeting specific tumor antigens and immune checkpoints such as CTLA-4 and PD-1. This review first discusses the established targets of currently approved cancer immunotherapies and then focuses on investigational cancer antigens and their clinical potential. Because of the highly heterogeneous nature of tumors, effective anticancer immunotherapy-based treatment regimens will likely require a personalized combination of therapeutic vaccines, antibodies and chemotherapy that fit the specific biology of a patient's disease.
Collapse
Affiliation(s)
- Gregory T Wurz
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, Sacramento, CA, USA
| | - Chiao-Jung Kao
- Department of Obstetrics and Gynecology, University of California, Davis Sacramento, CA, USA
| | - Michael W DeGregorio
- Department of Internal Medicine, Division of Hematology and Oncology, University of California, Davis, 4501 X Street Suite 3016, Sacramento, CA 95817, USA
| |
Collapse
|
335
|
Velcheti V, Schalper K. Basic Overview of Current Immunotherapy Approaches in Cancer. Am Soc Clin Oncol Educ Book 2016; 35:298-308. [PMID: 27249709 DOI: 10.1200/edbk_156572] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent success of immunotherapy strategies such as immune checkpoint blockade in several malignancies has established the role of immunotherapy in the treatment of cancer. Cancers use multiple mechanisms to co-opt the host-tumor immune interactions, leading to immune evasion. Our understanding of the host-tumor interactions has evolved over the past few years and led to various promising new therapeutic strategies. This article will focus on the basic principles of immunotherapy, novel pathways/agents, and combinatorial immunotherapies.
Collapse
Affiliation(s)
- Vamsidhar Velcheti
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| | - Kurt Schalper
- From the Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH; Departments of Pathology and Medicine (Medical Oncology), Yale School of Medicine, New Haven, CT
| |
Collapse
|
336
|
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis. J Mol Med (Berl) 2015; 94:509-22. [PMID: 26689709 DOI: 10.1007/s00109-015-1376-x] [Citation(s) in RCA: 242] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/25/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Tumor immune escape and the initiation of metastasis are critical steps in malignant progression of tumors and have been implicated in the failure of some clinical cancer immunotherapy. Tumors develop numerous strategies to escape immune surveillance or metastasize: Tumors not only modulate the recruitment and expansion of immunosuppressive cell populations to develop the tumor microenvironment or pre-metastatic niche but also switch the phenotype and function of normal immune cells from a potentially tumor-reactive state to a tumor-promoting state. Immunosuppressive cells facilitate tumor immune escape by inhibiting antitumor immune responses and furthermore promote tumor metastasis by inducing immunosuppression, promoting tumor cell invasion and intravasation, establishing a pre-metastatic niche, facilitating epithelial-mesenchymal transition, and inducing angiogenesis at primary tumor or metastatic sites. Numerous translational studies indicate that it is possible to inhibit tumor immune escape and prevent tumor metastasis by blocking immunosuppressive cells and eliminating immunosuppressive mechanisms that are induced by either immunosuppressive cells or tumor cells. Furthermore, many clinical trials targeting immunosuppressive cells have also achieved good outcome. In this review, we focus on the underlying mechanisms of immunosuppressive cells in promoting tumor immune escape and metastasis, discuss our current understanding of the interactions between immunosuppressive cells and tumor cells in the tumor microenvironment, and suggest future research directions as well as potential clinical strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xuetao Cao
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
337
|
Assal A, Kaner J, Pendurti G, Zang X. Emerging targets in cancer immunotherapy: beyond CTLA-4 and PD-1. Immunotherapy 2015; 7:1169-86. [PMID: 26567614 PMCID: PMC4976877 DOI: 10.2217/imt.15.78] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Manipulation of co-stimulatory or co-inhibitory checkpoint proteins allows for the reversal of tumor-induced T-cell anergy observed in cancer. The field has gained credence given success with CTLA-4 and PD-1 inhibitors. These molecules include immunoglobulin family members and the B7 subfamily as well as the TNF receptor family members. PD-L1 inhibitors and LAG-3 inhibitors have progressed through clinical trials. Other B7 family members have shown promise in preclinical models. TNFR superfamily members have shown variable success in preclinical and clinical studies. As clinical investigation in tumor immunology gains momentum, the next stage becomes learning how to combine checkpoint inhibitors and agonists with each other as well as with traditional chemotherapeutic agents.
Collapse
Affiliation(s)
- Amer Assal
- Department of Medicine, Adult Bone Marrow Transplant Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Kaner
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
| | - Gopichand Pendurti
- Division of Hematology/Oncology, Department of Medicine, Jacobi Medical Center, Bronx, NY 10461, USA
| | - Xingxing Zang
- Department of Medicine, Montefiore Medical Center, Bronx, NY 10467, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
338
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
339
|
Mahoney KM, Rennert PD, Freeman GJ. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14:561-84. [PMID: 26228759 DOI: 10.1038/nrd4591] [Citation(s) in RCA: 948] [Impact Index Per Article: 105.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeting immune checkpoints such as programmed cell death protein 1 (PD1), programmed cell death 1 ligand 1 (PDL1) and cytotoxic T lymphocyte antigen 4 (CTLA4) has achieved noteworthy benefit in multiple cancers by blocking immunoinhibitory signals and enabling patients to produce an effective antitumour response. Inhibitors of CTLA4, PD1 or PDL1 administered as single agents have resulted in durable tumour regression in some patients, and combinations of PD1 and CTLA4 inhibitors may enhance antitumour benefit. Numerous additional immunomodulatory pathways as well as inhibitory factors expressed or secreted by myeloid and stromal cells in the tumour microenvironment are potential targets for synergizing with immune checkpoint blockade. Given the breadth of potential targets in the immune system, critical questions to address include which combinations should move forward in development and which patients will benefit from these treatments. This Review discusses the leading drug targets that are expressed on tumour cells and in the tumour microenvironment that allow enhancement of the antitumour immune response.
Collapse
Affiliation(s)
- Kathleen M Mahoney
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA. [2] Division of Haematology and Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA. [3]
| | - Paul D Rennert
- 1] SugarCone Biotech, Holliston, Massachusetts 01746, USA. [2] Videre Biotherapeutics, Watertown, Massachusetts 02472, USA. [3]
| | - Gordon J Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02215, USA
| |
Collapse
|
340
|
Karachaliou N, Pilotto S, Teixidó C, Viteri S, González-Cao M, Riso A, Morales-Espinosa D, Molina MA, Chaib I, Santarpia M, Richardet E, Bria E, Rosell R. Melanoma: oncogenic drivers and the immune system. ANNALS OF TRANSLATIONAL MEDICINE 2015; 3:265. [PMID: 26605311 PMCID: PMC4630557 DOI: 10.3978/j.issn.2305-5839.2015.08.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/04/2015] [Indexed: 12/19/2022]
Abstract
Advances and in-depth understanding of the biology of melanoma over the past 30 years have contributed to a change in the consideration of melanoma as one of the most therapy-resistant malignancies. The finding that oncogenic BRAF mutations drive tumor growth in up to 50% of melanomas led to a molecular therapy revolution for unresectable and metastatic disease. Moving beyond BRAF, inactivation of immune regulatory checkpoints that limit T cell responses to melanoma has provided targets for cancer immunotherapy. In this review, we discuss the molecular biology of melanoma and we focus on the recent advances of molecularly targeted and immunotherapeutic approaches.
Collapse
|
341
|
Bustamante Alvarez JG, González-Cao M, Karachaliou N, Santarpia M, Viteri S, Teixidó C, Rosell R. Advances in immunotherapy for treatment of lung cancer. Cancer Biol Med 2015; 12:209-22. [PMID: 26487966 PMCID: PMC4607819 DOI: 10.7497/j.issn.2095-3941.2015.0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/12/2015] [Indexed: 12/14/2022] Open
Abstract
Different approaches for treating lung cancer have been developed over time, including chemotherapy, radiotherapy and targeted therapies against activating mutations. Lately, better understanding of the role of the immunological system in tumor control has opened multiple doors to implement different strategies to enhance immune response against cancer cells. It is known that tumor cells elude immune response by several mechanisms. The development of monoclonal antibodies against the checkpoint inhibitor programmed cell death protein 1 (PD-1) and its ligand (PD-L1), on T cells, has led to high activity in cancer patients with long lasting responses. Nivolumab, an anti PD-1 inhibitor, has been recently approved for the treatment of squamous cell lung cancer patients, given the survival advantage demonstrated in a phase III trial. Pembrolizumab, another anti PD-1 antibody, has received FDA breakthrough therapy designation for treatment of non-small cell lung cancer (NSCLC), supported by data from a phase I trial. Clinical trials with anti PD-1/PD-L1 antibodies in NSCLC have demonstrated very good tolerability and activity, with response rates around 20% and a median duration of response of 18 months.
Collapse
Affiliation(s)
- Jean G Bustamante Alvarez
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - María González-Cao
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - Niki Karachaliou
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - Mariacarmela Santarpia
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - Santiago Viteri
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - Cristina Teixidó
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| | - Rafael Rosell
- 1 Albert Einstein Medical Center, Philadelphia 19141, USA ; 2 Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona 08028, Spain ; 3 Medical Oncology Unit, Human Pathology Department, University of Messina, Messina 98100, Italy ; 4 Pangaea Biotech S.L, Barcelona 08028, Spain ; 5 Cancer Biology & Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona 08916, Spain ; 6 Fundación Molecular Oncology Research, Barcelona 08028, Spain
| |
Collapse
|
342
|
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus, F-94805 Villejuif, France. INSERM U1015, F-94805 Villejuif, France. Université Paris Sud-XI, Faculté de Médecine, Le Kremlin Bicêtre, France. Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 507, F-94805 Villejuif, France
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, INSERM U1138, F-75006 Paris, France. Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France. Université Pierre et Marie Curie, F-75006 Paris, France. Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris. Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France.
| |
Collapse
|
343
|
Yoon KW, Byun S, Kwon E, Hwang SY, Chu K, Hiraki M, Jo SH, Weins A, Hakroush S, Cebulla A, Sykes DB, Greka A, Mundel P, Fisher DE, Mandinova A, Lee SW. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science 2015; 349:1261669. [PMID: 26228159 DOI: 10.1126/science.1261669] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The inefficient clearance of dying cells can lead to abnormal immune responses, such as unresolved inflammation and autoimmune conditions. We show that tumor suppressor p53 controls signaling-mediated phagocytosis of apoptotic cells through its target, Death Domain1α (DD1α), which suggests that p53 promotes both the proapoptotic pathway and postapoptotic events. DD1α appears to function as an engulfment ligand or receptor that engages in homophilic intermolecular interaction at intercellular junctions of apoptotic cells and macrophages, unlike other typical scavenger receptors that recognize phosphatidylserine on the surface of dead cells. DD1α-deficient mice showed in vivo defects in clearing dying cells, which led to multiple organ damage indicative of immune dysfunction. p53-induced expression of DD1α thus prevents persistence of cell corpses and ensures efficient generation of precise immune responses.
Collapse
Affiliation(s)
- Kyoung Wan Yoon
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Sanguine Byun
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Eunjeong Kwon
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - So-Young Hwang
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Kiki Chu
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Masatsugu Hiraki
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Seung-Hee Jo
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Astrid Weins
- Department of Pathology, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Samy Hakroush
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angelika Cebulla
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David B Sykes
- Center for Regenerative Medicine and Technology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Anna Greka
- Department of Medicine, Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Peter Mundel
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
344
|
Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front Immunol 2015; 6:418. [PMID: 26347741 PMCID: PMC4544156 DOI: 10.3389/fimmu.2015.00418] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Collapse
Affiliation(s)
- Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
345
|
Abstract
Immunotherapy is a promising treatment modality for cancer as it can promote specific and durable anti-cancer responses. However, limitations to current approaches remain. Therapeutics administered as soluble injections often require high doses and frequent re-dosing, which can result in systemic toxicities. Soluble bolus-based vaccine formulations typically elicit weak cellular immune responses, limiting their use for cancer. Current methods for ex vivo T cell expansion for adoptive T cell therapies are suboptimal, and achieving high T cell persistence and sustained functionality with limited systemic toxicity following transfer remains challenging. Biomaterials can play important roles in addressing some of these limitations. For example, nanomaterials can be employed as vehicles to deliver immune modulating payloads to specific tissues, cells, and cellular compartments with minimal off-target toxicity, or to co-deliver antigen and danger signal in therapeutic vaccine formulations. Alternatively, micro-to macroscale materials can be employed as devices for controlled molecular and cellular delivery, or as engineered microenvironments for recruiting and programming immune cells in situ. Recent work has demonstrated the potential for combining cancer immunotherapy and biomaterials, and the application of biomaterials to cancer immunotherapy is likely to enable the development of effective next-generation platforms. This review discusses the application of engineered materials for the delivery of immune modulating agents to the tumor microenvironment, therapeutic cancer vaccination, and adoptive T cell therapy.
Collapse
Affiliation(s)
- Alexander S. Cheung
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| | - David J. Mooney
- School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138
| |
Collapse
|
346
|
González-Cao M, Karachaliou N, Viteri S, Morales-Espinosa D, Teixidó C, Sánchez Ruiz J, Molina-Vila MÁ, Santarpia M, Rosell R. Targeting PD-1/PD-L1 in lung cancer: current perspectives. LUNG CANCER (AUCKLAND, N.Z.) 2015; 6:55-70. [PMID: 28210151 PMCID: PMC5217517 DOI: 10.2147/lctt.s55176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Increased understanding of tumor immunology has led to the development of effective immunotherapy treatments. One of the most important advances in this field has been due to pharmacological design of antibodies against immune checkpoint inhibitors. Anti-PD-1/PD-L1 antibodies are currently in advanced phases of clinical development for several tumors, including lung cancer. Results from Phase I-III trials with anti-PD-1/PD-L1 antibodies in non-small-cell lung cancer have demonstrated response rates of around 20% (range, 16%-50%). More importantly, responses are long-lasting (median duration of response, 18 months) and fast (50% of responses are detected at time of first tumor evaluation) with very low grade 3-4 toxicity (less than 5%). Recently, the anti-PD-1 antibody pembrolizumab received US Food and Drug Administration (FDA) breakthrough therapy designation for treatment of non-small-cell lung cancer, supported by data from a Phase Ib trial. Another anti-PD-1 antibody, nivolumab, has also been approved for lung cancer based on survival advantage demonstrated in recently released data from a Phase III trial in squamous cell lung cancer.
Collapse
Affiliation(s)
- María González-Cao
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Niki Karachaliou
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Santiago Viteri
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain
| | - Daniela Morales-Espinosa
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain
| | | | | | | | - Mariacarmela Santarpia
- Medical Oncology Unit, Human Pathology Department, University of Messina, Messina, Italy
| | - Rafael Rosell
- Translational Cancer Research Unit, Instituto Oncológico Dr Rosell, Quirón Dexeus University Hospital, Barcelona, Spain
- Pangaea Biotech SL, Barcelona, Spain
- Cancer Biology and Precision Medicine Program, Catalan Institute of Oncology, Germans Trias i Pujol Health Sciences Institute and Hospital, Campus Can Ruti, Badalona, Barcelona, Spain
- Fundación Molecular Oncology Research, Barcelona, Spain
| |
Collapse
|
347
|
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus. J Virol 2015; 89:9693-8. [PMID: 26157131 DOI: 10.1128/jvi.00888-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022] Open
Abstract
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness.
Collapse
|
348
|
Turnis ME, Andrews LP, Vignali DAA. Inhibitory receptors as targets for cancer immunotherapy. Eur J Immunol 2015; 45:1892-905. [PMID: 26018646 PMCID: PMC4549156 DOI: 10.1002/eji.201344413] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/25/2015] [Accepted: 05/26/2015] [Indexed: 12/11/2022]
Abstract
Inhibitory receptors expressed on T cells control immune responses while limiting autoimmunity. However, tumors can hijack these "checkpoints" for protection from immune attack. Tumor-specific T cells that exhibit an exhausted, unresponsive phenotype express high levels of inhibitory receptors including CTLA4, PD1, and LAG3, among others. Intratumoral regulatory T cells promote immunosuppression and also express multiple inhibitory receptors. Overcoming this inhibitory receptor-mediated immune tolerance has thus been a major focus of recent cancer immunotherapeutic developments. Here, we review how boosting the host's immune system by blocking inhibitory receptor signaling with antagonistic mAbs restores the capacity of T cells to drive durable antitumor immune responses. Clinical trials targeting the CTLA4 and PD1 pathways have shown durable effects in multiple tumor types. Many combinatorial therapies are currently being investigated with encouraging results that highlight enhanced antitumor immunogenicity and improved patient survival. Finally, we will discuss the ongoing identification and dissection of novel T-cell inhibitory receptor pathways, which could lead to the development of new combinatorial therapeutic approaches.
Collapse
Affiliation(s)
- Meghan E Turnis
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Dario A A Vignali
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
349
|
Immune-checkpoint proteins VISTA and PD-1 nonredundantly regulate murine T-cell responses. Proc Natl Acad Sci U S A 2015; 112:6682-7. [PMID: 25964334 DOI: 10.1073/pnas.1420370112] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
V-domain immunoglobulin suppressor of T-cell activation (VISTA) is a negative immune-checkpoint protein that suppresses T-cell responses. To determine whether VISTA synergizes with another immune-checkpoint, programmed death 1 (PD-1), this study characterizes the immune responses in VISTA-deficient, PD-1-deficient (KO) mice and VISTA/PD-1 double KO mice. Chronic inflammation and spontaneous activation of T cells were observed in both single KO mice, demonstrating their nonredundancy. However, the VISTA/PD-1 double KO mice exhibited significantly higher levels of these phenotypes than the single KO mice. When bred onto the 2D2 T-cell receptor transgenic mice, which are predisposed to development of inflammatory autoimmune disease in the CNS, the level of disease penetrance was significantly enhanced in the double KO mice compared with in the single KO mice. Consistently, the magnitude of T-cell response toward foreign antigens was synergistically higher in the VISTA/PD-1 double KO mice. A combinatorial blockade using monoclonal antibodies specific for VISTA and PD-L1 achieved optimal tumor-clearing therapeutic efficacy. In conclusion, our study demonstrates the nonredundant role of VISTA that is distinct from the PD-1/PD-L1 pathway in controlling T-cell activation. These findings provide the rationale to concurrently target VISTA and PD-1 pathways for treating T-cell-regulated diseases such as cancer.
Collapse
|
350
|
Abstract
Immune checkpoint therapy, which targets regulatory pathways in T cells to enhance antitumor immune responses, has led to important clinical advances and provided a new weapon against cancer. This therapy has elicited durable clinical responses and, in a fraction of patients, long-term remissions where patients exhibit no clinical signs of cancer for many years. The way forward for this class of novel agents lies in our ability to understand human immune responses in the tumor microenvironment. This will provide valuable information regarding the dynamic nature of the immune response and regulation of additional pathways that will need to be targeted through combination therapies to provide survival benefit for greater numbers of patients.
Collapse
Affiliation(s)
- Padmanee Sharma
- Department of Immunology, M.D. Anderson Cancer Center, Houston, TX, USA. Genitourinary Medical Oncology, M.D. Anderson Cancer Center, Houston, TX, USA.
| | - James P Allison
- Department of Immunology, M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|