301
|
Lee YT, Lin HY, Chan YWF, Li KHC, To OTL, Yan BP, Liu T, Li G, Wong WT, Keung W, Tse G. Mouse models of atherosclerosis: a historical perspective and recent advances. Lipids Health Dis 2017; 16:12. [PMID: 28095860 PMCID: PMC5240327 DOI: 10.1186/s12944-016-0402-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/27/2016] [Indexed: 12/20/2022] Open
Abstract
Atherosclerosis represents a significant cause of morbidity and mortality in both the developed and developing countries. Animal models of atherosclerosis have served as valuable tools for providing insights on its aetiology, pathophysiology and complications. They can be used for invasive interrogation of physiological function and provide a platform for testing the efficacy and safety of different pharmacological therapies. Compared to studies using human subjects, animal models have the advantages of being easier to manage, with controllable diet and environmental risk factors. Moreover, pathophysiological changes can be induced either genetically or pharmacologically to study the harmful effects of these interventions. There is no single ideal animal model, as different systems are suitable for different research objectives. A good understanding of the similarities and differences to humans enables effective extrapolation of data for translational application. In this article, we will examine the different mouse models for the study and elucidation of the pathophysiological mechanisms underlying atherosclerosis. We also review recent advances in the field, such as the role of oxidative stress in promoting endoplasmic reticulum stress, mitochondrial dysfunction and mitochondrial DNA damage, which can result in vascular inflammation and atherosclerosis. Finally, novel therapeutic approaches to reduce vascular damage caused by chronic inflammation using microRNA and nano-medicine technology, are discussed.
Collapse
Affiliation(s)
- Yee Ting Lee
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Hiu Yu Lin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | | | | | - Olivia Tsz Ling To
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, 300211 People’s Republic of China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| | - Wendy Keung
- Stem Cell & Regenerative Medicine Consortium, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, SAR People’s Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR People’s Republic of China
| |
Collapse
|
302
|
Yun TJ, Lee JS, Shim D, Choi JH, Cheong C. Isolation and Characterization of Aortic Dendritic Cells and Lymphocytes in Atherosclerosis. Methods Mol Biol 2017; 1559:419-437. [DOI: 10.1007/978-1-4939-6786-5_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
303
|
Amano Y, Shimizu F, Yasuno H, Harada A, Tsuchiya S, Isono O, Nagabukuro H, Tozawa R. Non-alcoholic steatohepatitis-associated hepatic fibrosis and hepatocellular carcinoma in a combined mouse model of genetic modification and dietary challenge. Hepatol Res 2017; 47:103-115. [PMID: 26992446 DOI: 10.1111/hepr.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
Abstract
AIM Experimental models of non-alcoholic steatohepatitis (NASH) are still required for understanding the pathophysiology of this disease. This study aimed to examine whether disease progression is accelerated by combining dyslipidemic genetic modification and dietary challenges and develop NASH-associated hepatic fibrosis, cirrhosis, and carcinoma in a short period. METHODS Low-density lipoprotein receptor knockout mice were fed a modified choline-deficient amino acid-defined diet, including 1 w/w% cholesterol and 41 kcal% fat, and was comprehensively profiled over 1 year. RESULTS Microvesicular and macrovesicular steatosis in the liver was observed from the first week after starting the modified choline-deficient amino acid-defined diet. Macrovesicular steatosis was exacerbated with time and was observed in almost all hepatocytes at week 8, but slightly decreased at week 16. Infiltration of macrophages and neutrophils, and upregulation of hepatic inflammatory cytokines such as tumor necrosis factor-α and interleukin-1β were also observed from week 1. Plasma hepatic transaminase activities were increased at week 1, reached a peak at week 4, and gradually decreased thereafter. In parallel with increases in hepatic gene expression of collagen-I, the hepatic fibrosis area expanded after week 4 and massively spread all over the liver by week 8. Hepatocellular hyperplasia was observed from week 24. Hepatocellular adenoma and carcinoma were observed from week 31 and 39, respectively. CONCLUSION These results suggest that, in a rodent NASH model with the combination of genetic modification and dietary challenges, hepatic steatosis, inflammatory cell infiltration and hepatic injury, hepatic fibrosis, hepatocellular hyperplasia, adenoma, and carcinoma can be developed in a relatively short period.
Collapse
Affiliation(s)
- Yuichiro Amano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Fumi Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hironobu Yasuno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ayako Harada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuntarou Tsuchiya
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Osamu Isono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hiroshi Nagabukuro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryuichi Tozawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
304
|
Abstract
In this chapter, we discuss the manner through which the immune system regulates the cardiovascular system in health and disease. We define the cardiovascular system and elements of atherosclerotic disease, the main focus in this chapter. Herein we elaborate on the disease process that can result in myocardial infarction (heart attack), ischaemic stroke and peripheral arterial disease. We have discussed broadly the homeostatic mechanisms in place that help autoregulate the cardiovascular system including the vital role of cholesterol and lipid clearance as well as the role lipid homeostasis plays in cardiovascular disease in the context of atherosclerosis. We then elaborate on the role played by the immune system in this setting, namely, major players from the innate and adaptive immune system, as well as discussing in greater detail specifically the role played by monocytes and macrophages.This chapter should represent an overview of the role played by the immune system in cardiovascular homeostasis; however further reading of the references cited can expand the reader's knowledge of the detail, and we point readers to many excellent reviews which summarise individual immune systems and their role in cardiovascular disease.
Collapse
Affiliation(s)
- Mohammed Shamim Rahman
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK
| | - Kevin Woollard
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
305
|
Severe Atherosclerosis and Hypercholesterolemia in Mice Lacking Both the Melanocortin Type 4 Receptor and Low Density Lipoprotein Receptor. PLoS One 2016; 11:e0167888. [PMID: 28030540 PMCID: PMC5193345 DOI: 10.1371/journal.pone.0167888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022] Open
Abstract
Dysfunction of the melanocortin system can result in severe obesity accompanied with dyslipidemia and symptoms of the metabolic syndrome but the effect on vascular atherogenesis is not known. To study the impact of obesity and dyslipidemia on the cardiovascular system, we generated mice double-deficient for the melanocortin type 4 receptor (Mc4rmut mice) and the LDL receptor (Ldlr-/- mice). Mc4rmut mice develop obesity due to hyperphagia. Double-mutant mice (Mc4rmut;Ldlr-/-) exhibited massive increases in body weight, plasma cholesterol and triacylglycerol levels and developed atherosclerosis. Atherosclerotic lesion size was affected throughout the aortic root and brachiocephalic artery not only under semisynthetic, cholesterol-containing diet but also under cholesterol-free standard chow. The Mc4rmut mice developed a hepatic steatosis which contributes to increased plasma cholesterol levels even under cholesterol-free standard chow. Transcripts of cholesterol biosynthesis components and liver cholesterol levels did not significantly differ between wild-type and all mutant mouse strains but RNA sequencing data and biochemical measurements point to an altered bile acid elimination in Mc4rmut;Ldlr-/-. Therefore, the unchanged endogenous cholesterol biosynthesis together with a reduced hepatic VLDL and LDL-cholesterol clearance most likely led to increased plasma lipid levels and consequently to atherosclerosis in this animal model. Our data indicate that dysfunction of the melanocortin-regulated food intake and the resulting obesity significantly add to the proatherogenic lipoprotein profile caused by LDL receptor deficiency and, therefore, can be regarded as relevant risk factor for atherosclerosis.
Collapse
|
306
|
[ 18F]FDG Uptake in the Aortic Wall Smooth Muscle of Atherosclerotic Plaques in the Simian Atherosclerosis Model. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8609274. [PMID: 28101514 PMCID: PMC5215192 DOI: 10.1155/2016/8609274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/02/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022]
Abstract
Atherosclerosis is a self-sustaining inflammatory fibroproliferative disease that progresses in discrete stages and involves a number of cell types and effector molecules. Recently, [18F]fluoro-2-deoxy-D-glucose- ([18F]FDG-) positron emission tomography (PET) has been suggested as a tool to evaluate atherosclerotic plaques by detecting accumulated macrophages associated with inflammation progress. However, at the cellular level, it remains unknown whether only macrophages exhibit high uptake of [18F]FDG. To identify the cellular origin of [18F]FDG uptake in atherosclerotic plaques, we developed a simian atherosclerosis model and performed PET and ex vivo macro- and micro-autoradiography (ARG). Increased [18F]FDG uptake in the aortic wall was observed in high-cholesterol diet-treated monkeys and WHHL rabbits. Macro-ARG of [18F]FDG in aortic sections showed that [18F]FDG was accumulated in the media and intima in the simian model as similar to that in WHHL rabbits. Combined analysis of micro-ARG with immunohistochemistry in the simian atherosclerosis model revealed that most cellular [18F]FDG uptake observed in the media was derived not only from the infiltrated macrophages in atherosclerotic plaques but also from the smooth muscle cells (SMCs) of the aortic wall in atherosclerotic lesions.
Collapse
|
307
|
Jeyakumar SM, Sheril A, Vajreswari A. Chronic vitamin A-enriched diet feeding regulates hypercholesterolaemia through transcriptional regulation of reverse cholesterol transport pathway genes in obese rat model of WNIN/GR-Ob strain. Indian J Med Res 2016; 144:238-244. [PMID: 27934803 PMCID: PMC5206875 DOI: 10.4103/0971-5916.195038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background & objectives: Hepatic scavenger receptor class B1 (SR-B1), a high-density lipoprotein (HDL) receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC), thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain) that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob) through similar mechanism by feeding identical vitamin A-enriched diet. Methods: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet) for 14 wk. Blood and other tissues were collected for various biochemical analyses. Results: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C) levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC) and increased esterified cholesterol (EC) contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT) activity of plasma nor its expression (both gene and protein) in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein) remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1) and apolipoprotein A-I, were downregulated. No such response was seen in vitamin A-supplemented lean rats as compared with their stock diet-fed lean counterparts. Interpretation & conclusions: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized HDL-C levels, possibly by regulating pathways involved in HDL synthesis and degradation, independent of hepatic SR-B1 in this glucose-intolerant obese rat model.
Collapse
Affiliation(s)
| | - Alex Sheril
- Division of Lipid Biochemistry, National Institute of Nutrition, Hyderabad, India
| | | |
Collapse
|
308
|
Mode-of-action evaluation for the effect of trans fatty acids on low-density lipoprotein cholesterol. Food Chem Toxicol 2016; 98:282-294. [DOI: 10.1016/j.fct.2016.05.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 01/06/2023]
|
309
|
With mouse age comes wisdom: A review and suggestions of relevant mouse models for age-related conditions. Mech Ageing Dev 2016; 160:54-68. [DOI: 10.1016/j.mad.2016.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/07/2016] [Accepted: 07/15/2016] [Indexed: 12/14/2022]
|
310
|
Dong H, Zhao Z, LeBrun DG, Michaely P. Identification of roles for H264, H306, H439, and H635 in acid-dependent lipoprotein release by the LDL receptor. J Lipid Res 2016; 58:364-374. [PMID: 27895090 DOI: 10.1194/jlr.m070938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/19/2016] [Indexed: 11/20/2022] Open
Abstract
Lipoproteins internalized by the LDL receptor (LDLR) are released from this receptor in endosomes through a process that involves acid-dependent conformational changes in the receptor ectodomain. How acidic pH promotes this release process is not well understood. Here, we assessed roles for six histidine residues for which either genetic or structural data suggested a possible role in the acid-responsiveness of the LDLR. Using assays that measured conformational change, acid-dependent lipoprotein release, LDLR recycling, and net lipoprotein uptake, we show that H635 plays important roles in acid-dependent conformational change and lipoprotein release, while H264, H306, and H439 play ancillary roles in the response of the LDLR to acidic pH.
Collapse
Affiliation(s)
- Hongyun Dong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Zhenze Zhao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Drake G LeBrun
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Peter Michaely
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
311
|
Ness GC, Gertz KR. Increased Sensitivity to Dietary Cholesterol in Diabetic and Hypothyroid Rats Associated with Low Levels of Hepatic HMG-CoA Reductase Expression. Exp Biol Med (Maywood) 2016; 229:407-11. [PMID: 15096652 DOI: 10.1177/153537020422900508] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We recently postulated that hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase functions as a cholesterol buffer to protect against the serum and tissue cholesterol raising action of dietary cholesterol. This postulate predicts that diminished basal expression of hepatic HMG-CoA reductase results in increased sensitivity to dietary cholesterol. Because diabetic and hypothyroid animals are known to have markedly reduced hepatic HMG-CoA reductase, these animals were selected as models to test our postulate. When rats were rendered diabetic with streptozotocin, their hepatic HMG-CoA reductase activity decreased from 314 to 22 pmol • min-1 • mg-1, and their serum cholesterol levels increased slightly. When the diabetic animals were challenged with a diet containing 1% cholesterol, their serum cholesterol levels doubled, and their hepatic reductase activity decreased further to 0.9 pmol • min-1 • mg-1. Hepatic low-density lipoprotein (LDL) receptor immunoreactive protein levels were unaffected in the diabetic rats whether fed cholesterol-supplemented diets or not. In rats rendered hypothyroid by thyroparathyroidectomy, serum cholesterol levels rose from 100 to 386 mg/dl in response to the 1% cholesterol challenge, whereas HMG-CoA reductase activity dropped from 33.8 to 3.4 pmol • min-1 • mg-1. Hepatic LDL receptor immunoreactive protein levels decreased only slightly in the hypothyroid rats fed cholesterol-supplemented diets. Taken together, these results show that rats deficient in either insulin or thyroid hormone are extremely sensitive to dietary cholesterol largely due to low basal expression of hepatic HMG-CoA reductase.
Collapse
Affiliation(s)
- Gene C Ness
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| | | |
Collapse
|
312
|
Low-Density Lipoprotein Receptor Contributes to β-Carotene Uptake in the Maternal Liver. Nutrients 2016; 8:nu8120765. [PMID: 27916814 PMCID: PMC5188420 DOI: 10.3390/nu8120765] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 11/24/2016] [Indexed: 11/17/2022] Open
Abstract
Vitamin A regulates many essential mammalian biological processes, including embryonic development. β-carotene is the main source of vitamin A in the human diet. Once ingested, it is packaged into lipoproteins, predominantly low-density lipoproteins (LDL), and transported to different sites within the body, including the liver and developing tissues, where it can either be stored or metabolized to retinoids (vitamin A and its derivatives). The molecular mechanisms of β-carotene uptake by the liver or developing tissues remain elusive. Here, we investigated the role of the LDL receptor (LDLr) in β-carotene uptake by maternal liver, placenta and embryo. We administered a single dose of β-carotene to Ldlr+/− and Ldlr−/− pregnant mice via intraperitoneal injection at mid-gestation and monitored the changes in β-carotene content among maternal lipoproteins and the liver, as well as the accumulation of β-carotene in the placental–fetal unit. We showed an abnormal β-carotene distribution among serum lipoproteins and reduced hepatic β-carotene uptake in Ldlr−/− dams. These data strongly imply that LDLr significantly contributes to β-carotene uptake in the adult mouse liver. In contrast, LDLr does not seem to mediate acquisition of β-carotene by the placental–fetal unit.
Collapse
|
313
|
Thaxton CS, Rink JS, Naha PC, Cormode DP. Lipoproteins and lipoprotein mimetics for imaging and drug delivery. Adv Drug Deliv Rev 2016; 106:116-131. [PMID: 27133387 PMCID: PMC5086317 DOI: 10.1016/j.addr.2016.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/02/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
Lipoproteins are a set of natural nanoparticles whose main role is the transport of fats within the body. While much work has been done to develop synthetic nanocarriers to deliver drugs or contrast media, natural nanoparticles such as lipoproteins represent appealing alternatives. Lipoproteins are biocompatible, biodegradable, non-immunogenic and are naturally targeted to some disease sites. Lipoproteins can be modified to act as contrast agents in many ways, such as by insertion of gold cores to provide contrast for computed tomography. They can be loaded with drugs, nucleic acids, photosensitizers or boron to act as therapeutics. Attachment of ligands can re-route lipoproteins to new targets. These attributes render lipoproteins attractive and versatile delivery vehicles. In this review we will provide background on lipoproteins, then survey their roles as contrast agents, in drug and nucleic acid delivery, as well as in photodynamic therapy and boron neutron capture therapy.
Collapse
Affiliation(s)
- C Shad Thaxton
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA; International Institute for Nanotechnology, Northwestern University, Chicago, IL, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Jonathan S Rink
- Department of Urology, Northwestern University, Chicago, IL, USA; Simpson Querrey Institute for Bionanotechnology, Northwestern University, Chicago, IL, USA
| | - Pratap C Naha
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA
| | - David P Cormode
- Department of Radiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Bioengineering, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA; Department of Cardiology, University of Pennsylvania, 3400 Spruce St, 1 Silverstein, Philadelphia, PA 19104, USA.
| |
Collapse
|
314
|
Laurila PP, Soronen J, Kooijman S, Forsström S, Boon MR, Surakka I, Kaiharju E, Coomans CP, Van Den Berg SAA, Autio A, Sarin AP, Kettunen J, Tikkanen E, Manninen T, Metso J, Silvennoinen R, Merikanto K, Ruuth M, Perttilä J, Mäkelä A, Isomi A, Tuomainen AM, Tikka A, Ramadan UA, Seppälä I, Lehtimäki T, Eriksson J, Havulinna A, Jula A, Karhunen PJ, Salomaa V, Perola M, Ehnholm C, Lee-Rueckert M, Van Eck M, Roivainen A, Taskinen MR, Peltonen L, Mervaala E, Jalanko A, Hohtola E, Olkkonen VM, Ripatti S, Kovanen PT, Rensen PCN, Suomalainen A, Jauhiainen M. USF1 deficiency activates brown adipose tissue and improves cardiometabolic health. Sci Transl Med 2016; 8:323ra13. [PMID: 26819196 DOI: 10.1126/scitranslmed.aad0015] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
USF1 (upstream stimulatory factor 1) is a transcription factor associated with familial combined hyperlipidemia and coronary artery disease in humans. However, whether USF1 is beneficial or detrimental to cardiometabolic health has not been addressed. By inactivating USF1 in mice, we demonstrate protection against diet-induced dyslipidemia, obesity, insulin resistance, hepatic steatosis, and atherosclerosis. The favorable plasma lipid profile, including increased high-density lipoprotein cholesterol and decreased triglycerides, was coupled with increased energy expenditure due to activation of brown adipose tissue (BAT). Usf1 inactivation directs triglycerides from the circulation to BAT for combustion via a lipoprotein lipase-dependent mechanism, thus enhancing plasma triglyceride clearance. Mice lacking Usf1 displayed increased BAT-facilitated, diet-induced thermogenesis with up-regulation of mitochondrial respiratory chain complexes, as well as increased BAT activity even at thermoneutrality and after BAT sympathectomy. A direct effect of USF1 on BAT activation was demonstrated by an amplified adrenergic response in brown adipocytes after Usf1 silencing, and by augmented norepinephrine-induced thermogenesis in mice lacking Usf1. In humans, individuals carrying SNP (single-nucleotide polymorphism) alleles that reduced USF1 mRNA expression also displayed a beneficial cardiometabolic profile, featuring improved insulin sensitivity, a favorable lipid profile, and reduced atherosclerosis. Our findings identify a new molecular link between lipid metabolism and energy expenditure, and point to the potential of USF1 as a therapeutic target for cardiometabolic disease.
Collapse
Affiliation(s)
- Pirkka-Pekka Laurila
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Department of Medical Genetics, University of Helsinki, Helsinki FI-00014, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland.
| | - Jarkko Soronen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Sander Kooijman
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Saara Forsström
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Mariëtte R Boon
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Ida Surakka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Essi Kaiharju
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Claudia P Coomans
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | | | - Anu Autio
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland
| | - Antti-Pekka Sarin
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland
| | - Johannes Kettunen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Computational Medicine, Institute of Health Sciences, University of Oulu and Oulu University Hospital, Oulu FI-90014, Finland
| | - Emmi Tikkanen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland
| | - Tuula Manninen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland
| | - Jari Metso
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Krista Merikanto
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Maija Ruuth
- Wihuri Research Institute, Helsinki FI-00290, Finland
| | - Julia Perttilä
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Anne Mäkelä
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland
| | - Ayaka Isomi
- Hiroshima University, Hiroshima 730-0053, Japan
| | - Anita M Tuomainen
- Institute of Dentistry, University of Helsinki, Helsinki FI-00014, Finland
| | - Anna Tikka
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Usama Abo Ramadan
- Experimental MRI Laboratory, Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Johan Eriksson
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland. Folkhälsan Research Centre, Helsinki FI-00251, Finland. Unit of General Practice, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Department of General Practice and Primary Health Care, University of Helsinki, Helsinki FI-00014, Finland
| | - Aki Havulinna
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Antti Jula
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Pekka J Karhunen
- Department of Clinical Chemistry, Fimlab Laboratories, and Tampere University School of Medicine, Tampere FI-33014, Finland
| | - Veikko Salomaa
- Department of Health, National Institute for Health and Welfare, Helsinki FI-00271, Finland
| | - Markus Perola
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Christian Ehnholm
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | | | - Miranda Van Eck
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anne Roivainen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku FI-20520, Finland. Turku Center for Disease Modeling, University of Turku, Turku FI-20520, Finland
| | - Marja-Riitta Taskinen
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki FI-00014, Finland
| | | | - Eero Mervaala
- Institute of Biomedicine, University of Helsinki, Helsinki FI-00014, Finland
| | - Anu Jalanko
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland
| | - Esa Hohtola
- Department of Genetics and Physiology, University of Oulu, Oulu FI-90014, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki FI-00290, Finland
| | - Samuli Ripatti
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland. Institute for Molecular Medicine Finland, FIMM, Helsinki FI-00251, Finland. Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland. Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | - Patrick C N Rensen
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, Leiden 2333 ZA, Netherlands. Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden 2333 ZA, Netherlands
| | - Anu Suomalainen
- Molecular Neurology, Research Programs Unit, University of Helsinki, Helsinki FI-00014, Finland. Department of Neurology, Helsinki University Central Hospital, Helsinki FI-00290, Finland. Neuroscience Center, University of Helsinki, Helsinki FI-00014, Finland
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Helsinki FI-00251, Finland.
| |
Collapse
|
315
|
Pasterkamp G, den Ruijter HM, Libby P. Temporal shifts in clinical presentation and underlying mechanisms of atherosclerotic disease. Nat Rev Cardiol 2016; 14:21-29. [DOI: 10.1038/nrcardio.2016.166] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
316
|
The application of transcriptomic data in the authentication of beef derived from contrasting production systems. BMC Genomics 2016; 17:746. [PMID: 27654331 PMCID: PMC5031250 DOI: 10.1186/s12864-016-2851-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/20/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Differences between cattle production systems can influence the nutritional and sensory characteristics of beef, in particular its fatty acid (FA) composition. As beef products derived from pasture-based systems can demand a higher premium from consumers, there is a need to understand the biological characteristics of pasture produced meat and subsequently to develop methods of authentication for these products. Here, we describe an approach to authentication that focuses on differences in the transcriptomic profile of muscle from animals finished in different systems of production of practical relevance to the Irish beef industry. The objectives of this study were to identify a panel of differentially expressed (DE) genes/networks in the muscle of cattle raised outdoors on pasture compared to animals raised indoors on a concentrate based diet and to subsequently identify an optimum panel which can classify the meat based on a production system. RESULTS A comparison of the muscle transcriptome of outdoor/pasture-fed and Indoor/concentrate-fed cattle resulted in the identification of 26 DE genes. Functional analysis of these genes identified two significant networks (1: Energy Production, Lipid Metabolism, Small Molecule Biochemistry; and 2: Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry), both of which are involved in FA metabolism. The expression of selected up-regulated genes in the outdoor/pasture-fed animals correlated positively with the total n-3 FA content of the muscle. The pathway and network analysis of the DE genes indicate that peroxisome proliferator-activated receptor (PPAR) and FYN/AMPK could be implicit in the regulation of these alterations to the lipid profile. In terms of authentication, the expression profile of three DE genes (ALAD, EIF4EBP1 and NPNT) could almost completely separate the samples based on production system (95 % authentication for animals on pasture-based and 100 % for animals on concentrate- based diet) in this context. CONCLUSIONS The majority of DE genes between muscle of the outdoor/pasture-fed and concentrate-fed cattle were related to lipid metabolism and in particular β-oxidation. In this experiment the combined expression profiles of ALAD, EIF4EBP1 and NPNT were optimal in classifying the muscle transcriptome based on production system. Given the overall lack of comparable studies and variable concordance with those that do exist, the use of transcriptomic data in authenticating production systems requires more exploration across a range of contexts and breeds.
Collapse
|
317
|
Abstract
Despite significant progress in pharmacologic treatment aimed at lowering low-density lipoprotein cholesterol to reduce cardiovascular disease risk, a number of patient groups that often prove difficult to treat remain. Patients with familial hypercholesterolemia may go undiagnosed and untreated or, despite treatment, have persistently elevated lipid levels that confer a high cardiovascular disease risk. Although the true prevalence is unknown, statin intolerance is a common clinical presentation that is difficult to assess and frequently leads to suboptimal lipid treatment. Additionally, some patients may not achieve the expected response to guideline-based therapy. For all 3 groups, a standardized approach offers the best chance for effective diagnosis and optimal treatment.
Collapse
|
318
|
Engel DF, de Oliveira J, Lopes JB, Santos DB, Moreira ELG, Farina M, Rodrigues ALS, de Souza Brocardo P, de Bem AF. Is there an association between hypercholesterolemia and depression? Behavioral evidence from the LDLr −/− mouse experimental model. Behav Brain Res 2016; 311:31-38. [DOI: 10.1016/j.bbr.2016.05.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
319
|
Cheng F, Twardowski L, Reifenberg K, Winter K, Canisius A, Pross E, Fan J, Schmitt E, Shultz LD, Lackner KJ, Torzewski M. Combined B, T and NK Cell Deficiency Accelerates Atherosclerosis in BALB/c Mice. PLoS One 2016; 11:e0157311. [PMID: 27564380 PMCID: PMC5001715 DOI: 10.1371/journal.pone.0157311] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/29/2016] [Indexed: 12/17/2022] Open
Abstract
This study focused on the unique properties of both the Ldlr knockout defect (closely mimicking the human situation) and the BALB/c (C) inbred mouse strain (Th-2 slanted immune response). We generated two immunodeficient strains with severe combined B- and T-cell immunodeficiency with or without a complete lack of natural killer cells to revisit the role of adaptive immune responses on atherogenesis. C-Ldlr-/-Rag1-/- mice, which show severe combined B- and T-cell immunodeficiency and C-Ldlr-/-Rag1-/-Il2rg-/- mice, which combine the T- and B-cell defect with a complete lack of natural killer cells and inactivation of multiple cytokine signalling pathways were fed an atherogenic Western type diet (WTD). Both B6-Ldlr-/- and C-Ldlr-/- immunocompetent mice were used as controls. Body weights and serum cholesterol levels of both immunodeficient strains were significantly increased compared to C-Ldlr-/- controls, except for cholesterol levels of C-Ldlr-/-Rag1-/- double mutants after 12 weeks on the WTD. Quantification of the aortic sinus plaque area revealed that both strains of immunodeficient mice developed significantly more atherosclerosis compared to C-Ldlr-/- controls after 24 weeks on the WTD. Increased atherosclerotic lesion development in C-Ldlr-/-Rag1-/-Il2rg-/- triple mutants was associated with significantly increased numbers of macrophages and significantly decreased numbers of smooth muscle cells compared to both C-Ldlr-/- wild type and C-Ldlr-/-Rag1-/- double mutants pointing to a plaque destabilizing effect of NK cell loss. Collectively, the present study reveals a previously unappreciated complexity with regard to the impact of lymphocytes on lipoprotein metabolism and the role of lymphocyte subsets in plaque composition.
Collapse
Affiliation(s)
- Fei Cheng
- Dr. Margarete Fischer-Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Tübingen, Germany
| | - Laura Twardowski
- Department of Laboratory Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
| | - Kurt Reifenberg
- Center for Preclinical Research, German Cancer Research Center, Heidelberg, Germany
| | - Kerstin Winter
- Dr. Margarete Fischer-Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Tübingen, Germany
| | - Antje Canisius
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Eva Pross
- Dr. Margarete Fischer-Institute of Clinical Pharmacology, Stuttgart and University of Tübingen, Tübingen, Germany
| | - Jianglin Fan
- Department of Molecular Pathology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Edgar Schmitt
- Institute for Immunology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Karl J. Lackner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Michael Torzewski
- Department of Laboratory Medicine, Robert-Bosch-Hospital, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
320
|
Guizoni DM, Dorighello GG, Oliveira HCF, Delbin MA, Krieger MH, Davel AP. Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. J Transl Med 2016; 14:213. [PMID: 27435231 PMCID: PMC4950099 DOI: 10.1186/s12967-016-0972-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/11/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Endothelial dysfunction associated with hypercholesterolemia is an early event in atherosclerosis characterized by redox imbalance associated with high superoxide production and reduced nitric oxide (NO) and hydrogen peroxide (H2O2) production. Aerobic exercise training (AET) has been demonstrated to ameliorate atherosclerotic lesions and oxidative stress in advanced atherosclerosis. However, whether AET protects against the early mechanisms of endothelial dysfunction in familial hypercholesterolemia remains unclear. This study investigated the effects of AET on endothelial dysfunction and vascular redox status in the aortas of LDL receptor knockout mice (LDLr(-/-)), a genetic model of familial hypercholesterolemia. METHODS Twelve-week-old C57BL/6J (WT) and LDLr(-/-) mice were divided into sedentary and exercised (AET on a treadmill 1 h/5 × per week) groups for 4 weeks. Changes in lipid profiles, endothelial function, and aortic NO, H2O2 and superoxide production were examined. RESULTS Total cholesterol and triglycerides were increased in sedentary and exercised LDLr(-/-) mice. Endothelium-dependent relaxation induced by acetylcholine was impaired in aortas of sedentary LDLr(-/-) mice but not in the exercised group. Inhibition of NO synthase (NOS) activity or H2O2 decomposition by catalase abolished the differences in the acetylcholine response between the animals. No changes were noted in the relaxation response induced by NO donor sodium nitroprusside or H2O2. Neuronal NOS expression and endothelial NOS phosphorylation (Ser1177), as well as NO and H2O2 production, were reduced in aortas of sedentary LDLr(-/-) mice and restored by AET. Incubation with apocynin increased acetylcholine-induced relaxation in sedentary, but not exercised LDLr(-/-) mice, suggesting a minor participation of NADPH oxidase in the endothelium-dependent relaxation after AET. Consistent with these findings, Nox2 expression and superoxide production were reduced in the aortas of exercised compared to sedentary LDLr(-/-) mice. Furthermore, the aortas of sedentary LDLr(-/-) mice showed reduced expression of superoxide dismutase (SOD) isoforms and minor participation of Cu/Zn-dependent SODs in acetylcholine-induced, endothelium-dependent relaxation, abnormalities that were partially attenuated in exercised LDLr(-/-) mice. CONCLUSION The data gathered by this study suggest AET as a potential non-pharmacological therapy in the prevention of very early endothelial dysfunction and redox imbalance in familial hypercholesterolemia via increases in NO bioavailability and H2O2 production.
Collapse
Affiliation(s)
- Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Gabriel G Dorighello
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Marta H Krieger
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas-UNICAMP, P.O. Box 6109, Campinas, São Paulo, Brazil.
| |
Collapse
|
321
|
Wang HY, Quan C, Hu C, Xie B, Du Y, Chen L, Yang W, Yang L, Chen Q, Shen B, Hu B, Zheng Z, Zhu H, Huang X, Xu G, Chen S. A lipidomics study reveals hepatic lipid signatures associating with deficiency of the LDL receptor in a rat model. Biol Open 2016; 5:979-86. [PMID: 27378433 PMCID: PMC4958281 DOI: 10.1242/bio.019802] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) plays a critical role in the liver for the clearance of plasma low-density lipoprotein (LDL). Its deficiency causes hypercholesterolemia in many models. To facilitate the usage of rats as animal models for the discovery of cholesterol-lowering drugs, we took a genetic approach to delete the LDLR in rats aiming to increase plasma LDL cholesterol (LDL-C). An LDLR knockout rat was generated via zinc-finger nuclease technology, which harbors a 19-basepair deletion in the seventh exon of the ldlr gene. As expected, deletion of the LDLR elevated total cholesterol and total triglyceride in the plasma, and caused a tenfold increase of plasma LDL-C and a fourfold increase of plasma very low-density lipoprotein (VLDL-C). A lipidomics analysis revealed that deletion of the LDLR affected hepatic lipid metabolism, particularly lysophosphatidylcholines, free fatty acids and sphingolipids in the liver. Cholesterol ester (CE) 20:4 also displayed a significant increase in the LDLR knockout rats. Taken together, the LDLR knockout rat offers a new model of hypercholesterolemia, and the lipidomics analysis reveals hepatic lipid signatures associating with deficiency of the LDL receptor. Summary: An LDL receptor knockout rat model was generated which offers a new hypercholesterolemia model. A lipidomics analysis reveals hepatic lipid signatures associating with LDLR deficiency in rats.
Collapse
Affiliation(s)
- Hong Yu Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| | - Chao Quan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Chunxiu Hu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Bingxian Xie
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Yinan Du
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Liang Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Wei Yang
- Laboratory Animal Center, China Medical University, Shenyang 110001, China
| | - Liu Yang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Qiaoli Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Bin Shen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Bian Hu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Zhihong Zheng
- Laboratory Animal Center, China Medical University, Shenyang 110001, China
| | - Haibo Zhu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Xingxu Huang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Pukou District, Nanjing 210061, China Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
322
|
Getz GS, Reardon CA. Do the Apoe-/- and Ldlr-/- Mice Yield the Same Insight on Atherogenesis? Arterioscler Thromb Vasc Biol 2016; 36:1734-41. [PMID: 27386935 DOI: 10.1161/atvbaha.116.306874] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
Murine models of atherosclerosis are useful for investigating the environmental and genetic influences on lesion formation and composition. Apoe(-/-) and Ldlr(-/-) mice are the 2 most extensively used models. The models differ in important ways with respect to the precise mechanism by which their absence enhances atherosclerosis, including differences in plasma lipoproteins. The majority of the gene function studies have utilized only 1 model, with the results being generalized to atherogenic mechanisms. In only a relatively few cases have studies been conducted in both atherogenic murine models. This review will discuss important differences between the 2 atherogenic models and will point out studies that have been performed in the 2 models where results are comparable and those where different results were obtained.
Collapse
Affiliation(s)
- Godfrey S Getz
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL.
| | - Catherine A Reardon
- From the Department of Pathology (G.S.G.) and Ben May Institute for Cancer Biology (C.A.R.), University of Chicago, IL
| |
Collapse
|
323
|
George J, Afek A, Gilburd B, Levy Y, Blank M, Kopolovic J, Harats D, Shoenfeld Y. Atherosclerosis in LDL-receptor knockout mice is accelerated by immunization with anticardiolipin antibodies. Lupus 2016. [DOI: 10.1177/096120339700600908] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Atherosclerosis is a process initiated by accumulation of macrophages in distinct areas of endothelial cell damage and uptake of large amounts of lipids. Recently, it has been shown that the immune system plays an active part in the progression of the atherosclerotic plaque although its precise role has not yet been elucidated. Anticardiolipin antibodies (aCL) are generally found in the sera of patients with the antiphospholipid syndrome (APS) and are associated with a prothrombotic state. Several authors have demonstrated that aCL can activate platelets and endothelial cells as well as increase oxidized low density lipoprotein (LDL) uptake by macrophages. In the present study we sought to assess the effect of immunization with aCL (Ab1, leading to the production of mouse aCL-Ab3) on the progression of atherosclerosis. Two groups of 8-weeks old female LDL-receptor knockout mice (n = 13 per group) were immunized with IgG purified from the serum of an APS patient or with normal human IgG, respectively. The aCL immunized mice developed high titres of 'self' aCL (detected using the standard aCL ELISA) as compared with the normal human IgG immunized mice, whereas no differences were noted between both study groups with respect to the serum lipid levels. The extent of fatty streak formation was significantly higher in the aCL immunized mice in comparison with the human IgG injected mice (mean aortic lesion size of 5308 ± 471 μm2 vs 1027 ± 184 μm2, respectively, P < 0.01). The immunohistochemical analysis of the atherosclerotic plaques from both mouse groups did not display differences in cellular composition. The results of the study show that mouse aCL induced by immunization with human aCL from an APS patient enhance atherogenesis in LDL-RKO mice and imply that these antibodies may play a role in atherosclerosis development in patients with the APS.
Collapse
Affiliation(s)
- J. George
- Research Unit of Autoimmune Diseases, Department of Medicine 'B', Tel Aviv University
| | - A. Afek
- Institute of Pathology, Tel Aviv University
| | - B. Gilburd
- Institute of Lipid and Atherosclerosis Research, Sheba Medical Centre, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Y. Levy
- Research Unit of Autoimmune Diseases, Department of Medicine 'B', Tel Aviv University
| | - M. Blank
- Research Unit of Autoimmune Diseases, Department of Medicine 'B', Tel Aviv University
| | | | - D. Harats
- Institute of Lipid and Atherosclerosis Research, Sheba Medical Centre, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | - Y. Shoenfeld
- Research Unit of Autoimmune Diseases, Department of Medicine 'B', Tel Aviv University
| |
Collapse
|
324
|
The potential impact of new generation transgenic methods on creating rabbit models of cardiac diseases. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:123-30. [DOI: 10.1016/j.pbiomolbio.2016.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022]
|
325
|
Shen J, Tong X, Sud N, Khound R, Song Y, Maldonado-Gomez MX, Walter J, Su Q. Low-Density Lipoprotein Receptor Signaling Mediates the Triglyceride-Lowering Action of
Akkermansia muciniphila
in Genetic-Induced Hyperlipidemia. Arterioscler Thromb Vasc Biol 2016; 36:1448-56. [DOI: 10.1161/atvbaha.116.307597] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/16/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Shen
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Xuedong Tong
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Neetu Sud
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Rituraj Khound
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Yongyan Song
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Maria X. Maldonado-Gomez
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Jens Walter
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| | - Qiaozhu Su
- From the Departments of Nutrition and Health Sciences (J.S., X.T., N.S., R.K., Y.S., Q.S.) and Food Science and Technology (M.X.M.-G.), University of Nebraska-Lincoln; and Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Canada (J.W.)
| |
Collapse
|
326
|
Atherosclerosis Alters Loading-Induced Arterial Damage: Implications for Robotic Surgery. PLoS One 2016; 11:e0156936. [PMID: 27295082 PMCID: PMC4905651 DOI: 10.1371/journal.pone.0156936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/20/2016] [Indexed: 12/01/2022] Open
Abstract
Background Lack of intra-operative haptic information during robotic surgery increases the risk for unintended tissue overload and damage. Knowledge about the acute and chronic fundamental relationship between force load and induced damage in healthy and diseased arteries is crucial to enable intra-operative haptic feedback or shared autonomy and improve patient safety. Methods Arteries of wildtype and atherosclerotic mice were clamped in vivo for 2 minutes (0.0N, 0.6N or 1.27N). Histological analysis (Verhoeff’s-Van Gieson, Osteopontin, CD45, CD105) was performed immediately, or after 6 hours, 2 weeks or 1 month. Endothelium-dependent and–independent vasodilatation was assessed immediately or 1 month after clamping. Results Endothelium dependent vasodilatation is worse after clamping of wildtype arteries, but is restored after one month. Clamping also results in flattening of the innermost elastic membrane of both genotypes, which is reversed over time for wildtype arteries but not for vessels from atherosclerotic mice. Higher osteopontin content in wildtype and LDLR-/- mice after 2 weeks suggests a phenotypic switch of the medial smooth muscle cells (SMCs), an effect that is reversed after 1 month. While inflammation in the intima diminishes, medial CD45 content rises through time in both genotypes. CD105 staining shows that even manipulation without clamping results in endothelial cell loss in both LDLR+/+ and LDLR-/- mice. Conclusions Arterial clamping induces different acute and long-term injury to the vessel wall of atherosclerotic and healthy arteries.
Collapse
|
327
|
Cao Q, Cui X, Wu R, Zha L, Wang X, Parks JS, Yu L, Shi H, Xue B. Myeloid Deletion of α1AMPK Exacerbates Atherosclerosis in LDL Receptor Knockout (LDLRKO) Mice. Diabetes 2016; 65:1565-76. [PMID: 26822081 PMCID: PMC4878417 DOI: 10.2337/db15-0917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 12/31/2015] [Indexed: 12/28/2022]
Abstract
Macrophage inflammation marks all stages of atherogenesis, and AMPK is a regulator of macrophage inflammation. We therefore generated myeloid α1AMPK knockout (MAKO) mice on the LDL receptor knockout (LDLRKO) background to investigate whether myeloid deletion of α1AMPK exacerbates atherosclerosis. When fed an atherogenic diet, MAKO/LDLRKO mice displayed exacerbated atherosclerosis compared with LDLRKO mice. To determine the underlying pathophysiological pathways, we characterized macrophage inflammation/chemotaxis and lipid/cholesterol metabolism in MAKO/LDLRKO mice. Myeloid deletion of α1AMPK increased macrophage inflammatory gene expression and enhanced macrophage migration and adhesion to endothelial cells. Remarkably, MAKO/LDLRKO mice also displayed higher composition of circulating chemotaxically active Ly-6C(high) monocytes, enhanced atherosclerotic plaque chemokine expression, and monocyte recruitment into plaques, leading to increased atherosclerotic plaque macrophage content and inflammation. MAKO/LDLRKO mice also exhibited higher plasma LDL and VLDL cholesterol content, increased circulating apolipoprotein B (apoB) levels, and higher liver apoB expression. We conclude that macrophage α1AMPK deficiency promotes atherogenesis in LDLRKO mice and is associated with enhanced macrophage inflammation and hypercholesterolemia and that macrophage α1AMPK may serve as a therapeutic target for prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Qiang Cao
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| | - Xin Cui
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| | - Rui Wu
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| | - Lin Zha
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| | - Xianfeng Wang
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - John S Parks
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD
| | - Hang Shi
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| | - Bingzhong Xue
- Department of Biology and Center for Obesity Reversal, Georgia State University, Atlanta, GA
| |
Collapse
|
328
|
Jacobs A, Warda A, Verbeek J, Cassiman D, Spincemaille P. An Overview of Mouse Models of Nonalcoholic Steatohepatitis: From Past to Present. ACTA ACUST UNITED AC 2016; 6:185-200. [DOI: 10.1002/cpmo.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ans Jacobs
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Anne‐Sophie Warda
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
| | - Jef Verbeek
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Maastricht University Medical Center Maastricht The Netherlands
| | - David Cassiman
- Department of Hepatology, University Hospitals KU Leuven Leuven Belgium
- Metabolic Center, University Hospitals KU Leuven Leuven Belgium
| | - Pieter Spincemaille
- Department of Laboratory Medicine, University Hospitals KU Leuven Leuven Belgium
| |
Collapse
|
329
|
Immune-inflammatory responses in atherosclerosis: Role of an adaptive immunity mainly driven by T and B cells. Immunobiology 2016; 221:1014-33. [PMID: 27262513 DOI: 10.1016/j.imbio.2016.05.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/06/2016] [Accepted: 05/23/2016] [Indexed: 01/22/2023]
Abstract
Adaptive immune response plays an important role in atherogenesis. In atherosclerosis, the proinflammatory immune response driven by Th1 is predominant but the anti-inflammatory response mediated mainly by regulatory T cells is also present. The role of Th2 and Th17 cells in atherogenesis is still debated. In the plaque, other T helper cells can be observed such as Th9 and Th22 but is little is known about their impact in atherosclerosis. Heterogeneity of CD4(+) T cell subsets presented in the plaque may suggest for plasticity of T cell that can switch the phenotype dependening on the local microenvironment and activating/blocking stimuli. Effector T cells are able to recognize self-antigens released by necrotic and apoptotic vascular cells and induce a humoral immune reaction. Tth cells resided in the germinal centers help B cells to switch the antibody class to the production of high-affinity antibodies. Humoral immunity is mediated by B cells that release antigen-specific antibodies. A variety of B cell subsets were found in human and murine atherosclerotic plaques. In mice, B1 cells could spontaneously produce atheroprotective natural IgM antibodies. Conventional B2 lymphocytes secrete either proatherogenic IgG, IgA, and IgE or atheroprotective IgG and IgM antibodies reactive with oxidation-specific epitopes on atherosclerosis-associated antigens. A small population of innate response activator (IRA) B cells, which is phenotypically intermediate between B1 and B2 cells, produces IgM but possesses proatherosclerotic properties. Finally, there is a minor subset of splenic regulatory B cells (Bregs) that protect against atherosclerotic inflammation through support of generation of Tregs and production of anti-inflammatory cytokines IL-10 and TGF-β and proapoptotic molecules.
Collapse
|
330
|
Lo Sasso G, Schlage WK, Boué S, Veljkovic E, Peitsch MC, Hoeng J. The Apoe(-/-) mouse model: a suitable model to study cardiovascular and respiratory diseases in the context of cigarette smoke exposure and harm reduction. J Transl Med 2016; 14:146. [PMID: 27207171 PMCID: PMC4875735 DOI: 10.1186/s12967-016-0901-1] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/07/2016] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis-prone apolipoprotein E-deficient (Apoe(-/-)) mice display poor lipoprotein clearance with subsequent accumulation of cholesterol ester-enriched particles in the blood, which promote the development of atherosclerotic plaques. Therefore, the Apoe(-/-) mouse model is well established for the study of human atherosclerosis. The systemic proinflammatory status of Apoe(-/-) mice also makes them good candidates for studying chronic obstructive pulmonary disease, characterized by pulmonary inflammation, airway obstruction, and emphysema, and which shares several risk factors with cardiovascular diseases, including smoking. Herein, we review the results from published studies using Apoe(-/-) mice, with a particular focus on work conducted in the context of cigarette smoke inhalation studies. The findings from these studies highlight the suitability of this animal model for researching the effects of cigarette smoking on atherosclerosis and emphysema.
Collapse
Affiliation(s)
- Giuseppe Lo Sasso
- />Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | | | - Stéphanie Boué
- />Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Emilija Veljkovic
- />Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C. Peitsch
- />Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- />Philip Morris International R&D, Philip Morris Products S.A. (Part of Philip Morris International Group of Companies), Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
331
|
Gleissner CA. Translational atherosclerosis research: From experimental models to coronary artery disease in humans. Atherosclerosis 2016; 248:110-6. [DOI: 10.1016/j.atherosclerosis.2016.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/09/2016] [Accepted: 03/08/2016] [Indexed: 01/23/2023]
|
332
|
Morgan A, Mooney K, Wilkinson S, Pickles N, Mc Auley M. Cholesterol metabolism: A review of how ageing disrupts the biological mechanisms responsible for its regulation. Ageing Res Rev 2016; 27:108-124. [PMID: 27045039 DOI: 10.1016/j.arr.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/22/2016] [Accepted: 03/30/2016] [Indexed: 02/06/2023]
Abstract
Cholesterol plays a vital role in the human body as a precursor of steroid hormones and bile acids, in addition to providing structure to cell membranes. Whole body cholesterol metabolism is maintained by a highly coordinated balancing act between cholesterol ingestion, synthesis, absorption, and excretion. The aim of this review is to discuss how ageing interacts with these processes. Firstly, we will present an overview of cholesterol metabolism. Following this, we discuss how the biological mechanisms which underpin cholesterol metabolism are effected by ageing. Included in this discussion are lipoprotein dynamics, cholesterol absorption/synthesis and the enterohepatic circulation/synthesis of bile acids. Moreover, we discuss the role of oxidative stress in the pathological progression of atherosclerosis and also discuss how cholesterol biosynthesis is effected by both the mammalian target of rapamycin and sirtuin pathways. Next, we examine how diet and alterations to the gut microbiome can be used to mitigate the impact ageing has on cholesterol metabolism. We conclude by discussing how mathematical models of cholesterol metabolism can be used to identify therapeutic interventions.
Collapse
|
333
|
Construction of minicircle DNA vectors capable of correcting familial hypercholesterolemia phenotype in a LDLR-deficient mouse model. Gene Ther 2016; 23:657-63. [PMID: 27092942 DOI: 10.1038/gt.2016.37] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 03/29/2016] [Accepted: 04/05/2016] [Indexed: 01/05/2023]
Abstract
Familial hypercholesterolemia (FH) caused by defect in low-density lipoprotein receptor (LDLR) is a life-threatening disease with poor response to conventional treatments. Earlier gene therapy studies have generated promising results, but further development is hampered because the cells harboring the viral vectors were eliminated by host immune system soon after delivery, whereas the nonviral vectors were too bulky to be delivered to target cells. To overcome these problems, we constructed multiple minicircle (MC) DNA vectors to express the therapeutic LDLR. MC is an optimized nonviral vector that is capable of expressing high level of transgene product persistently. We found that among the seven MCs tested, the best is MC5 with multiple advanced features. First, the LDLr gene was placed under the control of sterol regulatory element (SRE) using LDLr gene promoter or apoprotein E (ApoE) promoter, allowing the transcription of the LDLr gene to be regulated by serum low-density lipoprotein (LDL) cholesterol as its functional gene counterpart. Second, a hepatic control region (HCR) was placed upstream of the promoter that serves as a controller to ensure liver-specific expression. Third, the modified Kozak sequence was placed in front of the LDLr gene start codon to enhance its translation efficiency. MC5 was 5.23 kb in size, and was capable of tight physiological control in intracellular LDL cholesterol level even when challenged with high dose of sterols in vitro. Importantly, it was able to correct the phenotype of LDLR-deficient mice C57BL/6 LDLR(-/-) for more than 105 days without detectable toxicity. Therefore, this MC has the clinical application potential for treating FH.
Collapse
|
334
|
Ding Y, Xian X, Holland WL, Tsai S, Herz J. Low-Density Lipoprotein Receptor-Related Protein-1 Protects Against Hepatic Insulin Resistance and Hepatic Steatosis. EBioMedicine 2016; 7:135-45. [PMID: 27322467 PMCID: PMC4913705 DOI: 10.1016/j.ebiom.2016.04.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 11/15/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) is a multifunctional uptake receptor for chylomicron remnants in the liver. In vascular smooth muscle cells LRP1 controls reverse cholesterol transport through platelet-derived growth factor receptor β (PDGFR-β) trafficking and tyrosine kinase activity. Here we show that LRP1 regulates hepatic energy homeostasis by integrating insulin signaling with lipid uptake and secretion. Somatic inactivation of LRP1 in the liver (hLRP1KO) predisposes to diet-induced insulin resistance with dyslipidemia and non-alcoholic hepatic steatosis. On a high-fat diet, hLRP1KO mice develop a severe Metabolic Syndrome secondary to hepatic insulin resistance, reduced expression of insulin receptors on the hepatocyte surface and decreased glucose transporter 2 (GLUT2) translocation. While LRP1 is also required for efficient cell surface insulin receptor expression in the absence of exogenous lipids, this latent state of insulin resistance is unmasked by exposure to fatty acids. This further impairs insulin receptor trafficking and results in increased hepatic lipogenesis, impaired fatty acid oxidation and reduced very low density lipoprotein (VLDL) triglyceride secretion. Hepatic LRP1 deficiency in a mouse model (hLRP1KO) predisposes to diet-induced insulin resistance, dyslipidemia, and obesity. Insulin resistance in the hLRP1KO mouse results from reduced cell surface expression of insulin receptor (IR) and impaired translocation of glucose transporter 2 (GLUT2). Excess fatty acids in hLRP1KO mice shift hepatic fatty acid metabolism from an oxidative to a synthetic state, resulting in hepatic steatosis.
LRP1 is a multifunctional transmembrane receptor with essential functions in lipoprotein metabolism and subcellular receptor tyrosine kinase trafficking. A mouse model of hepatic LRP1 deficiency integrates the hallmark findings in Metabolic Syndrome - insulin resistance, dyslipidemia, and hepatic steatosis - with impaired glucose metabolism and altered hepatic fatty acid metabolism as a consequence of reduced insulin receptor trafficking and signaling. These findings underscore the central role of LRP1 in overall energy homeostasis, and specifically liver glucose and fatty acid metabolism.
Collapse
Affiliation(s)
- Yinyuan Ding
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Key Laboratory of Medical Electrophysiology, Ministry of Education of China, China; Institute of Cardiovascular Research, Sichuan Medical University, Luzhou 646000, China
| | - Xunde Xian
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - William L Holland
- Department of Internal Medicine, Touchstone Diabetes Center, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shirling Tsai
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA; Dallas VA Medical Center, Dallas, TX 75216, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
335
|
Tao W, Moore R, Meng Y, Smith ER, Xu XX. Endocytic adaptors Arh and Dab2 control homeostasis of circulatory cholesterol. J Lipid Res 2016; 57:809-17. [PMID: 27005486 DOI: 10.1194/jlr.m063065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Indexed: 11/20/2022] Open
Abstract
High serum cholesterol (hypercholesterolemia) strongly associates with cardiovascular diseases as the atherogenic LDLs promote atheroma development in arteries (atherosclerosis). LDL clearance from the circulation by LDL receptor (LDLR)-mediated endocytosis by hepatic and peripheral tissues and subsequent feedback regulation of endogenous synthesis of cholesterol is a key determinant of serum LDL level. Human mutation analysis revealed that autosomal recessive hypercholesterolemia (ARH), an LDLR endocytic adaptor, perturbs LDLR function and thus impacts serum cholesterol levels. In our genetic analysis of mutant mice, we found that deletion of another LDLR endocytic adaptor, Disabled-2 (Dab2), only slightly affected serum cholesterol levels. However, elimination of both arh and dab2 genes in mice resulted in profound hypercholesterolemia similar to that resulting from ldlr homozygous deletion. In the liver, Dab2 is expressed in sinusoid endothelial cells but not in hepatocytes. When deleting both Dab2 and Arh, HMG-CoA reductase level increased to the level similar to that of ldlr knockout. Thus, in the absence of Arh, Dab2 in liver endothelial cells regulates cholesterol synthesis in hepatocytes. We conclude that the combination of Arh and Dab2 is responsible for the majority of adaptor function in LDLR endocytosis and LDLR-mediated cholesterol homeostasis.
Collapse
Affiliation(s)
- Wensi Tao
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Robert Moore
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Yue Meng
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Elizabeth R Smith
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Xiang-Xi Xu
- Department of Cell Biology, Molecular Cell and Developmental Biology Graduate Program, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
336
|
Zhang Y, Ma KL, Ruan XZ, Liu BC. Dysregulation of the Low-Density Lipoprotein Receptor Pathway Is Involved in Lipid Disorder-Mediated Organ Injury. Int J Biol Sci 2016; 12:569-79. [PMID: 27019638 PMCID: PMC4807419 DOI: 10.7150/ijbs.14027] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/26/2016] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) pathway is a negative feedback system that plays important roles in the regulation of plasma and intracellular cholesterol homeostasis. To maintain a cholesterol homeostasis, LDLR expression is tightly regulated by sterol regulatory element-binding protein-2 (SREBP-2) and SREBP cleavage-activating protein (SCAP) in transcriptional level and by proprotein convertase subtilisin/kexin type 9 (PCSK9) in posttranscriptional level. The dysregulation of LDLR expression results in abnormal lipid accumulation in cells and tissues, such as vascular smooth muscle cells, hepatic cells, renal mesangial cells, renal tubular cells and podocytes. It has been demonstrated that inflammation, renin-angiotensin system (RAS) activation, and hyperglycemia induce the disruption of LDLR pathway, which might contribute to lipid disorder-mediated organ injury (atherosclerosis, non-alcoholic fatty liver disease, kidney fibrosis, etc). The mammalian target of rapamycin (mTOR) pathway is a critical mediator in the disruption of LDLR pathway caused by pathogenic factors. The mTOR complex1 activation upregulates LDLR expression at the transcriptional and posttranscriptional levels, consequently resulting in lipid deposition. This paper mainly reviews the mechanisms for the dysregulation of LDLR pathway and its roles in lipid disorder-mediated organ injury under various pathogenic conditions. Understanding these mechanisms leading to the abnormality of LDLR expression contributes to find potential new drug targets in lipid disorder-mediated diseases.
Collapse
|
337
|
Maedeker JA, Stoka KV, Bhayani SA, Gardner WS, Bennett L, Procknow JD, Staiculescu MC, Walji TA, Craft CS, Wagenseil JE. Hypertension and decreased aortic compliance due to reduced elastin amounts do not increase atherosclerotic plaque accumulation in Ldlr-/- mice. Atherosclerosis 2016; 249:22-9. [PMID: 27062406 DOI: 10.1016/j.atherosclerosis.2016.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/17/2016] [Accepted: 03/16/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS High blood pressure and reduced aortic compliance are associated with increased atherosclerotic plaque accumulation in humans. Animal studies support these associations, but additional factors, such as fragmented elastic fibers, are present in most previous animal studies. Elastin heterozygous (Eln+/-) mice have high blood pressure and reduced aortic compliance, with no evidence of elastic fiber fragmentation and represent an appropriate model to directly investigate the effects of these factors on atherosclerosis. METHODS AND RESULTS Eln+/- and Eln+/+ mice were crossed with low density lipoprotein receptor knockout (Ldlr-/-) and wild-type (Ldlr+/+) mice and fed normal or Western diet (WD) for 16 weeks. We hypothesized that on WD, Eln+/-Ldlr-/- mice with high blood pressure and reduced aortic compliance would have increased atherosclerotic plaque accumulation compared to Eln+/+Ldlr-/- mice. We measured serum cholesterol and cytokine levels, blood pressure, aortic compliance, and plaque accumulation. Contrary to our hypothesis, we found that on WD, Eln+/-Ldlr-/- mice do not have increased plaque accumulation compared to Eln+/+Ldlr-/- mice. At the aortic root, there are no significant differences in plaque area between Eln+/-Ldlr-/- and Eln+/+Ldlr-/- mice on WD (p = 0.89), while in the ascending aorta, Eln+/-Ldlr-/- mice on WD have 29% less normalized plaque area than Eln+/+Ldlr-/- mice on WD (p = 0.009). CONCLUSION Using an atherogenic mouse model, we conclude that increased blood pressure and reduced aortic compliance are not direct causes of increased aortic plaque accumulation. We propose that additional insults, such as fragmentation of elastic fibers, are necessary to alter plaque accumulation.
Collapse
Affiliation(s)
- Justine A Maedeker
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Kellie V Stoka
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Siddharth A Bhayani
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - William S Gardner
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Lisa Bennett
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO, USA
| | - Jesse D Procknow
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Marius C Staiculescu
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA
| | - Tezin A Walji
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Clarissa S Craft
- Department of Cell Biology and Physiology, Washington University, St. Louis, MO, USA
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University, St. Louis, MO, USA.
| |
Collapse
|
338
|
Ding Y, Huang L, Xian X, Yuhanna IS, Wasser CR, Frotscher M, Mineo C, Shaul PW, Herz J. Loss of Reelin protects against atherosclerosis by reducing leukocyte-endothelial cell adhesion and lesion macrophage accumulation. Sci Signal 2016; 9:ra29. [PMID: 26980442 DOI: 10.1126/scisignal.aad5578] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The multimodular glycoprotein Reelin controls neuronal migration and synaptic transmission by binding to apolipoprotein E receptor 2 (Apoer2) and very low density lipoprotein receptor (Vldlr) on neurons. In the periphery, Reelin is produced by the liver, circulates in blood, and promotes thrombosis and hemostasis. To investigate if Reelin influences atherogenesis, we studied atherosclerosis-prone low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in which we inducibly deleted Reelin either ubiquitously or only in the liver, thus preventing the production of circulating Reelin. In both types of Reelin-deficient mice, atherosclerosis progression was markedly attenuated, and macrophage content and endothelial cell staining for vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were reduced at the sites of atherosclerotic lesions. Intravital microscopy revealed decreased leukocyte-endothelial adhesion in the Reelin-deficient mice. In cultured human endothelial cells, Reelin enhanced monocyte adhesion and increased ICAM1, VCAM1, and E-selectin expression by suppressing endothelial nitric oxide synthase (eNOS) activity and increasing nuclear factor κB (NF-κB) activity in an Apoer2-dependent manner. These findings suggest that circulating Reelin promotes atherosclerosis by increasing vascular inflammation, and that reducing or inhibiting circulating Reelin may present a novel approach for the prevention of cardiovascular disease.
Collapse
Affiliation(s)
- Yinyuan Ding
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA. Key Laboratory of Medical Electrophysiology, Ministry of Education of China, and the Institute of Cardiovascular Research, Sichuan Medical University, Luzhou 646000, China
| | - Linzhang Huang
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunde Xian
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ivan S Yuhanna
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael Frotscher
- Zentrum für Molekulare Neurobiologie Hamburg, Falkenried 94, 20251 Hamburg, Germany
| | - Chieko Mineo
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Philip W Shaul
- Center for Pulmonary and Vascular Biology, Department of Pediatrics, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas (UT) Southwestern Medical Center, Dallas, TX 75390, USA. Center for Translational Neurodegeneration Research, UT Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX 75390, USA. Department of Neurology and Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX 75390, USA. Center for Neuroscience, Department of Neuroanatomy, Albert-Ludwigs-University, 79104 Freiburg, Germany.
| |
Collapse
|
339
|
Lee-Rueckert M, Escola-Gil JC, Kovanen PT. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:566-83. [PMID: 26968096 DOI: 10.1016/j.bbalip.2016.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 02/26/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.
Collapse
|
340
|
Abstract
Atherosclerosis is a complex chronic disease. The accumulation of myeloid cells in the arterial intima, including macrophages and dendritic cells (DCs), is a feature of early stages of disease. For decades, it has been known that monocyte recruitment to the intima contributes to the burden of lesion macrophages. Yet, this paradigm may require reevaluation in light of recent advances in understanding of tissue macrophage ontogeny, their capacity for self-renewal, as well as observations that macrophages proliferate throughout atherogenesis and that self-renewal is critical for maintenance of macrophages in advanced lesions. The rate of atherosclerotic lesion formation is profoundly influenced by innate and adaptive immunity, which can be regulated locally within atherosclerotic lesions, as well as in secondary lymphoid organs, the bone marrow and the blood. DCs are important modulators of immunity. Advances in the past decade have cemented our understanding of DC subsets, functions, hematopoietic origin, gene expression patterns, transcription factors critical for differentiation, and provided new tools for study of DC biology. The functions of macrophages and DCs overlap to some extent, thus it is important to reassess the contributions of each of these myeloid cells taking into account strict criteria of cell identification, ontogeny, and determine whether their key roles are within atherosclerotic lesions or secondary lymphoid organs. This review will highlight key aspect of macrophage and DC biology, summarize how these cells participate in different stages of atherogenesis and comment on complexities, controversies, and gaps in knowledge in the field.
Collapse
Affiliation(s)
- Myron I. Cybulsky
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Cheolho Cheong
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| | - Clinton S. Robbins
- From the Division of Advanced Diagnostics, Toronto General Research Institute, Peter Munk Cardiac Centre, University Health Network, Toronto, Ontario, Canada (M.I.C., C.S.R.); Departments of Laboratory Medicine and Pathobiology (M.I.C., C.S.R.) and Immunology (C.S.R.), University of Toronto, Toronto, Ontario, Canada; and Laboratory of Cellular Physiology and Immunology, Institut de Researches Cliniques de Montréal, Montréal, Québec, Canada (C.C.)
| |
Collapse
|
341
|
Hoekstra M, Van Eck M. HDL is redundant for adrenal steroidogenesis in LDLR knockout mice with a human-like lipoprotein profile. J Lipid Res 2016; 57:631-7. [PMID: 26891738 DOI: 10.1194/jlr.m066019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Indexed: 11/20/2022] Open
Abstract
The contribution of HDL to adrenal steroidogenesis appears to be different between mice and humans. In the current study, we tested the hypothesis that a difference in lipoprotein profile may be the underlying cause. Hereto, we determined the impact of HDL deficiency on the adrenal glucocorticoid output in genetically modified mice with a human-like lipoprotein profile. Genetic deletion of APOA1 in LDL receptor (LDLR) knockout mice was associated with HDL deficiency and a parallel increase in the level of cholesterol associated with nonHDL fractions. Despite a compensatory increase in the adrenal relative mRNA expression levels of the cholesterol synthesis gene, HMG-CoA reductase, adrenals from APOA1/LDLR double knockout mice were severely depleted of neutral lipids, as compared with those of control LDLR knockout mice. However, basal corticosterone levels and the adrenal glucocorticoid response to stress were not different between the two types of mice. In conclusion, we have shown that HDL is not critical for proper adrenal glucocorticoid function when mice are provided with a human-like lipoprotein profile. Our findings provide the first experimental evidence that APOB-containing lipoproteins may facilitate adrenal steroidogenesis, in an LDLR-independent manner, in vivo in mice.
Collapse
Affiliation(s)
- Menno Hoekstra
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, 2333CC Leiden, The Netherlands
| | - Miranda Van Eck
- Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug Research, Gorlaeus Laboratories, 2333CC Leiden, The Netherlands
| |
Collapse
|
342
|
Adiponectin improves NF-κB-mediated inflammation and abates atherosclerosis progression in apolipoprotein E-deficient mice. Lipids Health Dis 2016; 15:33. [PMID: 26965176 PMCID: PMC4787184 DOI: 10.1186/s12944-016-0202-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Accepted: 02/10/2016] [Indexed: 01/26/2023] Open
Abstract
Background Atherosclerosis is a common pathological basis of cardiovascular disease. Adiponectin (APN) has been shown to have an anti-atherosclerosis effect, and the underlying mechanisms, however, are largely unknown. Nuclear factor κB (NF-κB) has also been regarded as a proatherogenic factor, mainly because of its regulation of a variety of the proinflammatory genes linked to atherosclerosis. It was hypothesized that the inhibitory effects of adiponectin on the atherosclerosis is through the inhibition of NF-κB signaling pathway. Methods We injected adenovirus of Ad-eGFP virus (control group) or the same amount of Ad-APN-eGFP virus (APN group) in ApoE-/- mice tail-intravenously. Blood samples and aorta were executed at 0 day, 4, and 8 week of high-fat diet feeding. Histopathological changes of aortic arch root were detected. Levels of TC, TG, HDL-C, LDL-C were measured. Adiponectin and Matrix metalloproteinases-9 (MMP-9) concentration were detected by enzyme-linked immunosorbent assay. Gene and protein levels of adiponectin, eNOS, IL-6, MCP-1,VCAM-1, and other inflammatory factors were determined. Adiponectin, NF-κB p65 in aortic arch root were determined by immunofluorescence and western blot. Results Transduction of Ad-APN inhibited the formation of atherosclerotic plaque in aorta when compared with control group. The lesion formation in aortic arch root was inhibited significantly (P < 0.01). Lesion lumen ratio decreased significantly (P < 0.001). The expression of adiponectin attenuated the increases of serum TC (P < 0.001), TG (P < 0.001), and LDL-C (P < 0.001) induced by the high-fat diet, and the increase in body weight (P < 0.05). As increasing serum adiponectin, the levels of MMP-9 were significantly decreased (P < 0.05). The exogenous adiponectin increased the gene expression of the anti-inflammatory factors eNOS (P < 0.05) and IL-10 (P < 0.001), and reduced the gene expression of inflammatory factors tumor necrosis factor-α (TNF-α) (P < 0.001), IL-6 (P < 0.001), VCAM-1 (P < 0.05), respectively. Adiponectin effectively inhibited the activation of NF-κB pathway and the expression of NF-κB nuclear protein p65. Conclusions Adiponectin may protect the aorta from atherosclerotic injury by reducing inflammation. The molecular mechanism may involve inhibited the expression of downstream components of NF-κB and its transcription factors.
Collapse
|
343
|
ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis 2016; 245:187-93. [PMID: 26724529 DOI: 10.1016/j.atherosclerosis.2015.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/30/2015] [Accepted: 12/01/2015] [Indexed: 11/18/2022]
|
344
|
Raposo HF, Vanzela EC, Berti JA, Oliveira HCF. Cholesteryl Ester Transfer Protein (CETP) expression does not affect glucose homeostasis and insulin secretion: studies in human CETP transgenic mice. Lipids Health Dis 2016; 15:9. [PMID: 26758205 PMCID: PMC4711172 DOI: 10.1186/s12944-016-0179-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 01/07/2016] [Indexed: 12/26/2022] Open
Abstract
Background Cholesteryl ester transfer protein (CETP) is a plasma protein that mediates the exchange of triglycerides for esterified cholesterol between HDL and apoB-lipoproteins. Previous studies suggest that CETP may modify glucose metabolism in patients or cultured cells. In this study, we tested if stable CETP expression would impair glucose metabolism. Methods We used human CETP transgenic mice and non-transgenic littermate controls (NTg), fed with control or high fat diet, as well as in dyslipidemic background and aging conditions. Assays included glucose and insulin tolerance tests, isolated islets insulin secretion, tissue glucose uptake and adipose tissue GLUT mRNA expression. Results CETP expression did not modify glucose or insulin tolerance in all tested conditions such as chow and high fat diet, adult and aged mice, normo and dyslipidemic backgrounds. Fasting and fed state plasma levels of insulin were not differ in CETP and NTg mice. Direct measurements of isolated pancreatic islet insulin secretion rates induced by glucose (11, 16.7 or 22 mM), KCl (40 mM), and leucine (10 mM) were similar in NTg and CETP mice, indicating that CETP expression did not affect β-cell function in vivo and ex vivo. Glucose uptake by insulin target tissues, measured in vivo using 3H-2-deoxyglucose, showed that CETP expression had no effect on the glucose uptake in liver, muscle, perigonadal, perirenal, subcutaneous and brown adipose tissues. Accordingly, GLUT1 and GLUT4 mRNA in adipose tissue were not affected by CETP. Conclusions In summary, by comparing the in vivo all-or-nothing CETP expressing mouse models, we demonstrated that CETP per se has no impact on the glucose tolerance and tissue uptake, global insulin sensitivity and beta cell insulin secretion rates.
Collapse
Affiliation(s)
- Helena F Raposo
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Unicamp - Cidade Universitária Zeferino Vaz. Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil
| | - Emerielle C Vanzela
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Unicamp - Cidade Universitária Zeferino Vaz. Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil
| | - Jairo A Berti
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Unicamp - Cidade Universitária Zeferino Vaz. Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil.,Present address: Department of Physiological Science, State University of Maringa, Maringa, PR, Brazil
| | - Helena C F Oliveira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Unicamp - Cidade Universitária Zeferino Vaz. Rua Monteiro Lobato, 255, Campinas, SP, CEP 13083-862, Brazil.
| |
Collapse
|
345
|
Schlegel A. Zebrafish Models for Dyslipidemia and Atherosclerosis Research. Front Endocrinol (Lausanne) 2016; 7:159. [PMID: 28018294 PMCID: PMC5159437 DOI: 10.3389/fendo.2016.00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022] Open
Abstract
Atherosclerotic cardiovascular disease is the leading cause of death. Elevated circulating concentrations of lipids are a central pathogenetic driver of atherosclerosis. While numerous effective therapies for this condition have been developed, there is substantial unmet need for this pandemic illness. Here, I will review nutritional, physiological, genetic, and pathological discoveries in the emerging zebrafish model for studying dyslipidemia and atherosclerosis. The technical and physiological advantages and the pharmacological potential of this organism for discovery and validation of dyslipidemia and atherosclerosis targets are stressed through summary of recent findings. An emerging literature shows that zebrafish, through retention of a cetp ortholog gene and high sensitivity to ingestion of excess cholesterol, rapidly develops hypercholesterolemia, with a pattern of distribution of lipid species in lipoprotein particles similar to humans. Furthermore, recent studies leveraging the optical transparency of zebrafish larvae to monitor the fate of these ingested lipids have provided exciting insights to the development of dyslipidemia and atherosclerosis. Future directions for investigation are considered, with particular attention to the potential for in vivo cell biological study of atherosclerotic plaques.
Collapse
Affiliation(s)
- Amnon Schlegel
- University of Utah Molecular Medicine Program, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Internal Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
- Department of Biochemistry, School of Medicine, University of Utah, Salt Lake City, UT, USA
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT, USA
- *Correspondence: Amnon Schlegel,
| |
Collapse
|
346
|
Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RRS, Eskin E, Yan M, Kirchgessner T, Wang Z, Li X, Gregory JC, Hazen SL, Gargalovic PS, Lusis AJ. Genetic Architecture of Atherosclerosis in Mice: A Systems Genetics Analysis of Common Inbred Strains. PLoS Genet 2015; 11:e1005711. [PMID: 26694027 PMCID: PMC4687930 DOI: 10.1371/journal.pgen.1005711] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/06/2015] [Indexed: 12/15/2022] Open
Abstract
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. While recent genetic association studies in human populations have succeeded in identifying genetic loci that contribute to coronary artery disease (CAD) and related phenotypes, these loci explain only a small fraction of the genetic variation in CAD and associated traits. Here, we present a complementary approach using association analysis of atherosclerotic traits among inbred strains of mice. A strength of this approach is that it enables in-depth phenotypic characterization including gene expression and metabolic profiling across a variety of tissues, and integration of these molecular phenotypes with coronary artery disease itself. A striking finding was the large fraction of atherosclerosis that was explained by genetic interactions. Association analysis allowed us to identify genetic loci for atherosclerotic lesion area as well as transcript, cytokine and metabolite levels, and relationships among the traits were examined by correlation and network modeling. The plasma metabolites associated with atherosclerosis in mice, namely, LDL/VLDL-cholesterol, TMAO, arginine, glucose and insulin, overlapped with those observed in humans and accounted for approximately 30 to 40% of the observed variation in atherosclerotic lesion area. In summary, our data provide a detailed overview of the genetic architecture of atherosclerosis in mice and a rich resource for studies of the complex genetic and metabolic interactions that underlie the disease.
Collapse
Affiliation(s)
- Brian J. Bennett
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Richard C. Davis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mete Civelek
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Luz Orozco
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Judy Wu
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Hannah Qi
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Calvin Pan
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - René R. Sevag Packard
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Eleazar Eskin
- Department of Computer Science, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Mujing Yan
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Todd Kirchgessner
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Zeneng Wang
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Xinmin Li
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Jill C. Gregory
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Stanley L. Hazen
- Department of Cellular and Molecular Medicine (NC10), Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, United States of America
| | - Peter S. Gargalovic
- Department of Cardiovascular Drug Discovery, Bristol-Myers Squibb, Princeton, New Jersey, United States of America
| | - Aldons J. Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
347
|
Gillard BK, Rodriguez PJ, Fields DW, Raya JL, Lagor WR, Rosales C, Courtney HS, Gotto AM, Pownall HJ. Streptococcal serum opacity factor promotes cholesterol ester metabolism and bile acid secretion in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:196-204. [PMID: 26709142 DOI: 10.1016/j.bbalip.2015.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/16/2015] [Accepted: 12/11/2015] [Indexed: 11/15/2022]
Abstract
Plasma high density lipoprotein-cholesterol (HDL-C) concentrations negatively correlate with atherosclerotic cardiovascular disease. HDL is thought to have several atheroprotective functions, which are likely distinct from the epidemiological inverse relationship between HDL-C levels and risk. Specifically, strategies that reduce HDL-C while promoting reverse cholesterol transport (RCT) may have therapeutic value. The major product of the serum opacity factor (SOF) reaction versus HDL is a cholesteryl ester (CE)-rich microemulsion (CERM), which contains apo E and the CE of ~400,000 HDL particles. Huh7 hepatocytes take up CE faster when delivered as CERM than as HDL, in part via the LDL-receptor (LDLR). Here we compared the final RCT step, hepatic uptake and subsequent intracellular processing to cholesterol and bile salts for radiolabeled HDL-, CERM- and LDL-CE by Huh7 cells and in vivo in C57BL/6J mice. In Huh7 cells, uptake from LDL was greater than from CERM (2-4X) and HDL (5-10X). Halftimes for [(14)C]CE hydrolysis were 3.0±0.2, 4.4±0.6 and 5.4±0.7h respectively for HDL, CERM and LDL-CE. The fraction of sterols secreted as bile acids was ~50% by 8h for all three particles. HDL, CERM and LDL-CE metabolism in mice showed efficient plasma clearance of CERM-CE, liver uptake and metabolism, and secretion as bile acids into the gall bladder. This work supports the therapeutic potential of the SOF reaction, which diverts HDL-CE to the LDLR, thereby increasing hepatic CE uptake, and sterol disposal as bile acids.
Collapse
Affiliation(s)
- Baiba K Gillard
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Perla J Rodriguez
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - David W Fields
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Joe L Raya
- Department of Medicine, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Corina Rosales
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA.
| | - Harry S Courtney
- University of Tennessee Health Science Center, 956 Court Avenue Room H300A, Memphis, TN 38163 USA.
| | - Antonio M Gotto
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| | - Henry J Pownall
- The Laboratory of Atherosclerosis and Lipoprotein Research, Houston Methodist Research Institute, 6670 Bertner St., Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1305 York Ave., New York, NY 10021, USA.
| |
Collapse
|
348
|
Kuba M, Matsuzaka T, Matsumori R, Saito R, Kaga N, Taka H, Ikehata K, Okada N, Kikuchi T, Ohno H, Han SI, Takeuchi Y, Kobayashi K, Iwasaki H, Yatoh S, Suzuki H, Sone H, Yahagi N, Arakawa Y, Fujimura T, Nakagawa Y, Yamada N, Shimano H. Absence of Elovl6 attenuates steatohepatitis but promotes gallstone formation in a lithogenic diet-fed Ldlr(-/-) mouse model. Sci Rep 2015; 5:17604. [PMID: 26619823 PMCID: PMC4664962 DOI: 10.1038/srep17604] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/30/2015] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that can develop into liver cirrhosis and cancer. Elongation of very long chain fatty acids (ELOVL) family member 6 (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids (FAs). We have previously shown that Elovl6 plays an important role in the development of hepatic insulin resistance and NASH by modifying FA composition. Recent studies have linked altered hepatic cholesterol homeostasis and cholesterol accumulation to the pathogenesis of NASH. In the present study, we further investigated the role of Elovl6 in the progression of lithogenic diet (LD)-induced steatohepatitis. We showed that the absence of Elovl6 suppresses hepatic lipid accumulation, plasma total cholesterol and total bile acid (BA) levels in LDL receptor-deficient (Ldlr−/−) mice challenged with a LD. The absence of Elovl6 also decreases hepatic inflammation, oxidative stress and liver injury, but increases the formation of cholesterol crystals in the less dilated gallbladder. These findings suggest that Elovl6-mediated changes in hepatic FA composition, especially oleic acid (C18:1n-9), control handling of hepatic cholesterol and BA, which protects against hepatotoxicity and steatohepatitis, but promotes gallstone formation in LD-fed Ldlr−/− mice.
Collapse
Affiliation(s)
- Motoko Kuba
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Rie Matsumori
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Saito
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hikari Taka
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kei Ikehata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Naduki Okada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takuya Kikuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Ohno
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Song-Iee Han
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoshinori Takeuchi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Kazuto Kobayashi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Iwasaki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shigeru Yatoh
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroaki Suzuki
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, 1-754 Asahimachi, Niigata 951-8510, Japan
| | - Naoya Yahagi
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yoji Arakawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yoshimi Nakagawa
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiro Yamada
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
349
|
Baartscheer A, Schumacher CA, Wekker V, Verkerk AO, Veldkamp MW, van Oort RJ, Elzenaar I, Ottenhoff R, van Roomen C, Aerts H, Coronel R. Dyscholesterolemia Protects Against Ischemia-Induced Ventricular Arrhythmias. Circ Arrhythm Electrophysiol 2015; 8:1481-90. [DOI: 10.1161/circep.115.002751] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 09/24/2015] [Indexed: 11/16/2022]
Affiliation(s)
- Antonius Baartscheer
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Cees A. Schumacher
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Vincent Wekker
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Arie O. Verkerk
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Marieke W. Veldkamp
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Ralph J. van Oort
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Ies Elzenaar
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Roelof Ottenhoff
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Cindy van Roomen
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Hans Aerts
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| | - Ruben Coronel
- Departments of Clinical and Experimental Cardiology (A.B., C.A.S., V.W., M.W.V., R.J.v.O., I.E., R.C.), Anatomy Embryology and Physiology (A.O.V.), and Medical Biochemistry (R.O., C.v.R., H.A.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; and IHU Institut de Rythmologie et Modélisation Cardiaque, Fondation Bordeaux Université, Bordeaux, France (R.C.)
| |
Collapse
|
350
|
Grimm M, Tischner D, Troidl K, Albarrán Juárez J, Sivaraj KK, Ferreirós Bouzas N, Geisslinger G, Binder CJ, Wettschureck N. S1P2/G12/13 Signaling Negatively Regulates Macrophage Activation and Indirectly Shapes the Atheroprotective B1-Cell Population. Arterioscler Thromb Vasc Biol 2015; 36:37-48. [PMID: 26603156 DOI: 10.1161/atvbaha.115.306066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 11/11/2015] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Monocyte/macrophage recruitment and activation at vascular predilection sites plays a central role in the pathogenesis of atherosclerosis. Heterotrimeric G proteins of the G12/13 family have been implicated in the control of migration and inflammatory gene expression, but their function in myeloid cells, especially during atherogenesis, is unknown. APPROACH AND RESULTS Mice with myeloid-specific deficiency for G12/13 show reduced atherosclerosis with a clear shift to anti-inflammatory gene expression in aortal macrophages. These changes are because of neither altered monocyte/macrophage migration nor reduced activation of inflammatory gene expression; on the contrary, G12/13-deficient macrophages show an increased nuclear factor-κB-dependent gene expression in the resting state. Chronically increased inflammatory gene expression in resident peritoneal macrophages results in myeloid-specific G12/13-deficient mice in an altered peritoneal micromilieu with secondary expansion of peritoneal B1 cells. Titers of B1-derived atheroprotective antibodies are increased, and adoptive transfer of peritoneal cells from mutant mice conveys atheroprotection to wild-type mice. With respect to the mechanism of G12/13-mediated transcriptional control, we identify an autocrine feedback loop that suppresses nuclear factor-κB-dependent gene expression through a signaling cascade involving sphingosine 1-phosphate receptor subtype 2, G12/13, and RhoA. CONCLUSIONS Together, these data show that selective inhibition of G12/13 signaling in macrophages can augment atheroprotective B-cell populations and ameliorate atherosclerosis.
Collapse
Affiliation(s)
- Myriam Grimm
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Denise Tischner
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Kerstin Troidl
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Julián Albarrán Juárez
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Kishor K Sivaraj
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Nerea Ferreirós Bouzas
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Gerd Geisslinger
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Christoph J Binder
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.)
| | - Nina Wettschureck
- From the Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany (M.G., D.T., K.T., J.A.J., K.K.S., N.W.); Pharmazentrum Frankfurt/ZAFES, Clinical Pharmacology (N.F.B., G.G.) and Centre for Molecular Medicine, Medical Faculty (N.W.), J.W. Goethe University Frankfurt, Frankfurt, Germany; and Department of Laboratory Medicine, Medical University of Vienna and Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (C.J.B.).
| |
Collapse
|