301
|
Liao B, McCall E, Cox K, Lee CW, Huang S, Higgs RE, Chio LC, Zhen E, Hale JE, Jackson NK, Rutherford PG, Huang XD, Gifford-Moore D, Hui K, Duffin K, Gould KE, Rekhter M. Circulating Markers Reflect Both Anti- and Pro-Atherogenic Drug Effects in ApoE-Deficient Mice. Biomark Insights 2008; 3:147-157. [PMID: 19578502 PMCID: PMC2688353 DOI: 10.4137/bmi.s632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background Current drug therapy of atherosclerosis is focused on treatment of major risk factors, e.g. hypercholesterolemia while in the future direct disease modification might provide additional benefits. However, development of medicines targeting vascular wall disease is complicated by the lack of reliable biomarkers. In this study, we took a novel approach to identify circulating biomarkers indicative of drug efficacy by reducing the complexity of the in vivo system to the level where neither disease progression nor drug treatment was associated with the changes in plasma cholesterol. Results ApoE−/− mice were treated with an ACE inhibitor ramipril and HMG-CoA reductase inhibitor simvastatin. Ramipril significantly reduced the size of atherosclerotic plaques in brachiocephalic arteries, however simvastatin paradoxically stimulated atherogenesis. Both effects occurred without changes in plasma cholesterol. Blood and vascular samples were obtained from the same animals. In the whole blood RNA samples, expression of MMP9, CD14 and IL-1RN reflected pro-and anti-atherogenic drug effects. In the plasma, several proteins, e.g. IL-1β, IL-18 and MMP9 followed similar trends while protein readout was less sensitive than RNA analysis. Conclusion In this study, we have identified inflammation-related whole blood RNA and plasma protein markers reflecting anti-atherogenic effects of ramipril and pro-atherogenic effects of simwastatin in a mouse model of atherosclerosis. This opens an opportunity for early, non-invasive detection of direct drug effects on atherosclerotic plaques in complex in vivo systems.
Collapse
|
302
|
Hu Q, Zhang XJ, Zhang C, Zhao YX, He H, Liu CX, Feng JB, Jiang H, Yang FL, Zhang CX, Zhang Y. Peroxisome Proliferator-Activated Receptor-γ1 Gene Therapy Attenuates Atherosclerosis and Stabilizes Plaques in Apolipoprotein E-Deficient Mice. Hum Gene Ther 2008; 19:287-299. [DOI: 10.1089/hum.2007.0142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Qin Hu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Xian Jun Zhang
- Department of Dermatology, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Cheng Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Yu Xia Zhao
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Hong He
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Chun Xi Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Jin Bo Feng
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Hong Jiang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Fa Lin Yang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| | - Chun Xiang Zhang
- Cardiovascular Research Laboratory, Department of Anesthesiology, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Shandong University Qilu Hospital, Jinan, Shandong 250012, China
| |
Collapse
|
303
|
Du R, Lu KV, Petritsch C, Liu P, Ganss R, Passegué E, Song H, VandenBerg S, Johnson RS, Werb Z, Bergers G. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 2008; 13:206-20. [PMID: 18328425 PMCID: PMC2643426 DOI: 10.1016/j.ccr.2008.01.034] [Citation(s) in RCA: 880] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Revised: 11/26/2007] [Accepted: 01/29/2008] [Indexed: 12/12/2022]
Abstract
Development of hypoxic regions is an indicator of poor prognosis in many tumors. Here, we demonstrate that HIF1alpha, the direct effector of hypoxia, partly through increases in SDF1alpha, induces recruitment of bone marrow-derived CD45+ myeloid cells containing Tie2+, VEGFR1+, CD11b+, and F4/80+ subpopulations, as well as endothelial and pericyte progenitor cells to promote neovascularization in glioblastoma. MMP-9 activity of bone marrow-derived CD45+ cells is essential and sufficient to initiate angiogenesis by increasing VEGF bioavailability. In the absence of HIF1alpha, SDF1alpha levels decrease, and fewer BM-derived cells are recruited to the tumors, decreasing MMP-9 and mobilization of VEGF. VEGF also directly regulates tumor cell invasiveness. When VEGF activity is impaired, tumor cells invade deep into the brain in the perivascular compartment.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Benzylamines
- Bone Marrow Cells/enzymology
- Bone Marrow Cells/immunology
- Bone Marrow Transplantation
- Brain Neoplasms/blood supply
- Brain Neoplasms/enzymology
- Brain Neoplasms/pathology
- Cell Hypoxia
- Cell Line
- Cell Movement
- Chemokine CXCL12/metabolism
- Cyclams
- Endothelial Cells/enzymology
- Glioblastoma/blood supply
- Glioblastoma/enzymology
- Glioblastoma/pathology
- Heterocyclic Compounds/pharmacology
- Hypoxia-Inducible Factor 1, alpha Subunit/deficiency
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Leukocyte Common Antigens/metabolism
- Matrix Metalloproteinase 9/deficiency
- Matrix Metalloproteinase 9/genetics
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Knockout
- Monocytes/enzymology
- Neoplasm Invasiveness
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Pericytes/enzymology
- Receptor, TIE-2/metabolism
- Receptors, CXCR4/antagonists & inhibitors
- Receptors, CXCR4/metabolism
- Signal Transduction
- Transduction, Genetic
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
- Rose Du
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Neurological Surgery, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Kan V. Lu
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Claudia Petritsch
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Patty Liu
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Ruth Ganss
- Western Australian Institute for Medical Research, Perth WA 6000, Australia
| | - Emmanuelle Passegué
- Department of Developmental and Stem Cell Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Hanqiu Song
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Scott VandenBerg
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Department of Pathology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Randall S. Johnson
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Gabriele Bergers
- Department of Neurological Surgery, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Brain Tumor Research Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
- Correspondence:
| |
Collapse
|
304
|
Newby AC. Metalloproteinases and vulnerable atherosclerotic plaques. Trends Cardiovasc Med 2008; 17:253-8. [PMID: 18021934 DOI: 10.1016/j.tcm.2007.09.001] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 09/14/2007] [Accepted: 09/14/2007] [Indexed: 12/01/2022]
Abstract
Plaque rupture is the main cause of myocardial infarctions and strokes. Ruptured plaques have thin, highly inflamed, and collagen-poor fibrous caps that contain elevated levels of proteases, including metalloproteinases (MMPs), which might weaken plaque caps and promote rupture. On the other hand, MMPs facilitate migration and proliferation vascular smooth muscle cells, which should promote fibrous cap stability. Given the dual effects of MMPs, therapies should selectively target harmful MMPs or the processes that cause MMP activity to rise to destructive levels.
Collapse
Affiliation(s)
- Andrew C Newby
- University of Bristol, Bristol Heart Institute, Bristol Royal Infirmary, Bristol BS2 8HW.
| |
Collapse
|
305
|
Cysteine protease activity in the wall of abdominal aortic aneurysms. J Vasc Surg 2008; 46:1260-6. [PMID: 18155003 DOI: 10.1016/j.jvs.2007.08.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 07/29/2007] [Accepted: 08/05/2007] [Indexed: 11/21/2022]
Abstract
BACKGROUND Cysteine proteases are potent elastolytic enzymes and together with their inhibitor, cystatin C, have been linked with the growth of abdominal aortic aneurysms (AAAs). These enzymes and their inhibitors have previously been studied in AAAs, but comparisons have always been made with wall from normal aorta. Atherosclerosis is a feature of aneurysmal disease and may therefore confound comparisons with normal wall. This study compared the expression and activity of cysteine proteases and their inhibitors in aneurysm wall with their expression in the aortic wall of patients with aortic occlusive disease (AOD). METHODS Aortic wall was obtained from 82 patients with AAA and 13 with AOD. Protein expression and activity of cathepsin B, H, K, L and S, and cystatins A, B, and C were measured by enzyme-linked immunosorbent assay and specific fluorogenic substrate assays. Matrix metalloproteinase 9 (MMP-9) activity was measured by quantitative bioimmunoassay in the same extracts. RESULTS AAA wall had 330% more cathepsin H protein (P = .007) and >30% less cystatin C (P = .03) than the aortic wall from patients with AOD. The activity of cathepsins B, H, L, and S was significantly greater in AAA than AOD (376%, [P < .0001], 191%, [P = 0.019], 223%, P = 0.002, and approximately 20% [P = 0.045] respectively). MMP-9 activity was also increased in AAA compared with AOD (P<0.0001) and levels in the wall of AAA correlated positively with cathepsin L activity (r = 0.42, P<.0001) and negatively with cystatin C (r = -0.75, P<.0001). CONCLUSIONS The activity of four cathepsins B, H, L, and S was higher in the aneurysm wall than in aortic wall of patients with occlusive disease. This was associated with a reduced level of cystatin C in the aneurysmal wall. Cathepsin H was the only protein in which there was a correlation between protein level and activity, which suggests that post-translational modifications were responsible for activation of the other cathepsins. Increased cathepsin activity may influence the activity of MMP-9, which is thought to have an important role in aneurysm development.
Collapse
|
306
|
Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J Biomech 2008; 41:1111-8. [PMID: 18258240 DOI: 10.1016/j.jbiomech.2007.11.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 10/12/2007] [Accepted: 11/25/2007] [Indexed: 11/24/2022]
Abstract
Sudden heart attacks remain one of the primary causes of premature death in the developed world. Asymptomatic vulnerable plaques that rupture are believed to prompt such fatal heart attacks and strokes. The role of microcalcifications in the vulnerable plaque rupture mechanics is still debated. Recent studies suggest the microcalcifications increase the plaque vulnerability. In this manuscript we present a numerical study of the role of microcalcifications in plaque vulnerability in an eccentric stenosis model using a transient fluid-structure interaction (FSI) analysis. Two cases are being compared (i) in the absence of a microcalcification (ii) with a microcalcification spot fully embedded in the fibrous cap. Critical plaque stress/strain conditions were affected considerably by the presence of a calcified spot, and were dependent on the timing (phase) during the flow cycle. The vulnerable plaque with the embedded calcification spot presented higher wall stress concentration region in the fibrous cap a bit upstream to the calcified spot, with stress propagating to the deformable parts of the structure around the calcified spot. Following previous studies, this finding supports the hypothesis that microcalcifications increase the plaque vulnerability. Further studies in which the effect of additional microcalcifications and parametric studies of critical plaque cap thickness based on plaque properties and thickness, will help to establish the mechanism by which microcalcifications weaken the plaque and may lead to its rupture.
Collapse
|
307
|
Lancelot E, Amirbekian V, Brigger I, Raynaud JS, Ballet S, David C, Rousseaux O, Le Greneur S, Port M, Lijnen HR, Bruneval P, Michel JB, Ouimet T, Roques B, Amirbekian S, Hyafil F, Vucic E, Aguinaldo JGS, Corot C, Fayad ZA. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler Thromb Vasc Biol 2008; 28:425-32. [PMID: 18258820 DOI: 10.1161/atvbaha.107.149666] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Despite great advances in our knowledge, atherosclerosis continues to kill more people than any other disease in the Western world. This is because our means of identifying truly vulnerable patients is limited. Prediction of atherosclerotic plaque rupture may be addressed by MRI of activated matrix metalloproteinases (MMPs), a family of enzymes that have been implicated in the vulnerability of plaques prone to rupture. This study evaluated the ability of the novel gadolinium-based MRI contrast agent P947 to target MMPs in atherosclerotic plaques. METHODS AND RESULTS The affinity of P947 toward activated MMPs was demonstrated in vitro. The affinity and specificity of P947 toward matrix metalloproteinase (MMP)-rich plaques was evaluated both in vivo using ApoE-/- mice and ex vivo in hyperlipidemic rabbits. Gadolinium content quantification and MRI showed a preferential accumulation of P947 in atherosclerotic lesions compared with the nontargeted reference compound, Gd-DOTA. The ex vivo assay on rabbit plaques revealed a higher uptake of P947. Moreover, using human carotid artery endarterectomy specimens, P947 facilitated discrimination between histologically defined MMP-rich and MMP-poor plaques. An in vivo MRI investigation in mice revealed that P947 greatly improved the ability to visualize and delineate atherosclerotic plaques. CONCLUSIONS P947 may be a useful tool for the detection and characterization of the MMP-rich atherosclerotic plaques.
Collapse
Affiliation(s)
- Eric Lancelot
- Department of Radiology, the Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai School of Medicine, Box 1234, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
308
|
Type 1 diabetes promotes disruption of advanced atherosclerotic lesions in LDL receptor-deficient mice. Proc Natl Acad Sci U S A 2008; 105:2082-7. [PMID: 18252823 DOI: 10.1073/pnas.0709958105] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease, largely because of disruption of atherosclerotic lesions, accounts for the majority of deaths in people with type 1 diabetes. Recent mouse models have provided insights into the accelerated atherosclerotic lesion initiation in diabetes, but it is unknown whether diabetes directly worsens more clinically relevant advanced lesions. We therefore used an LDL receptor-deficient mouse model, in which type 1 diabetes can be induced at will, to investigate the effects of diabetes on preexisting lesions. Advanced lesions were induced by feeding mice a high-fat diet for 16 weeks before induction of diabetes. Diabetes, independently of lesion size, increased intraplaque hemorrhage and plaque disruption in the brachiocephalic artery of mice fed low-fat or high-fat diets for an additional 14 weeks. Hyperglycemia was not sufficient to induce plaque disruption. Furthermore, diabetes resulted in increased accumulation of monocytic cells positive for S100A9, a proinflammatory biomarker for cardiovascular events, and for a macrophage marker protein, without increasing lesion macrophage content. S100A9 immunoreactivity correlated with intraplaque hemorrhage. Aggressive lowering primarily of triglyceride-rich lipoproteins prevented both plaque disruption and the increased S100A9 in diabetic atherosclerotic lesions. Conversely, oleate promoted macrophage differentiation into an S100A9-positive population in vitro, thereby mimicking the effects of diabetes. Thus, diabetes increases plaque disruption, independently of effects on plaque initiation, through a mechanism that requires triglyceride-rich lipoproteins and is associated with an increased accumulation of S100A9-positive monocytic cells. These findings indicate an important link between diabetes, plaque disruption, and the innate immune system.
Collapse
|
309
|
Ii H, Hontani N, Toshida I, Oka M, Sato T, Akiba S. Group IVA Phospholipase A2-Associated Production of MMP-9 in Macrophages and Formation of Atherosclerotic Lesions. Biol Pharm Bull 2008; 31:363-8. [DOI: 10.1248/bpb.31.363] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiromi Ii
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Naoya Hontani
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Issei Toshida
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Mayuko Oka
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Takashi Sato
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| | - Satoshi Akiba
- Department of Pathological Biochemistry, Kyoto Pharmaceutical University
| |
Collapse
|
310
|
Robertson L, Grip L, Mattsson Hultén L, Hulthe J, Wiklund O. Release of protein as well as activity of MMP-9 from unstable atherosclerotic plaques during percutaneous coronary intervention. J Intern Med 2007; 262:659-67. [PMID: 17927738 DOI: 10.1111/j.1365-2796.2007.01861.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Few studies have investigated the composition of unstable coronary plaques in vivo in humans. The aims of this study were to investigate if substances released from plaques during percutaneous coronary intervention (PCI) under distal protection could give information about plaque composition and also indicate possible biomarkers in plasma that may be used to identify patients at risk. METHODS AND RESULTS Twenty patients with acute coronary syndromes undergoing PCI with distal protection were included. Plasma samples were taken before, during, and after the PCI in the aortic root, locally in the culprit vessel and intravenously. Plasma was analysed for possible markers of plaque instability. During PCI, local increases were observed for matrix metalloproteinase 9 (MMP-9), protein (P < 0.001) as well as activity (P < 0.001), interleukin 6 (IL-6; P < 0.01) and oxidized low-density lipoprotein (oxLDL; P = 0.01) in the culprit coronary artery. A systemic inflammatory response was also seen with increased levels of IL-10, MMP-3, serum amyloid A and C-reactive protein, but with no increase in MMP-9. CONCLUSIONS Our study shows that local sampling of blood under distal protection may be used to analyse coronary plaques and to identify biomarkers for unstable plaques. Our results suggest that MMP-9 is a potential biomarker, and that IL-6, MMP9 and possibly oxLDL are released from plaques.
Collapse
Affiliation(s)
- L Robertson
- Department of Metabolism and Cardiovascular Research Sahlgrenska Academy at Göteborg University, Göteborg, and Borå Hospital, Borås, Sweden
| | | | | | | | | |
Collapse
|
311
|
Onyeneke EC, . KEA, . GEE, . SIO, . SOA, . OMO. Effect of Lipid-Based Diet on Some Lipid-Metabolizing Enzymes. JOURNAL OF MEDICAL SCIENCES 2007. [DOI: 10.3923/jms.2007.1283.1289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
312
|
Abstract
PURPOSE OF REVIEW Coronary artery thrombosis superimposed on a disrupted atherosclerotic plaque initiates abrupt arterial occlusion and is the proximate event responsible for 60-80% cases of acute coronary syndromes. This article provides a concise update on the evolving concepts in the pathophysiology of plaque rupture and thrombosis. RECENT FINDINGS Over the past several years, the critical role of plaque composition rather than plaque size or stenosis severity, in plaque rupture and thrombosis have been recognized. The necrotic lipid core and plaque inflammation appear to be key factors. Extracellular matrix loss in the fibrous cap, a prelude to rupture, is attributed to matrix degrading enzymes as well as to death of matrix synthesizing smooth muscle cells; inflammation appears to play a critical role in both these processes. Inflammatory cell derived tissue factor is a key contributor to plaque thrombogenicity. Inflammation has also been implicated in plaque neovascularity, intraplaque hemorrhage and plaque expansion. Recent observations have also highlighted the important modulatory role of immune system in atherosclerosis and plaque composition. SUMMARY Improved understanding of mechanisms causing plaque instability should provide novel insights into prevention of athero-thrombotic cardiovascular events.
Collapse
Affiliation(s)
- Prediman K Shah
- Division of Cardiology and Atherosclerosis Research Center, Burns and Allen Research Institute and Department of Medicine, Cedars Sinai Medical Center and UCLA School of Medicine, Los Angeles, California 90048, USA.
| |
Collapse
|
313
|
|
314
|
Castoldi G, Galimberti S, Riva C, Papagna R, Querci F, Casati M, Zerbini G, Caccianiga G, Ferrarese C, Baldoni M, Valsecchi MG, Stella A. Association between serum values of C-reactive protein and cytokine production in whole blood of patients with type 2 diabetes. Clin Sci (Lond) 2007; 113:103-8. [PMID: 17362204 DOI: 10.1042/cs20060338] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Diabetes mellitus accelerates atherosclerotic processes, and it is known that inflammation plays a key role in atherosclerosis. The aim of the present study was to evaluate in patients with Type 2 diabetes whether serum levels of CRP (C-reactive protein) are associated with cytokine production in whole blood. A total of 89 outpatients with Type 2 diabetes were enrolled, and blood pressure, body mass index, fasting blood glucose, glycated haemoglobin, cholesterol, triacylglycerols (triglycerides) and hs-CRP (high-sensitivity CRP) were measured. IL-6 (interleukin-6), IL-1beta (interleukin-1beta) and TNF-alpha (tumour necrosis factor-alpha) were measured before and after 24 h of incubation of whole blood with LPS (lipopolysaccharide) or saline. The basal values of IL-1beta, IL-6 and TNF-alpha were low and were not significantly related to hs-CRP levels. A univariate analysis showed that the level of IL-1beta and IL-6, obtained after 24 h of incubation of whole blood with LPS, increased significantly with increasing levels of hs-CRP and, after adjusting for potential confounders, IL-1beta still remained statistically significant. In our sample of patients with Type 2 diabetes, there was no association between serum hs-CRP levels and basal levels of IL-6, IL-1beta and TNF-alpha. Conversely, a significant association was observed between serum hs-CRP levels and IL-1beta and IL-6 production after 24 h of incubation of whole blood with LPS. In conclusion, our data suggest that patients with Type 2 diabetes and high hs-CRP levels may have an enhanced reactivity in response to specific stimuli that produce different interleukins, with possible implications in inflammatory atherosclerotic processes.
Collapse
|
315
|
Suganuma E, Babaev VR, Motojima M, Zuo Y, Ayabe N, Fogo AB, Ichikawa I, Linton MF, Fazio S, Kon V. Angiotensin Inhibition Decreases Progression of Advanced Atherosclerosis and Stabilizes Established Atherosclerotic Plaques. J Am Soc Nephrol 2007; 18:2311-9. [PMID: 17634441 DOI: 10.1681/asn.2006090967] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Although increased extracellular matrix (ECM) is pathogenic in a variety of chronic tissue injuries, reduced and/or disrupted ECM may be detrimental in atherosclerosis and rather destabilize existing atherosclerotic lesions. This study therefore assessed the effects of angiotensin II (AngII) antagonism on ECM components of advanced atherosclerosis. Twenty-four-week-old apolipoprotein E-deficient mice were treated with the AngII antagonist losartan for 12 wk. Controls received water or hydralazine. AngII antagonism significantly reduced progression of established atherosclerosis, whereas hydralazine showed no benefit despite similar decrease in BP. Although there was no difference in the macrophage component, AngII antagonism increased the relative collagen portion of the lesions; lessened elastin fragmentation, increased the total elastin content of the aorta; and reduced the mRNA and activity/protein of the elastolytic proteases, cathepsin S, and metalloproteinase-9. Extracellular elastin degradation by cultured smooth muscle cells (SMC) was reduced by losartan, as was SMC invasion through an elastin gel barrier. Thus, AngII antagonism lessens progression of atherosclerosis, increases collagen, and preserves elastin components of ECM within the vascular lesions, which, at least in part, is modulated by effects on SMC. These effects not only decrease further expansion of advanced lesions but also stabilize the established atherosclerotic plaques and may underlie the decreased incidence of acute cardiovascular events that are observed in patients in whom AngII antagonism is begun after atherosclerosis is already established.
Collapse
Affiliation(s)
- Eisuke Suganuma
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232-2584, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
316
|
Ohayon J, Dubreuil O, Tracqui P, Le Floc'h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G. Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 2007; 293:H1987-96. [PMID: 17604326 DOI: 10.1152/ajpheart.00018.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In a vulnerable plaque (VP), rupture often occurs at a site of high stress within the cap. It is also known that vessels do not become free of stress when all external loads are removed. Previous studies have shown that such residual stress/strain (RS/S) tends to make the stress distribution more uniform throughout the media of a normal artery. However, the influence of RS/S on the wall stress distribution in pathological coronaries remains unclear. The aim of this study was to investigate the effects of RS/S on the biomechanical stability of VPs. RS/S patterns were studied ex vivo in six human vulnerable coronary plaque samples. Because the existence of RS/S can only be assessed by releasing it, the opening angle technique was the experimental approach used to study the geometrical opening configurations of the diseased arteries, producing an arterial wall in a near-zero stress state. Reciprocally, these opening geometries were used in finite element simulations to reconstruct the RS/S distributions in closed arteries. It was found that the RS/S 1) is not negligible, 2) dramatically affects the physiological peak stress amplitude in the thin fibrous cap, 3) spotlights some new high stress areas, and 4) could be a landmark of the lipid core's developmental process within a VP. This study demonstrates that plaque rupture is not to be viewed as a consequence of intravascular pressure alone, but rather of a subtle combination of external loading and intraplaque RS/S.
Collapse
Affiliation(s)
- Jacques Ohayon
- National Heart, Blood and Lung Institute, NIH, Pettigrew's Laboratory, Bldg. 10, 10 Center Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
317
|
Westrick RJ, Winn ME, Eitzman DT. Murine models of vascular thrombosis (Eitzman series). Arterioscler Thromb Vasc Biol 2007; 27:2079-93. [PMID: 17600224 DOI: 10.1161/atvbaha.107.142810] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thrombotic complications of vascular disease are the leading cause of morbidity and mortality in most industrialized countries. Despite this, safe and effective drugs targeting these complications are limited, especially in the chronic setting. This is because of the complexity of thrombosis in both arteries and veins, which is becoming increasingly evident as numerous factors are now known to affect the fate of a forming thrombus. To fully characterize thrombus formation in these settings, in vivo models are necessary to study the various components and intricate interactions that are involved. Genetic manipulations in mice are greatly facilitating the dissection of relevant pro- and antithrombotic influences. Standardized models for the study of thrombosis in mice as well as evolving techniques that allow imaging of molecular events during thrombus formation are now available. This review will highlight some of the recent developments in the field of thrombosis using mouse models and how these studies are expanding our knowledge of thrombotic disease.
Collapse
Affiliation(s)
- Randal J Westrick
- Departments of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
318
|
Kanter JE, Johansson F, LeBoeuf RC, Bornfeldt KE. Do glucose and lipids exert independent effects on atherosclerotic lesion initiation or progression to advanced plaques? Circ Res 2007; 100:769-81. [PMID: 17395883 DOI: 10.1161/01.res.0000259589.34348.74] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
It is becoming increasingly clear that suboptimal blood glucose control results in adverse effects on large blood vessels, thereby accelerating atherosclerosis and cardiovascular disease, manifested as myocardial infarction, stroke, and peripheral vascular disease. Cardiovascular disease is accelerated by both type 1 and type 2 diabetes. In type 1 diabetes, hyperglycemia generally occurs in the absence of elevated blood lipid levels, whereas type 2 diabetes is frequently associated with dyslipidemia. In this review article, we discuss hyperglycemia versus hyperlipidemia as culprits in diabetes-accelerated atherosclerosis and cardiovascular disease, with emphasis on studies in mouse models and isolated vascular cells. Recent studies on LDL receptor-deficient mice that are hyperglycemic, but exhibit no marked dyslipidemia compared with nondiabetic controls, show that diabetes in the absence of diabetes-induced hyperlipidemia is associated with an accelerated formation of atherosclerotic lesions, similar to what is seen in fat-fed nondiabetic mice. These effects of diabetes are masked in severely dyslipidemic mice, suggesting that the effects of glucose and lipids on lesion initiation might be mediated by similar mechanisms. Recent evidence from isolated endothelial cells demonstrates that glucose and lipids can induce endothelial dysfunction through similar intracellular mechanisms. Analogous effects of glucose and lipids are also seen in macrophages. Furthermore, glucose exerts many of its cellular effects through lipid mediators. We propose that diabetes without associated dyslipidemia accelerates atherosclerosis by mechanisms that can also be activated by hyperlipidemia.
Collapse
Affiliation(s)
- Jenny E Kanter
- Department of Pathology, University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | |
Collapse
|
319
|
Falk E, Schwartz SM, Galis ZS, Rosenfeld ME. Putative Murine Models of Plaque Rupture. Arterioscler Thromb Vasc Biol 2007; 27:969-72. [PMID: 17377150 DOI: 10.1161/01.atv.0000261572.33474.e0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
320
|
Johnson JL. Matrix metalloproteinases: influence on smooth muscle cells and atherosclerotic plaque stability. Expert Rev Cardiovasc Ther 2007; 5:265-82. [PMID: 17338671 DOI: 10.1586/14779072.5.2.265] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Atherosclerotic plaque rupture, with subsequent occlusive thrombosis, is the underlying cause of most cases of sudden cardiac death. Matrix metalloproteinases (MMPs) are thought to mediate the progression of stable atherosclerotic lesions to an unstable phenotype that is prone to rupture through the destruction of strength-giving extracellular matrix (ECM) proteins. Smooth muscle cells secrete and deposit ECM proteins and are, therefore, considered protective against atherosclerotic plaque destabilization. However, similar to inflammatory cells (e.g., macrophages), smooth muscle cells release numerous MMPs that are capable of digesting ECM proteins. Thus, the interaction of smooth muscle cells and MMPs in atherosclerotic plaques is complex and not fully understood. Recently, research into the roles of MMPs and their endogenous inhibitors (tissue inhibitors of metalloproteinases), and their effects on smooth muscle behavior during plaque destabilization has been aided by the development of reproducible animal models of plaque instability. A plethora of studies has demonstrated that MMPs directly modulate smooth muscle behavior with both beneficial and deleterious effects on atherosclerotic plaque stability, in addition to their canonical effects on ECM remodeling. Consequently, broad-spectrum MMP inhibition may inhibit plaque-stabilizing mechanisms, such as smooth muscle cell growth, while conversely retarding ECM destruction and subsequent rupture. Hence the development of selective MMP inhibitors, that spare inhibitory effects on smooth muscle cell function, may be useful therapies to prevent plaque rupture and in this regard MMP-12 appears to be a particularly attractive target.
Collapse
Affiliation(s)
- Jason Lee Johnson
- University of Bristol, Bristol Heart Institute, Level 7, Bristol Royal Infirmary, Marlborough Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
321
|
Shen X, Bornfeldt KE. Mouse models for studies of cardiovascular complications of type 1 diabetes. Ann N Y Acad Sci 2007; 1103:202-17. [PMID: 17376839 DOI: 10.1196/annals.1394.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mouse models represent a powerful tool for investigating the underlying mechanisms of disease. Type 1 diabetes results in a markedly increased risk of cardiovascular disease. The cardiovascular complications are manifested primarily as ischemic heart disease caused by accelerated atherosclerosis, but also as cardiomyopathy, defined as ventricular dysfunction in the absence of clear ischemic heart disease. Several mouse models are now available to study atherosclerosis and cardiomyopathy associated with type 1 diabetes. For studies of diabetes-accelerated atherosclerosis, these models include low-density lipoprotein (LDL) receptor-deficient and apolipoprotein E-deficient mice in which diabetes is induced by streptozotocin or viral infection. In these mouse models, type 1 diabetes can be induced without marked changes in plasma lipid levels, thereby mimicking the accelerated atherosclerosis seen in patients with type 1 diabetes. However, mouse models that exhibit thrombotic events and myocardial infarctions as a result of diabetes still need to be developed. Conversely, cardiomyopathy associated with diabetes has now been extensively evaluated in streptozotocin-treated C57BL/6 mice, and in transgenic mice expressing calmodulin under a beta-cell-specific promoter. These mouse models have given significant insight into the molecular mechanisms causing cardiomyopathy, and indicate that increased oxidative stress contributes to diabetes-associated cardiomyopathy. In this review, we will discuss the available mouse models for studies of cardiovascular complications of type 1 diabetes, the potential mechanisms underlying these complications, and the need for new and improved mouse models.
Collapse
Affiliation(s)
- Xia Shen
- Department of Pathology, 1959 NE Pacific Street, University of Washington, Seattle, WA 98195-7470, USA
| | | |
Collapse
|
322
|
Bostrom MA, Boyanovsky BB, Jordan CT, Wadsworth MP, Taatjes DJ, de Beer FC, Webb NR. Group V Secretory Phospholipase A2Promotes Atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27:600-6. [PMID: 17204667 DOI: 10.1161/01.atv.0000257133.60884.44] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Group V secretory phospholipase A2 (GV sPLA2) has been detected in both human and mouse atherosclerotic lesions. This enzyme has potent hydrolytic activity towards phosphatidylcholine-containing substrates, including lipoprotein particles. Numerous studies in vitro indicate that hydrolysis of high density lipoproteins (HDL) and low density lipoproteins (LDL) by GV sPLA2 leads to the formation of atherogenic particles and potentially proinflammatory lipid mediators. However, there is no direct evidence that this enzyme promotes atherogenic processes in vivo. METHODS AND RESULTS We performed gain-of-function and loss-of-function studies to investigate the role of GV sPLA2 in atherogenesis in LDL receptor-deficient mice. Compared with control mice, animals overexpressing GV sPLA2 by retrovirus-mediated gene transfer had a 2.7 fold increase in lesion area in the ascending region of the aortic root. Increased atherosclerosis was associated with an increase in lesional collagen deposition in the same region. Mice deficient in bone marrow-derived GV sPLA2 had a 36% reduction in atherosclerosis in the aortic arch/thoracic aorta. CONCLUSIONS Our data in mouse models provide the first in vivo evidence that GV sPLA2 contributes to atherosclerotic processes, and draw attention to this enzyme as an attractive target for the treatment of atherosclerotic disease.
Collapse
Affiliation(s)
- Meredith A Bostrom
- Graduate Center for Nutritional Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | | | |
Collapse
|
323
|
Abstract
Despite the many studies of murine atherosclerosis, we do not yet know the relevance of the natural history of this model to the final events precipitated by plaque disruption of human atherosclerotic lesions. The literature has become particularly confused because of the common use of terms such as "instability", "vulnerable", "rupture", or even "thrombosis" for features of plaques in murine model systems not yet shown to rupture spontaneously and in an animal surprisingly resistant to formation of thrombi at sites of atherosclerosis. We suggest that use of conclusory terms like "vulnerable" and "stable" should be discouraged. Similarly, terms such as "buried fibrous caps" that imply preceding events that are unproven tend to create confusion. We will argue that such terminology may mislead readers by implying knowledge that does not yet exist. We suggest, instead, a focus on specific processes that various forms of data have implicated in plaque progression. For example, formation of the fibrous cap, protease activation, and cell death in the necrotic core can be well described and have all been modeled in well-defined experiments. The relevance of such well-defined, objective, descriptive observations in the mouse can be tested for relevance against data from human pathology.
Collapse
Affiliation(s)
- Stephen M Schwartz
- Department of Pathology, 815 Mercer Street, Room 421, University of Washington, Seattle, WA 98109-4714, USA.
| | | | | | | |
Collapse
|
324
|
Wu BJ, Di Girolamo N, Beck K, Hanratty CG, Choy K, Hou JY, Ward MR, Stocker R. Probucol [4,4′-[(1-Methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] Inhibits Compensatory Remodeling and Promotes Lumen Loss Associated with Atherosclerosis in Apolipoprotein E-Deficient Mice. J Pharmacol Exp Ther 2007; 321:477-84. [PMID: 17293560 DOI: 10.1124/jpet.106.118612] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Probucol [4,4'-[(1-methylethylidene)bis(thio)]bis-[2,6-bis(1,1-dimethylethyl)phenol]] was withdrawn from the United States market because it failed to inhibit atherosclerosis in human femoral arteries, yet the drug was shown subsequently to inhibit atherosclerosis in human carotid arteries, and probucol monosuccinate ester is presently being tested in a phase III clinical trial as an antiatherosclerotic compound based on its anti-inflammatory properties. Inflammatory macrophages are implicated in arterial remodeling associated with atherosclerosis, and probucol inhibits experimental atherosclerosis in part by decreasing macrophages in lesions. However, the impact of probucol on remodeling is unknown, although such knowledge could help explain why the drug's benefit on human atherosclerosis is controversial. We therefore examined the effect of probucol on remodeling of the common carotid artery in apolipoprotein E-deficient mice. We observed that during de novo atherosclerosis, plaque growth was fully compensated by expansive remodeling, such that lumen area was unaffected. Early lesions were composed almost entirely of macrophages, and their contribution to lesion area progressively decreased thereafter. Probucol significantly decreased plaque area, expression of vascular cell adhesion molecule-1, and proliferation of intimal cells, resulting in delayed macrophage accumulation in the vessel. Probucol also decreased the production and activity of matrix metalloproteinases-2 and -9, independent of the plasmin protease system, and this was associated with an inhibition of expansive remodeling, resulting in lumen loss. These studies show that probucol attenuates compensatory remodeling associated with de novo atherosclerosis, probably via its anti-inflammatory properties. Our findings suggest that lumen volume is not a suitable surrogate to assess the antiatherosclerotic activity of probucol and related drugs.
Collapse
Affiliation(s)
- Ben J Wu
- Centre for Vascular Research and Inflammatory Diseases Research Unit, School of Medical Sciences, University of New South Wales, and Royal North Shore Hospital, Sydney, Australia
| | | | | | | | | | | | | | | |
Collapse
|
325
|
Conover CA, Harrington SC, Bale LK, Oxvig C. Surface association of pregnancy-associated plasma protein-A accounts for its colocalization with activated macrophages. Am J Physiol Heart Circ Physiol 2007; 292:H994-H1000. [PMID: 17040968 DOI: 10.1152/ajpheart.00798.2006] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intense immunostaining for pregnancy-associated plasma protein-A (PAPP-A), a newly characterized metalloproteinase in the insulin-like growth factor system, colocalizes with activated macrophages in human atherosclerotic plaque. To determine macrophage regulation of PAPP-A expression, we developed two models of human macrophages with basal and activated phenotypes. THP-1 cells and peripheral blood monocytes could be differentiated into macrophages and activated upon specific treatment regimens with phorbol myristate acetate, macrophage colony-stimulating factor, and interleukin-1β. Activation was assessed by cell secretion of tumor necrosis factor-α, which increased 30- to 100-fold with activation. Activated macrophages also secreted matrix metalloproteinase-9. However, no PAPP-A mRNA or PAPP-A antigen could be detected in these cells under any condition. Upon incubation with recombinant PAPP-A, we found that activated macrophages bound and internalized more PAPP-A than unactivated macrophages or monocytes. Internalization accounted for at least 50% of macrophage-associated PAPP-A, as assessed in studies with cytochalasin B. Membrane-bound PAPP-A retained protease activity, whereas internalized PAPP-A had little or no activity. Similar experiments carried out with a mutated variant of PAPP-A, which retains functionality as a protease but is unable to bind surface-associated glycosaminoglycan, showed no macrophage association or internalization. Absence of PAPP-A expression was confirmed in activated macrophages isolated from a hypercholesterolemic rabbit model of atherosclerosis. We therefore conclude that PAPP-A is not synthesized in, but rather is bound and internalized by, macrophages. Our findings likely account for the observed intense immunostaining for PAPP-A colocalizing with activated macrophages and may have physiological significance in the development of vulnerable plaque.
Collapse
Affiliation(s)
- Cheryl A Conover
- Division of Endocrinology, Metabolism, and Nutrition, Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.
| | | | | | | |
Collapse
|
326
|
Lee JG, Lee SH, Park DW, Bae YS, Yun SS, Kim JR, Baek SH. Phosphatidic acid as a regulator of matrix metalloproteinase-9 expression via the TNF-α signaling pathway. FEBS Lett 2007; 581:787-93. [PMID: 17276429 DOI: 10.1016/j.febslet.2007.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 01/22/2007] [Indexed: 12/24/2022]
Abstract
Phosphatidic acid (PA) is implicated in pathophysiological processes associated with cellular signaling events and inflammation, which include the expressional regulation of numerous genes. Here, we show that PA stimulation increases matrix metalloproteinase-9 (MMP-9) expression in macrophages through tumor necrosis factor (TNF)-alpha signaling. We performed antibody array analysis on proteins from macrophages stimulated with PA. PA was found to induce the production of TNF-alpha, but not of TNF receptor (TNFR)1 and TNFR2 in a time-dependent manner and stimulated significant, though delayed, MMP-9 expression. PA induced the phosphorylations of both ERK1/2 and p38, but not of c-jun amino-terminal kinase. Moreover, only ERK1/2 inhibition by U0126 suppressed PA-induced TNF-alpha production and MMP-9 expression. Neutralizing TNF-alpha, TNFR1 or TNFR2 antibodies significantly suppressed PA-induced MMP-9 expression, suggesting that the production of TNF-alpha in response to PA preceded the expression of MMP-9. Moreover, lipopolysaccharide-induced PA also led to TNF-alpha release and resulted in MMP-9 expression. Taken together, these observations suggest that PA may play a role in MMP-9 regulation through ERKs/TNF-alpha/TNFRs-dependent signaling pathway.
Collapse
Affiliation(s)
- Jin-Gu Lee
- Department of Biochemistry & Molecular Biology, Aging-Associated Vascular Disease Research Center, Yeungnam University, Daegu 705-717, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
327
|
Tsirpanlis G. Is Inflammation the Link between Atherosclerosis and Vascular Calcification in Chronic Kidney Disease? Blood Purif 2007; 25:179-82. [PMID: 17261926 DOI: 10.1159/000099011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Atherosclerosis and vascular calcification often co-exist in chronic kidney disease (CKD) patients. Although the former has been recently recognized as an active inflammatory process, atherosclerosis-related calcification of the intima is still viewed as a passive epiphenomenon. Recent experimental data showed that ossification of the internal vascular wall might also be an active inflammatory process interrelated to atherosclerosis. Factors like RANKL (receptor activator of nuclear factor kappaB ligand), RANK and osteoprotegerin modulate vascular calcification and at the same time are involved in the process of atherosclerosis. Moreover, basic calcium phosphate crystals could interact with and activate monocytes-macrophages that produce proinflammatory cytokines capable of initiating - via endothelial activation and leukocyte adhesion - the atherosclerotic process. Thus, vascular calcification might be an active player and not simply an epiphenomenon in atherosclerosis. Should the above-mentioned data be confirmed in future studies, calcification of the internal vascular wall and atherosclerosis might be viewed and treated as tightly interconnected and linked by inflammation processes in CKD patients.
Collapse
Affiliation(s)
- George Tsirpanlis
- Department of Nephrology, General Hospital of Athens, Athens, Greece.
| |
Collapse
|
328
|
Zalba G, Fortuño A, Orbe J, San José G, Moreno MU, Belzunce M, Rodríguez JA, Beloqui O, Páramo JA, Díez J. Phagocytic NADPH oxidase-dependent superoxide production stimulates matrix metalloproteinase-9: implications for human atherosclerosis. Arterioscler Thromb Vasc Biol 2006; 27:587-93. [PMID: 17194891 DOI: 10.1161/01.atv.0000256467.25384.c6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Data suggest that matrix metalloproteinase-9 (MMP-9) has a role in atherosclerosis. The phagocytic NADPH oxidase has been also associated with atherosclerosis. This study aimed to investigate the association between phagocytic NADPH oxidase and MMP-9 in human atherosclerosis. METHODS AND RESULTS In vitro experiments performed in human monocytes showed that NADPH oxidase activation enhanced MMP-9 secretion and activity, determined by enzyme-linked immunosorbent assay and zymography, respectively. Immunohistochemical study showed that phagocytic NADPH oxidase localized with MMP-9 in endarterectomies from patients with carotid stenosis. In addition, a positive relationship (P<0.001) was found between phagocytic NADPH oxidase-dependent superoxide production determined with lucigenin and plasma MMP-9 levels in 188 asymptomatic subjects free of overt clinical atherosclerosis. In multivariate analysis, this association remained significant after adjustment for cardiovascular risk factors. Interestingly, subjects in the upper quartile of superoxide production exhibited the highest values of MMP-9, oxidized low-density lipoprotein, nitrotyrosine, carotid intima media thickness, and an increased presence of carotid plaques. CONCLUSIONS Enhanced NADPH oxidase-dependent *O2(-) production stimulates MMP-9 in monocytes and this relationship may be relevant in the atherosclerotic process. Moreover, MMP-9 emerges as an important mediator of the phagocytic NADPH oxidase-dependent oxidative stress in atherosclerosis.
Collapse
Affiliation(s)
- Guillermo Zalba
- Division of Cardiovascular Sciences, Centre for Applied Medical Research, University Clinic, School of Medicine, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
329
|
Fischoeder A, Meyborg H, Stibenz D, Fleck E, Graf K, Stawowy P. Insulin augments matrix metalloproteinase-9 expression in monocytes. Cardiovasc Res 2006; 73:841-8. [PMID: 17234168 DOI: 10.1016/j.cardiores.2006.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Revised: 12/05/2006] [Accepted: 12/06/2006] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Insulin resistance and hyperinsulinemia are major causes of cardiovascular morbidity and mortality. Matrix metalloproteinases (MMPs), highly expressed in activated mononuclear cells in vulnerable atherosclerotic lesions, are the main proteolytic enzymes controlling plaque stability. The aim of this study was to investigate the regulation of monocyte MMP-9 by insulin. METHODS AND RESULTS Stimulation of MMP-9 expression by insulin was time- and concentration-dependent in human monocytic THP-1 cells. Inhibition of insulin receptor (IR) maturation via inhibition of its activating convertase furin with the pharmacological furin-inhibitor decanoyl-RVKR-chloromethylketone, as well as blocking of IGF-1R function with a IGF-1R blocking antibody, demonstrated that insulin mediates increases in MMP-9 via IR activation. Inhibition of insulin's "metabolic" phosphatidylinositol 3-kinase signaling with wortmannin (50 nmol/L) or LY294002 (2.5 micromol/L) did not prevent insulin-dependent MMP-9 induction. In contrast inhibition of insulin's "mitogenic" Ras-Raf-mitogen-activated protein kinase-kinase pathways with PD98059 (15 micromol/L) or U0126 (2 micromol/L) inhibited insulin-induced MMP-9 gelatinolytic activity in THP-1 cells. Likewise, PD98059 inhibited insulin augmented MMP-9 levels in primary human monocytes, whereas wortmannin had no effect. CONCLUSION This study demonstrates that insulin can induce MMP-9 via mitogenic signaling pathways in monocytes, whereas phosphatidylinositol 3-kinase-dependent signaling, typically altered in insulin resistance, is not required. Induction of MMP-9 by insulin may potentially contribute to a pro-inflammatory state and the increased cardiovascular morbidity and mortality in type 2 diabetics.
Collapse
Affiliation(s)
- Arne Fischoeder
- Department of Medicine/Cardiology, Deutsches Herzzentrum Berlin, Augustenburger Platz 1, D-13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
330
|
Aoki T, Kataoka H, Morimoto M, Nozaki K, Hashimoto N. Macrophage-derived matrix metalloproteinase-2 and -9 promote the progression of cerebral aneurysms in rats. Stroke 2006; 38:162-9. [PMID: 17122420 DOI: 10.1161/01.str.0000252129.18605.c8] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Mechanisms of initiation, progression and rupture of cerebral aneurysms have not yet been fully understood despite its clinical significance. Matrix metalloproteinases (MMPs) are a family of proteinases which are involved in the remodeling of vascular walls. In the present study, we investigated the significance of MMPs in the progression of cerebral aneurysms. METHODS Cerebral aneurysms were experimentally induced in 7-week-old male Sprague-Dawley rats. MMP-2 and MMP-9 expression was examined by immunohistochemistry and RT-PCR. Gelatinase activity in aneurysmal walls was assessed by in situ zymography. A selective inhibitor for MMP-2, -9 and -12, tolylsam, was used to examine the effect of inhibition of MMP-2 and MMP-9. RESULTS Macrophages infiltrated in arterial walls of experimentally induced rat cerebral aneurysms and expressed MMP-2 and -9. Macrophage infiltration and MMP expression was increased with the progression of aneurysms. Gelatinase activity attributable to MMP-2 and MMP-9 increased in arterial walls of rat cerebral aneurysms. Furthermore, tolylsam reduced the ratio of advanced aneurysms in our rat model. CONCLUSIONS These data suggest that macrophage-derived MMP-2 and -9 may play an important role in the progression of cerebral aneurysms. The findings of this study will shed a new light into the pathogenesis of cerebral aneurysms and highlight the importance of inflammatory response causing the degeneration of extracellular matrix in the process of this disease.
Collapse
Affiliation(s)
- Tomohiro Aoki
- Kyoto University, Graduate School of Medicine, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, Japan
| | | | | | | | | |
Collapse
|
331
|
Abstract
PURPOSE OF REVIEW Atherosclerotic plaque rupture and thrombosis underlie most myocardial infarctions. Matrix metalloproteinases are a family of enzymes that remodel the extracellular matrix. Metalloproteinases could stabilize rupture-prone plaques by promoting smooth muscle cell migration and proliferation. Alternatively, metalloproteinases could destabilize vulnerable plaques by promoting matrix destruction, angiogenesis, leucocyte infiltration, and apoptosis. Evidence is reviewed from genetically modified mice and human biomarker and genetic studies that sheds light on this dual role of metalloproteinases. RECENT FINDINGS Inhibition of metalloproteinases in mice using tissue inhibitors of metalloproteinases increases plaque stability; however, double knockouts of apolipoprotein E with matrix metalloproteinase 2, 3, 7, 9, 12, and 13 have more or less stable plaques, consistent with harmful or protective effects of individual metalloproteinases. Overexpression studies in mice or rabbits show that high activities of matrix metalloproteinase 9 and 12 decrease stability. Biomarker and human genetic studies demonstrate that increased metalloproteinase activity is associated with vascular repair or myocardial infarction. SUMMARY Recent studies reinforce evidence for a dual role of matrix metalloproteinases in plaque stabilization and rupture, which probably depends on the stage, site, and severity of disease. Dysregulated metalloproteinase activity in end-stage coronary artery disease appears a valid target for therapy.
Collapse
Affiliation(s)
- Andrew C Newby
- Bristol Heart Institute, Royal Infirmary, University of Bristol, Bristol BS2 8HW, UK.
| |
Collapse
|
332
|
Ferri N, Paoletti R, Corsini A. Biomarkers for atherosclerosis: pathophysiological role and pharmacological modulation. Curr Opin Lipidol 2006; 17:495-501. [PMID: 16960497 DOI: 10.1097/01.mol.0000245254.33011.de] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this article is to discuss the potential value of biomarkers for atherosclerosis in the assessment of risk for cardiovascular disease, in the pathogenesis of atherosclerosis, and in the monitoring of pharmacological treatment. RECENT FINDINGS In an attempt to improve global cardiovascular risk prediction, considerable effort has been made in the discovery and characterization of soluble biomarkers which can go beyond the measure of total and LDL cholesterol levels. In particular, circulating molecules related to chronic inflammation have emerged as potential biomarkers for atherosclerosis. Evidence, obtained from in-vitro and in-vivo experimental models, has also documented that the majority of biomarkers play a pathological role in atherogenesis. Multiple screening of different biomarkers may therefore improve the assessment of risk, diagnosis, and prognosis for cardiovascular disease. In addition, soluble biomarkers have been shown to be modulated by hypolipidemic drugs and to be potentially useful in determining the clinical benefits of pharmacological therapies that do not alter serum lipid levels. SUMMARY Altered levels of soluble biomarkers are associated with cardiovascular disease, and profiling of multiple biomarkers for atherosclerosis will be a useful indicator for better risk assessment, diagnosis, and prognosis, as well as monitoring pharmacological treatments for atherosclerosis.
Collapse
Affiliation(s)
- Nicola Ferri
- Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | |
Collapse
|
333
|
Matsubara H, Yamada H, Tsubakimoto Y, Yokoi H. [Pathophysiological significance of RAS in formation of arteriosclerosis]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2006; 95:1762-8. [PMID: 17037312 DOI: 10.2169/naika.95.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
334
|
Bikádi Z, Hazai E, Zsila F, Lockwood SF. Molecular modeling of non-covalent binding of homochiral (3S,3′S)-astaxanthin to matrix metalloproteinase-13 (MMP-13). Bioorg Med Chem 2006; 14:5451-8. [PMID: 16716595 DOI: 10.1016/j.bmc.2006.04.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2006] [Accepted: 04/28/2006] [Indexed: 11/17/2022]
Abstract
Inhibitors for matrix metalloproteinases (MMPs) are under investigation for the treatment of various important chronic illnesses, including cancer, arthritis, and cardiovascular disease (CVD). In particular, MMP-13 is currently being probed as a potential key target in CVD and malignant disease due to its documented effects on extracellular matrix (ECM) remodeling, important in the pathophysiology of these diseases. Within the family of related mammalian MMP enzymes, MMP-13 possesses a large hydrophobic binding pocket relative to that of other MMPs. Homochiral astaxanthin (3S,3'S-AST; 3S,3'S-dihydroxy-beta,beta-carotene-4,4'-dione), an important antioxidant and anti-inflammatory xanthophyll carotenoid, is an active metabolite of several novel soft drugs in clinical development; it is also extensively used and tested as a human nutraceutical. In the current study, the prediction of the geometry and energetics of its binding to human MMP-13 was conducted with molecular modeling. The method used was found to predict the energy of binding of known ligands of MMP-13 with great precision. Blind docking using the whole protein target was then used in order to identify the possible binding site(s) of AST. AST was predicted to bind at several sites in close proximity to the active center. Subsequent analyses focused on the binding site at the atomic (i.e., amino acid sequence) level suggested that AST can bind to MMP-13 with high affinity and favorable energetics. Therefore, the modeling study predicts potential direct enzyme-inhibitory activity of AST against MMP-13, a behavior that may be exploited in mammalian systems in which pathological upregulation of MMP activity is paramount.
Collapse
|
335
|
MacDougall ED, Kramer F, Polinsky P, Barnhart S, Askari B, Johansson F, Varon R, Rosenfeld ME, Oka K, Chan L, Schwartz SM, Bornfeldt KE. Aggressive very low-density lipoprotein (VLDL) and LDL lowering by gene transfer of the VLDL receptor combined with a low-fat diet regimen induces regression and reduces macrophage content in advanced atherosclerotic lesions in LDL receptor-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 168:2064-73. [PMID: 16723719 PMCID: PMC1606621 DOI: 10.2353/ajpath.2006.051009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Very low-density lipoprotein (VLDL) and LDL plasma levels are associated with cardiovascular mortality. Whereas VLDL/LDL lowering causes regression of early atherosclerotic lesions, less is known about the effects of aggressive lipid lowering on regression of advanced complex lesions. We therefore investigated the effect of VLDL/LDL lowering on pre-existing lesions in LDL receptor-deficient mice. Mice fed a high-fat diet for 16 weeks developed advanced lesions with fibrous caps, necrotic cores, and cholesterol clefts in the brachiocephalic artery. After an additional 14 weeks on a low-fat diet, plasma cholesterol levels decreased from 21.0 +/- 2.6 to 8.4 +/- 0.6 mmol/L, but lesions did not regress. Levels of VLDL/LDL were further lowered by using a helper-dependent adenovirus encoding the VLDL receptor (HD-Ad-VLDLR) under control of a liver-selective promoter. Treatment with HD-Ad-VLDLR together with a low-fat diet regimen resulted in reduced lesion size (cross-sectional area decreased from 146,272 +/- 19,359 to 91,557 +/- 15,738 microm2) and an 89% reduction in the cross-sectional lesion area occupied by macrophages compared to controls. These results show that aggressive VLDL/LDL lowering achieved by hepatic overexpression of VLDLR combined with a low-fat diet regimen induces regression of advanced plaques in the brachiocephalic artery of LDL receptor-deficient mice.
Collapse
Affiliation(s)
- Erin D MacDougall
- Dept. of Pathology, 1959 NE Pacific St., University of Washington, Seattle, WA 98195-7470, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
336
|
Deguchi JO, Aikawa M, Tung CH, Aikawa E, Kim DE, Ntziachristos V, Weissleder R, Libby P. Inflammation in atherosclerosis: visualizing matrix metalloproteinase action in macrophages in vivo. Circulation 2006; 114:55-62. [PMID: 16801460 DOI: 10.1161/circulationaha.106.619056] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) in inflamed atherosclerotic plaques may contribute to extracellular matrix remodeling and the onset of acute thrombotic complications. METHODS AND RESULTS To test the hypothesis that optical molecular imaging with the use of an activatable near-infrared fluorescence (NIRF) probe can detect enzymatic action of MMP in atherosclerotic plaques, we used a NIRF substrate for gelatinases (MMP-2/gelatinase-A and MMP-9/gelatinase-B) in apolipoprotein E-deficient (apoE-/-) mice that consumed a high-cholesterol diet for 12 weeks and age-matched apoE+/+ mice as control. The aortas of apoE-/- mice at 24 hours after probe yielded intense NIRF signals, as detected by NIRF reflectance ex vivo, compared with negligible signals in aortas of apoE+/+ mice with/without probe administration or atherosclerotic apoE-/- aortas without probe. Gelatinase inhibitor treatment abolished NIRF signals in apoE-/- mouse aortas ex vivo. Sites of gelatinase activity visualized by NIRF colocalized with macrophage accumulation, immunoreactive MMP-2 and MMP-9, and gelatinolytic activity detected by in situ zymography. Furthermore, fluorescence molecular tomography indicated in vivo that atherosclerotic aortas of apoE-/- mice produced NIRF signals for gelatinase action, whereas aortas of apoE+/+ mice injected with the probe or apoE-/- aortas with no probe exhibited negligible NIRF signals. CONCLUSIONS These results suggest the feasibility of noninvasively imaging the enzymatic action of MMPs in vivo, an approach that may gauge inflammatory foci in atherosclerosis, assess cardiovascular risk, and evaluate the effects of therapeutic interventions.
Collapse
Affiliation(s)
- Jun-o Deguchi
- Donald W. Reynolds Cardiovascular Clinical Research Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
337
|
Abstract
BACKGROUND AND PURPOSE The simplistic view of atherosclerosis as a disorder of pathological lipid deposition has been redefined by the more complex concept of an ongoing inflammatory response. SUMMARY OF REVIEW Apolipoprotein E and low-density lipoprotein (LDL)-receptor-deficient mice develop accelerated atherosclerosis allowing in-depth pathophysiological investigations. Atherosclerotic plaques in these mice contain large numbers of T cells and macrophages. Crossbreeding apolipoprotein E-deficient mice with T-cell-deficient mice and mice with impaired macrophage function (osteopetrotic op/op mice) disclosed the important impact of immune cells on atherosclerotic lesion development. In contrast to the detrimental role of T cells and macrophages, B cells appear to be atheroprotective. These basic experimental findings have partly been confirmed in studies of the human carotid artery system. Inflammation is not only instrumental in the development of human atheromatous plaques, but, importantly, plays a crucial role in the destabilization of internal carotid artery plaques, thus converting chronic atherosclerosis into an acute thrombo-embolic disorder. Humoral factors involved in internal carotid artery destabilization include cytokines, cyclooxygenase-2, matrix metalloproteinases, and tissue factor. Antibodies to oxidized LDL can reflect disease activity on one hand, but can also confer atheroprotection. Novel MRI techniques may aid in the in vivo assessment of acute plaque inflammation in humans. CONCLUSIONS The impact of inflammation on the development of atherosclerotic plaques and their destabilization opens new avenues for treatment. The effects of statins, acetylsalicyclic acid and angiotensin-converting enzyme inhibitors on stroke prevention may partly be attributable to their profound anti-inflammatory actions. Vaccination against modified LDL and heat shock proteins halt plaque progression in experimental atherosclerosis. Their potential for prevention of human atherosclerosis is currently under investigation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/therapeutic use
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/etiology
- Atherosclerosis/immunology
- Atherosclerosis/physiopathology
- Autoantibodies/immunology
- Carotid Artery Diseases/complications
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/pathology
- Crosses, Genetic
- Cytokines/antagonists & inhibitors
- Cytokines/physiology
- Endothelium, Vascular/injuries
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Female
- Heart Transplantation
- Humans
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use
- Inflammation/complications
- Inflammation/drug therapy
- Lipoproteins, LDL/immunology
- Macrophages/pathology
- Magnetic Resonance Imaging
- Male
- Mice
- Mice, Knockout
- Mice, SCID
- Models, Animal
- Osteopetrosis/genetics
- Osteopetrosis/immunology
- Postoperative Complications/immunology
- Postoperative Complications/pathology
- Protease Inhibitors/therapeutic use
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Severe Combined Immunodeficiency/genetics
- Severe Combined Immunodeficiency/immunology
- Stroke/etiology
- Stroke/prevention & control
- T-Lymphocytes/pathology
- Thromboembolism/etiology
- Thromboembolism/prevention & control
- Vaccination
- Vasculitis/complications
- Vasculitis/drug therapy
- Vasculitis/physiopathology
Collapse
Affiliation(s)
- Guido Stoll
- Department of Neurology, Julius-Maximilians-Universität, Würzburg, Germany.
| | | |
Collapse
|
338
|
Abstract
Matrix metalloproteinases (MMPs) are key modulators of many biological processes during pathophysiological events, such as skeletal formation, angiogenesis, cellular migration, inflammation, wound healing, coagulation, lung and cardiovascular diseases, arthritis, and cancer. Twenty-four members of the MMP family have been identified in humans, degrading many components of the extracellular matrix, cellular receptors, and cytokines. This review describes the molecular structure, activation and inhibition, and substrate specificity of MMPs, and their biological function in development and disease.
Collapse
Affiliation(s)
- Vincent Lemaître
- Department of Medicine, Division of Molecular Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
339
|
Marian AJ. Clinical trials report. Curr Atheroscler Rep 2006. [DOI: 10.1007/s11883-006-0070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
340
|
Marian AJ. Interleukin-18 and cardiovascular events. Curr Atheroscler Rep 2006; 8:173-4. [PMID: 16767839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
|
341
|
Park SH, Kim DS, Kim WG, Ryoo IJ, Lee DH, Huh CH, Youn SW, Yoo ID, Park KC. Terrein: a new melanogenesis inhibitor and its mechanism. Cell Mol Life Sci 2005; 61:2878-85. [PMID: 15558216 DOI: 10.1007/s00018-004-4341-3] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Terrein is a bioactive fungal metabolite whose effects are almost unknown. In this study, we found for the first time that terrein has a strong hypopigmentary effect in a spontaneously immortalized mouse melanocyte cell line, Mel-Ab. Treatment of Mel-Ab cells with terrein (10-100 microM) for 4 days significantly reduced melanin levels in a dose-dependent manner. In addition, terrein at the same concentration also reduced tyrosinase activity. We then investigated whether terrein influences the extracellular signal-regulated protein kinase (ERK) pathway and the expression of microphthalmia-associated transcription factor (MITF), which is required for tyrosinase expression. Terrein was found to induce sustained ERK activation and MITF down-regulation, and luciferase assays showed that terrein inhibits MITF promoter activity in a dose-dependent manner. To elucidate the correlation between ERK pathway activation and a decreased MITF transcriptional level, PD98059, a specific inhibitor of the ERK pathway, was applied before terrein treatment and found to abrogate the terrein-induced MITF attenuation. Terrein also reduced the tyrosinase protein level for at least 72 h. These results suggest that terrein reduces melanin synthesis by reducing tyrosinase production via ERK activation, and that this is followed by MITF down-regulation.
Collapse
Affiliation(s)
- S-H Park
- Department of Dermatology, Bundang Hospital, Seoul National University, 300 Gumi-Dong, Bundang-Gu, 463-707, Seongnam-Si, Kyoungki-Do, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
342
|
McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Crit Rev Biochem Mol Biol 2000; 48:222-72. [PMID: 10947989 DOI: 10.3109/10409238.2013.770819] [Citation(s) in RCA: 560] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tissue degradation by the matrix metalloproteinase gelatinase A is pivotal to inflammation and metastases. Recognizing the catalytic importance of substrate-binding exosites outside the catalytic domain, we screened for extracellular substrates using the gelatinase A hemopexin domain as bait in the yeast two-hybrid system. Monocyte chemoattractant protein-3 (MCP-3) was identified as a physiological substrate of gelatinase A. Cleaved MCP-3 binds to CC-chemokine receptors-1, -2, and -3, but no longer induces calcium fluxes or promotes chemotaxis, and instead acts as a general chemokine antagonist that dampens inflammation. This suggests that matrix metalloproteinases are both effectors and regulators of the inflammatory response.
Collapse
Affiliation(s)
- G A McQuibban
- Department of Biochemistry and Molecular Biology, Biomedical Research Centre, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | |
Collapse
|