301
|
Srivastava S, Riddell SR. Chimeric Antigen Receptor T Cell Therapy: Challenges to Bench-to-Bedside Efficacy. THE JOURNAL OF IMMUNOLOGY 2018; 200:459-468. [PMID: 29311388 DOI: 10.4049/jimmunol.1701155] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/29/2017] [Indexed: 12/23/2022]
Abstract
Immunotherapy with T cells genetically modified to express chimeric Ag receptors (CARs) that target tumor-associated molecules have impressive efficacy in hematological malignancies. The field has now embraced the challenge of applying this approach to treat common epithelial malignancies, which make up the majority of cancer cases but evade immunologic attack by a variety of subversive mechanisms. In this study, we review the principles that have guided CAR T cell design and the extraordinary clinical results being achieved in B cell malignancies targeting CD19 with a single infusion of engineered T cells. This success has raised expectations that CAR T cells can be applied to solid tumors, but numerous obstacles must be overcome to achieve the success observed in hematologic cancers. Potential solutions driven by advances in genetic engineering, synthetic biology, T cell biology, and improved tumor models that recapitulate the obstacles in human tumors are discussed.
Collapse
Affiliation(s)
- Shivani Srivastava
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Stanley R Riddell
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| |
Collapse
|
302
|
Adriani G, Pavesi A, Kamm RD. Studying TCR T cell anti-tumor activity in a microfluidic intrahepatic tumor model. Methods Cell Biol 2018; 146:199-214. [PMID: 30037462 DOI: 10.1016/bs.mcb.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) is showing promising results in clinical trials but many challenges remain in understanding the key role of the tumor microenvironment. These challenges constitute a major barrier to advancing the field. Therefore, it is crucial to perform preclinical tests of the developed ACT strategies in a fast and reproducible way to assess the potential for patient therapy. Here, we describe the development of an intrahepatic tumor model in a microfluidic device for screening T cell-based immunotherapeutic strategies and the role of monocytes in these therapies. This system can be used to test also the effects of supporting cytokine administration and changes in oxygen level that are typically found in a liver tumor microenvironment. As a result, these 3D microfluidic assays provide a means to quantify T cell anti-tumor activity under different conditions to optimize existing therapeutic strategies or the design of new ones.
Collapse
Affiliation(s)
- Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Roger D Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
303
|
Tang L, Zheng Y, Melo MB, Mabardi L, Castaño AP, Xie YQ, Li N, Kudchodkar SB, Wong HC, Jeng EK, Maus MV, Irvine DJ. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat Biotechnol 2018; 36:707-716. [PMID: 29985479 PMCID: PMC6078803 DOI: 10.1038/nbt.4181] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 06/07/2018] [Indexed: 12/24/2022]
Abstract
Adoptive cell therapy (ACT) with antigen-specific T cells has shown remarkable clinical success, but approaches to safely and effectively augment T cell function, especially in solid tumors, remain of great interest. Here we describe a strategy to “backpack” large quantities of supporting protein drugs on T cells using protein nanogels (NGs) that selectively release these cargos in response to T cell receptor (TCR) activation. We design cell surface-conjugated NGs that respond to an increase in T cell surface reduction potential upon antigen recognition, limiting drug release to sites of antigen encounter such as the tumor microenvironment. Using NGs carrying an IL-15 superagonist complex, we demonstrate that relative to systemic administration of free cytokines, NG delivery selectively expands T cells 16-fold in tumors, and allows at least 8-fold higher doses of cytokine to be administered without toxicity. The improved therapeutic window enables substantially increased tumor clearance by murine T cell and human CAR-T cell therapy in vivo.
Collapse
Affiliation(s)
- Li Tang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Yiran Zheng
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mariane Bandeira Melo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Llian Mabardi
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA
| | - Ana P Castaño
- Cellular Immunotherapy Program, Massachusetts General Hospital (MGH) Cancer Center, Charlestown, Massachusetts, USA
| | - Yu-Qing Xie
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Na Li
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Hing C Wong
- Altor BioScience Corporation, Miramar, Florida, USA
| | - Emily K Jeng
- Altor BioScience Corporation, Miramar, Florida, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Massachusetts General Hospital (MGH) Cancer Center, Charlestown, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell J Irvine
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
304
|
Watkins MP, Bartlett NL. CD19-targeted immunotherapies for treatment of patients with non-Hodgkin B-cell lymphomas. Expert Opin Investig Drugs 2018; 27:601-611. [PMID: 29940805 DOI: 10.1080/13543784.2018.1492549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Ubiquitous expression of CD19 on B cell non-Hodgkin lymphoma identified it as a potential target for immune-based therapies. AREAS COVERED This article reviews the current literature on anti-CD19 therapies currently in clinical trials including monoclonal antibodies (mAb), antibody targeted cytotoxic drug conjugates (ADC), bispecific antibodies, and chimeric antigen receptor (CAR) modified T cells. EXPERT OPINION Naked anti-CD19 mAbs have shown little clinical benefit in B cell lymphomas. Despite unusual toxicity profiles with many anti-CD19 ADCs slowing development, durable remissions in a substantial minority of patients with refractory aggressive lymphomas should encourage continued efforts in this area. Blinatumomab, an anti-CD19 bispecific T cell engager, has shown impressive responses in relapse/refractory diffuse large B cell lymphoma (DLBCL), but is plagued by neurotoxicity issues and the need for continuous infusion. CD19 targeting CAR-T cell therapies are the most promising, with the potential for curing a third of refractory DLBCL patients. There is still much work to be done to address potentially life-threatening cytokine release syndrome and neurotoxicity, an extended production time precluding patients with rapidly progressive disease, and treatment expense. However, if the promise of CAR-T cell technology is confirmed, this will likely change the approach and prognosis for relapse/refractory aggressive lymphoma.
Collapse
|
305
|
Affiliation(s)
- Carl H June
- From the Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia (C.H.J.); and the Center for Cell Engineering, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York (M.S.)
| | - Michel Sadelain
- From the Center for Cellular Immunotherapies, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia (C.H.J.); and the Center for Cell Engineering, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York (M.S.)
| |
Collapse
|
306
|
Luskin MR, DeAngelo DJ. Chimeric Antigen Receptor Therapy in Acute Lymphoblastic Leukemia Clinical Practice. Curr Hematol Malig Rep 2018; 12:370-379. [PMID: 28656487 DOI: 10.1007/s11899-017-0394-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Over half of patients diagnosed with B-cell acute lymphoblastic leukemia (ALL) develop relapsed or refractory disease. Traditional chemotherapy salvage is inadequate, and new therapies are needed. Chimeric antigen receptor (CAR) T cell therapy is a novel, immunologic approach where T cells are genetically engineered to express a CAR conferring specificity against a target cell surface antigen, most commonly the pan-B-cell marker CD19. After infusion, CAR T cells expand and persist, allowing ongoing tumor surveillance. Several anti-CD19 CAR T cell constructs have induced high response rates in heavily pre-treated populations, although durability of response varied. Severe toxicity (cytokine release syndrome and neurotoxicity) is the primary constraint to broad implementation of CAR T cell therapy. Here, we review the experience of CAR T cell therapy for ALL and ongoing efforts to modify existing technology to improve efficacy and decrease toxicity. As an anti-CD19 CAR T cell construct may be FDA approved soon, we focus on issues relevant to practicing clinicians.
Collapse
MESH Headings
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Antigens, CD19/metabolism
- Humans
- Immunotherapy, Adoptive/methods
- Neoplasm Recurrence, Local
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/immunology
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/transplantation
- Treatment Outcome
Collapse
Affiliation(s)
- Marlise R Luskin
- Harvard Medical School, Boston, MA, USA.
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| | - Daniel J DeAngelo
- Harvard Medical School, Boston, MA, USA
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA
| |
Collapse
|
307
|
Geyer MB, Manjunath SH, Evans AG, Park JH, Davila ML, Cutler CS, Wang X, Wang Y, Senechal B, Rivière I, Sadelain M, Liesveld JL, Brentjens RJ. Concurrent therapy of chronic lymphocytic leukemia and Philadelphia chromosome-positive acute lymphoblastic leukemia utilizing CD19-targeted CAR T-cells. Leuk Lymphoma 2018; 59:1717-1721. [PMID: 29043880 PMCID: PMC6037308 DOI: 10.1080/10428194.2017.1390237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Mark B. Geyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Shwetha H. Manjunath
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Andrew G. Evans
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jae H. Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Marco L. Davila
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Corey S. Cutler
- Division of Hematologic Malignancies, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xiuyan Wang
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Yongzeng Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Brigitte Senechal
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA,Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jane L. Liesveld
- Department of Medicine, Hematology Oncology Division, Wilmot Cancer Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Renier J. Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York City, NY, USA,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| |
Collapse
|
308
|
Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Rep 2018; 20:3025-3033. [PMID: 28954221 PMCID: PMC6002762 DOI: 10.1016/j.celrep.2017.09.002] [Citation(s) in RCA: 316] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/16/2017] [Accepted: 08/30/2017] [Indexed: 12/19/2022] Open
Abstract
The effects of transgenically encoded human and mouse IL-18 on T cell proliferation and its application in boosting chimeric antigen receptor (CAR) T cells are presented. Robust enhancement of proliferation of IL-18-secreting human T cells occurred in a xenograft model, and this was dependent on TCR and IL-18R signaling. IL-18 augmented IFN-γ secretion and proliferation of T cells activated by the endogenous TCR. TCR-deficient, human IL-18-expressing CD19 CAR T cells exhibited enhanced proliferation and antitumor activity in the xenograft model. Antigen-propelled activation of cytokine helper ensemble (APACHE) CAR T cells displayed inducible expression of IL-18 and enhanced antitumor immunity. In an intact mouse tumor model, CD19-IL-18 CAR T cells induced deeper B cell aplasia, significantly enhanced CAR T cell proliferation, and effectively augmented antitumor effects in mice with B16F10 melanoma. These findings point to a strategy to develop universal CAR T cells for patients with solid tumors.
Collapse
|
309
|
Halim L, Ajina A, Maher J. Pre-clinical development of chimeric antigen receptor T-cell immunotherapy: Implications of design for efficacy and safety. Best Pract Res Clin Haematol 2018; 31:117-125. [PMID: 29909912 DOI: 10.1016/j.beha.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/03/2018] [Accepted: 04/17/2018] [Indexed: 11/18/2022]
Abstract
Following the landmark approvals by the United States Food and Drug Administration, the adoptive transfer of CD19-directed chimeric antigen receptor (CAR) T-cells has now entered mainstream clinical practice for patients with chemotherapy-resistant or refractory B-cell malignancies. These approvals have followed on from a prolonged period of pre-clinical evaluation, informing the design of clinical trials that have demonstrated unprecedented efficacy in this difficult to treat patient population. However, the delivery of autologous CAR-engineered T-cell therapy is complex, costly and not without significant risk. Here we summarize the key themes of CAR T-cell preclinical development and highlight a number of innovative strategies designed to further address toxicity and improve efficacy. In concert with the emerging promise of precision genome editing, it is hoped these next generation products will increase the repertoire of clinical applications of CAR T-cell therapy in malignant and perhaps other disease settings.
Collapse
Affiliation(s)
- Leena Halim
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK.
| | - Adam Ajina
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK.
| | - John Maher
- King's College London, School of Cancer and Pharmaceutical Sciences, Guy's Hospital, London, UK; Department of Clinical Immunology and Allergy, King's College Hospital NHS Foundation Trust, London, UK; Department of Immunology, Eastbourne Hospital, East Sussex, UK.
| |
Collapse
|
310
|
Geyer MB, Rivière I, Sénéchal B, Wang X, Wang Y, Purdon TJ, Hsu M, Devlin SM, Halton E, Lamanna N, Rademaker J, Sadelain M, Brentjens RJ, Park JH. Autologous CD19-Targeted CAR T Cells in Patients with Residual CLL following Initial Purine Analog-Based Therapy. Mol Ther 2018; 26:1896-1905. [PMID: 29910179 DOI: 10.1016/j.ymthe.2018.05.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/19/2018] [Accepted: 05/21/2018] [Indexed: 12/25/2022] Open
Abstract
Patients with residual chronic lymphocytic leukemia (CLL) following initial purine analog-based chemoimmunotherapy exhibit a shorter duration of response and may benefit from novel therapeutic strategies. We and others have previously described the safety and efficacy of autologous T cells modified to express anti-CD19 chimeric antigen receptors (CARs) in patients with relapsed or refractory B cell acute lymphoblastic leukemia and CLL. Here we report the use of CD19-targeted CAR T cells incorporating the intracellular signaling domain of CD28 (19-28z) as a consolidative therapy in 8 patients with residual CLL following first-line chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab. Outpatients received low-dose conditioning therapy with cyclophosphamide (600 mg/m2), followed by escalating doses of 3 × 106, 1 × 107, or 3 × 107 19-28z CAR T cells/kg. An objective response was observed in 3 of 8 patients (38%), with a clinically complete response lasting more than 28 months observed in two patients. Self-limited fevers were observed post-CAR T cell infusion in 4 patients, contemporaneous with elevations in interleukin-6 (IL-6), IL-10, IL-2, and TGF-α. None developed severe cytokine release syndrome or neurotoxicity. CAR T cells were detectable post-infusion in 4 patients, with a longest observed persistence of 48 days by qPCR. Further strategies to enhance CAR T cell efficacy in CLL are under investigation.
Collapse
Affiliation(s)
- Mark B Geyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Isabelle Rivière
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brigitte Sénéchal
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Xiuyan Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yongzeng Wang
- Michael G. Harris Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Meier Hsu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean M Devlin
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elizabeth Halton
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Lamanna
- Department of Medicine, Columbia University, Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Jurgen Rademaker
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jae H Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
311
|
Salter AI, Pont MJ, Riddell SR. Chimeric antigen receptor-modified T cells: CD19 and the road beyond. Blood 2018; 131:2621-2629. [PMID: 29728402 PMCID: PMC6032892 DOI: 10.1182/blood-2018-01-785840] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/20/2018] [Indexed: 12/14/2022] Open
Abstract
The ability to harness a patient's immune system to target malignant cells is now transforming the treatment of many cancers, including hematologic malignancies. The adoptive transfer of T cells selected for tumor reactivity or engineered with natural or synthetic receptors has emerged as an effective modality, even for patients with tumors that are refractory to conventional therapies. The most notable example of adoptive cell therapy is with T cells engineered to express synthetic chimeric antigen receptors (CARs) that reprogram their specificity to target CD19. CAR T cells have shown remarkable antitumor activity in patients with refractory B-cell malignancies. Ongoing research is focused on understanding the mechanisms of incomplete tumor elimination, reducing toxicities, preventing antigen escape, and identifying suitable targets and strategies based on established and emerging principles of synthetic biology for extending this approach to other hematologic malignancies. This review will discuss the current status, challenges, and potential future applications of CAR T-cell therapy in hematologic malignancies.
Collapse
Affiliation(s)
- Alexander I Salter
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| | - Margot J Pont
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
| | - Stanley R Riddell
- Immunotherapy Integrated Research Center, Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA; and
- Department of Medicine, University of Washington, Seattle, WA
| |
Collapse
|
312
|
Driving cars to the clinic for solid tumors. Gene Ther 2018; 25:165-175. [PMID: 29880908 DOI: 10.1038/s41434-018-0007-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/28/2017] [Accepted: 01/15/2018] [Indexed: 01/14/2023]
Abstract
FDA approval of chimeric antigen receptor T cells (CART cells) is the culmination of several decades of technology development and interrogation of the properties of these gene therapies. CART cells exist as personalized "living drugs" and have demonstrated astounding anti-tumor efficacy in patients with leukemia and lymphoma. However, the future promise of CART efficacy for solid tumors, the greatest unmet burden, is met with a number of challenges that must be surmounted for effective immune responses. In this review, we discuss the next-generation developments of CARs to target solid tumors, including fine-tuned and combinational-targeting receptors. We consider the structural intricacies of the CAR molecules that influence optimal signaling and CART survival, and review pre-clinical cell-intrinsic and cell-extrinsic combinational therapy approaches.
Collapse
|
313
|
Sukumaran S, Watanabe N, Bajgain P, Raja K, Mohammed S, Fisher WE, Brenner MK, Leen AM, Vera JF. Enhancing the Potency and Specificity of Engineered T Cells for Cancer Treatment. Cancer Discov 2018; 8:972-987. [PMID: 29880586 DOI: 10.1158/2159-8290.cd-17-1298] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/13/2018] [Accepted: 06/05/2018] [Indexed: 01/05/2023]
Abstract
The adoptive transfer of chimeric antigen receptor (CAR)-modified T cells has produced tumor responses even in patients with refractory diseases. However, the paucity of antigens that are tumor selective has resulted, on occasion, in "on-target, off-tumor" toxicities. To address this issue, we developed an approach to render T cells responsive to an expression pattern present exclusively at the tumor by using a trio of novel chimeric receptors. Using pancreatic cancer as a model, we demonstrate how T cells engineered with receptors that recognize prostate stem cell antigen, TGFβ, and IL4, and whose endodomains recapitulate physiologic T-cell signaling by providing signals for activation, costimulation, and cytokine support, produce potent antitumor effects selectively at the tumor site. In addition, this strategy has the benefit of rendering our cells resistant to otherwise immunosuppressive cytokines (TGFβ and IL4) and can be readily extended to other inhibitory molecules present at the tumor site (e.g., PD-L1, IL10, and IL13).Significance: This proof-of-concept study demonstrates how sophisticated engineering approaches can be utilized to both enhance the antitumor efficacy and increase the safety profile of transgenic T cells by incorporating a combination of receptors that ensure that cells are active exclusively at the tumor site. Cancer Discov; 8(8); 972-87. ©2018 AACR.See related commentary by Achkova and Pule, p. 918This article is highlighted in the In This Issue feature, p. 899.
Collapse
Affiliation(s)
- Sujita Sukumaran
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Norihiro Watanabe
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Pradip Bajgain
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas
| | - Kanchana Raja
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Somala Mohammed
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - William E Fisher
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Ann M Leen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas
| | - Juan F Vera
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, Texas.
| |
Collapse
|
314
|
Pennell CA, Barnum JL, McDonald-Hyman CS, Panoskaltsis-Mortari A, Riddle MJ, Xiong Z, Loschi M, Thangavelu G, Campbell HM, Storlie MD, Refaeli Y, Furlan SN, Jensen MC, Kean LS, Miller JS, Tolar J, Osborn MJ, Blazar BR. Human CD19-Targeted Mouse T Cells Induce B Cell Aplasia and Toxicity in Human CD19 Transgenic Mice. Mol Ther 2018; 26:1423-1434. [PMID: 29735365 PMCID: PMC5986973 DOI: 10.1016/j.ymthe.2018.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/02/2018] [Accepted: 04/04/2018] [Indexed: 01/28/2023] Open
Abstract
The clinical success of chimeric antigen receptor (CAR) T cell therapy for CD19+ B cell malignancies can be limited by acute toxicities and immunoglobulin replacement needs due to B cell aplasia from persistent CAR T cells. Life-threatening complications include cytokine release syndrome and neurologic adverse events, the exact etiologies of which are unclear. To elucidate the underlying toxicity mechanisms and test potentially safer CAR T cells, we developed a mouse model in which human CD19 (hCD19)-specific mouse CAR T cells were adoptively transferred into mice whose normal B cells express a hCD19 transgene at hemizygous levels. Compared to homozygous hCD19 transgenic mice that have ∼75% fewer circulating B cells, hemizygous mice had hCD19 frequencies and antigen density more closely simulating human B cells. Hemizygous mice given a lethal dose of hCD19 transgene-expressing lymphoma cells and treated with CAR T cells had undetectable tumor levels. Recipients experienced B cell aplasia and antigen- and dose-dependent acute toxicities mirroring patient complications. Interleukin-6 (IL-6), interferon γ (IFN-γ), and inflammatory pathway transcripts were enriched in affected tissues. As in patients, antibody-mediated neutralization of IL-6 (and IFN-γ) blunted toxicity. Apparent behavioral abnormalities associated with decreased microglial cells point to CAR-T-cell-induced neurotoxicity. This model will prove useful in testing strategies designed to improve hCD19-specific CAR T cell safety.
Collapse
Affiliation(s)
- Christopher A Pennell
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessie L Barnum
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cameron S McDonald-Hyman
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Panoskaltsis-Mortari
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Megan J Riddle
- Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Zhengming Xiong
- Division of Hematology and Oncology, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael Loschi
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Govindarajan Thangavelu
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Heather M Campbell
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Meghan D Storlie
- Department of Laboratory Medicine and Pathology, Masonic Cancer Center, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yosef Refaeli
- Department of Dermatology, University of Colorado, Aurora, CO 80045, USA
| | - Scott N Furlan
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Ben Towne Center for Childhood Cancer, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98101, USA
| | - Michael C Jensen
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Ben Towne Center for Childhood Cancer, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98101, USA
| | - Leslie S Kean
- Division of Pediatric Hematology-Oncology, Department of Pediatrics, The Ben Towne Center for Childhood Cancer, The Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98101, USA
| | - Jeffrey S Miller
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jakub Tolar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark J Osborn
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bruce R Blazar
- Division of Blood and Marrow Transplantation, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
315
|
Ruella M, June CH. Predicting Dangerous Rides in CAR T Cells: Bridging the Gap between Mice and Humans. Mol Ther 2018; 26:1401-1403. [PMID: 29784587 PMCID: PMC5986966 DOI: 10.1016/j.ymthe.2018.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Marco Ruella
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA
| | - Carl H June
- Center for Cellular Immunotherapies, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA; Parker Institute for Cancer Immunotherapy, University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|
316
|
Prevention and treatment of relapse after stem cell transplantation by cellular therapies. Bone Marrow Transplant 2018; 54:26-34. [PMID: 29795426 DOI: 10.1038/s41409-018-0227-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/27/2022]
Abstract
Despite recent advances in reducing therapy-related mortality after allogeneic stem cell transplantation (alloSCT) relapse remains the major cause of treatment failure and little progress has been achieved in the last decades. At the 3rd International Workshop on Biology, Prevention, and Treatment of Relapse held in Hamburg/Germany in November 2016 international experts presented and discussed recent developments in the field. Here, the potential of cellular therapies including unspecific and specific T cells, genetically modified T cells, CAR-T cells, NK-cells, and second allografting in prevention and treatment of relapse after alloSCT are summarized.
Collapse
|
317
|
Avanzi MP, Yeku O, Li X, Wijewarnasuriya DP, van Leeuwen DG, Cheung K, Park H, Purdon TJ, Daniyan AF, Spitzer MH, Brentjens RJ. Engineered Tumor-Targeted T Cells Mediate Enhanced Anti-Tumor Efficacy Both Directly and through Activation of the Endogenous Immune System. Cell Rep 2018; 23:2130-2141. [PMID: 29768210 PMCID: PMC5986286 DOI: 10.1016/j.celrep.2018.04.051] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 03/15/2018] [Accepted: 04/12/2018] [Indexed: 12/31/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.
Collapse
Affiliation(s)
- Mauro P Avanzi
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Oladapo Yeku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Xinghuo Li
- Weill Cornell School of Medicine, New York, NY, USA
| | | | | | - Kenneth Cheung
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hyebin Park
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony F Daniyan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Matthew H Spitzer
- Department of Microbiology and Immunology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell School of Medicine, New York, NY, USA.
| |
Collapse
|
318
|
Garnier P, Mummery R, Forster MJ, Mulloy B, Gibbs RV, Rider CC. The localisation of the heparin binding sites of human and murine interleukin-12 within the carboxyterminal domain of the P40 subunit. Cytokine 2018; 110:159-168. [PMID: 29753267 PMCID: PMC6109204 DOI: 10.1016/j.cyto.2018.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/20/2022]
Abstract
We demonstrate differences in the specificity of heparin binding between human and murine IL-12s. Heparin predominantly protects the p40 subunit against proteolysis by LysC. A truncated IL-12 polypeptide lacking the carboxyterminal D3 domain fails to bind heparin. The C′D′ loop of the D3 domain contains a large cluster of surface accessible basic residues. This loop is the region of greatest sequence variation between murine and human p40s.
We have previously shown that the heterodimeric cytokine interleukin-12, and the homodimer of its larger subunit p40, both bind to heparin and heparan sulfate with relatively high affinity. In the present study we characterised these interactions using a series of chemically modified heparins as competitive inhibitors. Human interleukin-12 and p40 homodimer show indistinguishable binding profiles with a panel of heparin derivatives, but that of murine interleukin-12 is distinct. Heparin markedly protects the human and murine p40 subunits, but not the p35 subunits, from cleavage by the bacterial endoprotease LysC, further implicating the larger subunit as the location of the heparin binding site. Moreover the essential role of the carboxyterminal D3 domain in heparin binding is established by the failure of a truncated construct of the p40 subunit lacking this domain to bind. Predictive docking calculations indicate that a cluster of basic residues at the tip of the exposed C′D′ loop within D3 is important in heparin binding. However since the human and murine C′D′ loops differ considerably in length, the mode and three dimensional orientation of heparin binding are likely to differ substantially between the human and murine p40s. Thus overall the binding of IL-12 via its p40 subunit to heparin-related polysaccharides of the extracellular matrix appears to be functionally important since it has been conserved across mammalian species despite this structural divergence.
Collapse
Affiliation(s)
- Pascale Garnier
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Rosemary Mummery
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK
| | - Mark J Forster
- National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK; Scientific Computing Department, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, UK(2)
| | - Barbara Mulloy
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK; National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Herts EN6 3QG, UK
| | - Roslyn V Gibbs
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, White Swan Road, Portsmouth, Hants PO1 2DT, UK
| | - Christopher C Rider
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey TW20 0EX, UK.
| |
Collapse
|
319
|
Chmielewski M, Abken H. TRUCKs with IL-18 payload: Toward shaping the immune landscape for a more efficacious CAR T-cell therapy of solid cancer. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/acg2.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Markus Chmielewski
- Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Department of Internal Medicine; University Hospital Cologne; Cologne Germany
| | - Hinrich Abken
- Center for Molecular Medicine Cologne; University of Cologne; Cologne Germany
- Department of Internal Medicine; University Hospital Cologne; Cologne Germany
| |
Collapse
|
320
|
Castro F, Cardoso AP, Gonçalves RM, Serre K, Oliveira MJ. Interferon-Gamma at the Crossroads of Tumor Immune Surveillance or Evasion. Front Immunol 2018; 9:847. [PMID: 29780381 PMCID: PMC5945880 DOI: 10.3389/fimmu.2018.00847] [Citation(s) in RCA: 761] [Impact Index Per Article: 126.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022] Open
Abstract
Interferon-gamma (IFN-γ) is a pleiotropic molecule with associated antiproliferative, pro-apoptotic and antitumor mechanisms. This effector cytokine, often considered as a major effector of immunity, has been used in the treatment of several diseases, despite its adverse effects. Although broad evidence implicating IFN-γ in tumor immune surveillance, IFN-γ-based therapies undergoing clinical trials have been of limited success. In fact, recent reports suggested that it may also play a protumorigenic role, namely, through IFN-γ signaling insensitivity, downregulation of major histocompatibility complexes, and upregulation of indoleamine 2,3-dioxygenase and of checkpoint inhibitors, as programmed cell-death ligand 1. However, the IFN-γ-mediated responses are still positively associated with patient's survival in several cancers. Consequently, major research efforts are required to understand the immune contexture in which IFN-γ induces its intricate and highly regulated effects in the tumor microenvironment. This review discusses the current knowledge on the pro- and antitumorigenic effects of IFN-γ as part of the complex immune response to cancer, highlighting the relevance to identify IFN-γ responsive patients for the improvement of therapies that exploit associated signaling pathways.
Collapse
Affiliation(s)
- Flávia Castro
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Patrícia Cardoso
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Raquel Madeira Gonçalves
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS – Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Karine Serre
- IMM – Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB – Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- Departamento de Patologia e Oncologia, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| |
Collapse
|
321
|
Ho P, Chen YY. Synthetic Biology in Immunotherapy and Stem Cell Therapy Engineering. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Patrick Ho
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| | - Yvonne Y. Chen
- University of California; Department of Chemical and Biomolecular Engineering; 420 Westwood Plaza, Boelter Hall 5532, Los Angeles CA 90095 USA
| |
Collapse
|
322
|
Siegler EL, Wang P. Preclinical Models in Chimeric Antigen Receptor-Engineered T-Cell Therapy. Hum Gene Ther 2018; 29:534-546. [PMID: 29390873 DOI: 10.1089/hum.2017.243] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cancer immunotherapy has enormous potential in inducing long-term remission in cancer patients, and chimeric antigen receptor (CAR)-engineered T cells have been largely successful in treating hematological malignancies in the clinic. CAR-T therapy has not been as effective in treating solid tumors, in part due to the immunosuppressive tumor microenvironment. Additionally, CAR-T therapy can cause dangerous side effects, including off-tumor toxicity, cytokine release syndrome, and neurotoxicity. Animal models of CAR-T therapy often fail to predict such adverse events and frequently overestimate the efficacy of the treatment. Nearly all preclinical CAR-T studies have been performed in mice, including syngeneic, xenograft, transgenic, and humanized mouse models. Recently, a few studies have used primate models to mimic clinical side effects better. To date, no single model perfectly recapitulates the human immune system and tumor microenvironment, and some models have revealed CAR-T limitations that were contradicted or missed entirely in other models. Careful model selection based on the primary goals of the study is a crucial step in evaluating CAR-T treatment. Advancements are being made in preclinical models, with the ultimate objective of providing safer, more effective CAR-T therapy to patients.
Collapse
Affiliation(s)
- Elizabeth Louise Siegler
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California
| | - Pin Wang
- 1 Department of Biomedical Engineering, University of Southern California , Los Angeles, California.,2 Department of Pharmacology and Pharmaceutical Sciences, University of Southern California , Los Angeles, California.,3 Mork Family Department of Chemical Engineering and Materials Science, University of Southern California , Los Angeles, California
| |
Collapse
|
323
|
Arai Y, Choi U, Corsino CI, Koontz SM, Tajima M, Sweeney CL, Black MA, Feldman SA, Dinauer MC, Malech HL. Myeloid Conditioning with c-kit-Targeted CAR-T Cells Enables Donor Stem Cell Engraftment. Mol Ther 2018; 26:1181-1197. [PMID: 29622475 DOI: 10.1016/j.ymthe.2018.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/28/2018] [Accepted: 03/05/2018] [Indexed: 01/04/2023] Open
Abstract
We report a novel approach to bone marrow (BM) conditioning using c-kit-targeted chimeric antigen receptor T (c-kit CAR-T) cells in mice. Previous reports using anti-c-kit or anti-CD45 antibody linked to a toxin such as saporin have been promising. We developed a distinctly different approach using c-kit CAR-T cells. Initial studies demonstrated in vitro killing of hematopoietic stem cells by c-kit CAR-T cells but poor expansion in vivo and poor migration of CAR-T cells into BM. Pre-treatment of recipient mice with low-dose cyclophosphamide (125 mg/kg) together with CXCR4 transduction in the CAR-T cells enhanced trafficking to and expansion in BM (<1%-13.1%). This resulted in significant depletion of the BM c-kit+ population (9.0%-0.1%). Because congenic Thy1.1 CAR-T cells were used in the Thy1.2-recipient mice, anti-Thy1.1 antibody could be used to deplete CAR-T cells in vivo before donor BM transplant. This achieved 20%-40% multilineage engraftment. We applied this conditioning to achieve an average of 28% correction of chronic granulomatous disease mice by wild-type BM transplant. Our findings provide a proof of concept that c-kit CAR-T cells can achieve effective BM conditioning without chemo-/radiotherapy. Our work also demonstrates that co-expression of a trafficking receptor can enhance targeting of CAR-T cells to a designated tissue.
Collapse
Affiliation(s)
- Yasuyuki Arai
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Uimook Choi
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Cristina I Corsino
- Immune Deficiency Genetics Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Sherry M Koontz
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Masaki Tajima
- Mucosal Immunity Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Colin L Sweeney
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Mary A Black
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Steven A Feldman
- Surgery Branch, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Harry L Malech
- Genetic Immunotherapy Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
324
|
Abstract
Chimeric antigen receptor (CAR) therapy has shown promise against B cell malignancies in the clinic. However, limited success in patients with solid tumors has prompted the development of new CAR strategies. In this study, a B7H6-specific CAR was combined with different variants of T-bet, a transcription factor that acts as the master regulator to induce a Th1 phenotype in CD4+ T cells, to create more effective CAR T cells. Skewing CD4+ CAR T cells into a Th1 improved CAR T cell functional activity while promoting a robust proinflammatory response against B7H6-expressing tumors. The expression of T-bet with the B7H6-specific CAR in CD4+ T cells conferred higher expression of the CAR, elevated secretion of Th1 and proinflammatory cytokines, and improved cellular cytotoxicity against B7H6-expressing tumor cells. In vivo, CD4+ T cells co-expressing a B7H6-specific CAR and T-bet improved the survival of RMA-B7H6 lymphoma-bearing mice. Thus, CD4+ CAR T cells with increased T-bet expression have the potential to modify the tumor microenvironment and the immune response to better treat solid and hematologic cancers.
Collapse
|
325
|
Li X, Shao C, Shi Y, Han W. Lessons learned from the blockade of immune checkpoints in cancer immunotherapy. J Hematol Oncol 2018; 11:31. [PMID: 29482595 PMCID: PMC6389077 DOI: 10.1186/s13045-018-0578-4] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/16/2018] [Indexed: 12/16/2022] Open
Abstract
The advent of immunotherapy, especially checkpoint inhibitor-based immunotherapy, has provided novel and powerful weapons against cancer. Because only a subset of cancer patients exhibit durable responses, further exploration of the mechanisms underlying the resistance to immunotherapy in the bulk of cancer patients is merited. Such efforts may help to identify which patients could benefit from immune checkpoint blockade. Given the existence of a great number of pathways by which cancer can escape immune surveillance, and the complexity of tumor-immune system interaction, development of various combination therapies, including those that combine with conventional therapies, would be necessary. In this review, we summarize the current understanding of the mechanisms by which resistance to checkpoint blockade immunotherapy occurs, and outline how actionable combination strategies may be derived to improve clinical outcomes for patients.
Collapse
Affiliation(s)
- Xiaolei Li
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.,Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China
| | - Changshun Shao
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yufang Shi
- The First Affiliated Hospital of Soochow University and Jiangsu Engineering Research Center for Tumor Immunotherapy, Institutes for Translational Medicine and Suzhou Key Laboratory of Tumor Microenvironment and Pathology, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Weidong Han
- Department of Molecular Biology, Immunology and Bio-therapeutic, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
326
|
Li J, Li W, Huang K, Zhang Y, Kupfer G, Zhao Q. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 2018; 11:22. [PMID: 29433552 PMCID: PMC5809840 DOI: 10.1186/s13045-018-0568-6] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 12/21/2022] Open
Abstract
Recently, the US Food and Drug Administration (FDA) approved the first chimeric antigen receptor T cell (CAR-T) therapy for the treatment CD19-positive B cell acute lymphoblastic leukemia. While CAR-T has achieved remarkable success in the treatment of hematopoietic malignancies, whether it can benefit solid tumor patients to the same extent is still uncertain. Even though hundreds of clinical trials are undergoing exploring a variety of tumor-associated antigens (TAA), no such antigen with comparable properties like CD19 has yet been identified regarding solid tumors CAR-T immunotherapy. Inefficient T cell trafficking, immunosuppressive tumor microenvironment, suboptimal antigen recognition specificity, and lack of safety control are currently considered as the main obstacles in solid tumor CAR-T therapy. Here, we reviewed the solid tumor CAR-T clinical trials, emphasizing the studies with published results. We further discussed the challenges that CAR-T is facing for solid tumor treatment and proposed potential strategies to improve the efficacy of CAR-T as promising immunotherapy.
Collapse
Affiliation(s)
- Jian Li
- School of Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenwen Li
- UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Kejia Huang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Yang Zhang
- Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu, 610052, China
| | - Gary Kupfer
- Section of Hematology-Oncology, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Qi Zhao
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
327
|
Abstract
Chimeric antigen receptor (CAR) T-cells are redirected T-cells that can recognize cancer antigens in a major histocompatibility complex (MHC)-independent fashion. A typical CAR is comprised of two main functional domains: an extracellular antigen recognition domain, called a single-chain variable fragment (scFv), and an intracellular signaling domain. Based on the number of intracellular signaling molecules, CARs are categorized into four generations. CAR T-cell therapy has become a promising treatment for hematologic malignancies. However, results of its clinical trials on solid tumors have not been encouraging. Here, we described the structure of CARs and summarized the clinical trials of CD19-targeted CAR T-cells. The side effects, safety management, challenges, and future prospects of CAR T-cells for the treatment of cancer, particularly for solid tumors, were also discussed.
Collapse
Affiliation(s)
- Niaz Muhammad
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| | - Qinwen Mao
- b Department of Pathology , Northwestern University Feinberg School of Medicine , Chicago , IL , USA
| | - Haibin Xia
- a Laboratory of Gene Therapy, Department of Biochemistry, College of Life Sciences , Shaanxi Normal University , Xi'an , P.R. China
| |
Collapse
|
328
|
A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 2018; 24:352-359. [PMID: 29400710 PMCID: PMC5839992 DOI: 10.1038/nm.4478] [Citation(s) in RCA: 353] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/21/2017] [Indexed: 12/22/2022]
Abstract
The adoptive transfer of T cells engineered with a chimeric antigen receptor (CAR) (hereafter referred to as CAR-T cells) specific for the B lymphocyte antigen CD19 has shown impressive clinical responses in patients with refractory B cell malignancies. However, the therapeutic effects of CAR-T cells that target other malignancies have not yet resulted in significant clinical benefit. Although inefficient tumor trafficking and various immunosuppressive mechanisms can impede CAR-T cell effector responses, the signals delivered by the current CAR constructs may still be insufficient to fully activate antitumor T cell functions. Optimal T cell activation and proliferation requires multiple signals, including T cell receptor (TCR) engagement (signal 1), co-stimulation (signal 2) and cytokine engagement (signal 3). However, CAR constructs currently being tested in the clinic contain a CD3z (TCR signaling) domain and co-stimulatory domain(s) but not a domain that transmits signal 3 (refs. 13, 14, 15, 16, 17, 18). Here we have developed a novel CAR construct capable of inducing cytokine signaling after antigen stimulation. This new-generation CD19 CAR encodes a truncated cytoplasmic domain from the interleukin (IL)-2 receptor β-chain (IL-2Rβ) and a STAT3-binding tyrosine-X-X-glutamine (YXXQ) motif, together with the TCR signaling (CD3z) and co-stimulatory (CD28) domains (hereafter referred to as 28-ΔIL2RB-z(YXXQ)). The 28-ΔIL2RB-z(YXXQ) CAR-T cells showed antigen-dependent activation of the JAK kinase and of the STAT3 and STAT5 transcription factors signaling pathways, which promoted their proliferation and prevented terminal differentiation in vitro. The 28-ΔIL2RB-z(YXXQ) CAR-T cells demonstrated superior in vivo persistence and antitumor effects in models of liquid and solid tumors as compared with CAR-T cells expressing a CD28 or 4-1BB co-stimulatory domain alone. Taken together, these results suggest that our new-generation CAR has the potential to demonstrate superior antitumor effects with minimal toxicity in the clinic and that clinical translation of this novel CAR is warranted.
Collapse
|
329
|
Gomes-Silva D, Ramos CA. Cancer Immunotherapy Using CAR-T Cells: From the Research Bench to the Assembly Line. Biotechnol J 2018; 13:10.1002/biot.201700097. [PMID: 28960810 PMCID: PMC5966018 DOI: 10.1002/biot.201700097] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/20/2017] [Indexed: 11/08/2022]
Abstract
The focus of cancer treatment has recently shifted toward targeted therapies, including immunotherapy, which allow better individualization of care and are hoped to increase the probability of success for patients. Specifically, T cells genetically modified to express chimeric antigen receptors (CARs; CAR-T cells) have generated exciting results. Recent clinical successes with this cutting-edge therapy have helped to push CAR-T cells toward approval for wider use. However, several limitations need to be addressed before the widespread use of CAR-T cells as a standard treatment. Here, a succinct background on adoptive T-cell therapy (ATCT)is given. A brief overview of the structure of CARs, how they are introduced into T cells, and how CAR-T cell expansion and selection is achieved in vitro is then presented. Some of the challenges in CAR design are discussed, as well as the difficulties that arise in large-scale CAR-T cell manufacture that will need to be addressed to achieve successful commercialization of this type of cell therapy. Finally, developments already on the horizon are discussed.
Collapse
Affiliation(s)
- Diogo Gomes-Silva
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Carlos A Ramos
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital and Houston Methodist Hospital, Houston, TX, 77030, USA
| |
Collapse
|
330
|
Roybal KT, Lim WA. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities. Annu Rev Immunol 2018; 35:229-253. [PMID: 28446063 DOI: 10.1146/annurev-immunol-051116-052302] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.
Collapse
Affiliation(s)
- Kole T Roybal
- Parker Institute for Cancer Immunotherapy, Department of Microbiology and Immunology, University of California, San Francisco, California 94143;
| | - Wendell A Lim
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158;
| |
Collapse
|
331
|
Zhang E, Gu J, Xu H. Prospects for chimeric antigen receptor-modified T cell therapy for solid tumors. Mol Cancer 2018; 17:7. [PMID: 29329591 PMCID: PMC5767005 DOI: 10.1186/s12943-018-0759-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 01/02/2018] [Indexed: 01/09/2023] Open
Abstract
The potential for adoptive cell immunotherapy as a treatment against cancers has been demonstrated by the remarkable response in some patients with hematological malignancies using autologous T cells endowed with chimeric antigen receptors (CARs) specific for CD19. Clinical efficacy of CAR-T cell therapy for the treatment of solid tumors, however, is rare due to physical and biochemical factors. This review focuses on different aspects of multiple mechanisms of immunosuppression in solid tumors. We characterize the current state of CAR-modified T cell therapy and summarize the various strategies to combat the immunosuppressive microenvironment of solid tumors, with the aim of promoting T cell cytotoxicity and enhancing tumor cell eradication.
Collapse
Affiliation(s)
- Erhao Zhang
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Jieyi Gu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Hanmei Xu
- The Engineering Research Center of Peptide Drug Discovery and Development, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China. .,State Key Laboratory of Natural Medicines, Ministry of Education, China Pharmaceutical University, Nanjing, Jiangsu, 210009, People's Republic of China.
| |
Collapse
|
332
|
Xu D, Jin G, Chai D, Zhou X, Gu W, Chong Y, Song J, Zheng J. The development of CAR design for tumor CAR-T cell therapy. Oncotarget 2018; 9:13991-14004. [PMID: 29568411 PMCID: PMC5862632 DOI: 10.18632/oncotarget.24179] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/04/2017] [Indexed: 12/17/2022] Open
Abstract
In recent years, the chimeric antigen receptor modified T cells (Chimeric antigen receptor T cells, CAR-T) immunotherapy has developed rapidly, which has been considered the most promising therapy. Efforts to enhance the efficacy of CAR-based anti-tumor therapy have been made, such as the improvement of structures of CAR-T cells, including the development of extracellular antigen recognition receptors, intracellular co-stimulatory molecules and the combination application of CARs and synthetic small molecules. In addition, effects on the function of the CAR-T cells that the space distance between the antigen binding domains and tumor targets and the length of the spacer domains have are also being investigated. Given the fast-moving nature of this field, it is necessary to make a summary of the development of CAR-T cells. In this review, we mainly focus on the present design strategies of CAR-T cells with the hope that they can provide insights to increase the anti-tumor efficacy and safety.
Collapse
Affiliation(s)
- Dandan Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Guoliang Jin
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaowan Zhou
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Weiyu Gu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyun Chong
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jingyuan Song
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
333
|
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Front Immunol 2017; 8:1850. [PMID: 29312333 PMCID: PMC5744011 DOI: 10.3389/fimmu.2017.01850] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Collapse
Affiliation(s)
- Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Analiz Rodriguez
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Jennifer Shepphird
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
334
|
Kueberuwa G, Kalaitsidou M, Cheadle E, Hawkins RE, Gilham DE. CD19 CAR T Cells Expressing IL-12 Eradicate Lymphoma in Fully Lymphoreplete Mice through Induction of Host Immunity. MOLECULAR THERAPY-ONCOLYTICS 2017; 8:41-51. [PMID: 29367945 PMCID: PMC5772011 DOI: 10.1016/j.omto.2017.12.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/28/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy represents a significant advancement in cancer therapy. Larger studies have shown ∼90% complete remission rates against chemoresistant and/or refractory CD19+ leukemia or lymphoma. Effective CAR T cell therapy is highly dependent on lymphodepleting preconditioning, which is achieved through chemotherapy or radiotherapy that carries with it significant toxicities. These can exclude patients of low performance status. In order to overcome the need for preconditioning, we constructed fully mouse first and second generation anti-murine CD19 CARs with or without interleukin-12 (IL-12) secretion. To test these CARs, we established a mouse model to reflect the human situation without preconditioning. Murine second generation CAR T cells expressing IL-12 were capable of eradicating established B cell lymphoma with a long-term survival rate of ∼25%. We believe this to be the first study in a truly lymphoreplete model. We provide evidence that IL-12-expressing CAR T cells not only directly kill target CD19+ cells, but also recruit host immune cells to an anti-cancer immune response. This finding is critical because lymphodepletion regimens required for the success of current CAR T cell technology eliminate host immune cells whose anti-cancer activity could otherwise be harnessed by strategies such as IL-12-secreting CAR T cells.
Collapse
Affiliation(s)
- Gray Kueberuwa
- Institute of Cancer Sciences, Manchester Cancer Research Centre Building, Wilmslow Road, Withington, Manchester M20 4QL, UK
| | - Milena Kalaitsidou
- Institute of Cancer Sciences, Manchester Cancer Research Centre Building, Wilmslow Road, Withington, Manchester M20 4QL, UK
| | - Eleanor Cheadle
- Institute of Cancer Sciences, Manchester Cancer Research Centre Building, Wilmslow Road, Withington, Manchester M20 4QL, UK
| | - Robert Edward Hawkins
- Institute of Cancer Sciences, Manchester Cancer Research Centre Building, Wilmslow Road, Withington, Manchester M20 4QL, UK
| | - David Edward Gilham
- Institute of Cancer Sciences, Manchester Cancer Research Centre Building, Wilmslow Road, Withington, Manchester M20 4QL, UK
| |
Collapse
|
335
|
Yeku O, Li X, Brentjens RJ. Adoptive T-Cell Therapy for Solid Tumors. AMERICAN SOCIETY OF CLINICAL ONCOLOGY EDUCATIONAL BOOK. AMERICAN SOCIETY OF CLINICAL ONCOLOGY. ANNUAL MEETING 2017. [PMID: 28561728 DOI: 10.14694/edbk_180328] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and various costimulatory molecules. Upon administration, these modified T cells traffic to, and recognize, cancer cells in an HLA-independent manner. CAR T-cell therapy has shown remarkable success in the treatment of CD-19-expressing B-cell acute lymphocytic leukemia. However, clinical gains to the same magnitude have not been reported in solid tumors. Several known obstacles to CAR T-cell therapy for solid tumors include target antigen identification, effective trafficking to the tumor, robust activation, proliferation, and in vivo cytotoxicity. Beyond these T-cell intrinsic properties, a complex and dynamic immunosuppressive tumor microenvironment in solid tumors hinders T-cell efficacy. Notable advancements in CAR design to include multiple costimulatory molecules, ligands, and soluble cytokines have shown promise in preclinical models, and some of these are currently in early-phase clinical trials. In this review, we discuss selected solid tumor malignancies and relevant preclinical data and highlight clinical trial results that are available. Furthermore, we outline some obstacles to CAR T-cell therapy for each tumor and propose strategies to overcome some of these limitations.
Collapse
Affiliation(s)
- Oladapo Yeku
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xinghuo Li
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
336
|
Yeku O, Li X, Brentjens RJ. Adoptive T-Cell Therapy for Solid Tumors. Am Soc Clin Oncol Educ Book 2017; 37:193-204. [PMID: 28561728 DOI: 10.1200/edbk_180328] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an innovative form of immunotherapy wherein autologous T cells are genetically modified to express chimeric receptors encoding an antigen-specific single-chain variable fragment and various costimulatory molecules. Upon administration, these modified T cells traffic to, and recognize, cancer cells in an HLA-independent manner. CAR T-cell therapy has shown remarkable success in the treatment of CD-19-expressing B-cell acute lymphocytic leukemia. However, clinical gains to the same magnitude have not been reported in solid tumors. Several known obstacles to CAR T-cell therapy for solid tumors include target antigen identification, effective trafficking to the tumor, robust activation, proliferation, and in vivo cytotoxicity. Beyond these T-cell intrinsic properties, a complex and dynamic immunosuppressive tumor microenvironment in solid tumors hinders T-cell efficacy. Notable advancements in CAR design to include multiple costimulatory molecules, ligands, and soluble cytokines have shown promise in preclinical models, and some of these are currently in early-phase clinical trials. In this review, we discuss selected solid tumor malignancies and relevant preclinical data and highlight clinical trial results that are available. Furthermore, we outline some obstacles to CAR T-cell therapy for each tumor and propose strategies to overcome some of these limitations.
Collapse
Affiliation(s)
- Oladapo Yeku
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Xinghuo Li
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Renier J Brentjens
- From the Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY; Weill Cornell Medicine, New York, NY; Center for Cell Engineering, and Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY
| |
Collapse
|
337
|
Schubert ML, Hoffmann JM, Dreger P, Müller-Tidow C, Schmitt M. Chimeric antigen receptor transduced T cells: Tuning up for the next generation. Int J Cancer 2017; 142:1738-1747. [PMID: 29119551 DOI: 10.1002/ijc.31147] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 12/17/2022]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has recently achieved impressive clinical outcome in patients with CD19-positive hematologic malignancies. Extrapolation of CAR T cell treatment to solid tumors, however, has not yet yielded similar results. This might be due to intrinsic causes, e.g. insufficient CAR T cell activation or CAR toxicity as well as extrinsic factors displaying an unfavorable tumor environment for CAR T cells by raising physical and chemical barriers. In this review, we discuss the advantages as well as major obstacles of CAR T cell therapy, particularly in the context of solid tumors, and focus on efforts and novel strategies in CAR T cell development.
Collapse
Affiliation(s)
- Maria-Luisa Schubert
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Jean-Marc Hoffmann
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Dreger
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ)/National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
338
|
Ajina A, Maher J. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5:90. [PMID: 29157300 PMCID: PMC5696728 DOI: 10.1186/s40425-017-0294-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/17/2017] [Indexed: 12/18/2022] Open
Abstract
With the approval of talimogene laherparepvec (T-VEC) for inoperable locally advanced or metastatic malignant melanoma in the USA and Europe, oncolytic virotherapy is now emerging as a viable therapeutic option for cancer patients. In parallel, following the favourable results of several clinical trials, adoptive cell transfer using chimeric antigen receptor (CAR)-redirected T-cells is anticipated to enter routine clinical practice for the management of chemotherapy-refractory B-cell malignancies. However, CAR T-cell therapy for patients with advanced solid tumours has proved far less successful. This Review draws upon recent advances in the design of novel oncolytic viruses and CAR T-cells and provides a comprehensive overview of the synergistic potential of combination oncolytic virotherapy with CAR T-cell adoptive cell transfer for the management of solid tumours, drawing particular attention to the methods by which recombinant oncolytic viruses may augment CAR T-cell trafficking into the tumour microenvironment, mitigate or reverse local immunosuppression and enhance CAR T-cell effector function and persistence.
Collapse
Affiliation(s)
- Adam Ajina
- Department of Oncology, Royal Free London NHS Foundation Trust, London, UK
| | - John Maher
- King’s College London, CAR Mechanics Group, School of Cancer and Pharmaceutical Sciences, Guy’s Hospital Campus, Great Maze Pond, London, SE1 9RT UK
- Department of Clinical Immunology and Allergy, King’s College Hospital NHS Foundation Trust, London, UK
- Department of Immunology, Eastbourne Hospital, East Sussex, UK
| |
Collapse
|
339
|
Ghosh A, Mailankody S, Giralt SA, Landgren CO, Smith EL, Brentjens RJ. CAR T cell therapy for multiple myeloma: where are we now and where are we headed? Leuk Lymphoma 2017; 59:2056-2067. [PMID: 29105517 DOI: 10.1080/10428194.2017.1393668] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
While recent progress has been made in the management of multiple myeloma, it remains a highly fatal malignancy especially among patients with relapsed-refractory disease. Immunotherapy with adoptive T cells targeting myeloma-associated antigens are at various stages of development and have brought about a new hope for cure. This is a review on the emerging field of adoptively transferred engineered T cell based approaches, with an in-depth focus on chimeric antigen receptors (CAR) targeting multiple myeloma. The recent results from CAR T cells targeting B cell maturation antigen are encouraging but eventual resistance to the CAR T cell therapies remain problematic. With newer approaches in therapies for multiple myeloma, the role of transplantation is evolved to form a platform for T cell therapies.
Collapse
Affiliation(s)
- Arnab Ghosh
- a Hematology/Oncology/BMT Fellowship Program, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sham Mailankody
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Sergio A Giralt
- c Adult BMT Service, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - C Ola Landgren
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Eric L Smith
- b Myeloma Service, Division of Hematologic Oncology, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA.,d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA
| | - Renier J Brentjens
- d Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center , New York , NY , USA.,e Leukemia Service, Department of Medicine , Memorial Sloan Kettering Cancer Center , New York , NY , USA
| |
Collapse
|
340
|
Abstract
Immunological destruction of tumors is a multistep, coordinated process that can be modulated or targeted at several critical points to elicit tumor rejection. These steps in the cancer immunity cycle include: (i) generation of sufficient numbers of effector T cells with high avidity recognition of tumor antigens in vivo; (ii) trafficking and infiltration into the tumor; (iii) overcoming inhibitory networks in the tumor microenvironment; (iv) direct recognition of tumor antigens and generation of an effector anti-tumor response; and (v) persistence of the anti-tumor T cells. In an effort to understand whether the immune system plays a role in controlling ovarian cancer, our group and others demonstrated that the presence of tumor infiltrating lymphocytes (TILs) is associated with improved clinical outcome in ovarian cancer patients. Recently, we hypothesized that the quality of infiltrating T cells could also be a critical determinant of outcome in ovarian cancer patients. In the past decade, several immune-based interventions have gained regulatory approval in many solid tumors and hematologic malignancies. These interventions include immune checkpoint blockade, cancer vaccines, and adoptive cell therapy. There are currently no approved immune therapies for ovarian cancer. Immunotherapy in ovarian cancer will have to consider the immune suppressive networks within the ovarian tumor microenvironment; therefore, a major direction is to develop biomarkers that would predict responsiveness to different types of immunotherapies, and allow for treatment selection based on the results. Moreover, such biomarkers would allow rational combination of immunotherapies, while minimizing toxicities. In this review, the current understanding of the host immune response in ovarian cancer patients will be briefly reviewed, progress in immune therapies, and future directions for exploiting immune based strategies for long lasting durable cure.
Collapse
Affiliation(s)
- K Odunsi
- Department of Gynecologic Oncology, Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, USA
| |
Collapse
|
341
|
Jain MD, Davila ML. Concise Review: Emerging Principles from the Clinical Application of Chimeric Antigen Receptor T Cell Therapies for B Cell Malignancies. Stem Cells 2017; 36:36-44. [PMID: 29024301 DOI: 10.1002/stem.2715] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 09/21/2017] [Indexed: 11/07/2022]
Abstract
Gene-engineered T cell therapies are soon to be United States Food and Drug Administration (FDA) approved for at least two types of B cell malignancies in pediatric and adult patients, in the form of CD19 targeted chimeric antigen receptor T (CAR T) cell therapy. This represents a triumph of a true bench to bedside clinical translation of a therapy that was conceived of in the early 1990s. Clinical results have demonstrated efficacious responses in patients with the CD19 positive diseases B cell acute lymphoblastic leukemia and diffuse large B cell lymphoma. However, significant challenges have emerged, including worrisome immune-related toxicities, therapy resistance, and understanding how to administer CD19 CAR T cells in clinical practice. Although much remains to be learned, pioneering clinical trials have led to foundational insights about the clinical translation of this novel therapy. Here, we review the "lessons learned" from the pre-clinical and human experience with CAR T cell therapy. Stem Cells 2018;36:36-44.
Collapse
Affiliation(s)
- Michael D Jain
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Marco L Davila
- Department of Blood and Marrow Transplantation and Cellular Immunotherapy, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Oncologic Sciences, University of South Florida, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
342
|
Qin L, Zhao R, Li P. Incorporation of functional elements enhances the antitumor capacity of CAR T cells. Exp Hematol Oncol 2017; 6:28. [PMID: 29046826 PMCID: PMC5637271 DOI: 10.1186/s40164-017-0088-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/03/2017] [Indexed: 01/12/2023] Open
Abstract
As chimeric antigen receptor (CAR) T cells have displayed an unprecedented efficacy in the treatment of CD19-positive malignances, it is believed that this cell therapy will be a milestone in the history of mankind's conquering of cancer. However, there are some issues that restrict CAR T cells from reaching their optimal anti-tumor capacity, especially in the treatment of solid tumors. Inhibitory cytokines, immune checkpoint molecules, hypoxia and other adverse factors have been reported to be involved in this process. To obtain better efficacy in the treatment of leukemia and solid tumors, we need to continuously upgrade CAR T cell technology by incorporating novel functional elements into CAR T cells to overcome these restrictions. In this review, we summarize recent advances regarding this topic.
Collapse
Affiliation(s)
- Le Qin
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Ruocong Zhao
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| | - Peng Li
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China.,State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
343
|
Kunert A, Chmielewski M, Wijers R, Berrevoets C, Abken H, Debets R. Intra-tumoral production of IL18, but not IL12, by TCR-engineered T cells is non-toxic and counteracts immune evasion of solid tumors. Oncoimmunology 2017; 7:e1378842. [PMID: 29296541 PMCID: PMC5739571 DOI: 10.1080/2162402x.2017.1378842] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 02/02/2023] Open
Abstract
Adoptive therapy with engineered T cells shows promising results in treating patients with malignant disease, but is challenged by incomplete responses and tumor recurrences. Here, we aimed to direct the tumor microenvironment in favor of a successful immune response by local secretion of interleukin (IL-) 12 and IL-18 by sadministered T cells. To this end, we engineered T cells with a melanoma-specific T cell receptor (TCR) and murine IL-12 and/or IL-18 under the control of a nuclear-factor of activated T-cell (NFAT)-sensitive promoter. These T cells produced IL-12 or IL-18, and consequently enhanced levels of IFNγ, following exposure to antigen-positive but not negative tumor cells. Adoptive transfer of T cells with a TCR and inducible (i)IL-12 to melanoma-bearing mice resulted in severe, edema-like toxicity that was accompanied by enhanced levels of IFNγ and TNFα in blood, and reduced numbers of peripheral TCR transgene-positive T cells. In contrast, transfer of T cells expressing a TCR and iIL-18 was without side effects, enhanced the presence of therapeutic CD8+ T cells within tumors, reduced tumor burden and prolonged survival. Notably, treatment with TCR+iIL-12 but not iIL-18 T cells resulted in enhanced intra-tumoral accumulation of macrophages, which was accompanied by a decreased frequency of therapeutic T cells, in particular of the CD8 subset. In addition, when administered to mice, iIL-18 but not iIL-12 demonstrated a favorable profile of T cell co-stimulatory and inhibitory receptors. In conclusion, we observed that treatment with T cells engineered with a TCR and iIL18 T cells is safe and able to skew the tumor microenvironment in favor of an improved anti-tumor T cell response.
Collapse
Affiliation(s)
- A Kunert
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - M Chmielewski
- Department I of Internal Medicine, University Hospital Cologne and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - R Wijers
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - C Berrevoets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - H Abken
- Department I of Internal Medicine, University Hospital Cologne and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - R Debets
- Laboratory of Tumor Immunology, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
344
|
Perna F, Berman SH, Soni RK, Mansilla-Soto J, Eyquem J, Hamieh M, Hendrickson RC, Brennan CW, Sadelain M. Integrating Proteomics and Transcriptomics for Systematic Combinatorial Chimeric Antigen Receptor Therapy of AML. Cancer Cell 2017; 32:506-519.e5. [PMID: 29017060 PMCID: PMC7025434 DOI: 10.1016/j.ccell.2017.09.004] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/02/2017] [Accepted: 09/07/2017] [Indexed: 02/07/2023]
Abstract
Chimeric antigen receptor (CAR) therapy targeting CD19 has yielded remarkable outcomes in patients with acute lymphoblastic leukemia. To identify potential CAR targets in acute myeloid leukemia (AML), we probed the AML surfaceome for overexpressed molecules with tolerable systemic expression. We integrated large transcriptomics and proteomics datasets from malignant and normal tissues, and developed an algorithm to identify potential targets expressed in leukemia stem cells, but not in normal CD34+CD38- hematopoietic cells, T cells, or vital tissues. As these investigations did not uncover candidate targets with a profile as favorable as CD19, we developed a generalizable combinatorial targeting strategy fulfilling stringent efficacy and safety criteria. Our findings indicate that several target pairings hold great promise for CAR therapy of AML.
Collapse
Affiliation(s)
- Fabiana Perna
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Samuel H Berman
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rajesh K Soni
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jorge Mansilla-Soto
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Justin Eyquem
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mohamad Hamieh
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron W Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michel Sadelain
- Center for Cell Engineering and Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
345
|
Sadelain M, Rivière I, Riddell S. Therapeutic T cell engineering. Nature 2017; 545:423-431. [PMID: 28541315 DOI: 10.1038/nature22395] [Citation(s) in RCA: 582] [Impact Index Per Article: 83.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/26/2017] [Indexed: 12/13/2022]
Abstract
Genetically engineered T cells are powerful new medicines, offering hope for curative responses in patients with cancer. Chimaeric antigen receptors (CARs) are a class of synthetic receptors that reprogram lymphocyte specificity and function. CARs targeting CD19 have demonstrated remarkable potency in B cell malignancies. Engineered T cells are applicable in principle to many cancers, pending further progress to identify suitable target antigens, overcome immunosuppressive tumour microenvironments, reduce toxicities, and prevent antigen escape. Advances in the selection of optimal T cells, genetic engineering, and cell manufacturing are poised to broaden T-cell-based therapies and foster new applications in infectious diseases and autoimmunity.
Collapse
Affiliation(s)
- Michel Sadelain
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle Rivière
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| |
Collapse
|
346
|
Chimeric Antigen Receptor T cells for B Cell Neoplasms: Choose the Right CAR for You. Curr Hematol Malig Rep 2017; 11:368-84. [PMID: 27475429 DOI: 10.1007/s11899-016-0336-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Genetic redirection of T lymphocytes allows us to unleash these potent cellular immune effectors against cancer. Chimeric antigen receptor (CAR) T cells are the best-in-class example that genetic engineering of T cells can lead to deep and durable responses, as has been shown in several clinical trials for CD19+ B cell malignancies. As a consequence, in the last few years, several academic institutions and commercial partners have started developing anti-CD19 CAR T cell products. Although most of these T cell products are highly effective in vivo, basic differences among them can generate different performance characteristics and thereby impact their long-term clinical outcome. Several strategies are being implemented in order to solve the current open issues of CART19 therapy: (i) increasing efficacy against indolent B cell leukemias and lymphomas, (ii) avoiding or preventing antigen-loss relapses, (iii) reducing and managing toxicity, and (iv) bringing this CART therapy to routine clinical practice. The field of CART therapies is thriving, and exciting new avenues are opening for both scientists and patients.
Collapse
|
347
|
Huang Y, Li D, Qin DY, Gou HF, Wei W, Wang YS, Wei YQ, Wang W. Interleukin-armed chimeric antigen receptor-modified T cells for cancer immunotherapy. Gene Ther 2017; 25:192-197. [DOI: 10.1038/gt.2017.81] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 04/10/2017] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
|
348
|
Rosewell Shaw A, Porter CE, Watanabe N, Tanoue K, Sikora A, Gottschalk S, Brenner MK, Suzuki M. Adenovirotherapy Delivering Cytokine and Checkpoint Inhibitor Augments CAR T Cells against Metastatic Head and Neck Cancer. Mol Ther 2017; 25:2440-2451. [PMID: 28974431 DOI: 10.1016/j.ymthe.2017.09.010] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 12/21/2022] Open
Abstract
In solid tumors, chimeric antigen receptor (CAR)-modified T cells must overcome the challenges of the immunosuppressive tumor microenvironment. We hypothesized that pre-treating tumors with our binary oncolytic adenovirus (CAd), which produces local oncolysis and expresses immunostimulatory molecules, would enhance the antitumor activity of HER2-specific CAR T cells, which alone are insufficient to cure solid tumors. We tested multiple cytokines in conjunction with PD-L1-blocking antibody and found that Ad-derived IL-12p70 prevents the loss of HER2.CAR-expressing T cells at the tumor site. Accordingly, we created a construct encoding the PD-L1-blocking antibody and IL-12p70 (CAd12_PDL1). In head and neck squamous cell carcinoma (HNSCC) xenograft models, combining local treatment with CAd12_PDL1 and systemic HER2.CAR T cell infusion improved survival to >100 days compared with approximately 25 days with either approach alone. This combination also controlled both primary and metastasized tumors in an orthotopic model of HNSCC. Overall, our data show that CAd12_PDL1 augments the anti-tumor effects of HER2.CAR T cells, thus controlling the growth of both primary and metastasized tumors.
Collapse
Affiliation(s)
- Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Caroline E Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Norihiro Watanabe
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Kiyonori Tanoue
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew Sikora
- Department of Otolaryngology, Baylor College of Medicine, Houston, TX, USA
| | - Stephen Gottschalk
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Malcolm K Brenner
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA; Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
349
|
Yeku OO, Purdon TJ, Koneru M, Spriggs D, Brentjens RJ. Armored CAR T cells enhance antitumor efficacy and overcome the tumor microenvironment. Sci Rep 2017; 7:10541. [PMID: 28874817 PMCID: PMC5585170 DOI: 10.1038/s41598-017-10940-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/16/2017] [Indexed: 02/08/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has shown limited efficacy for the management of solid tumor malignancies. In ovarian cancer, this is in part due to an immunosuppressive cytokine and cellular tumor microenvironment which suppresses adoptively transferred T cells. We engineered an armored CAR T cell capable of constitutive secretion of IL-12, and delineate the mechanisms via which these CAR T cells overcome a hostile tumor microenvironment. In this report, we demonstrate enhanced proliferation, decreased apoptosis and increased cytotoxicity in the presence of immunosuppressive ascites. In vivo, we show enhanced expansion and CAR T cell antitumor efficacy, culminating in improvement in survival in a syngeneic model of ovarian peritoneal carcinomatosis. Armored CAR T cells mediated depletion of tumor associated macrophages and resisted endogenous PD-L1-induced inhibition. These findings highlight the role of the inhibitory microenvironment and how CAR T cells can be further engineered to maintain efficacy.
Collapse
Affiliation(s)
- Oladapo O Yeku
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Mythili Koneru
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - David Spriggs
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA
| | - Renier J Brentjens
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, 10065, USA.
| |
Collapse
|
350
|
Xin G, Schauder DM, Zander R, Cui W. Two is better than one: advances in pathogen-boosted immunotherapy and adoptive T-cell therapy. Immunotherapy 2017; 9:837-849. [PMID: 28877635 PMCID: PMC5941714 DOI: 10.2217/imt-2017-0055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 01/31/2023] Open
Abstract
The recent tremendous successes in clinical trials take cancer immunotherapy into a new era and have attracted major attention from both academia and industry. Among the variety of immunotherapy strategies developed to boost patients' own immune systems to fight against malignant cells, the pathogen-based and adoptive cell transfer therapies have shown the most promise for treating multiple types of cancer. Pathogen-based therapies could either break the immune tolerance to enhance the effectiveness of cancer vaccines or directly infect and kill cancer cells. Adoptive cell transfer can induce a strong durable antitumor response, with recent advances including engineering dual specificity into T cells to recognize multiple antigens and improving the metabolic fitness of transferred cells. In this review, we focus on the recent prospects in these two areas and summarize some ongoing studies that represent potential advancements for anticancer immunotherapy, including testing combinations of these two strategies.
Collapse
Affiliation(s)
- Gang Xin
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - David M Schauder
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Ryan Zander
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
| | - Weiguo Cui
- Blood Research Institute, Blood Center of Wisconsin, 8727 West Watertown Plank Road, Milwaukee, WI 53213, USA
- Department of Microbiology & Molecular Genetics, Medical College of Wisconsin, 8701 West Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|