301
|
Moreno-Gómez M, Bueno-Marí R, Miranda MA. A Three-Pronged Approach to Studying Sublethal Insecticide Doses: Characterising Mosquito Fitness, Mosquito Biting Behaviour, and Human/Environmental Health Risks. INSECTS 2021; 12:546. [PMID: 34208127 PMCID: PMC8230870 DOI: 10.3390/insects12060546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 06/07/2021] [Indexed: 10/30/2022]
Abstract
Worldwide, pyrethroids are one of the most widely used insecticide classes. In addition to serving as personal protection products, they are also a key line of defence in integrated vector management programmes. Many studies have assessed the effects of sublethal pyrethroid doses on mosquito fitness and behaviour. However, much remains unknown about the biological, physiological, demographic, and behavioural effects on individual mosquitoes or mosquito populations when exposure occurs via spatial treatments. Here, females and males of two laboratory-reared mosquito species, Culex pipiens and Aedes albopictus, were exposed to five different treatments: three doses of the pyrethroid prallethrin, as well as an untreated and a negative control. The effects of each treatment on mosquito species, sex, adult mortality, fertility, F1 population size, and biting behaviour were also evaluated. To compare knockdown and mortality among treatments, Mantel-Cox log-rank tests were used. The results showed that sublethal doses reduced mosquito survival, influencing population size in the next generation. They also provided 100% protection to human hosts and presented relatively low risks to human and environmental health. These findings emphasise the need for additional studies that assess the benefits of using sublethal doses as part of mosquito management strategies.
Collapse
Affiliation(s)
- Mara Moreno-Gómez
- Henkel Ibérica S.A, Research and Development (R&D) Insect Control Department, Carrer Llacuna 22, 1-1, 08005 Barcelona, Spain
| | - Rubén Bueno-Marí
- Laboratorios Lokímica, Departamento de Investigación y Desarrollo (I+D), Ronda Auguste y Louis Lumière 23, Nave 10, Parque Tecnológico, Paterna, 46980 Valencia, Spain;
- Área de Parasitología, Departamento de Farmacia y Tecnologia Farmacéutica y Parasitología, Facultad de Farmacia, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, 46100 València, Spain
| | - Miguel. A. Miranda
- Applied Zoology and Animal Conservation Research Group, University of the Balearic Islands, Cra. Valldemossa km 7,5, 07122 Palma de Mallorca, Spain;
| |
Collapse
|
302
|
Fortunato AK, Glasser CP, Watson JA, Lu Y, Rychtář J, Taylor D. Mathematical modelling of the use of insecticide-treated nets for elimination of visceral leishmaniasis in Bihar, India. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201960. [PMID: 34234949 PMCID: PMC8242840 DOI: 10.1098/rsos.201960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 05/24/2021] [Indexed: 05/27/2023]
Abstract
Visceral leishmaniasis (VL) is a deadly neglected tropical disease caused by a parasite Leishmania donovani and spread by female sand flies Phlebotomus argentipes. There is conflicting evidence regarding the role of insecticide-treated nets (ITNs) on the prevention of VL. Numerous studies demonstrated the effectiveness of ITNs. However, KalaNet, a large trial in Nepal and India did not support those findings. The purpose of this paper is to gain insight into the situation by mathematical modelling. We expand a mathematical model of VL transmission based on the KalaNet trial and incorporate the use of ITNs explicitly into the model. One of the major contributions of this work is that we calibrate the model based on the available epidemiological data, generally independent of the KalaNet trial. We validate the model on data collected during the KalaNet trial. We conclude that in order to eliminate VL, the ITN usage would have to stay above 96%. This is higher than the 91% ITNs use at the end of the trial which may explain why the trial did not show a positive effect from ITNs. At the same time, our model indicates that asymptomatic individuals play a crucial role in VL transmission.
Collapse
Affiliation(s)
- Anna K. Fortunato
- Department of Mathematics, University of Richmond, Richmond, VA 23173, USA
| | - Casey P. Glasser
- Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-1026, USA
| | - Joy A. Watson
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Yongjin Lu
- Department of Mathematics and Economics, Virginia State University, Petersburg, VA 23806, USA
| | - Jan Rychtář
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| | - Dewey Taylor
- Department of Mathematics and Applied Mathematics, Virginia Commonwealth University, Richmond, VA 23284-2014, USA
| |
Collapse
|
303
|
Soft Computing of a Medically Important Arthropod Vector with Autoregressive Recurrent and Focused Time Delay Artificial Neural Networks. INSECTS 2021; 12:insects12060503. [PMID: 34072705 PMCID: PMC8227104 DOI: 10.3390/insects12060503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/02/2022]
Abstract
Simple Summary Arthropod vectors are responsible for transmitting a large number of diseases, and for most, there are still not available effective vaccines. Vector disease control is mostly achieved by a sustained prediction of vector populations to maintain support for surveillance and control activities. Mathematical models may assist in predicting arthropod population dynamics. However, arthropod dynamics, and mosquitoes particularly, due their complex life cycle, often exhibit an abrupt and non-linear occurrence. Therefore, there is a growing interest in describing mosquito population dynamics using new methodologies. In this work, we made an effort to gain insights into the non-linear population dynamics of Culex sp. adults, aiming to introduce straightforward soft-computing techniques based on artificial neural networks (ANNs). We propose two kind of models, one autoregressive, handling temperature as an exogenous driver and population as an endogenous one, and a second based only on the exogenous factor. To the best of our knowledge, this is the first study using recurrent neural networks and the most influential environmental variable for prediction of the WNv vector Culex sp. population dynamics, providing a new framework to be used in arthropod decision-support systems. Abstract A central issue of public health strategies is the availability of decision tools to be used in the preventive management of the transmission cycle of vector-borne diseases. In this work, we present, for the first time, a soft system computing modeling approach using two dynamic artificial neural network (ANNs) models to describe and predict the non-linear incidence and time evolution of a medically important mosquito species, Culex sp., in Northern Greece. The first model is an exogenous non-linear autoregressive recurrent neural network (NARX), which is designed to take as inputs the temperature as an exogenous variable and mosquito abundance as endogenous variable. The second model is a focused time-delay neural network (FTD), which takes into account only the temperature variable as input to provide forecasts of the mosquito abundance as the target variable. Both models behaved well considering the non-linear nature of the adult mosquito abundance data. Although, the NARX model predicted slightly better (R = 0.623) compared to the FTD model (R = 0.534), the advantage of the FTD over the NARX neural network model is that it can be applied in the case where past values of the population system, here mosquito abundance, are not available for their forecasting.
Collapse
|
304
|
Saadatian-Elahi M, Alexander N, Möhlmann T, Langlois-Jacques C, Suer R, Ahmad NW, Mudin RN, Ariffin FD, Baur F, Schmitt F, Richardson JH, Rabilloud M, Hamid NA. Measuring the effectiveness of integrated vector management with targeted outdoor residual spraying and autodissemination devices on the incidence of dengue in urban Malaysia in the iDEM trial (intervention for Dengue Epidemiology in Malaysia): study protocol for a cluster randomized controlled trial. Trials 2021; 22:374. [PMID: 34053466 PMCID: PMC8166066 DOI: 10.1186/s13063-021-05298-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/27/2021] [Indexed: 11/23/2022] Open
Abstract
Background In common with many South East Asian countries, Malaysia is endemic for dengue. Dengue control in Malaysia is currently based on reactive vector management within 24 h of a dengue case being reported. Preventive rather than reactive vector control approaches, with combined interventions, are expected to improve the cost-effectiveness of dengue control programs. The principal objective of this cluster randomized controlled trial is to quantify the effectiveness of a preventive integrated vector management (IVM) strategy on the incidence of dengue as compared to routine vector control efforts. Methods The trial is conducted in randomly allocated clusters of low- and medium-cost housing located in the Federal Territory of Kuala Lumpur and Putrajaya. The IVM approach combines: targeted outdoor residual spraying with K-Othrine Polyzone, deployment of mosquito traps as auto-dissemination devices, and community engagement activities. The trial includes 300 clusters randomly allocated in a 1:1 ratio. The clusters receive either the preventive IVM in addition to the routine vector control activities or the routine vector control activities only. Epidemiological data from monthly confirmed dengue cases during the study period will be obtained from the Vector Borne Disease Sector, Malaysian Ministry of Health e-Dengue surveillance system. Entomological surveillance data will be collected in 12 clusters randomly selected from each arm. To measure the effectiveness of the IVM approach on dengue incidence, a negative binomial regression model will be used to compare the incidence between control and intervention clusters. To quantify the effect of the interventions on the main entomological outcome, ovitrap index, a modified ordinary least squares regression model using a robust standard error estimator will be used. Discussion Considering the ongoing expansion of dengue burden in Malaysia, setting up proactive control strategies is critical. Despite some limitations of the trial such as the use of passive surveillance to identify cases, the results will be informative for a better understanding of effectiveness of proactive IVM approach in the control of dengue. Evidence from this trial may help justify investment in preventive IVM approaches as preferred to reactive case management strategies. Trial registration ISRCTN ISRCTN81915073. Retrospectively registered on 17 April 2020. Supplementary Information The online version contains supplementary material available at 10.1186/s13063-021-05298-2.
Collapse
Affiliation(s)
- Mitra Saadatian-Elahi
- Service Hygiène, Epidémiologie, Infection, Vigilance et Prévention, Centre Hospitalier Edouard Herriot, Hospices Civils de Lyon, Lyon, France. .,CIRI, Centre International de Recherche en Infectiologie, (Equipe Laboratoire des Pathogènes Emergents), Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007, Lyon, France.
| | - Neal Alexander
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, UK
| | - Tim Möhlmann
- In2Care B.V., Marijkeweg 22, 6709PG, Wageningen, The Netherlands
| | - Carole Langlois-Jacques
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, F-69100, Villeurbanne, France
| | - Remco Suer
- In2Care B.V., Marijkeweg 22, 6709PG, Wageningen, The Netherlands
| | - Nazni Wasi Ahmad
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health Malaysia, Level 4, Block E10, Complex E, Federal Government Administrative Center, 62590, Putrajaya, Malaysia
| | - Farah Diana Ariffin
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| | - Frederic Baur
- Bayer S.A.S, Environnemental Science, Crop Science Division, 16 rue Jean Marie Leclair, 69266, Lyon, Cedex 09, France
| | - Frederic Schmitt
- Bayer S.A.S, Environnemental Science, Crop Science Division, 16 rue Jean Marie Leclair, 69266, Lyon, Cedex 09, France
| | - Jason H Richardson
- Innovative Vector Control Consortium, Pembroke Place, L3 5QA, Liverpool, UK
| | - Muriel Rabilloud
- Université de Lyon, F-69000, Lyon, France; Université Lyon 1, F-69100, Villeurbanne, France; Hospices Civils de Lyon, Pôle Santé Publique, Service de Biostatistique et Bioinformatique, F-69003, Lyon, France; CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Évolutive, Équipe Biostatistique-Santé, F-69100, Villeurbanne, France
| | - Nurulhusna Ab Hamid
- Medical Entomology Unit, WHO Collaborating Centre for Vectors, Institute for Medical Research, Ministry of Health Malaysia, National Institutes of Health, Block C, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Malaysia
| |
Collapse
|
305
|
Wu P, Tang X, Jian R, Li J, Lin M, Dai H, Wang K, Sheng Z, Chen B, Xu X, Li C, Lin Z, Zhang Q, Zheng X, Zhang K, Li D, Hong WD. Chemical Composition, Antimicrobial and Insecticidal Activities of Essential Oils of Discarded Perfume Lemon and Leaves ( Citrus Limon (L.) Burm. F.) as Possible Sources of Functional Botanical Agents. Front Chem 2021; 9:679116. [PMID: 34109157 PMCID: PMC8184092 DOI: 10.3389/fchem.2021.679116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Two essential oils were isolated from discarded perfume lemon and leaves (Citrus limon (L.) Burm. F.) by hydro-distillation with good yield (0.044% for perfume lemon and 0.338% for leaves). Their biological activities were evaluated against five selected bacterial strains and Aedes albopictus (Ae. albopictus, Diptera: Culicidae). Chemical composition indicated that both essential oils were rich in essential phytochemicals including hydrocarbons, monoterpenes and sesquiterpene. These constituents revealed some variability among the oils displaying interesting chemotypes (R)-(+)-limonene (12.29–49.63%), citronellal (5.37–78.70%) and citronellol (2.98–7.18%). The biological assessments proved that the two essential oils had similar effect against bacterial (inhibition zones diameter ranging from 7.27 ± 0.06 to 10.37 ± 0.15 mm; MICs and MBCs ranging from 1.6 to 6.4 mg/mL); against Ae. albopictus larvae (LC50 ranging from 384.81 to 395.09 ppm) and adult mosquito (LD50 ranging from 133.059 to 218.962 μg/cm2); the activity of the two chemotypes ((R)-(+)-limonene and citronellal): larvae (LC50 ranging from 267.08 to 295.28 ppm), which were all presented in dose-dependent manners. Through this work, we have showcased that recycling and reusing of agriculture by-products, such as discarded perfume lemon and leaves can produce eco-friendly alternatives in bacterial disinfectants and mosquito control product.
Collapse
Affiliation(s)
- Panpan Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Xiaowen Tang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Rongchao Jian
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Jiahao Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Maoyu Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Huachao Dai
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Kangpeng Wang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Zhaojun Sheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Baizhong Chen
- Guangdong Xinbaotang Biotechnology Co. Ltd., Jiangmen, China
| | - Xuetao Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Chen Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Zhongze Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Qingmin Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Xi Zheng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China
| | - Weiqian David Hong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, China.,International Healthcare Innovation Institute (Jiangmen), Jiangmen, China.,Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
306
|
Ta-Tang TH, Luz SLB, Crainey JL, Rubio JM. An Overview of the Management of Mansonellosis. Res Rep Trop Med 2021; 12:93-105. [PMID: 34079424 PMCID: PMC8163967 DOI: 10.2147/rrtm.s274684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/02/2023] Open
Abstract
Mansonellosis is caused by three filarial parasite species from the genus Mansonella that commonly produce chronic human microfilaraemias: M. ozzardi, M. perstans and M. streptocerca. The disease is widespread in Africa, the Caribbean and South and Central America, and although it is typically asymptomatic it has been associated with mild pathologies including leg-chills, joint-pains, headaches, fevers, and corneal lesions. No robust mansonellosis disease burden estimates have yet been made and the impact the disease has on blood bank stocks and the monitoring of other filarial diseases is not thought to be of sufficient public health importance to justify dedicated disease management interventions. Mansonellosis´s Ceratopogonidae and Simuliidae vectors are not targeted by other control programmes and because of their small size and out-door biting habits are unlikely to be affected by interventions targeting other disease vectors like mosquitoes. The ivermectin and mebendazole-based mass drug administration (iMDA and mMDA) treatment regimens deployed by the WHO´s Elimination of Neglected Tropical Diseases (ESPEN) programme and its forerunners have, however, likely impacted significantly on the mansonellosis disease burden, principally by reducing the transmission of M. streptocerca in Africa. The increasingly popular plan of using iMDA to control malaria could also affect M. ozzardi parasite prevalence and transmission in Latin America in the future. However, a potentially far greater mansonellosis disease burden impact is likely to come from short-course curative anti-Wolbachia therapeutics, which are presently being developed for onchocerciasis and lymphatic filariasis treatment. Even if the WHO´s ESPEN programme does not choose to deploy these drugs in MDA interventions, they have the potential to dramatically increase the financial and logistical feasibility of effective mansonellosis management. There is, thus, now a fresh and urgent need to better characterise the disease burden and eco-epidemiology of mansonellosis so that effective management programmes can be designed, advocated for and implemented.
Collapse
Affiliation(s)
- Thuy-Huong Ta-Tang
- Malaria and NTDs Laboratory, National Centre of Tropical Medicine, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio L B Luz
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - James L Crainey
- Laboratório de Ecologia de Doenças Transmissíveis na Amazônia, Instituto Leônidas e Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas State, Brazil
| | - José M Rubio
- Malaria & Emerging Parasitic Diseases Laboratory, National Microbiology Center, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
307
|
van den Berg H, da Silva Bezerra HS, Chanda E, Al-Eryani S, Nagpal BN, Gasimov E, Velayudhan R, Yadav RS. Management of insecticides for use in disease vector control: a global survey. BMC Infect Dis 2021; 21:468. [PMID: 34022823 PMCID: PMC8141140 DOI: 10.1186/s12879-021-06155-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background Vector control plays a critical role in the prevention, control and elimination of vector-borne diseases, and interventions of vector control continue to depend largely on the action of chemical insecticides. A global survey was conducted on the management practices of vector control insecticides at country level to identify gaps to inform future strategies on pesticide management, seeking to improve efficacy of interventions and reduce the side-effects of chemicals used on health and the environment. Methods A survey by questionnaire on the management practices of vector control insecticides was disseminated among all WHO Member States. Data were analysed using descriptive statistics in MS Excel. Results Responses were received from 94 countries, or a 48% response rate. Capacity for insecticide resistance monitoring was established in 68–80% of the countries in most regions, often with external support; however, this capacity was largely lacking from the European & Others Region (i.e. Western & Eastern Europe, North America, Australia and New Zealand). Procurement of vector control insecticides was in 50–75% of countries taking place by agencies other than the central-level procuring agency, over which the central authorities lacked control, for example, to select the product or assure its quality, highlighting the importance of post-market monitoring. Moreover, some countries experienced problems with estimating the correct amounts for procurement, especially for emergency purposes. Large fractions (29–78%) of countries across regions showed shortcomings in worker safety, pesticide storage practices and pesticide waste disposal. Shortcomings were most pronounced in countries of the European & Others Region, which has long been relatively free from mosquito-borne diseases but has recently faced challenges of re-emerging vector-borne diseases. Conclusions Critical shortcomings in the management of vector control insecticides are common in countries across regions, with risks of adverse pesticide effects on health and the environment. Advocacy and resource mobilization are needed at regional and country levels to address these challenges. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06155-y.
Collapse
Affiliation(s)
- Henk van den Berg
- Laboratory of Entomology, Wageningen University, PO Box 16, 6700AA, Wageningen, The Netherlands
| | - Haroldo Sergio da Silva Bezerra
- Department of Communicable Diseases and Environmental Determinants of Health, Pan-American Health Organization/World Health Organization, Washington, DC, USA
| | | | | | | | | | - Raman Velayudhan
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211, 27, Geneva, Switzerland
| | - Rajpal S Yadav
- Department of Control of Neglected Tropical Diseases, World Health Organization, 20 Avenue Appia, 1211, 27, Geneva, Switzerland.
| |
Collapse
|
308
|
Tambwe MM, Saddler A, Kibondo UA, Mashauri R, Kreppel KS, Govella NJ, Moore SJ. Semi-field evaluation of the exposure-free mosquito electrocuting trap and BG-Sentinel trap as an alternative to the human landing catch for measuring the efficacy of transfluthrin emanators against Aedes aegypti. Parasit Vectors 2021; 14:265. [PMID: 34016149 PMCID: PMC8138975 DOI: 10.1186/s13071-021-04754-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human landing catch (HLC) measures human exposure to mosquito bites and evaluates the efficacy of vector control tools. However, it may expose volunteers to potentially infected mosquitoes. The mosquito electrocuting trap (MET) and BG-Sentinel traps (BGS) represent alternative, exposure-free methods for sampling host-seeking mosquitoes. This study investigates whether these methods can be effectively used as alternatives to HLC for measuring the efficacy of transfluthrin emanator against Aedes aegypti. METHODS The protective efficacy (PE) of freestanding passive transfluthrin emanators (FTPEs), measured by HLC, MET and BGS, was compared in no-choice and choice tests. The collection methods were conducted 2 m from an experimental hut with FTPEs positioned at 3 m on either side of them. For the choice experiment, a competitor HLC was included 10 m from the first collection point. One hundred laboratory-reared Ae. aegypti mosquitoes were released and collected for 3 consecutive h. RESULTS In the no-choice test, each method measured similar PE: HLC: 66% (95% confidence interval [CI]: 50-82), MET: 55% (95% CI: 48-63) and BGS: 64% (95% CI: 54-73). The proportion of mosquitoes recaptured was consistent between methods (20-24%) in treatment and varied (47-71%) in the control. However, in choice tests, the PE measured by each method varied: HLC: 37% (95% CI: 25-50%), MET: 76% (95% CI: 61-92) and BGS trap: 0% (95% CI: 0-100). Recaptured mosquitoes were no longer consistent between methods in treatment (2-26%) and remained variable in the control (7-42%). FTPE provided 50% PE to the second HLC 10 m away. In the control, the MET and the BGS were less efficacious in collecting mosquitoes in the presence of a second HLC. CONCLUSIONS Measuring the PE in isolation was fairly consistent for HLC, MET and BGS. Because HLC is not advisable, it is reasonable to use either MET or BGS as a proxy for HLC for testing volatile pyrethroid (VP) in areas of active arbovirus-endemic areas. The presence of a human host in close proximity invalidated the PE estimates from BGS and METs. Findings also indicated that transfluthrin can protect multiple people in the peridomestic area and that at short range mosquitoes select humans over the BGS.
Collapse
Affiliation(s)
- Mgeni M. Tambwe
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
| | - Adam Saddler
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Telethon Kids Institute, Perth, Australia
| | - Ummi Abdul Kibondo
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Rajabu Mashauri
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
| | - Katharina S. Kreppel
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Nicodem J. Govella
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow, G12 8QQ UK
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Environmental Health and Ecological Sciences, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical & Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4001 Basel, Switzerland
- Nelson Mandela African Institution of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
309
|
Junkum A, Intirach J, Chansang A, Champakaew D, Chaithong U, Jitpakdi A, Riyong D, Somboon P, Pitasawat B. Enhancement of Temephos and Deltamethrin Toxicity by Petroselinum crispum Oil and its Main Constituents Against Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1298-1315. [PMID: 33570125 DOI: 10.1093/jme/tjab008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Indexed: 06/12/2023]
Abstract
Previous work presented the profound antimosquito potential of Petroselinum crispum essential oil (PEO) against either the pyrethroid-susceptible or resistant strains of Aedes aegypti. This plant oil also inhibited the activity of acetylcholinesterase and mixed-function oxidases significantly, thus suggesting its potential as a synergist for improving mosquitocidal efficacy of insecticidal formulations. This study investigated the chemical composition, larvicidal activity, and potential synergism with synthetic insecticides of PEO and its main compounds for the purpose of interacting with insecticide resistance in mosquito vectors. The chemical profile of PEO, obtained by GC-MS analysis, showed a total of 17 bioactive compounds, accounting for 99.09% of the whole oil, with the most dominant constituents being thymol (74.57%), p-cymene (10.73%), and γ-terpinene (8.34%). All PEO constituents exhibited promising larvicidal effects, with LC50 values ranging from 19.47 to 59.75 ppm against Ae. aegypti, in both the pyrethroid-susceptible and resistant strains. Furthermore, combination-based bioassays revealed that PEO, thymol, p-cymene, and γ-terpinene enhanced the efficacy of temephos and deltamethrin significantly. The most effective synergist with temephos was PEO, which reduced LC50 values to 2.73, 4.94, and 3.28 ppb against MCM-S, PMD-R, and UPK-R, respectively, with synergism ratio (SR) values of 1.33, 1.38, and 2.12, respectively. The best synergist with deltamethrin also was PEO, which reduced LC50 values against MCM-S, PMD-R, and UPK-R to 0.008, 0.18, and 2.49 ppb, respectively, with SR values of 21.25, 9.00, and 4.06, respectively. This research promoted the potential for using essential oil and its principal constituents as not only alternative larvicides, but also attractive synergists for enhancing efficacy of existing conventional insecticides.
Collapse
Affiliation(s)
- Anuluck Junkum
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Arpaporn Chansang
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Danita Champakaew
- School of Public Health, Walailak University, Nakhon Si Thammarat, Thailand
| | - Udom Chaithong
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Atchariya Jitpakdi
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Doungrat Riyong
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pradya Somboon
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Benjawan Pitasawat
- Center of Insect Vector Study, Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
310
|
Macias AE, Werneck GL, Castro R, Mascareñas C, Coudeville L, Morley D, Recamier V, Guergova-Kuras M, Etcheto A, Puentes-Rosas E, Baurin N, Toh ML. Mortality among Hospitalized Dengue Patients with Comorbidities in Mexico, Brazil, and Colombia. Am J Trop Med Hyg 2021; 105:102-109. [PMID: 33970884 PMCID: PMC8274750 DOI: 10.4269/ajtmh.20-1163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Abstract
Dengue patients with comorbidities may be at higher risk of death. In this cross-sectional study, healthcare databases from Mexico (2008–2014), Brazil (2008–2015), and Colombia (2009–2017) were used to identify hospitalized dengue cases and their comorbidities. Case fatality rates (CFRs), relative risk, and odds ratios (OR) for in-hospital mortality were determined. Overall, 678,836 hospitalized dengue cases were identified: 68,194 from Mexico, 532,821 from Brazil, and 77,821 from Colombia. Of these, 35%, 5%, and 18% were severe dengue, respectively. Severe dengue and age ≥ 46 years were associated with increased risk of in-hospital mortality. Comorbidities were identified in 8%, 1%, and 4% of cases in Mexico, Brazil, and Colombia, respectively. Comorbidities increased hospitalized dengue CFRs 3- to 17-fold; CFRs were higher with comorbidities regardless of dengue severity or age. The odds of in-hospital mortality were significantly higher in those with pulmonary disorders (11.6 [95% CI 7.4–18.2], 12.7 [95% CI 9.3–17.5], and 8.0 [95% CI 4.9–13.1] in Mexico, Brazil, and Colombia, respectively), ischemic heart disease (23.0 [95% CI 6.6–79.6], 5.9 [95% CI 1.4–24.6], and 7.0 [95% CI 1.9–25.5]), and renal disease/failure (8.3 [95% CI 4.8–14.2], 8.0 [95% CI 4.5–14.4], and 9.3 [95% CI 3.1–28.0]) across the three countries; the odds of in-hospital mortality from dengue with comorbidities was at least equivalent or higher than severe dengue alone (4.5 [95% CI 3.4–6.1], 9.6 [95% CI 8.6–10.6], and 9.0 [95% CI 6.8–12.0). In conclusion, the risk of death because of dengue increases with comorbidities independently of age and/or disease severity.
Collapse
Affiliation(s)
- Alejandro E Macias
- 1Área De Microbiología, Departamento De Medicina y Nutrición, Universidad de Guanajuato, Guanajuato, Mexico
| | - Guilherme L Werneck
- 2Instituto de Estudos em Saúde Coletiva, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
311
|
Montenegro Quiñonez CA, Runge-Ranzinger S, Rahman KM, Horstick O. Effectiveness of vector control methods for the control of cutaneous and visceral leishmaniasis: A meta-review. PLoS Negl Trop Dis 2021; 15:e0009309. [PMID: 33983930 PMCID: PMC8118276 DOI: 10.1371/journal.pntd.0009309] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Elimination of visceral leishmaniasis (VL) in Southeast Asia and global control of cutaneous leishmaniasis (CL) and VL are priorities of the World Health Organization (WHO). But is the existing evidence good enough for public health recommendations? This meta-review summarises the available and new evidence for vector control with the aims of establishing what is known about the value of vector control for the control of CL and VL, establishing gaps in knowledge, and particularly focusing on key recommendations for further scientific work. This meta-review follows the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) criteria, including (1) systematic reviews and meta-analyses (SRs/MAs) for (2) vector control methods and strategies and (3) for the control of CL and/or VL. Nine SRs/MAs were included, with different research questions and inclusion/exclusion criteria. The methods analysed for vector control can be broadly classified into (1) indoor residual spraying (IRS); (2) insecticide-treated nets (ITNs; including insecticide-impregnated bednets); (3) insecticide-treated curtains (ITCs; including insecticide-treated house screening); (4) insecticide-treated bedsheets (ITSs) and insecticide-treated fabrics (ITFs; including insecticide-treated clothing) and (5) durable wall lining (treated with insecticides) and other environmental measures to protect the house; (6) control of the reservoir host; and (7) strengthening vector control operations through health education. The existing SRs/MAs include a large variation of different primary studies, even for the same specific research sub-question. Also, the SRs/MAs are outdated, using available information until earlier than 2018 only. Assessing the quality of the SRs/MAs, there is a considerable degree of variation. It is therefore very difficult to summarise the results of the available SRs/MAs, with contradictory results for both vector indices and-if available-human transmission data. Conclusions of this meta-review are that (1) existing SRs/MAs and their results make policy recommendations for evidence-based vector control difficult; (2) further work is needed to establish efficacy and community effectiveness of key vector control methods with specific SRs and MAs (3) including vector and human transmission parameters; and (4) attempting to conclude with recommendations in different transmission scenarios.
Collapse
Affiliation(s)
- Carlos Alberto Montenegro Quiñonez
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
- Instituto de Investigaciones, Centro Universitario de Zacapa, Universidad de San Carlos de Guatemala, Zacapa, Guatemala
| | | | - Kazi Mizanur Rahman
- The University of Sydney, University Centre for Rural Health, Lismore, New South Wales, Australia
| | - Olaf Horstick
- Heidelberg Institute of Global Health, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
312
|
Selvaraj S, Gaonkar O, Kumar B, Cincinelli A, Chakraborty P. Legacy persistent organochlorine pollutants and polycyclic aromatic hydrocarbons in the surface soil from the industrial corridor of South India: occurrence, sources and risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2105-2120. [PMID: 33392898 DOI: 10.1007/s10653-020-00786-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Conversion of agricultural fields into the industrial corridor under the State Industries Promotion Corporation of Tamil Nadu Limited (SIPCOT) necessitated the investigation of soil-borne organic contaminants. This study is the first attempt to evaluate the occurrence of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) in soils from Mambakkam and Cheyyar SIPCOT belt, along the residential, industrial and agricultural transects. Concentrations of Σ28PCBs, Σ16PAHs and OCPs were in the range 0.3-9 ng/g, 33-2934 ng/g and nd-81.4 ng/g, respectively. Residential areas showed higher OCP concentrations than other site types, probably due to their frequent use in vector control programmes. DDT isomers and α-isomer of endosulfan showed low concentrations indicating past usage of these OCPs. Principal component analysis indicated that high-temperature combustion and industrial processes might be the major sources of high molecular weight PAHs, while low-temperature combustion processes might be responsible for low molecular weight PAHs. PCBs in soil were probably attributed to unaccounted combustion processes of e-waste in the region. Carcinogenic PAHs and Σ28PCBs were higher in the industrial sites. Mean Σ28PCBs at Mambakkam (4.8 ng/g) was significantly higher (p < 0.05) than that at the incipient industrial corridor Cheyyar (2.7 ng/g). Lower chlorinated PCBs (3-Cl and 4-Cl) amounted to more than half of Σ28PCBs in 75% of the sites. Total toxic equivalents (TEQs) of PAHs (total BaPeq) were found to be maximum in industrial areas. Maximum contribution to TEQs due to dioxin-like-PCBs was from PCB-157, followed by PCB-189.
Collapse
Affiliation(s)
- Sakthivel Selvaraj
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Omkar Gaonkar
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bhupander Kumar
- Central Pollution Control Board, East Arjun Nagar, Delhi, 110032, India
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", Via della Lastruccia, 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Paromita Chakraborty
- SRM Research Institute and Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
313
|
Management of insecticides for use in disease vector control: Lessons from six countries in Asia and the Middle East. PLoS Negl Trop Dis 2021; 15:e0009358. [PMID: 33930033 PMCID: PMC8115796 DOI: 10.1371/journal.pntd.0009358] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 05/12/2021] [Accepted: 03/31/2021] [Indexed: 01/22/2023] Open
Abstract
Interventions to control the vectors of human diseases, notably malaria, leishmaniasis and dengue, have relied mainly on the action of chemical insecticides. However, concerns have been raised regarding the management of insecticides in vector-borne disease-endemic countries. Our study aimed to analyze how vector control insecticides are managed in selected countries to extract lessons learned. A qualitative analysis of the situation of vector control insecticides management was conducted in six countries. Multi-stakeholder meetings and key informer interviews were conducted on aspects covering the pesticide lifecycle. Findings were compared and synthesized to extract lessons learned. Centrally executed guidelines and standards on the management of insecticides offered direction and control in most malaria programs, but were largely lacking from decentralized dengue programs, where practices of procurement, application, safety, storage, and disposal were variable between districts. Decentralized programs were better at facilitating participation of stakeholders and local communities and securing financing from local budgets. However, little coordination existed between malaria, visceral leishmaniasis and dengue programs within countries. Entomological capacity was concentrated in malaria programs at central level, while dengue and visceral leishmaniasis programs were missing out on expertise. Monitoring systems for insecticide resistance in malaria vectors were rarely used for dengue or visceral leishmaniasis vectors. Strategies for insecticide resistance management, where present, did not extend across programs or sectors in most countries. Dengue programs in most countries continued to rely on space spraying which, considering the realities on the ground, call for revision of international guidelines. Vector control programs in the selected countries were confronted with critical shortcomings in the procurement, application, safety measures, storage, and disposal of vector control insecticides, with implications for the efficiency, effectiveness, and safety of vector control. Further international support is needed to assist countries in situation analysis, action planning and development of national guidelines on vector control insecticide management. Vector-borne diseases such as dengue, malaria and leishmaniasis are transmitted by insect vectors. Transmission can be interrupted through vector control. Chemical insecticides are the mainstay for controlling these insect vectors. However, the use of chemicals also introduces risks to health and the environment and may lead to insecticide resistance. Hence, proper management of those insecticides is critical. To find out how the insecticides used for vector control are being managed, the authors conducted investigations in six countries in Asia and the Middle East. They found that the practices of insecticide procurement, application, storage, and disposal depended on how a program is organized. Dengue programs were operated in a decentralized manner and, consequently, lacked coordination through guidelines and standards on best practices. Also, coordination between malaria, visceral leishmaniasis and dengue programs within countries was minimal, and expertise needed to guide decisions on vector control and to monitor insecticide resistance was in short supply. The identified shortcomings in how vector control insecticides are managed likely affected the efficiency, effectiveness, and safety of vector control operations.
Collapse
|
314
|
Batson J, Dudas G, Haas-Stapleton E, Kistler AL, Li LM, Logan P, Ratnasiri K, Retallack H. Single mosquito metatranscriptomics identifies vectors, emerging pathogens and reservoirs in one assay. eLife 2021; 10:e68353. [PMID: 33904402 PMCID: PMC8110308 DOI: 10.7554/elife.68353] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/09/2021] [Indexed: 12/22/2022] Open
Abstract
Mosquitoes are major infectious disease-carrying vectors. Assessment of current and future risks associated with the mosquito population requires knowledge of the full repertoire of pathogens they carry, including novel viruses, as well as their blood meal sources. Unbiased metatranscriptomic sequencing of individual mosquitoes offers a straightforward, rapid, and quantitative means to acquire this information. Here, we profile 148 diverse wild-caught mosquitoes collected in California and detect sequences from eukaryotes, prokaryotes, 24 known and 46 novel viral species. Importantly, sequencing individuals greatly enhanced the value of the biological information obtained. It allowed us to (a) speciate host mosquito, (b) compute the prevalence of each microbe and recognize a high frequency of viral co-infections, (c) associate animal pathogens with specific blood meal sources, and (d) apply simple co-occurrence methods to recover previously undetected components of highly prevalent segmented viruses. In the context of emerging diseases, where knowledge about vectors, pathogens, and reservoirs is lacking, the approaches described here can provide actionable information for public health surveillance and intervention decisions.
Collapse
Affiliation(s)
| | - Gytis Dudas
- Gothenburg Global Biodiversity CentreGothenburgSweden
| | | | | | - Lucy M Li
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Kalani Ratnasiri
- Program in Immunology, Stanford University School of MedicineStanfordUnited States
| | - Hanna Retallack
- Department of Biochemistry and Biophysics, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
315
|
Convergence Research for Emerging Zoonoses. Trends Parasitol 2021; 37:465-467. [PMID: 33858779 DOI: 10.1016/j.pt.2021.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/26/2022]
Abstract
Global emergence of vector-borne and zoonotic diseases presents a rapidly growing 'wicked' problem. We outline the need for a transdisciplinary research program that is grounded in ecological and evolutionary theory but integrates fundamentally with research perspectives spanning the health, social, and natural sciences.
Collapse
|
316
|
Olajiga O, Holguin-Rocha AF, Rippee-Brooks M, Eppler M, Harris SL, Londono-Renteria B. Vertebrate Responses against Arthropod Salivary Proteins and Their Therapeutic Potential. Vaccines (Basel) 2021; 9:347. [PMID: 33916367 PMCID: PMC8066741 DOI: 10.3390/vaccines9040347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023] Open
Abstract
The saliva of hematophagous arthropods contains a group of active proteins to counteract host responses against injury and to facilitate the success of a bloodmeal. These salivary proteins have significant impacts on modulating pathogen transmission, immunogenicity expression, the establishment of infection, and even disease severity. Recent studies have shown that several salivary proteins are immunogenic and antibodies against them may block infection, thereby suggesting potential vaccine candidates. Here, we discuss the most relevant salivary proteins currently studied for their therapeutic potential as vaccine candidates or to control the transmission of human vector-borne pathogens and immune responses against different arthropod salivary proteins.
Collapse
Affiliation(s)
- Olayinka Olajiga
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Andrés F. Holguin-Rocha
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | | | - Megan Eppler
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Shanice L. Harris
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| | - Berlin Londono-Renteria
- Vector Biology Laboratory, Department of Entomology, Kansas State University, Manhattan, KS 66506, USA; (O.O.); (A.F.H.-R.); (M.E.); (S.L.H.)
| |
Collapse
|
317
|
Connolly JB, Mumford JD, Fuchs S, Turner G, Beech C, North AR, Burt A. Systematic identification of plausible pathways to potential harm via problem formulation for investigational releases of a population suppression gene drive to control the human malaria vector Anopheles gambiae in West Africa. Malar J 2021; 20:170. [PMID: 33781254 PMCID: PMC8006393 DOI: 10.1186/s12936-021-03674-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Population suppression gene drive has been proposed as a strategy for malaria vector control. A CRISPR-Cas9-based transgene homing at the doublesex locus (dsxFCRISPRh) has recently been shown to increase rapidly in frequency in, and suppress, caged laboratory populations of the malaria mosquito vector Anopheles gambiae. Here, problem formulation, an initial step in environmental risk assessment (ERA), was performed for simulated field releases of the dsxFCRISPRh transgene in West Africa. METHODS Building on consultative workshops in Africa that previously identified relevant environmental and health protection goals for ERA of gene drive in malaria vector control, 8 potentially harmful effects from these simulated releases were identified. These were stratified into 46 plausible pathways describing the causal chain of events that would be required for potential harms to occur. Risk hypotheses to interrogate critical steps in each pathway, and an analysis plan involving experiments, modelling and literature review to test each of those risk hypotheses, were developed. RESULTS Most potential harms involved increased human (n = 13) or animal (n = 13) disease transmission, emphasizing the importance to subsequent stages of ERA of data on vectorial capacity comparing transgenics to non-transgenics. Although some of the pathways (n = 14) were based on known anatomical alterations in dsxFCRISPRh homozygotes, many could also be applicable to field releases of a range of other transgenic strains of mosquito (n = 18). In addition to population suppression of target organisms being an accepted outcome for existing vector control programmes, these investigations also revealed that the efficacy of population suppression caused by the dsxFCRISPRh transgene should itself directly affect most pathways (n = 35). CONCLUSIONS Modelling will play an essential role in subsequent stages of ERA by clarifying the dynamics of this relationship between population suppression and reduction in exposure to specific potential harms. This analysis represents a comprehensive identification of plausible pathways to potential harm using problem formulation for a specific gene drive transgene and organism, and a transparent communication tool that could inform future regulatory studies, guide subsequent stages of ERA, and stimulate further, broader engagement on the use of population suppression gene drive to control malaria vectors in West Africa.
Collapse
Affiliation(s)
- John B Connolly
- Department of Life Sciences, Imperial College London, London, UK.
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, London, UK
| | - Silke Fuchs
- Department of Life Sciences, Imperial College London, London, UK
| | - Geoff Turner
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Ace R North
- Department of Zoology, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
318
|
Morand S, Lajaunie C. Outbreaks of Vector-Borne and Zoonotic Diseases Are Associated With Changes in Forest Cover and Oil Palm Expansion at Global Scale. Front Vet Sci 2021; 8:661063. [PMID: 33842581 PMCID: PMC8024476 DOI: 10.3389/fvets.2021.661063] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/22/2021] [Indexed: 12/18/2022] Open
Abstract
Deforestation is a major cause of biodiversity loss with a negative impact on human health. This study explores at global scale whether the loss and gain of forest cover and the rise of oil palm plantations can promote outbreaks of vector-borne and zoonotic diseases. Taking into account the human population growth, we find that the increases in outbreaks of zoonotic and vector-borne diseases from 1990 to 2016 are linked with deforestation, mostly in tropical countries, and with reforestation, mostly in temperate countries. We also find that outbreaks of vector-borne diseases are associated with the increase in areas of palm oil plantations. Our study gives new support for a link between global deforestation and outbreaks of zoonotic and vector-borne diseases as well as evidences that reforestation and plantations may also contribute to epidemics of infectious diseases. The results are discussed in light of the importance of forests for biodiversity, livelihoods and human health and the need to urgently build an international governance framework to ensure the preservation of forests and the ecosystem services they provide, including the regulation of diseases. We develop recommendations to scientists, public health officers and policymakers who should reconcile the need to preserve biodiversity while taking into account the health risks posed by lack or mismanagement of forests.
Collapse
Affiliation(s)
- Serge Morand
- CNRS ISEM—CIRAD ASTRE, Montpellier University, Montpellier, France
- Faculty of Veterinary Technology, Kasetsart University, Bangkok, Thailand
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Claire Lajaunie
- Inserm-Laboratoire Population Environnement Développement (Aix-Marseille Université, IRD), Marseille, France
| |
Collapse
|
319
|
Zhong Q, Fouque F. Break Down the Silos: A Conceptual Framework on Multisectoral Approaches to the Prevention and Control of Vector-Borne Diseases. J Infect Dis 2021; 222:S732-S737. [PMID: 33119098 PMCID: PMC7594346 DOI: 10.1093/infdis/jiaa344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The need for multisectoral approaches (MSAs) in prevention and control of vector-borne diseases (VBDs) has been identified. VBD programs often involve collaborations between health and nonhealth sectors; however, a systematic framework describing the process, requirements, challenges, and benefits of MSAs has been missing. A recent guidance document from UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases provides a framework to implement MSAs for prevention and control of VBDs. This article gives an introduction to the guidance document and describes the conceptual framework and coordination process. The next steps will be to test the framework through implementation research in specific VBD cases studies. The guidance document will thus be refined based on iterative and comprehensive monitoring and evaluation systems to assess the performance and impact of MSAs. The advocacy for MSA and necessary capacity building will be integrated into the testing of the framework.
Collapse
Affiliation(s)
- Qingxia Zhong
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| | - Florence Fouque
- UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR), Geneva, Switzerland
| |
Collapse
|
320
|
González E, Molina R, Iriso A, Ruiz S, Aldea I, Tello A, Fernández D, Jiménez M. Opportunistic feeding behaviour and Leishmania infantum detection in Phlebotomus perniciosus females collected in the human leishmaniasis focus of Madrid, Spain (2012-2018). PLoS Negl Trop Dis 2021; 15:e0009240. [PMID: 33720936 PMCID: PMC7993803 DOI: 10.1371/journal.pntd.0009240] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 03/25/2021] [Accepted: 02/15/2021] [Indexed: 11/19/2022] Open
Abstract
Background An outbreak of human leishmaniasis due to Leishmania infantum has been registered in an urban area of southwestern Madrid, Spain, since 2010. Entomological surveys carried out in the municipalities of Fuenlabrada, Leganés, Getafe and Humanes de Madrid showed that Phlebotomus perniciosus is the only potential vector. In this work, an intensive molecular surveillance was performed in P. perniciosus females captured in the region between 2012 and 2018. Methodology/Principal findings A total of 1805 P. perniciosus females were analyzed for Leishmania infection, and 1189 of them also for bloodmeal identification. Eleven different species of vertebrate were detected by amplification and subsequent sequencing of the 359 bp cytb fragment. The most prevalent blood source identified was hare (n = 553, 46.51%), followed by rabbit (n = 262, 21.95%). Less frequent were cat (n = 45, 3.80%), human (n = 34, 2.90%), pig (n = 14, 1.20%), horse (n = 11, 0.93%), sheep (n = 3, 0.25%), rhea (n = 3, 0.25%), partridge (n = 1, 0.09%) and chicken (n = 1, 0.09%). The distribution of the blood meal sources varied between the different locations. Regarding L. infantum detection, PCR amplification of a fragment of kDNA, cpb gene and ITS1 region showed 162 positive specimens (8.97%). The highest infection rate was found in the municipality of Leganés (15.17%). Conclusions The results of this molecular survey in P. perniciosus, the only leishmaniasis vector in the outbreak occurred in southwestern Madrid region, showed its opportunistic blood-feeding behaviour, high infection rates and the differences between the different points. This study was an essential part of the intensive surveillance plan in the area and the results obtained have supported the implementation of control measures in the outbreak. Vector-borne diseases (VBD) comprise a pathogen-vector-reservoir relation, and control programs should take into account different factors involving this relationship. This study is focused on a leishmaniasis outbreak that has occurred in the southwestern Madrid region since 2010. An intensive molecular surveillance of the sand fly vector Phlebotomus perniciosus was carried out from 2012 to 2018 in 4 municipalities from the affected region: Fuenlabrada, Leganés, Getafe and Humanes de Madrid. The aim of this investigation was to discern how much the vector was infected and find out its blood-feeding habits in the different surveyed points. The results showed an important rate of infected sand flies and also that P. perniciosus presents an opportunistic blood-feeding behaviour, taking blood from many different hosts, depending on their availability and density. The results obtained in this surveillance helped the authorities to plan and implement more accurate and effective control measures in the area, reflecting the importance of applying molecular surveillance in VBD outbreaks.
Collapse
Affiliation(s)
- Estela González
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
| | - Ricardo Molina
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
| | - Andrés Iriso
- Área de Vigilancia de Riesgos Ambientales en Salud, Dirección General de Salud Pública, Consejería de Sanidad, Comunidad de Madrid
| | - Sonia Ruiz
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
| | - Irene Aldea
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
| | - Ana Tello
- Departamento de Zoología y Antropología Física, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid
| | - Daniel Fernández
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
| | - Maribel Jiménez
- Laboratorio de Entomología Médica, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid
- * E-mail:
| |
Collapse
|
321
|
Retkute R, Dilger E, Hamilton JGC, Keeling MJ, Courtenay O. Modelling Sand Fly Lutzomyia longipalpis Attraction to Host Odour: Synthetic Sex-Aggregation Pheromone Dominates the Response. Microorganisms 2021; 9:microorganisms9030602. [PMID: 33804003 PMCID: PMC7999287 DOI: 10.3390/microorganisms9030602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/12/2021] [Indexed: 11/22/2022] Open
Abstract
Zoontic visceral leishmaniasis (ZVL) due to Leishmania infantum is a potentially fatal protozoan parasitic disease of humans and dogs. In the Americas, dogs are the reservoir and the sand fly, Lutzomyia longipalpis, the principal vector. A synthetic version of the male sand fly produced sex-aggregation pheromone attracts both female and male conspecifics to co-located insecticide, reducing both reservoir infection and vector abundance. However the effect of the synthetic pheromone on the vector’s “choice“ of host (human, animal reservoir, or dead-end host) for blood feeding in the presence of the pheromone is less well understood. In this study, we developed a modelling framework to allow us to predict the relative attractiveness of the synthetic pheromone and potential alterations in host choice. Our analysis indicates that the synthetic pheromone can attract 53% (95% CIs: 39%–86%) of host-seeking female Lu. longipalpis and thus it out-competes competing host odours. Importantly, the results suggest that the synthetic pheromone can lure vectors away from humans and dogs, such that when co-located with insecticide, it provides protection against transmission leading to human and canine ZVL.
Collapse
Affiliation(s)
- Renata Retkute
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), The University of Warwick, Coventry CV4 7AL, UK; (E.D.); (M.J.K.)
- Epidemiology and Modelling Group, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
- Correspondence: (R.R.); (O.C.)
| | - Erin Dilger
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), The University of Warwick, Coventry CV4 7AL, UK; (E.D.); (M.J.K.)
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancashire LA1 4YG, UK;
| | - Matt J. Keeling
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), The University of Warwick, Coventry CV4 7AL, UK; (E.D.); (M.J.K.)
| | - Orin Courtenay
- The Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), The University of Warwick, Coventry CV4 7AL, UK; (E.D.); (M.J.K.)
- School of Life Sciences, The University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (R.R.); (O.C.)
| |
Collapse
|
322
|
Hosack GR, Ickowicz A, Hayes KR. Quantifying the risk of vector-borne disease transmission attributable to genetically modified vectors. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201525. [PMID: 33959322 PMCID: PMC8074930 DOI: 10.1098/rsos.201525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
The relative risk of disease transmission caused by the potential release of transgenic vectors, such as through sterile insect technique or gene drive systems, is assessed with comparison with wild-type vectors. The probabilistic risk framework is demonstrated with an assessment of the relative risk of lymphatic filariasis, malaria and o'nyong'nyong arbovirus transmission by mosquito vectors to human hosts given a released transgenic strain of Anopheles coluzzii carrying a dominant sterile male gene construct. Harm is quantified by a logarithmic loss function that depends on the causal risk ratio, which is a quotient of basic reproduction numbers derived from mathematical models of disease transmission. The basic reproduction numbers are predicted to depend on the number of generations in an insectary colony and the number of backcrosses between the transgenic and wild-type lineages. Analogous causal risk ratios for short-term exposure to a single cohort release are also derived. These causal risk ratios were parametrized by probabilistic elicitations, and updated with experimental data for adult vector mortality. For the wild-type, high numbers of insectary generations were predicted to reduce the number of infectious human cases compared with uncolonized wild-type. Transgenic strains were predicted to produce fewer infectious cases compared with the uncolonized wild-type.
Collapse
Affiliation(s)
- Geoffrey R. Hosack
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| | - Adrien Ickowicz
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| | - Keith R. Hayes
- Commonwealth Scientific and Industrial Research Organisation, Data61, Hobart, Tasmania, Australia
| |
Collapse
|
323
|
Parra-Henao G, Coelho G, Escobar JP, Gonzalvez G, Bezerra H. Beyond the traditional vector control and the need the strengthening integrated vector management in Latin America. Ther Adv Infect Dis 2021; 8:2049936121997655. [PMID: 33717481 PMCID: PMC7922610 DOI: 10.1177/2049936121997655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Giovanini Coelho
- Department of Communicable Diseases and Environmental Determinants of Health, Neglected, Tropical and Vector-Borne Diseases, Pan-American Health Organization/World Health Organization, Washington, DC, USA
| | - José Pablo Escobar
- Facultad Nacional de Salud Pública, University of Antioquia, Medellin, Colombia
| | | | - Haroldo Bezerra
- Department of Communicable Diseases and Environmental Determinants of Health, Neglected, Tropical and Vector-Borne Diseases, Pan-American Health Organization/World Health Organization, Washington, DC, USA
| |
Collapse
|
324
|
Jones CM, Welburn SC. Leishmaniasis Beyond East Africa. Front Vet Sci 2021; 8:618766. [PMID: 33732738 PMCID: PMC7959848 DOI: 10.3389/fvets.2021.618766] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/15/2021] [Indexed: 01/25/2023] Open
Abstract
Climate change is having a substantial impact on our environment and ecosystems and has altered the way humans live, access, and utilize resources with increased risk of zoonotic infectious disease encounters. As global temperatures continue to increase, they impact on public health, migration, food security and land conflict, and as new environments become favorable, exposure to disease carrying vectors. Increased forests or natural habitat clearance for land repurposing, urbanization, road building, and water management are related to an increase in emerging vector borne parasitic diseases. The East African region remains one of the most impacted regions globally for leishmaniasis, a vector borne disease that impacts significantly on the health, wellbeing and livelihoods of affected communities and for which a lack of reporting and control interventions hinder progress toward elimination of this neglected tropical disease. As our world continues to transform, both politically and climatically, it is essential that measures are put in place to improve surveillance and disease management with implementation of control measures, including vector control, especially in low- and middle-income countries that are expected to be most impacted by changes in climate. Only through effective management, now, can we be sufficiently resilient to preventing the inevitable spread of vectors into suitable habitat and expansion of the geographical range of leishmaniasis. This review offers a current perspective on Leishmaniasis as an endemic disease in East Africa and examines the potential of the recent emergence of Leishmania infection in hitherto unaffected regions to become a public health concern if no disease management is achieved.
Collapse
Affiliation(s)
- Caitlin M Jones
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China.,Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Susan C Welburn
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, International Campus, Zhejiang University, Haining, China.,Infection Medicine, Deanery of Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
325
|
Prophylactic strategies to control chikungunya virus infection. Virus Genes 2021; 57:133-150. [PMID: 33590406 PMCID: PMC7883954 DOI: 10.1007/s11262-020-01820-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/11/2020] [Indexed: 11/18/2022]
Abstract
Chikungunya virus (CHIKV) is a (re)emerging arbovirus and the causative agent of chikungunya fever. In recent years, CHIKV was responsible for a series of outbreaks, some of which had serious economic and public health impacts in the affected regions. So far, no CHIKV-specific antiviral therapy or vaccine has been approved. This review gives a brief summary on CHIKV epidemiology, spread, infection and diagnosis. It furthermore deals with the strategies against emerging diseases, drug development and the possibilities of testing antivirals against CHIKV in vitro and in vivo. With our review, we hope to provide the latest information on CHIKV, disease manifestation, as well as on the current state of CHIKV vaccine development and post-exposure therapy.
Collapse
|
326
|
Jones RT, Pretorius E, Ant TH, Bradley J, Last A, Logan JG. The use of islands and cluster-randomized trials to investigate vector control interventions: a case study on the Bijagós archipelago, Guinea-Bissau. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190807. [PMID: 33357055 PMCID: PMC7776941 DOI: 10.1098/rstb.2019.0807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2020] [Indexed: 12/30/2022] Open
Abstract
Vector-borne diseases threaten the health of populations around the world. While key interventions continue to provide protection from vectors, there remains a need to develop and test new vector control tools. Cluster-randomized trials, in which the intervention or control is randomly allocated to clusters, are commonly selected for such evaluations, but their design must carefully consider cluster size and cluster separation, as well as the movement of people and vectors, to ensure sufficient statistical power and avoid contamination of results. Island settings present an opportunity to conduct these studies. Here, we explore the benefits and challenges of conducting intervention studies on islands and introduce the Bijagós archipelago of Guinea-Bissau as a potential study site for interventions intended to control vector-borne diseases. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Elizabeth Pretorius
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Thomas H. Ant
- Centre for Virus Research, Bearsden Road, Bearsden, Glasgow G61 1QH, UK
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Anna Last
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - James G. Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
- ARCTEC, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
327
|
Jones RT, Ant TH, Cameron MM, Logan JG. Novel control strategies for mosquito-borne diseases. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190802. [PMID: 33357056 PMCID: PMC7776938 DOI: 10.1098/rstb.2019.0802] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Mosquito-borne diseases are an increasing global health challenge, threatening over 40% of the world's population. Despite major advances in malaria control since 2000, recent progress has stalled. Additionally, the risk of Aedes-borne arboviruses is rapidly growing, with the unprecedented spread of dengue and chikungunya viruses, outbreaks of yellow fever and the 2015 epidemic of Zika virus in Latin America. To counteract this growing problem, diverse and innovative mosquito control technologies are currently under development. Conceptually, these span an impressive spectrum of approaches, from invasive transgene cassettes with the potential to crash mosquito populations or reduce the vectorial capacity of a population, to low-cost alterations in housing design that restrict mosquito entry. This themed issue will present articles providing insight into the breadth of mosquito control research, while demonstrating the requirement for an interdisciplinary approach. The issue will highlight mosquito control technologies at varying stages of development and includes both opinion pieces and research articles with laboratory and field-based data on control strategy development. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Robert T. Jones
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - Thomas H. Ant
- Centre for Virus Research, Bearsden Road, Bearsden, Glasgow G61 1QH, UK
| | - Mary M. Cameron
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| | - James G. Logan
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, Bloomsbury, London WC1E 7HT, UK
| |
Collapse
|
328
|
Rigby LM, Johnson BJ, Rašić G, Peatey CL, Hugo LE, Beebe NW, Hartel GF, Devine GJ. The presence of knockdown resistance mutations reduces male mating competitiveness in the major arbovirus vector, Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009121. [PMID: 33544711 PMCID: PMC7891746 DOI: 10.1371/journal.pntd.0009121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/18/2021] [Accepted: 01/10/2021] [Indexed: 01/08/2023] Open
Abstract
Background The development of insecticide resistance in mosquitoes can have pleiotropic effects on key behaviours such as mating competition and host-location. Documenting these effects is crucial for understanding the dynamics and costs of insecticide resistance and may give researchers an evidence base for promoting vector control programs that aim to restore or conserve insecticide susceptibility. Methods and findings We evaluated changes in behaviour in a backcrossed strain of Aedes aegypti, homozygous for two knockdown resistance (kdr) mutations (V1016G and S989P) isolated in an otherwise fully susceptible genetic background. We compared biting activity, host location behaviours, wing beat frequency (WBF) and mating competition between the backcrossed strain, and the fully susceptible and resistant parental strains from which it was derived. The presence of the homozygous kdr mutations did not have significant effects on blood avidity, the time to locate a host, or WBF in females. There was, however, a significant reduction in mean WBF in males and a significant reduction in estimated male mating success (17.3%), associated with the isolated kdr genotype. Conclusions Our results demonstrate a cost of insecticide resistance associated with an isolated kdr genotype and manifest as a reduction in male mating success. While there was no recorded difference in WBF between the females of our strains, the significant reduction in male WBF recorded in our backcrossed strain might contribute to mate-recognition and mating disruption. These consequences of resistance evolution, especially when combined with other pleiotropic fitness costs that have been previously described, may encourage reversion to susceptibility in the absence of insecticide selection pressures. This offers justification for the implementation of insecticide resistance management strategies based on the rotation or alternation of different insecticide classes in space and time. The mosquito Aedes aegypti is the main vector of dengue, chikungunya, and Zika. Its control relies heavily on the use of insecticides but the rapid evolution of resistance to these chemicals compromises their efficacy. The conservation or restoration of insecticide susceptibility in Ae. aegypti populations is therefore of great importance. Insecticide susceptibility can be encouraged if the evolution of resistance is accompanied by fitness costs that favour susceptible mosquitoes in the absence of insecticides. This paper documents the first report of a reduction in mating success directly associated with an isolated mutation that confers insecticide resistance in Ae. aegypti. This change in behaviour appears related to alterations in male wing-beat frequency. Our results provide evidence of behavioural changes related to insecticide resistance in Ae. aegypti, suggesting a competitive advantage of susceptible individuals in the absence of insecticides in the field.
Collapse
Affiliation(s)
- Lisa M. Rigby
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, Australia
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Medicine, University of Queensland, Brisbane, Australia
- * E-mail:
| | - Brian J. Johnson
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Gordana Rašić
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Christopher L. Peatey
- Australian Defence Force Malaria and Infectious Disease Institute, Gallipoli Barracks, Enoggera, Australia
| | - Leon E. Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Nigel W. Beebe
- School of Biological Sciences, University of Queensland, Brisbane, Australia
- CSIRO, Brisbane, Australia
| | - Gunter F. Hartel
- Department of Statistics, QIMR Berghofer Medical Research Institute, Herston, Australia
| | - Gregor J. Devine
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, Australia
| |
Collapse
|
329
|
Gonçalves R, de Souza CF, Rontani RB, Pereira A, Farnes KB, Gorsich EE, Silva RA, Brazil RP, Hamilton JGC, Courtenay O. Community deployment of a synthetic pheromone of the sand fly Lutzomyia longipalpis co-located with insecticide reduces vector abundance in treated and neighbouring untreated houses: Implications for control of Leishmania infantum. PLoS Negl Trop Dis 2021; 15:e0009080. [PMID: 33534804 PMCID: PMC7886189 DOI: 10.1371/journal.pntd.0009080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 02/16/2021] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
Background The rising incidence of visceral leishmaniasis due to Leishmania infantum requires novel methods to control transmission by the sand fly vector. Indoor residual spraying of insecticide (IRS) against these largely exophilic / exophagic vectors may not be the most effective method. A synthetic copy of the male sex-aggregation pheromone of the key vector species Lutzomyia longipalpis in the Americas, was co-located with residual pyrethroid insecticide, and tested for its effects on vector abundance, hence potential transmission, in a Brazilian community study. Methods Houses within eight defined semi-urban blocks in an endemic municipality in Brazil were randomised to synthetic pheromone + insecticide or to placebo treatments. A similar number of houses located >100m from each block were placebo treated and considered as “True Controls” (thus, analysed as three trial arms). Insecticide was sprayed on a 2.6m2 surface area of the property boundary or outbuilding wall, co-located within one metre of 50mg synthetic pheromone in controlled-release dispensers. Vector numbers captured in nearby CDC light traps were recorded at monthly intervals over 3 months post intervention. Recruited sentinel houses under True Control and pheromone + insecticide treatments were similarly monitored at 7–9 day intervals. The intervention effects were estimated by mixed effects negative binomial models compared to the True Control group. Results Dose-response field assays using 50mg of the synthetic pheromone captured a mean 4.8 (95% C.L.: 3.91, 5.80) to 6.3 (95% C.L.: 3.24, 12.11) times more vectors (female Lu. longipalpis) than using 10mg of synthetic pheromone. The intervention reduced household female vector abundance by 59% (C.L.: 48.7, 66.7%) (IRR = 0.41) estimated by the cross-sectional community study, and by 70% (C.L.: 56.7%, 78.8%) estimated by the longitudinal sentinel study. Similar reductions in male Lu. longipalpis were observed. Beneficial spill-over intervention effects were also observed at nearby untreated households with a mean reduction of 24% (95% C.L.: 0.050%, 39.8%) in female vectors. The spill-over effect in untreated houses was 44% (95% C.L.: 29.7%, 56.1%) as effective as the intervention in pheromone-treated houses. Ownership of chickens increased the intervention effects in both treated and untreated houses, attributed to the suspected synergistic attraction of the synthetic pheromone and chicken kairomones. The variation in IRR between study blocks was not associated with inter-household distances, household densities, or coverage (proportion of total households treated). Conclusions The study confirms the entomological efficacy of the lure-and-kill method to reduce the abundance of this important sand fly vector in treated and untreated homesteads. The outcomes were achieved by low coverage and using only 1–2% of the quantity of insecticide as normally required for IRS, indicating the potential cost-effectiveness of this method. Implications for programmatic deployment of this vector control method are discussed. The predominant sand fly vector of the intracellular parasite Leishmania infantum, that causes human and canine visceral leishmaniasis in the Americas, is Lutzomyia longipalpis. Vector control tools to reduce transmission are needed. A sex-aggregation pheromone released by male Lu. longipalpis attracts female conspecifics which facilitates blood-feeding and transmission. This study, conducted in Brazil, quantifies the effects of community deployment of a synthetic version of the sex-aggregation pheromone, in a controlled-release dispenser, and co-located with lethal insecticide applied to a small area of the household compound or outbuilding wall. 50mg synthetic pheromone dispensers were used since they attracted substantially more vectors than 10mg dispensers. Deploying this novel lure-and-kill method to houses in eight replicate study blocks in two suburban endemic areas, demonstrated that it reduces vector numbers at both pheromone + insecticide treated houses, and neighbouring untreated houses. The presence of chickens (a known additional attraction to blood-seeking female Lu. longipalpis) increased the beneficial effects of the intervention. The method used only 1–2% of the quantity of insecticide necessary for IRS for an average sized house. The results demonstrate the efficacy and potential cost-effectiveness of this novel lure-and-kill control method.
Collapse
Affiliation(s)
- Raquel Gonçalves
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian F. de Souza
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Reila B. Rontani
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Alisson Pereira
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Katie B. Farnes
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Erin E. Gorsich
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Rafaella A. Silva
- Núcleo de Medicina Tropical, Universidade de Brasilia, Brasília, Federal District, Brazil
- Ministério da Saúde, Departamento de Imunização e Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Brasília, Federal District, Brazil
| | - Reginaldo P. Brazil
- Laboratório de Doenças Parasitárias, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - James G. C. Hamilton
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, Lancashire, United Kingdom
- * E-mail: (JH); (OC)
| | - Orin Courtenay
- Zeeman Institute and School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail: (JH); (OC)
| |
Collapse
|
330
|
McGregor BL, Connelly CR, Kenney JL. Infection, Dissemination, and Transmission Potential of North American Culex quinquefasciatus, Culex tarsalis, and Culicoides sonorensis for Oropouche Virus. Viruses 2021; 13:v13020226. [PMID: 33540546 PMCID: PMC7912852 DOI: 10.3390/v13020226] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/14/2023] Open
Abstract
Oropouche virus (OROV), a vector-borne Orthobunyavirus circulating in South and Central America, causes a febrile illness with high rates of morbidity but with no documented fatalities. Oropouche virus is transmitted by numerous vectors, including multiple genera of mosquitoes and Culicoides biting midges in South America. This study investigated the vector competence of three North American vectors, Culex tarsalis, Culex quinquefasciatus, and Culicoides sonorensis, for OROV. Cohorts of each species were fed an infectious blood meal containing 6.5 log10 PFU/mL OROV and incubated for 10 or 14 days. Culex tarsalis demonstrated infection (3.13%) but not dissemination or transmission potential at 10 days post infection (DPI). At 10 and 14 DPI, Cx. quinquefasciatus demonstrated 9.71% and 19.3% infection, 2.91% and 1.23% dissemination, and 0.97% and 0.82% transmission potential, respectively. Culicoides sonorensis demonstrated 86.63% infection, 83.14% dissemination, and 19.77% transmission potential at 14 DPI. Based on these data, Cx. tarsalis is unlikely to be a competent vector for OROV. Culex quinquefasciatus demonstrated infection, dissemination, and transmission potential, although at relatively low rates. Culicoides sonorensis demonstrated high infection and dissemination but may have a salivary gland barrier to the virus. These data have implications for the spread of OROV in the event of a North American introduction.
Collapse
Affiliation(s)
- Bethany L. McGregor
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - C. Roxanne Connelly
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
| | - Joan L. Kenney
- Arboviral Diseases Branch, Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80521, USA;
- Correspondence: ; Tel.: +1-970-221-6465
| |
Collapse
|
331
|
Tusting LS, Cairncross S, Ludolph R, Velayudhan R, Wilson AL, Lindsay SW. Assessing the health benefits of development interventions. BMJ Glob Health 2021; 6:e005169. [PMID: 33593756 PMCID: PMC7888316 DOI: 10.1136/bmjgh-2021-005169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 12/02/2022] Open
Affiliation(s)
- Lucy S Tusting
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Sandy Cairncross
- Department of Disease Control, London School of Hygiene & Tropical Medicine, London, UK
| | - Ramona Ludolph
- Department of Environment, Climate Change and Health, World Health Organization, Geneva, Switzerland
| | - Raman Velayudhan
- Veterinary Public Health, Environment and Vector Control, Neglected Tropical Diseases Headquarters, World Health Organization, Geneva, Switzerland
| | - Anne L Wilson
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Steven W Lindsay
- Department of Biosciences, Durham University, Durham, Durham, UK
| |
Collapse
|
332
|
Ellwanger JH, Veiga ABGD, Kaminski VDL, Valverde-Villegas JM, Freitas AWQD, Chies JAB. Control and prevention of infectious diseases from a One Health perspective. Genet Mol Biol 2021; 44:e20200256. [PMID: 33533395 PMCID: PMC7856630 DOI: 10.1590/1678-4685-gmb-2020-0256] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/18/2020] [Indexed: 12/18/2022] Open
Abstract
The ongoing COVID-19 pandemic has caught the attention of the global community and rekindled the debate about our ability to prevent and manage outbreaks, epidemics, and pandemics. Many alternatives are suggested to address these urgent issues. Some of them are quite interesting, but with little practical application in the short or medium term. To realistically control infectious diseases, human, animal, and environmental factors need to be considered together, based on the One Health perspective. In this article, we highlight the most effective initiatives for the control and prevention of infectious diseases: vaccination; environmental sanitation; vector control; social programs that encourage a reduction in the population growth; control of urbanization; safe sex stimulation; testing; treatment of sexually and vertically transmitted infections; promotion of personal hygiene practices; food safety and proper nutrition; reduction of the human contact with wildlife and livestock; reduction of social inequalities; infectious disease surveillance; and biodiversity preservation. Subsequently, this article highlights the impacts of human genetics on susceptibility to infections and disease progression, using the SARS-CoV-2 infection as a study model. Finally, actions focused on mitigation of outbreaks and epidemics and the importance of conservation of ecosystems and translational ecology as public health strategies are also discussed.
Collapse
Affiliation(s)
- Joel Henrique Ellwanger
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, RS, Brazil
| | | | - Valéria de Lima Kaminski
- Universidade Federal de São Paulo - UNIFESP, Instituto de Ciência e Tecnologia - ICT, Laboratório de Imunologia Aplicada, Programa de Pós-Graduação em Biotecnologia, São José dos Campos, SP, Brazil
| | - Jacqueline María Valverde-Villegas
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Institut de Génétique Moléculaire de Montpellier (IGMM), Centre National de la Recherche Scientifique (CNRS), Laboratoire coopératif IGMM/ABIVAX, UMR 5535, Montpellier, France
| | - Abner Willian Quintino de Freitas
- Universidade Federal de Ciências da Saúde de Porto Alegre - UFCSPA, Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Porto Alegre, RS, Brazil
| | - José Artur Bogo Chies
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Laboratório de Imunobiologia e Imunogenética, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul - UFRGS, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular - PPGBM, Porto Alegre, RS, Brazil
| |
Collapse
|
333
|
Abstract
BACKGROUND Despite being preventable, malaria remains an important public health problem. The World Health Organization (WHO) reports that overall progress in malaria control has plateaued for the first time since the turn of the century. Researchers and policymakers are therefore exploring alternative and supplementary malaria vector control tools. Research in 1900 indicated that modification of houses may be effective in reducing malaria: this is now being revisited, with new research now examining blocking house mosquito entry points or modifying house construction materials to reduce exposure of inhabitants to infectious bites. OBJECTIVES To assess the effects of house modifications on malaria disease and transmission. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Centre for Agriculture and Bioscience International (CAB) Abstracts (Web of Science); and the Latin American and Caribbean Health Science Information database (LILACS), up to 1 November 2019. We also searched the WHO International Clinical Trials Registry Platform (www.who.int/ictrp/search/en/), ClinicalTrials.gov (www.clinicaltrials.gov), and the ISRCTN registry (www.isrctn.com/) to identify ongoing trials up to the same date. SELECTION CRITERIA Randomized controlled trials, including cluster-randomized controlled trials (cRCTs), cross-over studies, and stepped-wedge designs were eligible, as were quasi-experimental trials, including controlled before-and-after studies, controlled interrupted time series, and non-randomized cross-over studies. We only considered studies reporting epidemiological outcomes (malaria case incidence, malaria infection incidence or parasite prevalence). We also summarised qualitative studies conducted alongside included studies. DATA COLLECTION AND ANALYSIS Two review authors selected eligible studies, extracted data, and assessed the risk of bias. We used risk ratios (RR) to compare the effect of the intervention with the control for dichotomous data. For continuous data, we presented the mean difference; and for count and rate data, we used rate ratios. We presented all results with 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Six cRCTs met our inclusion criteria, all conducted in sub-Saharan Africa; three randomized by household, two by village, and one at the community level. All trials assessed screening of windows, doors, eaves, ceilings or any combination of these; this was either alone, or in combination with eave closure, roof modification or eave tube installation (a "lure and kill" device that reduces mosquito entry whilst maintaining some airflow). In two trials, the interventions were insecticide-based. In five trials, the researchers implemented the interventions. The community implemented the interventions in the sixth trial. At the time of writing the review, two of the six trials had published results, both of which compared screened houses (without insecticide) to unscreened houses. One trial in Ethiopia assessed screening of windows and doors. Another trial in the Gambia assessed full screening (screening of eaves, doors and windows), as well as screening of ceilings only. Screening may reduce clinical malaria incidence caused by Plasmodium falciparum (rate ratio 0.38, 95% CI 0.18 to 0.82; 1 trial, 184 participants, 219.3 person-years; low-certainty evidence; Ethiopian study). For malaria parasite prevalence, the point estimate, derived from The Gambia study, was smaller (RR 0.84, 95% CI 0.60 to 1.17; 713 participants, 1 trial; low-certainty evidence), and showed an effect on anaemia (RR 0.61, 95% CI 0.42, 0.89; 705 participants; 1 trial, moderate-certainty evidence). Screening may reduce the entomological inoculation rate (EIR): both trials showed lower estimates in the intervention arm. In the Gambian trial, there was a mean difference in EIR between the control houses and treatment houses ranging from 0.45 to 1.50 (CIs ranged from -0.46 to 2.41; low-certainty evidence), depending on the study year and treatment arm. The Ethiopian trial reported a mean difference in EIR of 4.57, favouring screening (95% CI 3.81 to 5.33; low-certainty evidence). Pooled analysis of the trials showed that individuals living in fully screened houses were slightly less likely to sleep under a bed net (RR 0.84, 95% CI 0.65 to 1.09; 2 trials, 203 participants). In one trial, bed net usage was also lower in individuals living in houses with screened ceilings (RR 0.69, 95% CI 0.50 to 0.95; 1 trial, 135 participants). AUTHORS' CONCLUSIONS Based on the two trials published to date, there is some evidence that screening may reduce malaria transmission and malaria infection in people living in the house. The four trials awaiting publication are likely to enrich the current evidence base, and we will add these to this review when they become available.
Collapse
Affiliation(s)
- Joanna Furnival-Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Evelyn A Olanga
- Malaria Alert Centre of the College of Medicine, Blantyre, Malawi
| | - Mark Napier
- Council for Scientific and Industrial Research, Pretoria, South Africa
- Centre for Development Support, University of the Free State, Bloemfontein, South Africa
| | - Paul Garner
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
334
|
Abstract
The emergence and spread of infectious diseases with pandemic potential occurred regularly throughout history. Major pandemics and epidemics such as plague, cholera, flu, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) have already afflicted humanity. The world is now facing the new coronavirus disease 2019 (COVID-19) pandemic. Many infectious diseases leading to pandemics are caused by zoonotic pathogens that were transmitted to humans due to increased contacts with animals through breeding, hunting and global trade activities. The understanding of the mechanisms of transmission of pathogens to humans allowed the establishment of methods to prevent and control infections. During centuries, implementation of public health measures such as isolation, quarantine and border control helped to contain the spread of infectious diseases and maintain the structure of the society. In the absence of pharmaceutical interventions, these containment methods have still been used nowadays to control COVID-19 pandemic. Global surveillance programs of water-borne pathogens, vector-borne diseases and zoonotic spillovers at the animal-human interface are of prime importance to rapidly detect the emergence of infectious threats. Novel technologies for rapid diagnostic testing, contact tracing, drug repurposing, biomarkers of disease severity as well as new platforms for the development and production of vaccines are needed for an effective response in case of pandemics.
Collapse
Affiliation(s)
- Jocelyne Piret
- CHU de Québec - Laval University, Quebec City, QC, Canada
| | - Guy Boivin
- CHU de Québec - Laval University, Quebec City, QC, Canada
| |
Collapse
|
335
|
Kua KP, Lee SWH. Randomized trials of housing interventions to prevent malaria and Aedes-transmitted diseases: A systematic review and meta-analysis. PLoS One 2021; 16:e0244284. [PMID: 33417600 PMCID: PMC7793286 DOI: 10.1371/journal.pone.0244284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Mosquito-borne diseases remain a significant public health problem in tropical regions. Housing improvements such as screening of doors and windows may be effective in reducing disease transmission, but the impact remains unclear. OBJECTIVES To examine whether housing interventions were effective in reducing mosquito densities in homes and the impact on the incidence of mosquito-borne diseases. METHODS In this systematic review and meta-analysis, we searched 16 online databases, including NIH PubMed, CINAHL Complete, LILACS, Ovid MEDLINE, and Cochrane Central Register of Controlled Trials for randomized trials published from database inception to June 30, 2020. The primary outcome was the incidence of any mosquito-borne diseases. Secondary outcomes encompassed entomological indicators of the disease transmission. I2 values were used to explore heterogeneity between studies. A random-effects meta-analysis was used to assess the primary and secondary outcomes, with sub-group analyses for type of interventions on home environment, study settings (rural, urban, or mixed), and overall house type (traditional or modern housing). RESULTS The literature search yielded 4,869 articles. After screening, 18 studies were included in the qualitative review, of which nine were included in the meta-analysis. The studies enrolled 7,200 households in Africa and South America, reporting on malaria or dengue only. The type of home environmental interventions included modification to ceilings and ribbons to close eaves, screening doors and windows with nets, insecticide-treated wall linings in homes, nettings over gables and eaves openings, mosquito trapping systems, metal-roofed houses with mosquito screening, gable windows and closed eaves, and prototype houses using southeast Asian designs. Pooled analysis depicted a lower risk of mosquito-borne diseases in the housing intervention group (OR = 0.68; 95% CI = 0.48 to 0.95; P = 0.03). Subgroup analysis depicted housing intervention reduced the risk of malaria in all settings (OR = 0.63; 95% CI = 0.39 to 1.01; P = 0.05). In urban environment, housing intervention was found to decrease the risk of both malaria and dengue infections (OR = 0.52; 95% CI = 0.27 to 0.99; P = 0.05).Meta-analysis of pooled odds ratio showed a significant benefit of improved housing in reducing indoor vector densities of both Aedes and Anopheles (OR = 0.35; 95% CI = 0.23 to 0.54; P<0.001). CONCLUSIONS Housing intervention could reduce transmission of malaria and dengue among people living in the homes. Future research should evaluate the protective effect of specific house features and housing improvements associated with urban development.
Collapse
Affiliation(s)
- Kok Pim Kua
- Puchong Health Clinic, Petaling District Health Office, Ministry of Health Malaysia, Petaling, Malaysia
| | - Shaun Wen Huey Lee
- School of Pharmacy, Monash University Malaysia, Sunway City, Malaysia
- Asian Center for Evidence Synthesis in Population, Implementation, and Clinical Outcomes (PICO), Health and Well-being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Sunway City, Malaysia
- Gerontechnology Laboratory, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Sunway City, Malaysia
- Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
336
|
Piñeyro MD, Arias D, Parodi-Talice A, Guerrero S, Robello C. Trypanothione Metabolism as Drug Target for Trypanosomatids. Curr Pharm Des 2021; 27:1834-1846. [PMID: 33308115 DOI: 10.2174/1381612826666201211115329] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/01/2020] [Accepted: 10/08/2020] [Indexed: 11/22/2022]
Abstract
Chagas Disease, African sleeping sickness, and leishmaniasis are neglected diseases caused by pathogenic trypanosomatid parasites, which have a considerable impact on morbidity and mortality in poor countries. The available drugs used as treatment have high toxicity, limited access, and can cause parasite drug resistance. Long-term treatments, added to their high toxicity, result in patients that give up therapy. Trypanosomatids presents a unique trypanothione based redox system, which is responsible for maintaining the redox balance. Therefore, inhibition of these essential and exclusive parasite's metabolic pathways, absent from the mammalian host, could lead to the development of more efficient and safe drugs. The system contains different redox cascades, where trypanothione and tryparedoxins play together a central role in transferring reduced power to different enzymes, such as 2-Cys peroxiredoxins, non-selenium glutathione peroxidases, ascorbate peroxidases, glutaredoxins and methionine sulfoxide reductases, through NADPH as a source of electrons. There is sufficient evidence that this complex system is essential for parasite survival and infection. In this review, we explore what is known in terms of essentiality, kinetic and structural data, and the development of inhibitors of enzymes from this trypanothione-based redox system. The recent advances and limitations in the development of lead inhibitory compounds targeting these enzymes have been discussed. The combination of molecular biology, bioinformatics, genomics, and structural biology is fundamental since the knowledge of unique features of the trypanothione-dependent system will provide tools for rational drug design in order to develop better treatments for these diseases.
Collapse
Affiliation(s)
| | - Diego Arias
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | | | - Sergio Guerrero
- Instituto de Agrobiotecnologia del Litoral y Facultad de Bioquimica y Ciencias Biologicas, CONICET-UNL, Santa F, Argentina
| | - Carlos Robello
- Unidad de Biologia Molecular, Instituto Pasteur Montevideo, Montevideo, Uruguay
| |
Collapse
|
337
|
Barreaux AMG, Oumbouke WA, Brou N, Tia IZ, Ahoua Alou LP, Doudou DT, Koffi AA, N'Guessan R, Sternberg ED, Thomas MB. The role of human and mosquito behaviour in the efficacy of a house-based intervention. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190815. [PMID: 33357057 PMCID: PMC7776932 DOI: 10.1098/rstb.2019.0815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Housing improvement such as blocking eaves and screening windows can help in reducing exposure to indoor biting mosquitoes. The impacts of physical barriers could potentially be boosted by the addition of a mechanism that kills mosquitoes as they attempt to enter the house. One example is to combine household screening with EaveTubes, which are insecticide-treated tubes inserted into closed eaves that attract and kill host-searching mosquitoes. The epidemiological impact of screening + EaveTubes is being evaluated in a large cluster randomized trial in Cote d'Ivoire. The study presented here is designed as a complement to this trial to help better understand the functional roles of screening and EaveTubes. We began by evaluating householder behaviour and household condition in the study villages. This work revealed that doors (and to some extent windows) were left open for large parts of the evening and morning, and that even houses modified to make them more ‘mosquito proof’ often had possible entry points for mosquitoes. We next built two realistic experimental houses in a village to enable us to explore how these aspects of behaviour and household quality affected the impact of screening and EaveTubes. We found that screening could have a substantial impact on indoor mosquito densities, even with realistic household condition and behaviour. By contrast, EaveTubes had no significant impact on indoor mosquito density, either as a stand-alone intervention or in combination with screening. However, there was evidence that mosquitoes recruited to the EaveTubes, and the resulting mortality could create a community benefit. These complementary modes of action of screening and EaveTubes support the rationale of combining the technologies to create a ‘Lethal House Lure’. This article is part of the theme issue ‘Novel control strategies for mosquito-borne diseases’.
Collapse
Affiliation(s)
- Antoine M G Barreaux
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Welbeck A Oumbouke
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire.,London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - N'Guessan Brou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Innocent Zran Tia
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Dimi Théodore Doudou
- Centre de recherche pour le Développement (CRD)/Laboratoire de Santé, Nutrition et Hygiène, Université Alassane Ouattara, Bouaké BP V 18 01, Cote d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire
| | - Raphaël N'Guessan
- Institut Pierre Richet/Institut National de Santé Publique (INSP), Bouaké, Cote d'Ivoire.,London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Eleanore D Sternberg
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA.,Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Matthew B Thomas
- Center for Infectious Disease Dynamics and Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
338
|
Lindsay SW, Davies M, Alabaster G, Altamirano H, Jatta E, Jawara M, Carrasco-Tenezaca M, von Seidlein L, Shenton FC, Tusting LS, Wilson AL, Knudsen J. Recommendations for building out mosquito-transmitted diseases in sub-Saharan Africa: the DELIVER mnemonic. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190814. [PMID: 33357059 DOI: 10.1098/rstb.2019.0814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In sub-Saharan Africa, most transmission of mosquito-transmitted diseases, such as malaria or dengue, occurs within or around houses. Preventing mosquito house entry and reducing mosquito production around the home would help reduce the transmission of these diseases. Based on recent research, we make key recommendations for reducing the threat of mosquito-transmitted diseases through changes to the built environment. The mnemonic, DELIVER, recommends the following best practices: (i) Doors should be screened, self-closing and without surrounding gaps; (ii) Eaves, the space between the wall and roof, should be closed or screened; (iii) houses should be Lifted above the ground; (iv) Insecticide-treated nets should be used when sleeping in houses at night; (v) houses should be Ventilated, with at least two large-screened windows to facilitate airflow; (vi) Environmental management should be conducted regularly inside and around the home; and (vii) Roofs should be solid, rather than thatch. DELIVER is a package of interventions to be used in combination for maximum impact. Simple changes to the built environment will reduce exposure to mosquito-transmitted diseases and help keep regions free from these diseases after elimination. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Steven W Lindsay
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Michael Davies
- Bartlett School Environment, Energy & Resources, Faculty of the Built Environment, University College London, London WC1H 0NN, UK
| | | | - Hector Altamirano
- Bartlett School Environment, Energy & Resources, Faculty of the Built Environment, University College London, London WC1H 0NN, UK
| | - Ebrima Jatta
- National Malaria Control Programme, Banjul, The Gambia
| | - Musa Jawara
- Medical Research Council Unit Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Lorenz von Seidlein
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Fiona C Shenton
- Department of Biosciences, Durham University, Durham DH1 3LE, UK
| | - Lucy S Tusting
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anne L Wilson
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jakob Knudsen
- The Royal Danish Academy of Fine Arts, School of Architecture, Design and Conservation, The School of Architecture, Copenhagen, Denmark
| |
Collapse
|
339
|
Ryan SJ. Mapping Thermal Physiology of Vector-Borne Diseases in a Changing Climate: Shifts in Geographic and Demographic Risk of Suitability. Curr Environ Health Rep 2020; 7:415-423. [PMID: 32902817 PMCID: PMC7748992 DOI: 10.1007/s40572-020-00290-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW To describe a collection of recent work published on thermal suitability for vector-borne diseases, in which mapping approaches illustrated the geographic shifts, and spatial approaches describe the demographic impact anticipated with a changing climate. RECENT FINDINGS While climate change predictions of warming indicate an expansion in VBD suitability risk in some parts of the globe, while in others, optimal temperatures for transmission may be exceeded, as seen for malaria in Western Africa, resulting in declining risk. The thermal suitability of specific vector-pathogen pairs can have large impacts on geographic range of risk, and changes in human demography itself will intersect with this risk to create different vulnerability profiles over the coming century. Using a physiological approach to describe the thermal suitability of transmission for vector-borne diseases allows us to illustrate the future risk as mapped information. This in turn can be coupled with demographic projections to anticipate changing risk, and even changing vulnerability within that population change.
Collapse
Affiliation(s)
- Sadie J Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab, Department of Geography, University of Florida, Gainesville, FL, 32611, USA.
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, USA.
- School of Life Sciences, University of KwaZulu Natal, Durban, 4041, South Africa.
| |
Collapse
|
340
|
Rangel DEN, Piedrabuena AE, Roitman I, Messias CL. Laboratory and field studies for the control of Chagas disease vectors using the fungus Metarhizium anisopliae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21745. [PMID: 33029844 DOI: 10.1002/arch.21745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/29/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Chagas disease is one of the most important insect-vectored diseases in Brazil. The entomopathogenic fungus Metarhizium anisopliae was evaluated against nymphs and adults of Panstrongylus megistus, Triatoma infestans, and T. sordida. Pathogenicity tests at saturated humidity demonstrated high susceptibility to fungal infection. The shortest estimates of 50% lethal time (LT50 ) for P. megistus varied from 4.6 (isolate E9) to 4.8 days (genetically modified strain 157p). For T. infestans, the shortest LT50 was 6.3 (E9) and 7.3 days (157p). For T. sordida, the shortest LT50 was 8.0 days (157p). The lethal concentration sufficient to kill 50% of T. infestans (LC50 ) was 1.9 × 107 conidia/ml for strain 157p. In three chicken coops that were sprayed with M. anisopliae, nymphs especially were well controlled, with a great population reduction of 38.5% after 17 days. Therefore M. anisopliae performed well, controlling Triatominae in both laboratory and field studies.
Collapse
Affiliation(s)
- Drauzio E N Rangel
- Universidade Brasil, São Paulo, SP, Brazil
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Aquiles E Piedrabuena
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Isaac Roitman
- Departamento de Biologia Celular, Universidade de Brasilia, Brasilia, DF, Brazil
| | - Claudio L Messias
- Departamento de Genética e Evolução, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
341
|
Buxton M, Wasserman RJ, Nyamukondiwa C. Spatial Anopheles arabiensis (Diptera: Culicidae) insecticide resistance patterns across malaria-endemic regions of Botswana. Malar J 2020; 19:415. [PMID: 33213466 PMCID: PMC7678117 DOI: 10.1186/s12936-020-03487-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
Background Since the advent of the Green Revolution, pesticides have played an important role in the global management of invertebrate pests including vector mosquitoes. Despite optimal efficacy, insects often display insensitivity to synthetic insecticides owing to prolonged exposure that may select for resistance development. Such insecticide insensitivity may regress national and regional coordination in mosquito vector management and indeed malaria control. In Botswana, prolonged use of synthetic insecticides against malaria vectors have been practiced without monitoring of targeted mosquito species susceptibility status. Methods Here, susceptibility status of a malaria vector (Anopheles arabiensis), was assessed against World Health Organization-recommended insecticides, across three malaria endemic districts. Adult virgin female mosquitoes (2–5 days old) emerging from wild-collected larvae were exposed to standardized insecticide-impregnated papers with discriminating doses. Results The results showed resistance dynamics were variable in space, presumably as a result of spatial differences in insecticide use across malaria endemic districts and the types of insecticides used in the country. Overall, there was a reduced susceptibility of An. arabiensis for the pyrethroid lambda-cyhalothrin and for dichloro diphenyl trichloroethane [DDT], which have similar modes of action and have been used in the country for many years. The Okavango district exhibited the greatest reduction in susceptibility, followed by Ngamiland and then Bobirwa, reflective of national intervention strategy spraying intensities. Vector mosquitoes were, however, highly susceptible to carbamates and organophosphates irrespective of region. Conclusions These results provide important findings of vector susceptibility to insecticides recommended for vector control. The results highlight the need to implement insecticide application regimes that more effectively including regionally integrated resistance management strategies for effective malaria control and elimination.
Collapse
Affiliation(s)
- Mmabaledi Buxton
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.,Department of Zoology and Entomology, Rhodes University, Makhanda, 6140, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana.
| |
Collapse
|
342
|
Temeyer KB, Schlechte KG, Olafson PU, Drolet BS, Tidwell JP, Osbrink WLA, Showler AT, Gross AD, Pérez de León AA. Association of Salivary Cholinesterase With Arthropod Vectors of Disease. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1679-1685. [PMID: 32459332 DOI: 10.1093/jme/tjaa096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 06/11/2023]
Abstract
Acetylcholinesterase (AChE) was previously reported to be present in saliva of the southern cattle tick, Rhipicephalus (Boophilus) microplus (Canestrini), with proposed potential functions to 1) reduce acetylcholine toxicity during rapid engorgement, 2) modulate host immune responses, and 3) to influence pathogen transmission and establishment in the host. Potential modulation of host immune responses might include participation in salivary-assisted transmission and establishment of pathogens in the host as has been reported for a number of arthropod vector-borne diseases. If the hypothesis that tick salivary AChE may alter host immune responses is correct, we reasoned that similar cholinesterase activities might be present in saliva of additional arthropod vectors. Here, we report the presence of AChE-like activity in the saliva of southern cattle ticks, Rhipicephalus (Boophilus) microplus; the lone star tick, Amblyomma americanum (Linnaeus); Asian tiger mosquitoes, Aedes albopictus (Skuse); sand flies, Phlebotomus papatasi (Scopoli); and biting midges, Culicoides sonorensis Wirth and Jones. Salivary AChE-like activity was not detected for horn flies Haematobia irritans (L.), stable flies Stomoxys calcitrans (L.), and house flies Musca domestica L. Salivary cholinesterase (ChE) activities of arthropod vectors of disease-causing agents exhibited various Michaelis-Menten KM values that were each lower than the KM value of bovine serum AChE. A lower KM value is indicative of higher affinity for substrate and is consistent with a hypothesized role in localized depletion of host tissue acetylcholine potentially modulating host immune responses at the arthropod bite site that may favor ectoparasite blood-feeding and alter host defensive responses against pathogen transmission and establishment.
Collapse
Affiliation(s)
- Kevin B Temeyer
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Kristie G Schlechte
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Pia U Olafson
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Barbara S Drolet
- Arthropod-Borne Animal Diseases Research Unit, Center for Grain and Animal Health Research, USDA-ARS, Manhattan, KS
| | - Jason P Tidwell
- Cattle Fever Tick Research Laboratory, USDA-ARS, Edinburg, TX
| | - Weste L A Osbrink
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Allan T Showler
- Knipling-Bushland U.S. Livestock Insects Research Laboratory, USDA-ARS, Kerrville, TX
| | - Aaron D Gross
- Molecular Physiology and Toxicology Laboratory, Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | |
Collapse
|
343
|
Mohd Rajdi NZI, Mohamad MA, Tan LP, Choong SS, Reduan MFH, Hamdan RH, C W Zalati CWS. First case report on the occurrence of Trypanosoma evansi in a Siam B Mare in Kelantan, Malaysia. Vet Med Sci 2020; 7:303-309. [PMID: 33161648 PMCID: PMC8025636 DOI: 10.1002/vms3.379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/08/2020] [Accepted: 09/16/2020] [Indexed: 11/07/2022] Open
Abstract
This is the first case report for the positive Trypanosoma evansi incident in Kelantan, Malaysia confirmed through protozoa detection in a Siam B mare. The horse was presented with complaints of lethargy and inappetence and it collapsed on the day of visit. Normal saline and dextrose solution were administered intravenously, while multivitamins and nerve supplements were given intramuscularly to stabilise the horse before further treatment. Haematological findings showed normocytic hypochromic anaemia and are suggestive of regenerative anaemia. Thin blood smear and examination revealed the presence of Trypanosoma sp., and it was confirmed as T. evansi through molecular identification. The horse was found dead 2 days after and post-mortem was conducted. Histopathology revealed that the horse had developed a neurological form of the disease, besides the detection of the protozoa in heart, spleen and kidney tissue. This first positive Surra case in Kelantan, Malaysia, that is bordering Thailand confirms the increasing concern of transboundary infections. In conclusion, Surra is a potential emerging disease and should be considered as differential diagnosis in horses with pale mucous membrane. This condition is particularly imperative in horses found in these regions as Surra is endemic.
Collapse
Affiliation(s)
- Nur Zul Izzati Mohd Rajdi
- Clinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Mimi Armiladiana Mohamad
- Clinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Li Peng Tan
- Paraclinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Siew Shean Choong
- Clinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Mohd Farhan Hanif Reduan
- Paraclinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - Ruhil Hayati Hamdan
- Paraclinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| | - C W Salma C W Zalati
- Paraclinical Department, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kelantan, Malaysia
| |
Collapse
|
344
|
Djuicy DD, Hearn J, Tchouakui M, Wondji MJ, Irving H, Okumu FO, Wondji CS. CYP6P9-Driven Signatures of Selective Sweep of Metabolic Resistance to Pyrethroids in the Malaria Vector Anopheles funestus Reveal Contemporary Barriers to Gene Flow. Genes (Basel) 2020; 11:E1314. [PMID: 33167550 PMCID: PMC7694540 DOI: 10.3390/genes11111314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/24/2020] [Accepted: 10/31/2020] [Indexed: 11/16/2022] Open
Abstract
Pyrethroid resistance in major malaria vectors such as Anopheles funestus threatens malaria control efforts in Africa. Cytochrome P450-mediated metabolic resistance is best understood for CYP6P9 genes in southern Africa in An. funestus. However, we do not know if this resistance mechanism is spreading across Africa and how it relates to broader patterns of gene flow across the continent. Nucleotide diversity of the CYP6P9a gene and the diversity pattern of five gene fragments spanning a region of 120 kb around the CYP6P9a gene were surveyed in mosquitoes from southern, eastern and central Africa. These analyses revealed that a Cyp6P9a resistance-associated allele has swept through southern and eastern Africa and is now fixed in these regions. A similar diversity profile was observed when analysing genomic regions located 34 kb upstream to 86 kb downstream of the CYP6P9a locus, concordant with a selective sweep throughout the rp1 locus. We identify reduced gene flow between southern/eastern Africa and central Africa, which we hypothesise is due to the Great Rift Valley. These potential barriers to gene flow are likely to prevent or slow the spread of CYP6P9-based resistance mechanism to other parts of Africa and would to be considered in future vector control interventions such as gene drive.
Collapse
Affiliation(s)
- Delia Doreen Djuicy
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Jack Hearn
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Helen Irving
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| | - Fredros O. Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, PO Box 53 Ifakara 67501, Tanzania;
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), P.O. Box 13591 Yaoundé, Cameroon; (M.T.); (M.J.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; (J.H.); (H.I.)
| |
Collapse
|
345
|
Dzib-Florez S, Ponce-García G, Medina-Barreiro A, González-Olvera G, Contreras-Perera Y, Del Castillo-Centeno F, Ahmed AMM, Che-Mendoza A, McCall PJ, Vazquez-Prokopec G, Manrique-Saide P. Evaluating Over-the-Counter Household Insecticide Aerosols for Rapid Vector Control of Pyrethroid-Resistant Aedes aegypti. Am J Trop Med Hyg 2020; 103:2108-2112. [PMID: 32748782 PMCID: PMC7646803 DOI: 10.4269/ajtmh.20-0515] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/24/2020] [Indexed: 11/07/2022] Open
Abstract
Vector control methods that mobilize and impact rapidly during dengue, Zika, and chikungunya outbreaks are urgently needed in urban contexts. We investigated whether one person using a handheld aerosolized insecticide could achieve efficacy levels comparable to targeted indoor residual spraying (TIRS), using pyrethroid-resistant Aedes aegypti in a semi-field setting with experimental houses in Mexico. The insecticide product (H24, a carbamate and pyrethroid mixture), available over-the-counter locally, was sprayed only on known Ae. aegypti-resting surfaces, for example, walls less than 1.5 m and dark hidden areas. In six identical houses with paired bedrooms, one bedroom was treated, and the other remained an untreated control. Each week for 8 weeks, 100 female pyrethroid-resistant Ae. aegypti were released in each bedroom and followed up daily. Mortality rates in treated bedrooms exceeded 90% for at least 2 weeks, and more than 80% (89.2; 95% CI: 79.98-98.35) for 3 weeks or more. Mortality rates in control houses were zero. Results demonstrate that the immediate impact of TIRS can be delivered by one person using existing products, at an estimated cost for the average household in Mexico of under US$3 per month. Triggered by early outbreak signs, dissemination via community hubs and mass/social media of instructions to treat the home immediately, with monthly re-treatment thereafter, provides a simple means to engage and empower householders. Compatible with integrated vector management strategies, it enables self-protection even if existing agencies falter, a situation exemplified by the potential impact on vector control of the restrictions imposed during the 2020 COVID-19 pandemic.
Collapse
Affiliation(s)
- Sergio Dzib-Florez
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Gustavo Ponce-García
- Laboratorio de Entomología Médica, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, México
| | - Anuar Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Gabriela González-Olvera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
- Servicios de Salud de Yucatán (SSY), Mérida, México
| | - Yamili Contreras-Perera
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Felipe Del Castillo-Centeno
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Ahmed M. M. Ahmed
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
- Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Azael Che-Mendoza
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| | - Philip J. McCall
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, México
| |
Collapse
|
346
|
Toxorhynchites Species: A Review of Current Knowledge. INSECTS 2020; 11:insects11110747. [PMID: 33143104 PMCID: PMC7693308 DOI: 10.3390/insects11110747] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022]
Abstract
Simple Summary Mosquitoes are well known to spread diseases when they take a blood meal. However, not all species feed on blood but instead get their nourishment from other sources. One such species is Toxorhynchites, which are a paradox among mosquitoes. These mosquitoes are entirely non-blood feeding and, as a result, are not considered to be harmful to human health. Indeed, since their larvae feed on the larvae of pest species and other aquatic insects, they are a potential counter measure against the spread of mosquito-transmitted diseases. Their effective application has been hampered due to a lack of understanding and inconsistencies in their descriptions. This review aims to build upon previously published information and summarize recent findings to support their use in combating mosquito-transmitted infections. Abstract The increasing global incidence of mosquito-borne infections is driving a need for effective control methods. Vector populations have expanded their geographical ranges, while increasing resistance to chemical insecticides and a lack of effective treatments or vaccines has meant that the development of vector control methods is essential in the fight against mosquito-transmitted diseases. This review will focus on Toxorhynchites, a non-hematophagous mosquito genus which is a natural predator of vector species and may be exploited as a biological control agent. Their effectiveness in this role has been strongly debated for many years and early trials have been marred by misinformation and incomplete descriptions. Here, we draw together current knowledge of the general biology of Toxorhynchites and discuss how this updated information will benefit their role in an integrated vector management program.
Collapse
|
347
|
Campos KB, Martins AJ, Rodovalho CDM, Bellinato DF, Dias LDS, Macoris MDLDG, Andrighetti MTM, Lima JBP, Obara MT. Assessment of the susceptibility status of Aedes aegypti (Diptera: Culicidae) populations to pyriproxyfen and malathion in a nation-wide monitoring of insecticide resistance performed in Brazil from 2017 to 2018. Parasit Vectors 2020; 13:531. [PMID: 33109249 PMCID: PMC7590490 DOI: 10.1186/s13071-020-04406-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chemical mosquito control using malathion has been applied in Brazil since 1985. To obtain chemical control effectiveness, vector susceptibility insecticide monitoring is required. This study aimed to describe bioassay standardizations and determine the susceptibility profile of Ae. aegypti populations to malathion and pyriproxyfen, used on a national scale in Brazil between 2017 and 2018, and discuss the observed impacts in arbovirus control. METHODS The diagnostic-doses (DD) of pyriproxyfen and malathion were determined as the double of adult emergence inhibition (EI) and lethal doses for 99% of the Rockefeller reference strain, respectively. To monitor natural populations, sampling was performed in 132 Brazilian cities, using egg traps. Colonies were raised in the laboratory for one or two generations (F1 or F2) and submitted to susceptibility tests, where larvae were exposed to the pyriproxyfen DD (0.03 µg/l) and adults, to the malathion DD determined in the present study (20 µg), in addition to the one established by the World Health Organization (WHO) DD (50 µg) in a bottle assay. Dose-response (DR) bioassays with pyriproxyfen were performed on populations that did not achieve 98% EI in the DD assays. RESULTS Susceptibility alterations to pyriproxyfen were recorded in six (4.5%) Ae. aegypti populations from the states of Bahia and Ceará, with Resistance Ratios (RR95) ranging from 1.51 to 3.58. Concerning malathion, 73 (55.3%) populations distributed throughout the country were resistant when exposed to the local DD 20 µg/bottle. On the other hand, no population was resistant, and only 10 (7.6%) populations in eight states were considered as exhibiting decreased susceptibility (mortality ratios between 90 and 98%) when exposed to the WHO DD (50 µg/bottle). CONCLUSIONS The feasibility of conducting an insecticide resistance monitoring action on a nation-wide scale was confirmed herein, employing standardized and strongly coordinated sampling methods and laboratory bioassays. Brazilian Ae. aegypti populations exhibiting decreased susceptibility to pyriproxyfen were identified. The local DD for malathion was more sensitive than the WHO DD for early decreased susceptibility detection.
Collapse
Affiliation(s)
- Kauara Brito Campos
- Coordenação Geral de Vigilância de Aboviroses, Secretaria de Vigilância em Saúde, Ministério da Saúde, Edifício PO 700, SRTV 702, Via W 5 Norte, Brasília/Distrito Federal, CEP 70723-040 Brazil
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília/Distrito Federal, CEP 70910-900 Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rua Francisco Manuel no 102, Bairro Benfica, Rio de Janeiro/Rio de Janeiro State, CEP 20911-270 Brasil
| | - Cynara de Melo Rodovalho
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rua Francisco Manuel no 102, Bairro Benfica, Rio de Janeiro/Rio de Janeiro State, CEP 20911-270 Brasil
| | - Diogo Fernandes Bellinato
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rua Francisco Manuel no 102, Bairro Benfica, Rio de Janeiro/Rio de Janeiro State, CEP 20911-270 Brasil
| | - Luciana dos Santos Dias
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rua Francisco Manuel no 102, Bairro Benfica, Rio de Janeiro/Rio de Janeiro State, CEP 20911-270 Brasil
| | - Maria de Lourdes da Graça Macoris
- Laboratório de Entomologia Aplicada, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Avenida Santo Antônio no 1627, Bairro Somenzari, Marília/São Paulo, CEP 17506-970 Brasil
| | - Maria Teresa Macoris Andrighetti
- Laboratório de Entomologia Aplicada, Superintendência de Controle de Endemias, Secretaria de Estado da Saúde de São Paulo, Avenida Santo Antônio no 1627, Bairro Somenzari, Marília/São Paulo, CEP 17506-970 Brasil
| | - José Bento Pereira Lima
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Rua Francisco Manuel no 102, Bairro Benfica, Rio de Janeiro/Rio de Janeiro State, CEP 20911-270 Brasil
| | - Marcos Takashi Obara
- Laboratório de Parasitologia Médica e Biologia de Vetores, Faculdade de Medicina, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Asa Norte, Brasília/Distrito Federal, CEP 70910-900 Brazil
| |
Collapse
|
348
|
Rocha EM, Katak RDM, Campos de Oliveira J, Araujo MDS, Carlos BC, Galizi R, Tripet F, Marinotti O, Souza-Neto JA. Vector-Focused Approaches to Curb Malaria Transmission in the Brazilian Amazon: An Overview of Current and Future Challenges and Strategies. Trop Med Infect Dis 2020; 5:E161. [PMID: 33092228 PMCID: PMC7709627 DOI: 10.3390/tropicalmed5040161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/05/2023] Open
Abstract
In Brazil, malaria transmission is mostly confined to the Amazon, where substantial progress has been made towards disease control in the past decade. Vector control has been historically considered a fundamental part of the main malaria control programs implemented in Brazil. However, the conventional vector-control tools have been insufficient to control or eliminate local vector populations due to the complexity of the Amazonian rainforest environment and ecological features of malaria vector species in the Amazon, especially Anopheles darlingi. Malaria elimination in Brazil and worldwide eradication will require a combination of conventional and new approaches that takes into account the regional specificities of vector populations and malaria transmission dynamics. Here we present an overview on both conventional and novel promising vector-focused tools to curb malaria transmission in the Brazilian Amazon. If well designed and employed, vector-based approaches may improve the implementation of malaria-control programs, particularly in remote or difficult-to-access areas and in regions where existing interventions have been unable to eliminate disease transmission. However, much effort still has to be put into research expanding the knowledge of neotropical malaria vectors to set the steppingstones for the optimization of conventional and development of innovative vector-control tools.
Collapse
Affiliation(s)
- Elerson Matos Rocha
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Ricardo de Melo Katak
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Juan Campos de Oliveira
- Programa de Pós-Graduação em Biotecnologia, Universidade Federal do Amazonas—PPGBIOTEC/UFAM, Manaus 69067-005, Brazil; (E.M.R.); (R.d.M.K.); (J.C.d.O.)
| | - Maisa da Silva Araujo
- Laboratory of Medical Entomology, Oswaldo Cruz Foundation, FIOCRUZ RONDONIA, Porto Velho, RO 76812-245, Brazil;
| | - Bianca Cechetto Carlos
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| | - Roberto Galizi
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | - Frederic Tripet
- Centre of Applied Entomology and Parasitology, School of Life Sciences, Keele University, Staffordshire ST5 5GB, UK; (R.G.); (F.T.)
| | | | - Jayme A. Souza-Neto
- Department of Bioprocesses and Biotechnology, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil;
- Central Multiuser Laboratory, School of Agricultural Sciences, São Paulo State University (UNESP), Botucatu 18610-034, Brazil
| |
Collapse
|
349
|
Abstract
BACKGROUND Despite being preventable, malaria remains an important public health problem. The World Health Organization (WHO) reports that overall progress in malaria control has plateaued for the first time since the turn of the century. Researchers and policymakers are therefore exploring alternative and supplementary malaria vector control tools. Research in 1900 indicated that modification of houses may be effective in reducing malaria: this is now being revisited, with new research now examining blocking house mosquito entry points or modifying house construction materials to reduce exposure of inhabitants to infectious bites. OBJECTIVES To assess the effects of house modifications on malaria disease and transmission. SEARCH METHODS We searched the Cochrane Infectious Diseases Group Specialized Register; Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (OVID); Centre for Agriculture and Bioscience International (CAB) Abstracts (Web of Science); and the Latin American and Caribbean Health Science Information database (LILACS), up to 1 November 2019. We also searched the WHO International Clinical Trials Registry Platform (www.who.int/ictrp/search/en/), ClinicalTrials.gov (www.clinicaltrials.gov), and the ISRCTN registry (www.isrctn.com/) to identify ongoing trials up to the same date. SELECTION CRITERIA Randomized controlled trials, including cluster-randomized controlled trials (cRCTs), cross-over studies, and stepped-wedge designs were eligible, as were quasi-experimental trials, including controlled before-and-after studies, controlled interrupted time series, and non-randomized cross-over studies. We only considered studies reporting epidemiological outcomes (malaria case incidence, malaria infection incidence or parasite prevalence). We also summarised qualitative studies conducted alongside included studies. DATA COLLECTION AND ANALYSIS Two review authors selected eligible studies, extracted data, and assessed the risk of bias. We used risk ratios (RR) to compare the effect of the intervention with the control for dichotomous data. For continuous data, we presented the mean difference; and for count and rate data, we used rate ratios. We presented all results with 95% confidence intervals (CIs). We assessed the certainty of evidence using the GRADE approach. MAIN RESULTS Six cRCTs met our inclusion criteria, all conducted in sub-Saharan Africa; three randomized by household, two by village, and one at the community level. All trials assessed screening of windows, doors, eaves, ceilings or any combination of these; this was either alone, or in combination with eave closure, roof modification or eave tube installation (a "lure and kill" device that reduces mosquito entry whilst maintaining some airflow). In two trials, the interventions were insecticide-based. In five trials, the researchers implemented the interventions. The community implemented the interventions in the sixth trial. At the time of writing the review, two of the six trials had published results, both of which compared screened houses (without insecticide) to unscreened houses. One trial in Ethiopia assessed screening of windows and doors. Another trial in the Gambia assessed full screening (screening of eaves, doors and windows), as well as screening of ceilings only. Screening may reduce clinical malaria incidence caused by Plasmodium falciparum (rate ratio 0.38, 95% CI 0.18 to 0.82; 1 trial, 184 participants, 219.3 person-years; low-certainty evidence; Ethiopian study). For malaria parasite prevalence, the point estimate, derived from The Gambia study, was smaller (RR 0.84, 95% CI 0.60 to 1.17; 713 participants, 1 trial; moderate-certainty evidence), and showed an effect on anaemia (RR 0.61, 95% CI 0.42, 0.89; 705 participants; 1 trial, moderate-certainty evidence). Screening may reduce the entomological inoculation rate (EIR): both trials showed lower estimates in the intervention arm. In the Gambian trial, there was a mean difference in EIR between the control houses and treatment houses ranging from 0.45 to 1.50 (CIs ranged from -0.46 to 2.41; low-certainty evidence), depending on the study year and treatment arm. The Ethiopian trial reported a mean difference in EIR of 4.57, favouring screening (95% CI 3.81 to 5.33; low-certainty evidence). Pooled analysis of the trials showed that individuals living in fully screened houses were slightly less likely to sleep under a bed net (RR 0.84, 95% CI 0.65 to 1.09; 2 trials, 203 participants). In one trial, bed net usage was also lower in individuals living in houses with screened ceilings (RR 0.69, 95% CI 0.50 to 0.95; 1 trial, 135 participants). AUTHORS' CONCLUSIONS Based on the two trials published to date, there is some evidence that screening may reduce malaria transmission and malaria infection in people living in the house. The four trials awaiting publication are likely to enrich the current evidence base, and we will add these to this review when they become available.
Collapse
Affiliation(s)
- Joanna Furnival-Adams
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Evelyn A Olanga
- Malaria Alert Centre of the College of Medicine, Blantyre, Malawi
| | - Mark Napier
- Council for Scientific and Industrial Research, Pretoria, South Africa
- Centre for Development Support, University of the Free State, Bloemfontein, South Africa
| | - Paul Garner
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
350
|
Silva NM, Santos NC, Martins IC. Dengue and Zika Viruses: Epidemiological History, Potential Therapies, and Promising Vaccines. Trop Med Infect Dis 2020; 5:E150. [PMID: 32977703 PMCID: PMC7709709 DOI: 10.3390/tropicalmed5040150] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 09/15/2020] [Indexed: 12/14/2022] Open
Abstract
Dengue virus (DENV), which can lead to fatal hemorrhagic fever, affects 390 million people worldwide. The closely related Zika virus (ZIKV) causes microcephaly in newborns and Guillain-Barré syndrome in adults. Both viruses are mostly transmitted by Aedes albopictus and Aedes aegypti mosquitoes, which, due to globalization of trade and travel alongside climate change, are spreading worldwide, paving the way to DENV and ZIKV transmission and the occurrence of new epidemics. Local outbreaks have already occurred in temperate climates, even in Europe. As there are no specific treatments, these viruses are an international public health concern. Here, we analyze and discuss DENV and ZIKV outbreaks history, clinical and pathogenesis features, and modes of transmission, supplementing with information on advances on potential therapies and restraining measures. Taking advantage of the knowledge of the structure and biological function of the capsid (C) protein, a relatively conserved protein among flaviviruses, within a genus that includes DENV and ZIKV, we designed and patented a new drug lead, pep14-23 (WO2008/028939A1). It was demonstrated that it inhibits the interaction of DENV C protein with the host lipid system, a process essential for viral replication. Such an approach can be used to develop new therapies for related viruses, such as ZIKV.
Collapse
Affiliation(s)
| | - Nuno C. Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| | - Ivo C. Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal;
| |
Collapse
|