301
|
Ma C, Su S, Wang J, Wei L, Du L, Jiang S. From SARS-CoV to SARS-CoV-2: safety and broad-spectrum are important for coronavirus vaccine development. Microbes Infect 2020; 22:245-253. [PMID: 32437926 PMCID: PMC7211703 DOI: 10.1016/j.micinf.2020.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/28/2022]
Abstract
The global pandemic of COVID-19 caused by SARS-CoV-2 (also known as 2019-nCoV and HCoV-19) has posed serious threats to public health and economic stability worldwide, thus calling for development of vaccines against SARS-CoV-2 and other emerging and reemerging coronaviruses. Since SARS-CoV-2 and SARS-CoV have high similarity of their genomic sequences and share the same cellular receptor (ACE2), it is essential to learn the lessons and experiences from the development of SARS-CoV vaccines for the development of SARS-CoV-2 vaccines. In this review, we summarized the current knowledge on the advantages and disadvantages of the SARS-CoV vaccine candidates and prospected the strategies for the development of safe, effective and broad-spectrum coronavirus vaccines for prevention of infection by currently circulating SARS-CoV-2 and other emerging and reemerging coronaviruses that may cause future epidemics or pandemics.
Collapse
Affiliation(s)
- Cuiqing Ma
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Shan Su
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiachao Wang
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Lin Wei
- Department of Immunology, Key Laboratory of Immune Mechanism and Intervention on Serious Disease in Hebei Province, Hebei Medical University, 050017, Shijiazhuang, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, 10065, USA.
| |
Collapse
|
302
|
Rehman M, Tauseef I, Aalia B, Shah SH, Junaid M, Haleem KS. Therapeutic and vaccine strategies against SARS-CoV-2: past, present and future. Future Virol 2020. [PMCID: PMC7386380 DOI: 10.2217/fvl-2020-0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of coronavirus disease 2019. It was first reported in Wuhan, China and has since become a global health concern. Keeping in view, the magnitude of the problem, scientists around the globe are working to develop effective therapeutic strategies. This review focuses on previous findings regarding SARS-CoV, which may prove helpful in future research on SARS-CoV-2. In addition, it also highlights recent developments in medicine and biotechnology toward developing effective drugs and vaccines against SARS-CoV-2. This review will analyze available data on this topic and will help researchers develop new thoughts using information already available as a step toward developing novel therapeutic strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Mubasher Rehman
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | - Bibi Aalia
- Pediatric Department, KMU Institute of Medical Science, Kohat, Pakistan
| | | | - Muhammad Junaid
- Department of Microbiology, Hazara University, Mansehra 21300, Pakistan
| | | |
Collapse
|
303
|
Valdivia-Granda WA, Richt JA. What We Need to Consider During and After the SARS-CoV-2 Pandemic. Vector Borne Zoonotic Dis 2020; 20:477-483. [PMID: 32469633 PMCID: PMC7336884 DOI: 10.1089/vbz.2020.2652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Even though extreme containment and mitigation strategies were implemented by numerous governments around the world to slow down the spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the number of critically ill patients and fatalities keeps rising. This crisis has highlighted the socioeconomic disparities of health care systems within and among countries. As new CoVID policies and responses are implemented to lessen the impact of the virus, it is imperative (1) to consider additional mitigation strategies critical for the development of effective countermeasures, (2) to promote long-term policies and strict regulations of the trade of wildlife and live animal markets, and (3) to advocate for necessary funding and investments in global health, specifically for the prevention of and response to natural and manmade pandemics. This document considers some of these challenges.
Collapse
Affiliation(s)
| | - Jürgen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Kansas State University, Manhattan, Kansas, USA
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
304
|
Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, Halwe S, Jeong Y, Park YS, Kim JO, Song M, Boyd A, Tran N, Silman D, Poulton I, Datoo M, Marshall J, Themistocleous Y, Lawrie A, Roberts R, Berrie E, Becker S, Lambe T, Hill A, Ewer K, Gilbert S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:816-826. [PMID: 32325038 PMCID: PMC7172901 DOI: 10.1016/s1473-3099(20)30160-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Pedro M Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Flaxman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Catherine Mair
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Sheridan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cornelius Rohde
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Yuji Jeong
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Young-Shin Park
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Manki Song
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Amy Boyd
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen Tran
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Silman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehreen Datoo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julia Marshall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yrene Themistocleous
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alison Lawrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Roberts
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Berrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
305
|
Ovsyannikova IG, Haralambieva IH, Crooke SN, Poland GA, Kennedy RB. The role of host genetics in the immune response to SARS-CoV-2 and COVID-19 susceptibility and severity. Immunol Rev 2020; 296:205-219. [PMID: 32658335 PMCID: PMC7404857 DOI: 10.1111/imr.12897] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/14/2020] [Indexed: 01/08/2023]
Abstract
This article provides a review of studies evaluating the role of host (and viral) genetics (including variation in HLA genes) in the immune response to coronaviruses, as well as the clinical outcome of coronavirus-mediated disease. The initial sections focus on seasonal coronaviruses, SARS-CoV, and MERS-CoV. We then examine the state of the knowledge regarding genetic polymorphisms and SARS-CoV-2 and COVID-19. The article concludes by discussing research areas with current knowledge gaps and proposes several avenues for future scientific exploration in order to develop new insights into the immunology of SARS-CoV-2.
Collapse
|
306
|
He C, Qin M, Sun X. Highly pathogenic coronaviruses: thrusting vaccine development in the spotlight. Acta Pharm Sin B 2020; 10:1175-1191. [PMID: 32834948 PMCID: PMC7260574 DOI: 10.1016/j.apsb.2020.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023] Open
Abstract
Coronaviruses (CoVs) are a large family of viruses that cause illness ranging from the common cold to more severe diseases such as Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS). Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has caused major public health crises. There have been more than 4,400,000 reported cases of COVID-2019 and more than 300,000 reported deaths to date (16/05/2020). SARS-CoV, MERS-CoV and SARS-CoV-2 have attracted widespread global attention due to their high infectivity and pathogenicity. To date, there is no specific treatment proven effective against these viral infectious diseases. Vaccination is considered one of the most effective strategies to prevent viral infections. Therefore, the development of effective vaccines against highly pathogenic coronaviruses is essential. In this review, we will briefly describe coronavirus vaccine design targets, summarize recent advances in the development of coronavirus vaccines, and highlight current adjuvants for improving the efficacy of coronavirus vaccines.
Collapse
|
307
|
Graepel KW, Kochhar S, Clayton EW, Edwards KE. Balancing Expediency and Scientific Rigor in Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine Development. J Infect Dis 2020; 222:180-182. [PMID: 32365191 PMCID: PMC7239154 DOI: 10.1093/infdis/jiaa234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 04/30/2020] [Indexed: 01/14/2023] Open
Affiliation(s)
- Kevin W Graepel
- Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sonali Kochhar
- Global Healthcare Consulting, New Delhi, India
- Department of Global Health, Schools of Medicine and Public Health, University of Washington, Seattle, Washington, USA
| | - Ellen W Clayton
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Biomedical Ethics and Society and Department of Health Policy, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Vanderbilt University Law School, Nashville, Tennessee, USA
| | - Kathryn E Edwards
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
308
|
Bottazzi ME, Strych U, Hotez PJ, Corry DB. Coronavirus vaccine-associated lung immunopathology-what is the significance? Microbes Infect 2020; 22:403-404. [PMID: 32599077 PMCID: PMC7318931 DOI: 10.1016/j.micinf.2020.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Maria Elena Bottazzi
- Texas Children's Center for Vaccine Development, Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, USA; Department of Biology, Baylor University, USA.
| | - Ulrich Strych
- Texas Children's Center for Vaccine Development, Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, USA.
| | - Peter J Hotez
- Texas Children's Center for Vaccine Development, Departments of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, USA; Department of Biology, Baylor University, USA; Hagler Institute for Advanced Study at Texas A&M University, USA.
| | - David B Corry
- Departments of Medicine (Immunology, Allergy, and Rheumatology) and Pathology & Immunology, Baylor College of Medicine, USA; The Michael E. DeBakey VA Center for Translational Research in Inflammatory Diseases, USA.
| |
Collapse
|
309
|
康 庄, 唐 梅. [Progress and analysis on the development of 2019-nCoV vaccine]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2020; 37:373-379. [PMID: 32597077 PMCID: PMC10319570 DOI: 10.7507/1001-5515.202004025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Indexed: 11/03/2022]
Abstract
As the COVID-19 pandemic is intensifying globally, more and more people are pinning their hopes on the development of vaccines. At present, there are many research teams who have adopted different vaccine technology routes to develop 2019-nCoV vaccines. This article reviews and analyzes the current development and research status of 2019-nCoV vaccines in different routes, and explores their possible development in the future.
Collapse
Affiliation(s)
- 庄 康
- 乐山师范学院 生命科学学院(四川乐山 614000)College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, P.R.China
- 成都生物制品研究所有限责任公司 生物技术研究室(成都 610000)Department of Biotechnology, Chengdu Institute of Biological Products, Chengdu 610000, P.R.China
| | - 梅 唐
- 乐山师范学院 生命科学学院(四川乐山 614000)College of Life Science, Leshan Normal University, Leshan, Sichuan 614000, P.R.China
| |
Collapse
|
310
|
Sempowski GD, Saunders KO, Acharya P, Wiehe KJ, Haynes BF. Pandemic Preparedness: Developing Vaccines and Therapeutic Antibodies For COVID-19. Cell 2020; 181:1458-1463. [PMID: 32492407 PMCID: PMC7250787 DOI: 10.1016/j.cell.2020.05.041] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic that causes COVID-19 respiratory syndrome has caused global public health and economic crises, necessitating rapid development of vaccines and therapeutic countermeasures. The world-wide response to the COVID-19 pandemic has been unprecedented with government, academic, and private partnerships working together to rapidly develop vaccine and antibody countermeasures. Many of the technologies being used are derived from prior government-academic partnerships for response to other emerging infections.
Collapse
Affiliation(s)
- Gregory D Sempowski
- Department of Medicine, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Pathology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| | - Kevin O Saunders
- Department of Surgery, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Priyamvada Acharya
- Department of Surgery, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kevin J Wiehe
- Department of Medicine, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Barton F Haynes
- Department of Medicine, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA; Department of Immunology, Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
311
|
Klasse PJ, Moore JP. Antibodies to SARS-CoV-2 and their potential for therapeutic passive immunization. eLife 2020; 9:e57877. [PMID: 32573433 PMCID: PMC7311167 DOI: 10.7554/elife.57877] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/20/2022] Open
Abstract
We review aspects of the antibody response to SARS-CoV-2, the causative agent of the COVID-19 pandemic. The topics we cover are relevant to immunotherapy with plasma from recovered patients, monoclonal antibodies against the viral S-protein, and soluble forms of the receptor for the virus, angiotensin converting enzyme 2. The development of vaccines against SARS-CoV-2, an essential public health tool, will also be informed by an understanding of the antibody response in infected patients. Although virus-neutralizing antibodies are likely to protect, antibodies could potentially trigger immunopathogenic events in SARS-CoV-2-infected patients or enhance infection. An awareness of these possibilities may benefit clinicians and the developers of antibody-based therapies and vaccines.
Collapse
Affiliation(s)
- PJ Klasse
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| | - John P Moore
- Department of Microbiology and Immunology, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
312
|
TopuzoĞullari M, Acar T, Pelİt Arayici P, UÇar B, UĞurel E, Abamor EŞ, ArasoĞlu T, Turgut-Balik D, Derman S. An insight into the epitope-based peptide vaccine design strategy and studies against COVID-19. Turk J Biol 2020; 44:215-227. [PMID: 32595358 PMCID: PMC7314509 DOI: 10.3906/biy-2006-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
SARS-CoV-2 is a new member of the coronavirus family and caused the pandemic of coronavirus disease 2019 (COVID-19) in 2020. It is crucial to design and produce an effective vaccine for the prevention of rapid transmission and possible deaths wcaused by the disease. Although intensive work and research are being carried out all over the world to develop a vaccine, an effective and approved formulation that can prevent the infection and limit the outbreak has not been announced yet. Among all types of vaccines, epitope-based peptide vaccines outshine with their low-cost production, easy modification in the structure, and safety. In this review, vaccine studies against COVID-19 have been summarized and detailed information about the epitope-based peptide vaccines against COVID-19 has been provided. We have not only compared the peptide vaccine with other types of vaccines but also presented comprehensive literature information about development steps for an effective and protective formulation to give an insight into on-going peptide vaccine studies against SARS-CoV-2.
Collapse
Affiliation(s)
- Murat TopuzoĞullari
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tayfun Acar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Pelin Pelİt Arayici
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Burcu UÇar
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Erennur UĞurel
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Emrah Şefik Abamor
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Tülin ArasoĞlu
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yıldız Technical University, İstanbul Turkey
| | - Dilek Turgut-Balik
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| | - Serap Derman
- Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yıldız Technical University, İstanbul Turkey
| |
Collapse
|
313
|
Ghaebi M, Osali A, Valizadeh H, Roshangar L, Ahmadi M. Vaccine development and therapeutic design for 2019-nCoV/SARS-CoV-2: Challenges and chances. J Cell Physiol 2020; 235:9098-9109. [PMID: 32557648 PMCID: PMC7323389 DOI: 10.1002/jcp.29771] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
The ongoing outbreak of the recently emerged 2019 novel coronavirus (nCoV), which has seriously threatened global health security, is caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) with high morbidity and mortality. Despite the burden of the disease worldwide, still, no licensed vaccine or any specific drug against 2019‐nCoV is available. Data from several countries show that few repurposed drugs using existing antiviral drugs have not (so far) been satisfactory and more recently were proven to be even highly toxic. These findings underline an urgent need for preventative and therapeutic interventions designed to target specific aspects of 2019‐nCoV. Again the major factor in this urgency is that the process of data acquisition by physical experiment is time‐consuming and expensive to obtain. Scientific simulations and more in‐depth data analysis permit to validate or refute drug repurposing opportunities predicted via target similarity profiling to speed up the development of a new more effective anti‐2019‐nCoV therapy especially where in vitro and/or in vivo data are not yet available. In addition, several research programs are being developed, aiming at the exploration of vaccines to prevent and treat the 2019‐nCoV. Computational‐based technology has given us the tools to explore and identify potentially effective drug and/or vaccine candidates which can effectively shorten the time and reduce the operating cost. The aim of the present review is to address the available information on molecular determinants in disease pathobiology modules and define the computational approaches employed in systematic drug repositioning and vaccine development settings for SARS‐CoV‐2.
Collapse
Affiliation(s)
- Mahnaz Ghaebi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Center Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdolreza Osali
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
314
|
Conte C, Sogni F, Affanni P, Veronesi L, Argentiero A, Esposito S. Vaccines against Coronaviruses: The State of the Art. Vaccines (Basel) 2020; 8:E309. [PMID: 32560340 PMCID: PMC7350246 DOI: 10.3390/vaccines8020309] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/21/2022] Open
Abstract
The emerging epidemic caused by the new coronavirus SARS-CoV-2 represents the most important socio-health threat of the 21st century. The high contagiousness of the virus, the strong impact on the health system of the various countries and the absence to date of treatments able to improve the prognosis of the disease make the introduction of a vaccine indispensable, even though there are currently no approved human coronavirus vaccines. The aim of the study is to carry out a review of the medical literature concerning vaccine candidates for the main coronaviruses responsible for human epidemics, including recent advances in the development of a vaccine against COVID-19. This extensive review carried out on the vaccine candidates of the main epidemic coronaviruses of the past has shown that the studies in animal models suggest a high efficacy of potential vaccines in providing protection against viral challenges. Similar human studies have not yet been carried out, as the main trials are aimed at assessing mainly vaccine safety and immunogenicity. Whereas the severe acute respiratory syndrome (SARS-CoV) epidemic ended almost two decades ago and the Middle East respiratory syndrome (MERS-CoV) epidemic is now better controlled, as it is less contagious due to the high lethality of the virus, the current SARS-CoV-2 pandemic represents a problem that is certainly more compelling, which pushes us to accelerate the studies not only for the production of vaccines but also for innovative pharmacological treatments. SARS-CoV-2 vaccines might come too late to affect the first wave of this pandemic, but they might be useful if additional subsequent waves occur or in a post-pandemic perspective in which the virus continues to circulate as a seasonal virus.
Collapse
Affiliation(s)
- Cristiano Conte
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Francesco Sogni
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Paola Affanni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.A.); (L.V.)
| | - Licia Veronesi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (P.A.); (L.V.)
| | - Alberto Argentiero
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, Pietro Barilla Children’s Hospital, University of Parma, 43126 Parma, Italy; (C.C.); (F.S.); (A.A.)
| |
Collapse
|
315
|
Simon HU, Karaulov AV, Bachmann MF. Strategies to Prevent SARS-CoV-2-Mediated Eosinophilic Disease in Association with COVID-19 Vaccination and Infection. Int Arch Allergy Immunol 2020; 181:624-628. [PMID: 32544911 PMCID: PMC7360494 DOI: 10.1159/000509368] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023] Open
Abstract
A vaccine to protect against COVID-19 is urgently needed. Such a vaccine should efficiently induce high-affinity neutralizing antibodies which neutralize SARS-CoV-2, the cause of COVID-19. However, there is a concern regarding both vaccine-induced eosinophilic lung disease and eosinophil-associated Th2 immunopotentiation following infection after vaccination. Here, we review the anticipated characteristics of a COVID-19 vaccine to avoid vaccine-associated eosinophil immunopathology.
Collapse
Affiliation(s)
- Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland, .,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation,
| | - Alexander V Karaulov
- Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russian Federation
| | - Martin F Bachmann
- Department of Rheumatology, Immunology and Allergology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
316
|
Bradbury RS, Piedrafita D, Greenhill A, Mahanty S. Will helminth co-infection modulate COVID-19 severity in endemic regions? Nat Rev Immunol 2020; 20:342. [PMID: 32358579 PMCID: PMC7193760 DOI: 10.1038/s41577-020-0330-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Helminth co-infections can skew systemic immunity towards type 2 responses. Here, Bradbury and colleagues consider how this may impact the severity of COVID-19 in helminth-endemic regions.
Collapse
Affiliation(s)
- Richard S Bradbury
- School of Health and Life Sciences, Federation University, Berwick, Victoria, Australia.
| | - David Piedrafita
- School of Health and Life Sciences, Federation University, Berwick, Victoria, Australia
| | - Andrew Greenhill
- School of Health and Life Sciences, Federation University, Berwick, Victoria, Australia
| | - Siddhartha Mahanty
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne and The Royal Melbourne Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
317
|
Affiliation(s)
- Nelson Lee
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada.
| | - Allison McGeer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Sinai Health System, Toronto, ON, Canada
| |
Collapse
|
318
|
Fierz W, Walz B. Antibody Dependent Enhancement Due to Original Antigenic Sin and the Development of SARS. Front Immunol 2020; 11:1120. [PMID: 32582200 PMCID: PMC7291596 DOI: 10.3389/fimmu.2020.01120] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/07/2020] [Indexed: 12/24/2022] Open
Abstract
Human coronavirus (HCoV) is one of the most common causes of respiratory tract infections throughout the world. Two phenomena observed so far in the development of the SARS-CoV-2 pandemic deserve further attention. First, the relative absence of clinical signs of infections in children, second, the early appearance of IgG in certain patients. From the point of view of immune system physiology, such an early rise of specific IgG is expected in secondary immune responses when memory to a cross-reactive antigen is present, usually from an earlier infection with a coronavirus. It is actually typical for the immune system to respond, to what it already knows, a phenomenon that has been observed in many infections with closely related viruses and has been termed “original antigenic sin.” The question then arises whether such cross-reactive antibodies are protective or not against the new virus. The worst scenario would be when such cross-reactive memory antibodies to related coronaviruses would not only be non-protective but even enhance infection and the clinical course. Such a phenomenon of antibody dependent enhancement (ADE) has already been described in several viral infections. Thus, the development of IgG against SARS-CoV-2 in the course of COVID-19 might not be a simple sign of viral clearance and developing protection against the virus. On the contrary, due to cross-reaction to related coronavirus strains from earlier infections, in certain patients IgG might enhance clinical progression due to ADE. The patient's viral history of coronavirus infection might be crucial to the development of the current infection with SARS-CoV-2. Furthermore, it poses a note of caution when treating COVID-19 patients with convalescent sera.
Collapse
Affiliation(s)
- Walter Fierz
- Swiss Association of the Diagnostic Industry (SVDI), Bern, Switzerland
| | | |
Collapse
|
319
|
Salvatori G, Luberto L, Maffei M, Aurisicchio L, Roscilli G, Palombo F, Marra E. SARS-CoV-2 SPIKE PROTEIN: an optimal immunological target for vaccines. J Transl Med 2020; 18:222. [PMID: 32493510 PMCID: PMC7268185 DOI: 10.1186/s12967-020-02392-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
COVID-19 has rapidly spread all over the world, progressing into a pandemic. This situation has urgently impelled many companies and public research institutes to concentrate their efforts on research for effective therapeutics. Here, we outline the strategies and targets currently adopted in developing a vaccine against SARS-CoV-2. Based on previous evidence and experience with SARS and MERS, the primary focus has been the Spike protein, considered as the ideal target for COVID-19 immunotherapies.
Collapse
Affiliation(s)
| | - Laura Luberto
- Takis s.r.l, Via di Castel Romano 100, 00128, Rome, Italy
| | - Mariano Maffei
- Evvivax s.r.l, Via di Castel Romano, 100, 00128, Rome, Italy
| | - Luigi Aurisicchio
- Takis s.r.l, Via di Castel Romano 100, 00128, Rome, Italy.,Evvivax s.r.l, Via di Castel Romano, 100, 00128, Rome, Italy
| | - Giuseppe Roscilli
- Takis s.r.l, Via di Castel Romano 100, 00128, Rome, Italy.,Evvivax s.r.l, Via di Castel Romano, 100, 00128, Rome, Italy
| | - Fabio Palombo
- Takis s.r.l, Via di Castel Romano 100, 00128, Rome, Italy
| | - Emanuele Marra
- Takis s.r.l, Via di Castel Romano 100, 00128, Rome, Italy. .,Evvivax s.r.l, Via di Castel Romano, 100, 00128, Rome, Italy.
| |
Collapse
|
320
|
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol Sin 2020; 35:266-271. [PMID: 32125642 PMCID: PMC7090474 DOI: 10.1007/s12250-020-00207-4] [Citation(s) in RCA: 493] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Currently there is no effective antiviral therapy for SARS-CoV-2 infection, which frequently leads to fatal inflammatory responses and acute lung injury. Here, we discuss the various mechanisms of SARS-CoV-mediated inflammation. We also assume that SARS-CoV-2 likely shares similar inflammatory responses. Potential therapeutic tools to reduce SARS-CoV-2-induced inflammatory responses include various methods to block FcR activation. In the absence of a proven clinical FcR blocker, the use of intravenous immunoglobulin to block FcR activation may be a viable option for the urgent treatment of pulmonary inflammation to prevent severe lung injury. Such treatment may also be combined with systemic anti-inflammatory drugs or corticosteroids. However, these strategies, as proposed here, remain to be clinically tested for effectiveness.
Collapse
Affiliation(s)
- Yajing Fu
- NHC Key Laboratory of AIDS Immunology (China Medical University), Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
- National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuanxiong Cheng
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510275, China
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
321
|
Padron-Regalado E. Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. Infect Dis Ther 2020; 9:255-274. [PMID: 32328406 PMCID: PMC7177048 DOI: 10.1007/s40121-020-00300-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The emergence of the strain of coronavirus SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) and its impact on global health have made imperative the development of effective and safe vaccines for this lethal strain. SARS-CoV-2 now adds to the list of coronavirus diseases that have threatened global health, along with the SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome) coronaviruses that emerged in 2002/2003 and 2012, respectively. As of April 2020, no vaccine is commercially available for these coronavirus strains. Nevertheless, the knowledge obtained from the vaccine development efforts for MERS and SARS can be of high value for COVID-19 (coronavirus disease 2019). Here, we review the past and ongoing vaccine development efforts for clinically relevant coronavirus strains with the intention that this information helps in the development of effective and safe vaccines for COVID-19. In addition, information from naturally exposed individuals and animal models to coronavirus strains is described for the same purpose of helping into the development of effective vaccines against COVID-19.
Collapse
|
322
|
Neerukonda SN, Katneni U. A Review on SARS-CoV-2 Virology, Pathophysiology, Animal Models, and Anti-Viral Interventions. Pathogens 2020; 9:E426. [PMID: 32485970 PMCID: PMC7350325 DOI: 10.3390/pathogens9060426] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/24/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of CoV disease 2019 (COVID-19) is a highly pathogenic and transmissible CoV that is presently plaguing the global human population and economy. No proven effective antiviral therapy or vaccine currently exists, and supportive care remains to be the cornerstone treatment. Through previous lessons learned from SARS-CoV-1 and MERS-CoV studies, scientific groups worldwide have rapidly expanded the knowledge pertaining to SARS-CoV-2 virology that includes in vitro and in vivo models for testing of antiviral therapies and randomized clinical trials. In the present narrative, we review SARS-CoV-2 virology, clinical features, pathophysiology, and animal models with a specific focus on the antiviral and adjunctive therapies currently being tested or that require testing in animal models and randomized clinical trials.
Collapse
Affiliation(s)
| | - Upendra Katneni
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19716, USA
- Current address: Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
323
|
Catanzaro M, Fagiani F, Racchi M, Corsini E, Govoni S, Lanni C. Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2. Signal Transduct Target Ther 2020; 5:84. [PMID: 32467561 PMCID: PMC7255975 DOI: 10.1038/s41392-020-0191-1] [Citation(s) in RCA: 407] [Impact Index Per Article: 101.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/28/2022] Open
Abstract
To date, no vaccines or effective drugs have been approved to prevent or treat COVID-19 and the current standard care relies on supportive treatments. Therefore, based on the fast and global spread of the virus, urgent investigations are warranted in order to develop preventive and therapeutic drugs. In this regard, treatments addressing the immunopathology of SARS-CoV-2 infection have become a major focus. Notably, while a rapid and well-coordinated immune response represents the first line of defense against viral infection, excessive inflammatory innate response and impaired adaptive host immune defense may lead to tissue damage both at the site of virus entry and at systemic level. Several studies highlight relevant changes occurring both in innate and adaptive immune system in COVID-19 patients. In particular, the massive cytokine and chemokine release, the so-called "cytokine storm", clearly reflects a widespread uncontrolled dysregulation of the host immune defense. Although the prospective of counteracting cytokine storm is compelling, a major limitation relies on the limited understanding of the immune signaling pathways triggered by SARS-CoV-2 infection. The identification of signaling pathways altered during viral infections may help to unravel the most relevant molecular cascades implicated in biological processes mediating viral infections and to unveil key molecular players that may be targeted. Thus, given the key role of the immune system in COVID-19, a deeper understanding of the mechanism behind the immune dysregulation might give us clues for the clinical management of the severe cases and for preventing the transition from mild to severe stages.
Collapse
Affiliation(s)
- Michele Catanzaro
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Francesca Fagiani
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
- Scuola Universitaria Superiore IUSS Pavia, P.zza Vittoria, 15, 27100, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Stefano Govoni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy
| | - Cristina Lanni
- Department of Drug Sciences (Pharmacology Section), University of Pavia, V.le Taramelli 14, 27100, Pavia, Italy.
| |
Collapse
|
324
|
Erasmus JH, Khandhar AP, Walls AC, Hemann EA, O'Connor MA, Murapa P, Archer J, Leventhal S, Fuller J, Lewis T, Draves KE, Randall S, Guerriero KA, Duthie MS, Carter D, Reed SG, Hawman DW, Feldmann H, Gale M, Veesler D, Berglund P, Fuller DH. Single-dose replicating RNA vaccine induces neutralizing antibodies against SARS-CoV-2 in nonhuman primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.28.121640. [PMID: 32511417 PMCID: PMC7265689 DOI: 10.1101/2020.05.28.121640] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ongoing COVID-19 pandemic, caused by infection with SARS-CoV-2, is having a dramatic and deleterious impact on health services and the global economy. Grim public health statistics highlight the need for vaccines that can rapidly confer protection after a single dose and be manufactured using components suitable for scale-up and efficient distribution. In response, we have rapidly developed repRNA-CoV2S, a stable and highly immunogenic vaccine candidate comprised of an RNA replicon formulated with a novel Lipid InOrganic Nanoparticle (LION) designed to enhance vaccine stability, delivery and immunogenicity. We show that intramuscular injection of LION/repRNA-CoV2S elicits robust anti-SARS-CoV-2 spike protein IgG antibody isotypes indicative of a Type 1 T helper response as well as potent T cell responses in mice. Importantly, a single-dose administration in nonhuman primates elicited antibody responses that potently neutralized SARS-CoV-2. These data support further development of LION/repRNA-CoV2S as a vaccine candidate for prophylactic protection from SARS-CoV-2 infection.
Collapse
|
325
|
Lambert PH, Ambrosino DM, Andersen SR, Baric RS, Black SB, Chen RT, Dekker CL, Didierlaurent AM, Graham BS, Martin SD, Molrine DC, Perlman S, Picard-Fraser PA, Pollard AJ, Qin C, Subbarao K, Cramer JP. Consensus summary report for CEPI/BC March 12-13, 2020 meeting: Assessment of risk of disease enhancement with COVID-19 vaccines. Vaccine 2020; 38:4783-4791. [PMID: 32507409 PMCID: PMC7247514 DOI: 10.1016/j.vaccine.2020.05.064] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 01/08/2023]
Abstract
A novel coronavirus (CoV), Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 in Wuhan, China and has since spread as a global pandemic. Safe and effective vaccines are thus urgently needed to reduce the significant morbidity and mortality of Coronavirus Disease 2019 (COVID-19) disease and ease the major economic impact. There has been an unprecedented rapid response by vaccine developers with now over one hundred vaccine candidates in development and at least six having reached clinical trials. However, a major challenge during rapid development is to avoid safety issues both by thoughtful vaccine design and by thorough evaluation in a timely manner. A syndrome of “disease enhancement” has been reported in the past for a few viral vaccines where those immunized suffered increased severity or death when they later encountered the virus or were found to have an increased frequency of infection. Animal models allowed scientists to determine the underlying mechanism for the former in the case of Respiratory syncytial virus (RSV) vaccine and have been utilized to design and screen new RSV vaccine candidates. Because some Middle East respiratory syndrome (MERS) and SARS-CoV-1 vaccines have shown evidence of disease enhancement in some animal models, this is a particular concern for SARS-CoV-2 vaccines. To address this challenge, the Coalition for Epidemic Preparedness Innovations (CEPI) and the Brighton Collaboration (BC) Safety Platform for Emergency vACcines (SPEAC) convened a scientific working meeting on March 12 and 13, 2020 of experts in the field of vaccine immunology and coronaviruses to consider what vaccine designs could reduce safety concerns and how animal models and immunological assessments in early clinical trials can help to assess the risk. This report summarizes the evidence presented and provides considerations for safety assessment of COVID-19 vaccine candidates in accelerated vaccine development.
Collapse
Affiliation(s)
| | | | | | - Ralph S Baric
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven B Black
- Brighton Collaboration, Task Force for Global Health, Decatur, GA, USA
| | - Robert T Chen
- Brighton Collaboration, Task Force for Global Health, Decatur, GA, USA
| | - Cornelia L Dekker
- Brighton Collaboration, Task Force for Global Health, Decatur, GA, USA.
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | | | | | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kanta Subbarao
- WHO Collaborating Centre for Reference and Research on Influenza, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jakob P Cramer
- Coalition for Epidemic Preparedness Innovations, London, United Kingdom
| |
Collapse
|
326
|
Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, S Almasoud A, Alharbi NK, Peng BH, Russell M, Li X, Tseng CTK. A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model. J Infect Dis 2020; 220:1558-1567. [PMID: 30911758 PMCID: PMC7107499 DOI: 10.1093/infdis/jiz137] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 12/02/2022] Open
Abstract
Background Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. Methods We extended and optimized our previous recombinant adenovirus 5 (rAd5)–based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. Results Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1– but not rAd5-S1/F/CD40L–immunized mice exhibited marked pulmonary perivascular hemorrhage post–MERS-CoV challenge despite the observed protection. Conclusions Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine.,Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University
| | | | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia.,Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman S Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bi-Hung Peng
- Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston
| | - Marsha Russell
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Xuguang Li
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston.,Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston
| |
Collapse
|
327
|
French MA, Moodley Y. The role of SARS-CoV-2 antibodies in COVID-19: Healing in most, harm at times. Respirology 2020; 25:680-682. [PMID: 32436320 PMCID: PMC7280731 DOI: 10.1111/resp.13852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Martyn A French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia.,Division of Immunology, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Yuben Moodley
- Medical School, University of Western Australia, Perth, WA, Australia.,Department of Respiratory Medicine, Fiona Stanley Hospital, Perth, WA, Australia.,Institute of Respiratory Health, Perth, WA, Australia
| |
Collapse
|
328
|
Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, Xu Z, Walters J, Bhojnagarwala P, Yang M, Chokkalingam N, Pezzoli P, Parzych E, Reuschel EL, Doan A, Tursi N, Vasquez M, Choi J, Tello-Ruiz E, Maricic I, Bah MA, Wu Y, Amante D, Park DH, Dia Y, Ali AR, Zaidi FI, Generotti A, Kim KY, Herring TA, Reeder S, Andrade VM, Buttigieg K, Zhao G, Wu JM, Li D, Bao L, Liu J, Deng W, Qin C, Brown AS, Khoshnejad M, Wang N, Chu J, Wrapp D, McLellan JS, Muthumani K, Wang B, Carroll MW, Kim JJ, Boyer J, Kulp DW, Humeau LMPF, Weiner DB, Broderick KE. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun 2020; 11:2601. [PMID: 32433465 PMCID: PMC7239918 DOI: 10.1038/s41467-020-16505-0] [Citation(s) in RCA: 424] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/08/2020] [Indexed: 01/07/2023] Open
Abstract
The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.
Collapse
Affiliation(s)
- Trevor R. F. Smith
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Ami Patel
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Stephanie Ramos
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Dustin Elwood
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Xizhou Zhu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Jian Yan
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Ebony N. Gary
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Susanne N. Walker
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Katherine Schultheis
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Mansi Purwar
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Ziyang Xu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Jewell Walters
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Pratik Bhojnagarwala
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Maria Yang
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Neethu Chokkalingam
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Patrick Pezzoli
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Elizabeth Parzych
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Emma L. Reuschel
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Arthur Doan
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Nicholas Tursi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Miguel Vasquez
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Jihae Choi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Edgar Tello-Ruiz
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Igor Maricic
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Mamadou A. Bah
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Yuanhan Wu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Dinah Amante
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Daniel H. Park
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Yaya Dia
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Ali Raza Ali
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Faraz I. Zaidi
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Alison Generotti
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Kevin Y. Kim
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Timothy A. Herring
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Sophia Reeder
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Viviane M. Andrade
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Karen Buttigieg
- 0000 0004 5909 016Xgrid.271308.fNational Infection Service, Public Health England, Porton Down, Wiltshire, UK
| | - Gan Zhao
- Advaccine (Suzhou) Biopharmaceuticals Co., Ltd, Suzhou, China
| | - Jiun-Ming Wu
- Advaccine (Suzhou) Biopharmaceuticals Co., Ltd, Suzhou, China
| | - Dan Li
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Linlin Bao
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiangning Liu
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Deng
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Chuan Qin
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ami Shah Brown
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Makan Khoshnejad
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Nianshuang Wang
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jacqueline Chu
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Daniel Wrapp
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Jason S. McLellan
- 0000 0004 1936 9924grid.89336.37Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kar Muthumani
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Bin Wang
- 0000 0001 0125 2443grid.8547.eKey Laboratory of Medical Molecular Virology of MOH and MOE and Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Miles W. Carroll
- 0000 0004 5909 016Xgrid.271308.fNational Infection Service, Public Health England, Porton Down, Wiltshire, UK
| | - J. Joseph Kim
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Jean Boyer
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - Daniel W. Kulp
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Laurent M. P. F. Humeau
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| | - David B. Weiner
- 0000 0001 1956 6678grid.251075.4Vaccine and Immunotherapy Center, Wistar Institute, Philadelphia, PA 19104 USA
| | - Kate E. Broderick
- 0000 0004 0417 098Xgrid.421774.3Inovio Pharmaceuticals, Plymouth Meeting, Philadelphia, PA 19462 USA
| |
Collapse
|
329
|
Coronavirus vaccine trials have delivered their first results — but their promise is still unclear. Nature 2020; 581:363-364. [DOI: 10.1038/d41586-020-01092-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
330
|
Lv H, Wu NC, Tsang OTY, Yuan M, Perera RAPM, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, Wang Y, Choi CYC, Lin Y, Ng WW, Zhao J, Poon LLM, Peiris JSM, Wilson IA, Mok CKP. Cross-reactive Antibody Response between SARS-CoV-2 and SARS-CoV Infections. Cell Rep 2020; 31:107725. [PMID: 32426212 PMCID: PMC7231734 DOI: 10.1016/j.celrep.2020.107725] [Citation(s) in RCA: 298] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 12/23/2022] Open
Abstract
The World Health Organization has declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, a pandemic. There is currently a lack of knowledge about the antibody response elicited from SARS-CoV-2 infection. One major immunological question concerns antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by analyzing plasma from patients infected by SARS-CoV-2 or SARS-CoV and from infected or immunized mice. Our results show that, although cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses may be rare, indicating the presence of a non-neutralizing antibody response to conserved epitopes in the spike. Whether such low or non-neutralizing antibody response leads to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding antigenicity differences between SARS-CoV-2 and SARS-CoV but also has implications for immunogen design and vaccine development.
Collapse
Affiliation(s)
- Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Owen Tak-Yin Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ranawaka A P M Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Shing Leung
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Ray T Y So
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jacky Man Chun Chan
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Garrick K Yip
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Shiu Hong Chik
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Yiquan Wang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Yau Chung Choi
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong, Hong Kong SAR, China
| | - Yihan Lin
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wilson W Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leo L M Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J S Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA; The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Chris K P Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
331
|
Woolsey C, Borisevich V, Prasad AN, Agans KN, Deer DJ, Dobias NS, Heymann JC, Foster SL, Levine CB, Medina L, Melody K, Geisbert JB, Fenton KA, Geisbert TW, Cross RW. Establishment of an African green monkey model for COVID-19. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.05.17.100289. [PMID: 32511377 PMCID: PMC7263506 DOI: 10.1101/2020.05.17.100289] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for an unprecedented global pandemic of COVID-19. Animal models are urgently needed to study the pathogenesis of COVID-19 and to screen candidate vaccines and treatments. Nonhuman primates (NHP) are considered the gold standard model for many infectious pathogens as they usually best reflect the human condition. Here, we show that African green monkeys support a high level of SARS-CoV-2 replication and develop pronounced respiratory disease that may be more substantial than reported for other NHP species including cynomolgus and rhesus macaques. In addition, SARS-CoV-2 was detected in mucosal samples of all animals including feces of several animals as late as 15 days after virus exposure. Importantly, we show that virus replication and respiratory disease can be produced in African green monkeys using a much lower and more natural dose of SARS-CoV-2 than has been employed in other NHP studies.
Collapse
Affiliation(s)
- Courtney Woolsey
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Viktoriya Borisevich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Abhishek N. Prasad
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Krystle N. Agans
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Daniel J. Deer
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Natalie S. Dobias
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - John C. Heymann
- Department of Radiology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Stephanie L. Foster
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Corri B. Levine
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Liana Medina
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kevin Melody
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Joan B. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Karla A. Fenton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert W. Cross
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
332
|
Saber-Ayad M, Saleh MA, Abu-Gharbieh E. The Rationale for Potential Pharmacotherapy of COVID-19. Pharmaceuticals (Basel) 2020; 13:E96. [PMID: 32423024 PMCID: PMC7281404 DOI: 10.3390/ph13050096] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/11/2022] Open
Abstract
On 11 March 2020, the coronavirus disease (COVID-19) was defined by the World Health Organization as a pandemic. Severe acute respiratory syndrome-2 (SARS-CoV-2) is the newly evolving human coronavirus infection that causes COVID-19, and it first appeared in Wuhan, China in December 2019 and spread rapidly all over the world. COVID-19 is being increasingly investigated through virology, epidemiology, and clinical management strategies. There is currently no established consensus on the standard of care in the pharmacological treatment of COVID-19 patients. However, certain medications suggested for other diseases have been shown to be potentially effective for treating this infection, though there has yet to be clear evidence. Therapies include new agents that are currently tested in several clinical trials, in addition to other medications that have been repurposed as antiviral and immune-modulating therapies. Previous high-morbidity human coronavirus epidemics such as the 2003 SARS-CoV and the 2012 Middle East respiratory syndrome coronavirus (MERS-CoV) prompted the identification of compounds that could theoretically be active against the emerging coronavirus SARS-CoV-2. Moreover, advances in molecular biology techniques and computational analysis have allowed for the better recognition of the virus structure and the quicker screening of chemical libraries to suggest potential therapies. This review aims to summarize rationalized pharmacotherapy considerations in COVID-19 patients in order to serve as a tool for health care professionals at the forefront of clinical care during this pandemic. All the reviewed therapies require either additional drug development or randomized large-scale clinical trials to be justified for clinical use.
Collapse
Affiliation(s)
- Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
- College of Medicine, Cairo University, Cairo 12613, Egypt
| | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Eman Abu-Gharbieh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, UAE; (M.A.S.); (E.A.-G.)
| |
Collapse
|
333
|
Wu SC. Progress and Concept for COVID-19 Vaccine Development. Biotechnol J 2020; 15:e2000147. [PMID: 32304139 PMCID: PMC7235517 DOI: 10.1002/biot.202000147] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/08/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Suh-Chin Wu
- Department of Medical Science, Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
334
|
Tiberghien P, de Lamballerie X, Morel P, Gallian P, Lacombe K, Yazdanpanah Y. Collecting and evaluating convalescent plasma for COVID-19 treatment: why and how? Vox Sang 2020; 115:488-494. [PMID: 32240545 DOI: 10.1111/vox.12926] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Abstract
Plasma provided by COVID-19 convalescent patients may provide therapeutic relief as the number of COVID-19 cases escalates steeply worldwide. Prior findings in various viral respiratory diseases including SARS-CoV-related pneumonia suggest that convalescent plasma can reduce mortality, although formal proof of efficacy is still lacking. By reducing viral spread early on, such an approach may possibly downplay subsequent immunopathology. Identifying, collecting, qualifying and preparing plasma from convalescent patients with adequate SARS-CoV-2-neutralizing Ab titres in an acute crisis setting may be challenging, although well within the remit of most blood establishments. Careful clinical evaluation should allow to quickly establish whether such passive immunotherapy, administered at early phases of the disease in patients at high risk of deleterious evolution, may reduce the frequency of patient deterioration, and thereby COVID-19 mortality.
Collapse
Affiliation(s)
- Pierre Tiberghien
- Etablissement Français du Sang, La Plaine-St Denis, France.,UMR 1098 RIGHT, Inserm, EFS, Université de Franche-Comté, Besançon, France
| | - Xavier de Lamballerie
- IHU Méditerranée Infection, Unité des Virus Émergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Pascal Morel
- Etablissement Français du Sang, La Plaine-St Denis, France.,UMR 1098 RIGHT, Inserm, EFS, Université de Franche-Comté, Besançon, France
| | - Pierre Gallian
- Etablissement Français du Sang, La Plaine-St Denis, France.,IHU Méditerranée Infection, Unité des Virus Émergents, UVE: Aix Marseille Univ, IRD 190, INSERM 1207, Marseille, France
| | - Karine Lacombe
- Sorbonne Université Inserm IPLESP Hôpital St Antoine AP-HP, Paris, France
| | | |
Collapse
|
335
|
de Alwis R, Chen S, Gan ES, Ooi EE. Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine 2020; 55:102768. [PMID: 32344202 PMCID: PMC7161485 DOI: 10.1016/j.ebiom.2020.102768] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/05/2020] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic spread of a novel coronavirus - SARS coronavirus-2 (SARS-CoV-2) as a cause of acute respiratory illness, named Covid-19, is placing the healthcare systems of many countries under unprecedented stress. Global economies are also spiraling towards a recession in fear of this new life-threatening disease. Vaccines that prevent SARS-CoV-2 infection and therapeutics that reduces the risk of severe Covid-19 are thus urgently needed. A rapid method to derive antiviral treatment for Covid-19 is the use of convalescent plasma derived hyperimmune globulin. However, both hyperimmune globulin and vaccine development face a common hurdle - the risk of antibody-mediated disease enhancement. The goal of this review is to examine the body of evidence supporting the hypothesis of immune enhancement that could be pertinent to Covid-19. We also discuss how this risk could be mitigated so that both hyperimmune globulin and vaccines could be rapidly translated to overcome the current global health crisis.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/adverse effects
- Antibodies, Viral/immunology
- COVID-19
- COVID-19 Vaccines
- Clinical Trials, Phase I as Topic
- Convalescence
- Coronavirus Infections/epidemiology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Coronavirus Infections/therapy
- Dendritic Cells/virology
- Global Health
- Host Microbial Interactions/immunology
- Humans
- Immunization, Passive
- Macrophages/virology
- Models, Animal
- Monocytes/virology
- Pandemics/prevention & control
- Plasma
- Plasmapheresis
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/immunology
- Pneumonia, Viral/prevention & control
- Pneumonia, Viral/therapy
- Receptors, Fc/immunology
- Translational Research, Biomedical
- Viral Vaccines/immunology
- Virus Internalization
- COVID-19 Serotherapy
Collapse
Affiliation(s)
- Ruklanthi de Alwis
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore
| | - Shiwei Chen
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Esther S Gan
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore
| | - Eng Eong Ooi
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore; Viral Research and Experimental Medicine Centre, SingHealth Duke-NUS Academic Medical Centre, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore; Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
336
|
Hotez PJ, Bottazzi ME, Corry DB. The potential role of Th17 immune responses in coronavirus immunopathology and vaccine-induced immune enhancement. Microbes Infect 2020; 22:165-167. [PMID: 32305501 PMCID: PMC7162764 DOI: 10.1016/j.micinf.2020.04.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 11/21/2022]
Abstract
Increasing evidence points to host Th17 inflammatory responses as contributing to the severe lung pathology and mortality of lower respiratory tract infections from coronaviruses. This includes host inflammatory and cytokine responses to COVID-19 caused by the SARS-2 coronavirus (SARS CoV2). From studies conducted in laboratory animals, there are additional concerns about immune enhancement and the role of potential host immunopathology resulting from experimental human COVID-19 vaccines. Here we summarize evidence suggesting there may be partial overlap between the underlying immunopathologic processes linked to both coronavirus infection and vaccination, and a role for Th17 in immune enhancement and eosinophilic pulmonary immunopathology. Such findings help explain the link between viral-vectored coronavirus vaccines and immune enhancement and its reduction through alum adjuvants. Additional research may also clarify links between COVID-19 pulmonary immunopathology and heart disease.
Collapse
Affiliation(s)
- Peter J Hotez
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA; Hagler Institute of Advanced Study at Texas A&M University, College Station, TX, USA.
| | - Maria Elena Bottazzi
- Texas Children's Hospital Center for Vaccine Development, Department of Pediatrics and Molecular Virology & Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA; Department of Biology, Baylor University, Waco, TX, USA.
| | - David B Corry
- Biology of Inflammation Center, Department of Medicine and Pathology & Immunology, The Michael E. DeBakey Center for Translational Research in Inflammatory Diseases, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
337
|
Saxena SK. Prevention and Control Strategies for SARS-CoV-2 Infection. CORONAVIRUS DISEASE 2019 (COVID-19) 2020. [PMCID: PMC7189388 DOI: 10.1007/978-981-15-4814-7_11] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
The population of 168 countries all over the world is struggling with the outbreak of COVID-19. The outbreak is declared as pandemic and public health emergency of international concern declared by WHO. SARS-CoV-2 responsible for the present health emergency exhibited close resemblance with SARS-CoV. Both the viruses are zoonotic and belong to a large family of viruses Coronaviridae. The complete virus particle is made up of four major structural proteins, namely spikes (S), nucleocapsid (N), membrane (M), and envelope (E) encoded by virus genome. The S protein of virus shows similarity to S protein of SARS-CoV. COVID-19 spreads from person to person, and this makes it more vulnerable for causing infection. Several efforts are taken to find prevention strategies for COVID-19. Researchers across the globe are working to find effective vaccination for SARS-CoV-2. There is no vaccine or medication available till date for COVID-19. Preventive measures such as social distancing, awareness, maintenance of hygiene, isolation, and movement restrictions can help in control of COVID-19 spread. Proper sanitization and cleaned and sanitized public transport can be effective in inhibiting the spread of the virus. In the present situation of medical emergency, cooperation and support by following advices from the WHO and government only facilitate everyone to come over.
Collapse
|
338
|
Abstract
Previous work on severe acute respiratory syndrome coronavirus (SARS-CoV) vaccines identified cellular immunopathology and antibody-dependent enhancement as potential safety issues. We discuss the implications of these findings for COVID-19 vaccine development and our approach to optimizing for safety and efficacy. Here, Hotez and colleagues highlight the two ‘faces’ of immune enhancement that could impact COVID-19 vaccine design.
Collapse
|
339
|
Amanat F, Stadlbauer D, Strohmeier S, Nguyen TH, Chromikova V, McMahon M, Jiang K, Asthagiri Arunkumar G, Jurczyszak D, Polanco J, Bermudez-Gonzalez M, Kleiner G, Aydillo T, Miorin L, Fierer D, Amarilis Lugo L, Milunka Kojic E, Stoever J, Liu STH, Cunningham-Rundles C, Felgner PL, Moran T, Garcia-Sastre A, Caplivski D, Cheng A, Kedzierska K, Vapalahti O, Hepojoki JM, Simon V, Krammer F. A serological assay to detect SARS-CoV-2 seroconversion in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.03.17.20037713. [PMID: 32511441 PMCID: PMC7239062 DOI: 10.1101/2020.03.17.20037713] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SARS-Cov-2 (severe acute respiratory disease coronavirus 2), which causes Coronavirus Disease 2019 (COVID19) was first detected in China in late 2019 and has since then caused a global pandemic. While molecular assays to directly detect the viral genetic material are available for the diagnosis of acute infection, we currently lack serological assays suitable to specifically detect SARS-CoV-2 antibodies. Here we describe serological enzyme-linked immunosorbent assays (ELISA) that we developed using recombinant antigens derived from the spike protein of SARS-CoV-2. Using negative control samples representing pre-COVID 19 background immunity in the general adult population as well as samples from COVID19 patients, we demonstrate that these assays are sensitive and specific, allowing for screening and identification of COVID19 seroconverters using human plasma/serum as early as two days post COVID19 symptoms onset. Importantly, these assays do not require handling of infectious virus, can be adjusted to detect different antibody types and are amendable to scaling. Such serological assays are of critical importance to determine seroprevalence in a given population, define previous exposure and identify highly reactive human donors for the generation of convalescent serum as therapeutic. Sensitive and specific identification of coronavirus SARS-Cov-2 antibody titers may, in the future, also support screening of health care workers to identify those who are already immune and can be deployed to care for infected patients minimizing the risk of viral spread to colleagues and other patients.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Thi H.O. Nguyen
- Department of Microbiology & Immunology, University of Melbourne, The Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Veronika Chromikova
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meagan McMahon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaijun Jiang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Guha Asthagiri Arunkumar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Denise Jurczyszak
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose Polanco
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Giulio Kleiner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Teresa Aydillo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Fierer
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luz Amarilis Lugo
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erna Milunka Kojic
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Stoever
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sean T. H. Liu
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Philip L. Felgner
- Department of Physiology & Biophysics, University of California, Irvine, CA, USA
| | - Thomas Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Daniel Caplivski
- Travel Medicine Program, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Allen Cheng
- School of Public Health and Preventive Medicine, Monash University; Infection Prevention and Healthcare Epidemiology Unit, Alfred Health
| | - Katherine Kedzierska
- Department of Microbiology & Immunology, University of Melbourne, The Peter Doherty Institute for Infection & Immunity, Melbourne, Victoria, Australia
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Veterinary Biosciences, Veterinary Faculty, University of Helsinki, Helsinki, Finland
- Department of Virology and Immunology, Helsinki University Hospital (HUSLAB), Helsinki, Finland
| | - Jussi M. Hepojoki
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
340
|
Abstract
SARS-CoV-2, the causal agent of COVID-19, first emerged in late 2019 in China. It has since infected more than 870,000 individuals and caused more than 43,000 deaths globally. Here, we discuss therapeutic and prophylactic interventions for SARS-CoV-2 with a focus on vaccine development and its challenges. Vaccines are being rapidly developed but will likely come too late to affect the first wave of a potential pandemic. Nevertheless, critical lessons can be learned for the development of vaccines against rapidly emerging viruses. Importantly, SARS-CoV-2 vaccines will be essential to reducing morbidity and mortality if the virus establishes itself in the population.
Collapse
Affiliation(s)
- Fatima Amanat
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
341
|
Single-Dose, Intranasal Immunization with Recombinant Parainfluenza Virus 5 Expressing Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Spike Protein Protects Mice from Fatal MERS-CoV Infection. mBio 2020; 11:mBio.00554-20. [PMID: 32265331 PMCID: PMC7157776 DOI: 10.1128/mbio.00554-20] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) can cause severe and fatal acute respiratory disease in humans and remains endemic in the Middle East since first being identified in 2012. There are currently no approved vaccines or therapies available for MERS-CoV. In this study, we evaluated parainfluenza virus 5 (PIV5)-based vaccine expressing the MERS-CoV envelope spike protein (PIV5/MERS-S) in a human DPP4 knockin C57BL/6 congenic mouse model (hDPP4 KI). Following a single-dose intranasal immunization, PIV5-MERS-S induced neutralizing antibody and robust T cell responses in hDPP4 KI mice. A single intranasal administration of 104 PFU PIV5-MERS-S provided complete protection against a lethal challenge with mouse-adapted MERS-CoV (MERSMA6.1.2) and improved virus clearance in the lung. In comparison, single-dose intramuscular immunization with 106 PFU UV-inactivated MERSMA6.1.2 mixed with Imject alum provided protection to only 25% of immunized mice. Intriguingly, an influx of eosinophils was observed only in the lungs of mice immunized with inactivated MERS-CoV, suggestive of a hypersensitivity-type response. Overall, our study indicated that PIV5-MERS-S is a promising effective vaccine candidate against MERS-CoV infection.IMPORTANCE MERS-CoV causes lethal infection in humans, and there is no vaccine. Our work demonstrates that PIV5 is a promising vector for developing a MERS vaccine. Furthermore, success of PIV5-based MERS vaccine can be employed to develop a vaccine for emerging CoVs such as SARS-CoV-2, which causes COVID-19.
Collapse
|
342
|
Ji H, Yan Y, Ding B, Guo W, Brunswick M, Niethammer A, SooHoo W, Smith R, Nahama A, Zhang Y. Novel decoy cellular vaccine strategy utilizing transgenic antigen-expressing cells as immune presenter and adjuvant in vaccine prototype against SARS-CoV-2 virus. MEDICINE IN DRUG DISCOVERY 2020; 5:100026. [PMID: 32289117 PMCID: PMC7144842 DOI: 10.1016/j.medidd.2020.100026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 11/10/2022] Open
Abstract
A novel approach modifying cells to express viral markers to elicit protective immunity responses (decoy cellular vaccination) in the prevention of COVID-19 disease is currently being explored. Our approach entails utilizing SARS-CoV-2 Spike antigen-expressing, non-replicating cells as carriers and presenters of immunogenic antigens, so called “I-cells”. By using irradiated cells as presenting vehicles of SARS-CoV-2 viral antigens(s) in a cellular context, these presented viral proteins can be recognized by the host immune system, thus, an efficient protective immune response might be elicited. Another advantage of this strategy is that the manufacturing process is scalable and yields uniform cell products allowing for “off-the-shelf” frozen supply availability. To prevent engraftment and proliferation of the cells after administration, the cells will be irradiated post-harvesting abolishing in vivo replication potential. Specifically, immunoreactive Spike-1 proteins from SARS-CoV-2 are expressed on the surface of irradiated target I-cells. Utilizing this innovative strategy, these viral antigen-displaying decoy cells will be developed as a vaccine to protect against COVID-19 disease. A novel decoy cellular vaccination approach being developed to fight against COVID-19 disease. Viral antigen-expressing, non-replicating cells used as both a carrier and antigen-presenting vehicle. Scalable manufacturing could allow rapid “off-the-shelf” supply availability.
Collapse
Affiliation(s)
- Henry Ji
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Ying Yan
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Beibei Ding
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Wenzhong Guo
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Mark Brunswick
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Andreas Niethammer
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Williams SooHoo
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Robin Smith
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America.,Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07102, United States of America
| | - Alexis Nahama
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| | - Yanliang Zhang
- Sorrento Therapeutics, Inc., 4955 Directors Place, San Diego, CA 92121, United States of America
| |
Collapse
|
343
|
Lv H, Wu NC, Tsang OTY, Yuan M, Perera RAPM, Leung WS, So RTY, Chan JMC, Yip GK, Chik TSH, Wang Y, Choi CYC, Lin Y, Ng WW, Zhao J, Poon LLM, Peiris JSM, Wilson IA, Mok CKP. Cross-reactive antibody response between SARS-CoV-2 and SARS-CoV infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.15.993097. [PMID: 32511317 PMCID: PMC7239046 DOI: 10.1101/2020.03.15.993097] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The World Health Organization has recently declared the ongoing outbreak of COVID-19, which is caused by a novel coronavirus SARS-CoV-2, as pandemic. There is currently a lack of knowledge in the antibody response elicited from SARS-CoV-2 infection. One major immunological question is concerning the antigenic differences between SARS-CoV-2 and SARS-CoV. We address this question by using plasma from patients infected by SARS-CoV-2 or SARS-CoV, and plasma obtained from infected or immunized mice. Our results show that while cross-reactivity in antibody binding to the spike protein is common, cross-neutralization of the live viruses is rare, indicating the presence of non-neutralizing antibody response to conserved epitopes in the spike. Whether these non-neutralizing antibody responses will lead to antibody-dependent disease enhancement needs to be addressed in the future. Overall, this study not only addresses a fundamental question regarding the antigenicity differences between SARS-CoV-2 and SARS-CoV, but also has important implications in vaccine.
Collapse
Affiliation(s)
- Huibin Lv
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Nicholas C. Wu
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Owen Tak-Yin Tsang
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ranawaka A. P. M. Perera
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wai Shing Leung
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong
| | - Ray T. Y. So
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jacky Man Chun Chan
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong
| | - Garrick K. Yip
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Thomas Shiu Hong Chik
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong
| | - Yiquan Wang
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Chris Yau Chung Choi
- Infectious Diseases Centre, Princess Margaret Hospital, Hospital Authority of Hong Kong
| | - Yihan Lin
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Wilson W. Ng
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - J. S. Malik Peiris
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chris K. P. Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
344
|
Schwartz DA, Graham AL. Potential Maternal and Infant Outcomes from (Wuhan) Coronavirus 2019-nCoV Infecting Pregnant Women: Lessons from SARS, MERS, and Other Human Coronavirus Infections. Viruses 2020; 12:v12020194. [PMID: 32050635 PMCID: PMC7077337 DOI: 10.3390/v12020194] [Citation(s) in RCA: 583] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/09/2020] [Accepted: 02/09/2020] [Indexed: 12/16/2022] Open
Abstract
In early December 2019 a cluster of cases of pneumonia of unknown cause was identified in Wuhan, a city of 11 million persons in the People’s Republic of China. Further investigation revealed these cases to result from infection with a newly identified coronavirus, initially termed 2019-nCoV and subsequently SARS-CoV-2. The infection moved rapidly through China, spread to Thailand and Japan, extended into adjacent countries through infected persons travelling by air, eventually reaching multiple countries and continents. Similar to such other coronaviruses as those causing the Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), the new coronavirus was reported to spread via natural aerosols from human-to-human. In the early stages of this epidemic the case fatality rate is estimated to be approximately 2%, with the majority of deaths occurring in special populations. Unfortunately, there is limited experience with coronavirus infections during pregnancy, and it now appears certain that pregnant women have become infected during the present 2019-nCoV epidemic. In order to assess the potential of the Wuhan 2019-nCoV to cause maternal, fetal and neonatal morbidity and other poor obstetrical outcomes, this communication reviews the published data addressing the epidemiological and clinical effects of SARS, MERS, and other coronavirus infections on pregnant women and their infants. Recommendations are also made for the consideration of pregnant women in the design, clinical trials, and implementation of future 2019-nCoV vaccines.
Collapse
Affiliation(s)
- David A. Schwartz
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| | - Ashley L. Graham
- Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA;
| |
Collapse
|
345
|
Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel Insights Into Immune Systems of Bats. Front Immunol 2020; 11:26. [PMID: 32117225 PMCID: PMC7025585 DOI: 10.3389/fimmu.2020.00026] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/08/2020] [Indexed: 11/13/2022] Open
Abstract
In recent years, viruses similar to those that cause serious disease in humans and other mammals have been detected in apparently healthy bats. These include filoviruses, paramyxoviruses, and coronaviruses that cause severe diseases such as Ebola virus disease, Marburg haemorrhagic fever and severe acute respiratory syndrome (SARS) in humans. The evolution of flight in bats seem to have selected for a unique set of antiviral immune responses that control virus propagation, while limiting self-damaging inflammatory responses. Here, we summarize our current understanding of antiviral immune responses in bats and discuss their ability to co-exist with emerging viruses that cause serious disease in other mammals. We highlight how this knowledge may help us to predict viral spillovers into new hosts and discuss future directions for the field.
Collapse
Affiliation(s)
- Arinjay Banerjee
- Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Michelle L Baker
- Health and Biosecurity Business Unit, Australian Animal Health Laboratory, CSIRO, Geelong, VIC, Australia
| | - Kirsten Kulcsar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Vikram Misra
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Raina Plowright
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, United States
| | - Karen Mossman
- Department of Pathology and Molecular Medicine, Michael DeGroote Institute for Infectious Disease Research, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
346
|
Wang D. Coronaviruses' sugar shields as vaccine candidates. CURRENT TRENDS IN IMMUNOLOGY 2020; 21:17-23. [PMID: 32606565 PMCID: PMC7326345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A successful global healthcare response relies on versatile vaccines and production of broadly virus-neutralizing antibodies by the immune system to protect us from emerging infectious diseases. The present 2019 severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic highlights the urgent need for development of anti-viral biodefense. Due to the genetic and proteomic diversities of viral pathogens, establishing versatile anti-viral vaccines or therapeutic agents is highly challenging. Carbohydrate antigens represent an important class of immunological targets for vaccine development and immunotherapy against microbial infections. In this mini review, some concepts and strategies for exploring the potential of immunogenic sugar moieties as CoV vaccine candidates are presented.
Collapse
Affiliation(s)
- Denong Wang
- Tumor Glycomics Laboratory, SRI International Biosciences Division, 333 Ravenswood Avenue, Menlo Park, CA, USA
| |
Collapse
|
347
|
Sekimukai H, Iwata‐Yoshikawa N, Fukushi S, Tani H, Kataoka M, Suzuki T, Hasegawa H, Niikura K, Arai K, Nagata N. Gold nanoparticle-adjuvanted S protein induces a strong antigen-specific IgG response against severe acute respiratory syndrome-related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol Immunol 2020; 64:33-51. [PMID: 31692019 PMCID: PMC7168429 DOI: 10.1111/1348-0421.12754] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022]
Abstract
The spike (S) protein of coronavirus, which binds to cellular receptors and mediates membrane fusion for cell entry, is a candidate vaccine target for blocking coronavirus infection. However, some animal studies have suggested that inadequate immunization against severe acute respiratory syndrome coronavirus (SARS-CoV) induces a lung eosinophilic immunopathology upon infection. The present study evaluated two kinds of vaccine adjuvants for use with recombinant S protein: gold nanoparticles (AuNPs), which are expected to function as both an antigen carrier and an adjuvant in immunization; and Toll-like receptor (TLR) agonists, which have previously been shown to be an effective adjuvant in an ultraviolet-inactivated SARS-CoV vaccine. All the mice immunized with more than 0.5 µg S protein without adjuvant escaped from SARS after infection with mouse-adapted SARS-CoV; however, eosinophilic infiltrations were observed in the lungs of almost all the immunized mice. The AuNP-adjuvanted protein induced a strong IgG response but failed to improve vaccine efficacy or to reduce eosinophilic infiltration because of highly allergic inflammatory responses. Whereas similar virus titers were observed in the control animals and the animals immunized with S protein with or without AuNPs, Type 1 interferon and pro-inflammatory responses were moderate in the mice treated with S protein with and without AuNPs. On the other hand, the TLR agonist-adjuvanted vaccine induced highly protective antibodies without eosinophilic infiltrations, as well as Th1/17 cytokine responses. The findings of this study will support the development of vaccines against severe pneumonia-associated coronaviruses.
Collapse
Affiliation(s)
- Hanako Sekimukai
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
- Department of Tissue Physiology, Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchuTokyoJapan
| | - Naoko Iwata‐Yoshikawa
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Shuetsu Fukushi
- Department of Virology INational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Hideki Tani
- Department of Virology INational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Michiyo Kataoka
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Tadaki Suzuki
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Hideki Hasegawa
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| | - Kenichi Niikura
- Research Institute for Electronic ScienceHokkaido UniversitySapporoHokkaidoJapan
| | - Katsuhiko Arai
- Department of Tissue Physiology, Faculty of AgricultureTokyo University of Agriculture and TechnologyFuchuTokyoJapan
| | - Noriyo Nagata
- Department of PathologyNational Institute of Infectious DiseasesMusashimurayamaTokyoJapan
| |
Collapse
|
348
|
A. Desheva Y, S. Mamontov A, G. Nazarov P. Contribution of antibody-dependent enhancement to the pathogenesis of coronavirus infections. AIMS ALLERGY AND IMMUNOLOGY 2020. [DOI: 10.3934/allergy.2020005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
349
|
Hashem AM, Algaissi A, Agrawal AS, Al-Amri SS, Alhabbab RY, Sohrab SS, S Almasoud A, Alharbi NK, Peng BH, Russell M, Li X, Tseng CTK. A Highly Immunogenic, Protective, and Safe Adenovirus-Based Vaccine Expressing Middle East Respiratory Syndrome Coronavirus S1-CD40L Fusion Protein in a Transgenic Human Dipeptidyl Peptidase 4 Mouse Model. J Infect Dis 2019; 220:1558-1567. [PMID: 30911758 DOI: 10.1093/infdis/jiz13710.1093/infdis/jiz137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/21/2019] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Infection control measures have played a major role in limiting human/camel-to-human transmission of Middle East respiratory syndrome coronavirus (MERS-CoV); however, development of effective and safe human or camel vaccines is warranted. METHODS We extended and optimized our previous recombinant adenovirus 5 (rAd5)-based vaccine platform characterized by in vivo amplified and CD40-mediated specific responses to generate MERS-CoV S1 subunit-based vaccine. We generated rAd5 constructs expressing CD40-targeted S1 fusion protein (rAd5-S1/F/CD40L), untargeted S1 (rAd5-S1), and Green Fluorescent Protein (rAd5-GFP), and evaluated their efficacy and safety in human dipeptidyl peptidase 4 transgenic (hDPP4 Tg+) mice. RESULTS Immunization of hDPP4 Tg+ mice with a single dose of rAd5-S1/F/CD40L elicited as robust and significant specific immunoglobulin G and neutralizing antibodies as those induced with 2 doses of rAd5-S1. After MERS-CoV challenge, both vaccines conferred complete protection against morbidity and mortality, as evidenced by significantly undetectable/reduced pulmonary viral loads compared to the control group. However, rAd5-S1- but not rAd5-S1/F/CD40L-immunized mice exhibited marked pulmonary perivascular hemorrhage post-MERS-CoV challenge despite the observed protection. CONCLUSIONS Incorporation of CD40L into rAd5-based MERS-CoV S1 vaccine targeting molecule and molecular adjuvants not only enhances immunogenicity and efficacy but also prevents inadvertent pulmonary pathology after viral challenge, thereby offering a promising strategy to enhance safety and potency of vaccines.
Collapse
MESH Headings
- Adenoviruses, Human/genetics
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/pharmacology
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- CD40 Ligand/genetics
- CD40 Ligand/pharmacology
- Coronavirus Infections/immunology
- Coronavirus Infections/prevention & control
- Dipeptidyl Peptidase 4/genetics
- Dipeptidyl Peptidase 4/metabolism
- Drug Carriers
- Genetic Vectors
- Immunoglobulin G/blood
- Lung/virology
- Mice
- Mice, Transgenic
- Middle East Respiratory Syndrome Coronavirus/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Survival Analysis
- Vaccines, Subunit/administration & dosage
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Anwar M Hashem
- Department of Medical Microbiology and Parasitology, Faculty of Medicine
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Algaissi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Jazan University
| | | | - Sawsan S Al-Amri
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Y Alhabbab
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah
| | - Sayed S Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman S Almasoud
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Naif Khalaf Alharbi
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Bi-Hung Peng
- Department of Neurosciences, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston
| | - Marsha Russell
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Xuguang Li
- Center for Vaccine Evaluation, Biologics and Genetic Therapies Directorate, Health Canada, Ottawa, Ontario
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston
- Center of Biodefense and Emerging Disease, University of Texas Medical Branch, Galveston
| |
Collapse
|
350
|
Lin LC, Huang C, Yao B, Lin J, Agrawal A, Algaissi A, Peng B, Liu Y, Huang P, Juang R, Chang Y, Tseng C, Chen H, Hu CJ. Viromimetic STING Agonist-Loaded Hollow Polymeric Nanoparticles for Safe and Effective Vaccination against Middle East Respiratory Syndrome Coronavirus. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807616. [PMID: 32313544 PMCID: PMC7161765 DOI: 10.1002/adfm.201807616] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/17/2019] [Indexed: 05/04/2023]
Abstract
The continued threat of emerging, highly lethal infectious pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) calls for the development of novel vaccine technology that offers safe and effective prophylactic measures. Here, a novel nanoparticle vaccine is developed to deliver subunit viral antigens and STING agonists in a virus-like fashion. STING agonists are first encapsulated into capsid-like hollow polymeric nanoparticles, which show multiple favorable attributes, including a pH-responsive release profile, prominent local immune activation, and reduced systemic reactogenicity. Upon subsequent antigen conjugation, the nanoparticles carry morphological semblance to native virions and facilitate codelivery of antigens and STING agonists to draining lymph nodes and immune cells for immune potentiation. Nanoparticle vaccine effectiveness is supported by the elicitation of potent neutralization antibody and antigen-specific T cell responses in mice immunized with a MERS-CoV nanoparticle vaccine candidate. Using a MERS-CoV-permissive transgenic mouse model, it is shown that mice immunized with this nanoparticle-based MERS-CoV vaccine are protected against a lethal challenge of MERS-CoV without triggering undesirable eosinophilic immunopathology. Together, the biocompatible hollow nanoparticle described herein provides an excellent strategy for delivering both subunit vaccine candidates and novel adjuvants, enabling accelerated development of effective and safe vaccines against emerging viral pathogens.
Collapse
Affiliation(s)
| | - Chen‐Yu Huang
- Department of Veterinary MedicineNational Taiwan UniversityTaipei10617Taiwan
| | - Bing‐Yu Yao
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Jung‐Chen Lin
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Anurodh Agrawal
- Department of Microbiology and ImmunologyThe University of Texas Medical BranchGalvestonTX77555USA
| | - Abdullah Algaissi
- Department of Microbiology and ImmunologyThe University of Texas Medical BranchGalvestonTX77555USA
- Department of Medical Laboratories TechnologyJazan UniversityJazan45142Saudi Arabia
| | - Bi‐Hung Peng
- Department of Neurosciences, Cell Biology & AnatomyThe University of Texas Medical BranchGalvestonTX77555USA
| | - Yu‐Han Liu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| | - Ping‐Han Huang
- Department of Veterinary MedicineNational Taiwan UniversityTaipei10617Taiwan
| | - Rong‐Huay Juang
- Department of Biochemical Science and TechnologyNational Taiwan UniversityTaipei10617Taiwan
| | - Yuan‐Chih Chang
- Institute of Cellular and Organismic BiologyAcademia SinicaTaipei11529Taiwan
| | - Chien‐Te Tseng
- Department of Microbiology and ImmunologyThe University of Texas Medical BranchGalvestonTX77555USA
- Center for Biodefense and Emerging DiseaseThe University of Texas Medical BranchGalvestonTX77555USA
| | - Hui‐Wen Chen
- Department of Veterinary MedicineNational Taiwan UniversityTaipei10617Taiwan
| | - Che‐Ming Jack Hu
- Institute of Biomedical SciencesAcademia SinicaTaipei11529Taiwan
| |
Collapse
|