301
|
Liu H, Shiryaev SA, Chernov AV, Kim Y, Shubayev I, Remacle AG, Baranovskaya S, Golubkov VS, Strongin AY, Shubayev VI. Immunodominant fragments of myelin basic protein initiate T cell-dependent pain. J Neuroinflammation 2012; 9:119. [PMID: 22676642 PMCID: PMC3416717 DOI: 10.1186/1742-2094-9-119] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/23/2012] [Indexed: 12/11/2022] Open
Abstract
Background The myelin sheath provides electrical insulation of mechanosensory Aβ-afferent fibers. Myelin-degrading matrix metalloproteinases (MMPs) damage the myelin sheath. The resulting electrical instability of Aβ-fibers is believed to activate the nociceptive circuitry in Aβ-fibers and initiate pain from innocuous tactile stimulation (mechanical allodynia). The precise molecular mechanisms, responsible for the development of this neuropathic pain state after nerve injury (for example, chronic constriction injury, CCI), are not well understood. Methods and results Using mass spectrometry of the whole sciatic nerve proteome followed by bioinformatics analyses, we determined that the pathways, which are classified as the Infectious Disease and T-helper cell signaling, are readily activated in the nerves post-CCI. Inhibition of MMP-9/MMP-2 suppressed CCI-induced mechanical allodynia and concomitant TNF-α and IL-17A expression in nerves. MMP-9 proteolysis of myelin basic protein (MBP) generated the MBP84-104 and MBP68-86 digest peptides, which are prominent immunogenic epitopes. In agreement, the endogenous MBP69-86 epitope co-localized with MHCII and MMP-9 in Schwann cells and along the nodes of Ranvier. Administration of either the MBP84-104 or MBP68-86 peptides into the naïve nerve rapidly produced robust mechanical allodynia with a concomitant increase in T cells and MHCII-reactive cell populations at the injection site. As shown by the genome-wide expression profiling, a single intraneural MBP84-104 injection stimulated the inflammatory, immune cell trafficking, and antigen presentation pathways in the injected naïve nerves and the associated spinal cords. Both MBP84-104-induced mechanical allodynia and characteristic pathway activation were remarkably less prominent in the T cell-deficient athymic nude rats. Conclusions These data implicate MBP as a novel mediator of pain. Furthermore, the action of MMPs expressed within 1 day post-injury is critical to the generation of tactile allodynia, neuroinflammation, and the immunodominant MBP digest peptides in nerve. These MBP peptides initiate mechanical allodynia in both a T cell-dependent and -independent manner. In the course of Wallerian degeneration, the repeated exposure of the cryptic MBP epitopes, which are normally sheltered from immunosurveillance, may induce the MBP-specific T cell clones and a self-sustaining immune reaction, which may together contribute to the transition of acute pain into a chronic neuropathic pain state.
Collapse
Affiliation(s)
- Huaqing Liu
- Department of Anesthesiology, University of California, San Diego, 9500 Gilman Dr., Mail Box 0629, La Jolla, CA 92093-0629, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
302
|
Vega-Avelaira D, McKelvey R, Hathway G, Fitzgerald M. The emergence of adolescent onset pain hypersensitivity following neonatal nerve injury. Mol Pain 2012; 8:30. [PMID: 22531549 PMCID: PMC3443028 DOI: 10.1186/1744-8069-8-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/24/2012] [Indexed: 12/30/2022] Open
Abstract
Background Peripheral nerve injuries can trigger neuropathic pain in adults but cause little or no pain when they are sustained in infancy or early childhood. This is confirmed in rodent models where neonatal nerve injury causes no pain behaviour. However, delayed pain can arise in man some considerable time after nerve damage and to examine this following early life nerve injury we have carried out a longer term follow up of rat pain behaviour into adolescence and adulthood. Results Spared nerve injury (SNI) or sham surgery was performed on 10 day old (P10) rat pups and mechanical nociceptive reflex thresholds were analysed 3, 7, 14, 21, 28, 38 and 44 days post surgery. While mechanical thresholds on the ipsilateral side are not significantly different from controls for the first 2–3 weeks post P10 surgery, after that time period, beginning at 21 days post surgery (P31), the SNI group developed following early life nerve injury significant hypersensitivity compared to the other groups. Ipsilateral mechanical nociceptive threshold was 2-fold below that of the contralateral and sham thresholds at 21 days post surgery (SNI-ipsilateral 28 (±5) g control groups 69 (±9) g, p < 0.001, 3-way ANOVA, n = 6 per group). Importantly, no effect was observed on thermal thresholds. This hypersensivity was accompanied by macrophage, microglial and astrocyte activation in the DRG and dorsal horn, but no significant change in dorsal horn p38 or JNK expression. Preemptive minocycline (daily 40 mg/kg, s.c) did not prevent the effect. Ketamine (20 mg/kg, s.c), on the other hand, produced a dose-dependent reversal of mechanical nociceptive thresholds ipsilateral to the nerve injury such that thresholds return to control levels at the highest doses of 20 mg/Kg. Conclusions We report a novel consequence of early life nerve injury whereby mechanical hypersensitivity only emerges later in life. This delayed adolescent onset in mechanical pain thresholds is accompanied by neuroimmune activation and NMDA dependent central sensitization of spinal nociceptive circuits. This delayed onset in mechanical pain sensitivity may provide clues to understand the long term effects of early injury such as late onset phantom pain and the emergence of complex adolescent chronic pain syndromes.
Collapse
Affiliation(s)
- David Vega-Avelaira
- UCL Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London WC1E6BT, UK.
| | | | | | | |
Collapse
|
303
|
Urtikova N, Berson N, Van Steenwinckel J, Doly S, Truchetto J, Maroteaux L, Pohl M, Conrath M. Antinociceptive effect of peripheral serotonin 5-HT2B receptor activation on neuropathic pain. Pain 2012; 153:1320-1331. [PMID: 22525520 DOI: 10.1016/j.pain.2012.03.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 03/02/2012] [Accepted: 03/22/2012] [Indexed: 12/13/2022]
Abstract
Serotonin is critically involved in neuropathic pain. However, its role is far from being understood owing to the number of cellular targets and receptor subtypes involved. In a rat model of neuropathic pain evoked by chronic constriction injury (CCI) of the sciatic nerve, we studied the role of 5-HT(2B) receptor in dorsal root ganglia (DRG) and the sciatic nerve. We showed that 5-HT(2B) receptor activation both prevents and reduces CCI-induced allodynia. Intrathecal administration of 5-HT(2B) receptor agonist BW723C86 significantly attenuated established mechanical and cold allodynia; this effect was prevented by co-injection of RS127445, a selective 5-HT(2B) receptor antagonist. A single application of BW723C86 on the sciatic nerve concomitantly to CCI dose-dependently prevented mechanical allodynia and significantly reduced cold allodynia 17 days after CCI. This behavioral effect was accompanied with a marked decrease in macrophage infiltration into the sciatic nerve and, in the DRG, with an attenuated abnormal expression of several markers associated with local neuroinflammation and neuropathic pain. CCI resulted in a marked upregulation of 5-HT(2B) receptor expression in sciatic nerve and DRG. In the latter structure, it was biphasic, consisting of a transient early increase (23-fold), 2 days after the surgery and before the neuropathic pain emergence, followed by a steady (5-fold) increase, that remained constant until pain disappeared. In DRG and sciatic nerve, 5-HT(2B) receptors were immunolocalized on sensory neurons and infiltrating macrophages. Our data reveal a relationship between serotonin, immunocytes, and neuropathic pain development, and demonstrate a critical role of 5-HT(2B) receptors in blood-derived macrophages.
Collapse
Affiliation(s)
- Nataliya Urtikova
- Université Pierre et Marie Curie (UPMC), Site Pitié-Salpêtrière, INSERM UMRS 975, CNRS 7225, Centre de Recherche de l'ICM, Paris 75013, France Université Pierre et Marie Curie (UPMC), INSERM U839, Institut du Fer à Moulin, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
304
|
Kim Y, Remacle AG, Chernov AV, Liu H, Shubayev I, Lai C, Dolkas J, Shiryaev SA, Golubkov VS, Mizisin AP, Strongin AY, Shubayev VI. The MMP-9/TIMP-1 axis controls the status of differentiation and function of myelin-forming Schwann cells in nerve regeneration. PLoS One 2012; 7:e33664. [PMID: 22438979 PMCID: PMC3306282 DOI: 10.1371/journal.pone.0033664] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 02/14/2012] [Indexed: 02/07/2023] Open
Abstract
Background Myelinating Schwann cells (mSCs) form myelin in the peripheral nervous system. Because of the works by us and others, matrix metalloproteinase-9 (MMP-9) has recently emerged as an essential component of the Schwann cell signaling network during sciatic nerve regeneration. Methodology/Principal Findings In the present study, using the genome-wide transcriptional profiling of normal and injured sciatic nerves in mice followed by extensive bioinformatics analyses of the data, we determined that an endogenous, specific MMP-9 inhibitor [tissue inhibitor of metalloproteinases (TIMP)-1] was a top up-regulated gene in the injured nerve. MMP-9 capture followed by gelatin zymography and Western blotting of the isolated samples revealed the presence of the MMP-9/TIMP-1 heterodimers and the activated MMP-9 enzyme in the injured nerve within the first 24 h post-injury. MMP-9 and TIMP-1 co-localized in mSCs. Knockout of the MMP-9 gene in mice resulted in elevated numbers of de-differentiated/immature mSCs in the damaged nerve. Our comparative studies using MMP-9 knockout and wild-type mice documented an aberrantly enhanced proliferative activity and, accordingly, an increased number of post-mitotic Schwann cells, short internodes and additional nodal abnormalities in remyelinated nerves of MMP-9 knockout mice. These data imply that during the first days post-injury MMP-9 exhibits a functionally important anti-mitogenic activity in the wild-type mice. Pharmacological inhibition of MMP activity suppressed the expression of Nav1.7/1.8 channels in the crushed nerves. Conclusion/Significance Collectively, our data established an essential role of the MMP-9/TIMP-1 axis in guiding the mSC differentiation and the molecular assembly of myelin domains in the course of the nerve repair process. Our findings of the MMP-dependent regulation of Nav channels, which we document here for the first time, provide a basis for therapeutic intervention in sensorimotor pathologies and pain.
Collapse
Affiliation(s)
- Youngsoon Kim
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Albert G. Remacle
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrei V. Chernov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Huaqing Liu
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Igor Shubayev
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Calvin Lai
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Jennifer Dolkas
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
| | - Sergey A. Shiryaev
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Vladislav S. Golubkov
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Andrew P. Mizisin
- Department of Pathology, University of California San Diego, La Jolla, California, United States of America
| | - Alex Y. Strongin
- Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America
| | - Veronica I. Shubayev
- Department of Anesthesiology, University of California San Diego, La Jolla, California, United States of America
- VA San Diego Healthcare System, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
305
|
Takasaki I, Taniguchi K, Komatsu F, Sasaki A, Andoh T, Nojima H, Shiraki K, Hsu DK, Liu FT, Kato I, Hiraga K, Kuraishi Y. Contribution of spinal galectin-3 to acute herpetic allodynia in mice. Pain 2012; 153:585-592. [DOI: 10.1016/j.pain.2011.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 11/18/2011] [Accepted: 11/18/2011] [Indexed: 10/14/2022]
|
306
|
von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012; 73:638-52. [PMID: 22365541 PMCID: PMC3319438 DOI: 10.1016/j.neuron.2012.02.008] [Citation(s) in RCA: 600] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2012] [Indexed: 01/01/2023]
Abstract
After nerve injury maladaptive changes can occur in injured sensory neurons and along the entire nociceptive pathway within the CNS, which may lead to spontaneous pain or pain hypersensitivity. The resulting neuropathic pain syndromes present as a complex combination of negative and positive symptoms, which vary enormously from individual to individual. This variation depends on a diversity of underlying pathophysiological changes resulting from the convergence of etiological, genotypic, and environmental factors. The pain phenotype can serve therefore, as a window on underlying pathophysiological neural mechanisms and as a guide for developing personalized pain medicine.
Collapse
Affiliation(s)
- Christian A von Hehn
- FM Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
307
|
Costigan M, Latremoliere A, Woolf CJ. Analgesia by inhibiting tetrahydrobiopterin synthesis. Curr Opin Pharmacol 2012; 12:92-9. [PMID: 22178186 PMCID: PMC3288148 DOI: 10.1016/j.coph.2011.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 12/21/2022]
Abstract
Physiological control of the co-factor tetrahydrobiopterin (BH4) is tight in normal circumstances but levels increase pathologically in the injured somatosensory system. BH4 is an essential co-factor in the production of serotonin, dopamine, epinephrine, norepinephrine and nitric oxide. Excess BH4 levels cause pain, likely through excess production of one or more of these neurotransmitters or signaling molecules. The rate limiting step for BH4 production is GTP Cyclohydrolase 1 (GCH1). A human GCH1 gene haplotype exists that leads to less GCH1 transcription, translation, and therefore enzyme activity, following cellular stress. Carriers of this haplotype produce less BH4 and therefore feel less pain, especially following nerve injury where BH4 production is pathologically augmented. Sulfasalazine (SSZ) an FDA approved anti-inflammatory agent of unknown mechanism of action, has recently been shown to be a sepiapterin reductase (SPR) inhibitor. SPR is part of the BH4 synthesis cascade and is also upregulated by nerve injury. Inhibiting SPR will reduce BH4 levels and therefore should act as an analgesic. We propose SSZ as a novel anti-neuropathic pain medicine.
Collapse
Affiliation(s)
- Michael Costigan
- FM Kirby Neurobiology Center, Children's Hospital Boston, and Department of Neurobiology, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| | | | | |
Collapse
|
308
|
Clark AK, Grist J, Al-Kashi A, Perretti M, Malcangio M. Spinal cathepsin S and fractalkine contribute to chronic pain in the collagen-induced arthritis model. ACTA ACUST UNITED AC 2011; 64:2038-47. [PMID: 22213084 DOI: 10.1002/art.34351] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE The induction of rheumatoid arthritis (RA) by active and passive immunization of mice results in the development of pain at the same time as the swelling and inflammation, with both peripheral and central sensitization contributing to joint pain. The purpose of this study was to examine the development of pain in the rat model of collagen-induced arthritis (CIA) and to evaluate the contribution of neuroimmune interactions to established arthritis pain. METHODS Mechanical hypersensitivity was assessed in female Lewis rats before and up to 18 days after induction of CIA by immunization with type II collagen. The effect of selective inhibitors of microglia were then evaluated by prolonged intrathecal delivery of a cathepsin S (CatS) inhibitor and a fractalkine (FKN) neutralizing antibody, from day 11 to day 18 following immunization. RESULTS Rats with CIA developed significant mechanical hypersensitivity, which started on day 9, before the onset of clinical signs of arthritis. Mechanical hypersensitivity peaked with the severity of the disease, when significant microglial and astrocytic responses, alongside T cell infiltration, were observed in the spinal cord. Intrathecal delivery of microglial inhibitors, a CatS inhibitor, or an FKN neutralizing antibody attenuated mechanical hypersensitivity and spinal microglial response in rats with CIA. CONCLUSION The inhibition of microglial targets by centrally penetrant CatS inhibitors and CX(3) CR1 receptor antagonists represents a potential therapeutic avenue for the treatment of pain in RA.
Collapse
|
309
|
Abstract
Chronic neuropathic and inflammatory pain is a major public health problem. Nociceptors undergo sensitization, first in peripheral tissues then in the central nervous sytem, via neuroimmune interactions linking neurons, glial cells (microglia and astrocytes), and immune cells. These interactions may either exacerbate or attenuate the pain and inflammation, which normally reach a state of equilibrium. With more powerful or longer lasting stimuli, specific profiles of microglial and, subsequently, astrocytic activation in the dorsal horn play a key role in neuronal plasticity and transition to chronic pain. Recent insights into the interactions between the nervous system and the immune system suggest a large number of potential therapeutic targets that could be influenced either by targeted inhibition or by directing the neuroimmune response toward the antiinflammatory and analgesic end of its spectrum.
Collapse
|
310
|
Trang T, Beggs S, Salter MW. ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol 2011; 234:354-61. [PMID: 22116040 DOI: 10.1016/j.expneurol.2011.11.012] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 10/31/2011] [Accepted: 11/08/2011] [Indexed: 01/30/2023]
Abstract
Microglia were described by Pio del Rio-Hortega (1932) as being the 'third element' distinct from neurons and astrocytes. Decades after this observation, the function and even the very existence of microglia as a distinct cell type were topics of intense debate and conjecture. However, considerable advances have been made towards understanding the neurobiology of microglia resulting in a radical shift in our view of them as being passive bystanders that have solely immune and supportive roles, to being active principal players that contribute to central nervous system pathologies caused by disease or following injury. Converging lines of evidence implicate microglia as being essential in the pathogenesis of neuropathic pain, a debilitating chronic pain condition that can occur after peripheral nerve damage caused by disease, infection, or physical injury. A key molecule that modulates microglial activity is ATP, an endogenous ligand of the P2-purinoceptor family consisting of P2X ionotropic and P2Y metabotropic receptors. Microglia express several P2 receptor subtypes, and of these the P2X4, P2X7, and P2Y12 receptor subtypes have been implicated in neuropathic pain. The P2X4 receptor has emerged as the core microglia-neuron signaling pathway: activation of this receptor causes release of brain-derived neurotrophic factor (BDNF) which causes disinhibition of pain-transmission neurons in spinal lamina I. The present review highlights recent advances in understanding the signaling and regulation of P2 receptors expressed in microglia and the implications for microglia-neuron interactions for the management of neuropathic pain.
Collapse
Affiliation(s)
- Tuan Trang
- Program in Neuroscience and Mental Health, Hospital for Sick Children, University of Toronto Centre for the Study of Pain, Toronto, Ontario, Canada M5G 1X8
| | | | | |
Collapse
|
311
|
Landry RP, Jacobs VL, Romero-Sandoval EA, DeLeo JA. Propentofylline, a CNS glial modulator does not decrease pain in post-herpetic neuralgia patients: in vitro evidence for differential responses in human and rodent microglia and macrophages. Exp Neurol 2011; 234:340-50. [PMID: 22119425 DOI: 10.1016/j.expneurol.2011.11.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/20/2011] [Accepted: 11/07/2011] [Indexed: 12/13/2022]
Abstract
There is a growing body of preclinical evidence for the potential involvement of glial cells in neuropathic pain conditions. Several glial-targeted agents are in development for the treatment of pain conditions. Here we report the failure of a glial modulating agent, propentofylline, to decrease pain reported in association with post-herpetic neuralgia. We offer new evidence to help explain why propentofylline failed in patients by describing in vitro functional differences between rodent and human microglia and macrophages. We directly compared the proinflammatory response induced by lipopolysaccharide (LPS) with or without propentofylline using rat postnatal microglia, rat peritoneal macrophages, human fetal microglia, human peripheral macrophages and human immortalized THP-1 cells. We measured tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and nitrite release (as an indicator of nitric oxide (NO)) as downstream indicators. We found that LPS treatment did not induce nitrite in human microglia, macrophages or THP-1 cells; however LPS treatment did induce nitrite release in rat microglia and macrophages. Following LPS exposure, propentofylline blocked TNF-α release in rodent microglia with all the doses tested (1-100 μM), and dose-dependently decreased TNF-α release in rodent macrophages. Propentofylline partially decreased TNF-α (35%) at 100 μM in human microglia, macrophages and THP-1 macrophages. Propentofylline blocked nitrite release from LPS stimulated rat microglia and inhibited nitrite in LPS-stimulated rat macrophages. IL-1β was decreased in LPS-stimulated human microglia following propentofylline at 100 μM. Overall, human microglia were less responsive to LPS stimulation and propentofylline treatment than the other cell types. Our data demonstrate significant functional differences between cell types and species following propentofylline treatment and LPS stimulation. These results may help explain the differential behavioral effects of propentofylline observed between rodent models of pain and the human clinical trial.
Collapse
Affiliation(s)
- Russell P Landry
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | | | |
Collapse
|
312
|
Dawes JM, Calvo M, Perkins JR, Paterson KJ, Kiesewetter H, Hobbs C, Kaan TKY, Orengo C, Bennett DLH, McMahon SB. CXCL5 mediates UVB irradiation-induced pain. Sci Transl Med 2011; 3:90ra60. [PMID: 21734176 DOI: 10.1126/scitranslmed.3002193] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Many persistent pain states (pain lasting for hours, days, or longer) are poorly treated because of the limitations of existing therapies. Analgesics such as nonsteroidal anti-inflammatory drugs and opioids often provide incomplete pain relief and prolonged use results in the development of severe side effects. Identification of the key mediators of various types of pain could improve such therapies. Here, we tested the hypothesis that hitherto unrecognized cytokines and chemokines might act as mediators in inflammatory pain. We used ultraviolet B (UVB) irradiation to induce persistent, abnormal sensitivity to pain in humans and rats. The expression of more than 90 different inflammatory mediators was measured in treated skin at the peak of UVB-induced hypersensitivity with custom-made polymerase chain reaction arrays. There was a significant positive correlation in the overall expression profiles between the two species. The expression of several genes [interleukin-1β (IL-1β), IL-6, and cyclooxygenase-2 (COX-2)], previously shown to contribute to pain hypersensitivity, was significantly increased after UVB exposure, and there was dysregulation of several chemokines (CCL2, CCL3, CCL4, CCL7, CCL11, CXCL1, CXCL2, CXCL4, CXCL7, and CXCL8). Among the genes measured, CXCL5 was induced to the greatest extent by UVB treatment in human skin; when injected into the skin of rats, CXCL5 recapitulated the mechanical hypersensitivity caused by UVB irradiation. This hypersensitivity was associated with the infiltration of neutrophils and macrophages into the dermis, and neutralizing the effects of CXCL5 attenuated the abnormal pain-like behavior. Our findings demonstrate that the chemokine CXCL5 is a peripheral mediator of UVB-induced inflammatory pain, likely in humans as well as rats.
Collapse
Affiliation(s)
- John M Dawes
- Wolfson Centre for Age-Related Diseases, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
313
|
Peripheral nerve injury alters blood-spinal cord barrier functional and molecular integrity through a selective inflammatory pathway. J Neurosci 2011; 31:10819-28. [PMID: 21795534 DOI: 10.1523/jneurosci.1642-11.2011] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Peripheral nerve lesion triggers alterations in the spinal microenvironment that contribute to the pathogenesis of neuropathic pain. While neurons and glia have been implicated in these functional changes, it remains largely underexplored whether the blood-spinal cord barrier (BSCB) is also involved. The BSCB is an important component in the CNS homeostasis, and compromised BSCB has been associated with different pathologies affecting the spinal cord. Here, we demonstrated that a remote injury on the peripheral nerve in rats triggered a leakage of the BSCB, which was independent of spinal microglial activation. The increase of BSCB permeability to different size tracers, such as Evans Blue and sodium fluorescein, was restricted to the lumbar spinal cord and prominent for at least 4 weeks after injury. The spinal inflammatory reaction triggered by nerve injury was a key player in modulating BSCB permeability. We identified MCP-1 as an endogenous trigger for the BSCB leakage. BSCB permeability can also be impaired by circulating IL-1β. In contrast, antiinflammatory cytokines TGF-β1 and IL-10 were able to shut down the openings of the BSCB following nerve injury. Peripheral nerve injury caused a decrease in tight junction and caveolae-associated proteins. Interestingly, ZO-1 and occludin, but not caveolin-1, were rescued by TGF-β1. Furthermore, our data provide direct evidence that disrupted BSCB following nerve injury contributed to the influx of inflammatory mediators and the recruitment of spinal blood borne monocytes/macrophages, which played a major role in the development of neuropathic pain. These findings highlight the importance of inflammation in BSCB integrity and in spinal cord homeostasis.
Collapse
|
314
|
Grace PM, Rolan PE, Hutchinson MR. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav Immun 2011; 25:1322-32. [PMID: 21496480 DOI: 10.1016/j.bbi.2011.04.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/04/2011] [Accepted: 04/04/2011] [Indexed: 10/18/2022] Open
Abstract
Recent evidence implicates an adaptive immune response in the central nervous system (CNS) mechanisms of neuropathic pain. This review identifies how neuropathic pain alters CNS immune privilege to facilitate T cell infiltration. Once in the CNS, T cells may interact with the local antigen presenting cells, microglia, via the major histocompatibility complex and the costimulatory molecules CD40 and B7. In this way, T cells may contribute to the maintenance of neuropathic pain through pro-inflammatory interactions with microglia and by facilitating the activation of astrocytes in the spinal dorsal horn. Based on the evidence presented in this review, we suggest that this bidirectional, pro-inflammatory system of neurons, glia and T cells in neuropathic pain should be renamed the pentapartite synapse, and identifies the latest member as a potential disease-modifying therapeutic target.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | |
Collapse
|
315
|
Abstract
Understanding and consequently treating neuropathic pain effectively is a challenge for modern medicine, as unlike inflammation, which can be controlled relatively well, chronic pain due to nerve injury is refractory to most current therapeutics. Here we define a target pathway for a new class of analgesics, tetrahydrobiopterin (BH4) synthesis and metabolism. BH4 is an essential co-factor in the synthesis of serotonin, dopamine, epinephrine, norepinephrine and nitric oxide and as a result, its availability influences many systems, including neurons. Following peripheral nerve damage, levels of BH4 are dramatically increased in sensory neurons, consequently this has a profound effect on the physiology of these cells, causing increased activity and pain hypersensitivity. These changes are principally due to the upregulation of the rate limiting enzyme for BH4 synthesis GTP Cyclohydrolase 1 (GCH1). A GCH1 pain-protective haplotype which decreases pain levels in a variety of settings, by reducing the levels of endogenous activation of this enzyme, has been characterized in humans. Here we define the control of BH4 homeostasis and discuss the consequences of large perturbations within this system, both negatively via genetic mutations and after pathological increases in the production of this cofactor that result in chronic pain. We explain the nature of the GCH1 reduced-function haplotype and set out the potential for a ' BH4 blocking' drug as a novel analgesic.
Collapse
Affiliation(s)
- Alban Latremoliere
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| | - Michael Costigan
- F.M. Kirby Neurobiology Center, Children’s Hospital Boston, Harvard Medical School, 3 Blackfan Circle, CLS 12260, Boston, MA 02115, USA
| |
Collapse
|
316
|
Clark AK, Malcangio M. Microglial signalling mechanisms: Cathepsin S and Fractalkine. Exp Neurol 2011; 234:283-92. [PMID: 21946268 DOI: 10.1016/j.expneurol.2011.09.012] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/26/2011] [Accepted: 09/09/2011] [Indexed: 12/15/2022]
Abstract
A recent major conceptual advance has been the recognition of the importance of immune system-neuron interactions in the modulation of spinal pain processing. In particular, pro-inflammatory mediators secreted by immune competent cells such as microglia modulate nociceptive function in the injured CNS and following peripheral nerve damage. Chemokines play a pivotal role in mediating neuronal-microglial communication which leads to increased nociception. Here we examine the evidence that one such microglial mediator, the lysosomal cysteine protease Cathepsin S (CatS), is critical for the maintenance of neuropathic pain via cleavage of the transmembrane chemokine Fractalkine (FKN). Both CatS and FKN mediate critical physiological functions necessary for immune regulation. As key mediators of homeostatic functions it is not surprising that imbalance in these immune processes has been implicated in autoimmune disorders including Multiple Sclerosis and Rheumatoid Arthritis, both of which are associated with chronic pain. Thus, impairment of the CatS/FKN signalling pair constitutes a novel therapeutic approach for the treatment of chronic pain.
Collapse
Affiliation(s)
- Anna K Clark
- Wolfson Centre for Age Related Diseases, King's College London, London, UK
| | | |
Collapse
|
317
|
The mechanisms of microgliosis and pain following peripheral nerve injury. Exp Neurol 2011; 234:271-82. [PMID: 21893056 DOI: 10.1016/j.expneurol.2011.08.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 12/23/2022]
Abstract
Microglia are the resident macrophages in the central nervous system (CNS). Any insult to the CNS homeostasis will induce a rapid change in microglia morphology, gene expression profile and functional behaviour. These responses of microglia have been collectively known as 'microgliosis'. Interestingly, damage to the nervous system outside the CNS, such as axotomy of a peripheral nerve, can lead to microgliosis in the spinal cord. There is a variation in the degree of microgliosis depending on the model of nerve injury employed for instance this response is more marked following traumatic nerve injury than in models of chemotherapy induced neuropathy. Following peripheral nerve injury nociceptive inputs from sensory neurons appear to be critical in triggering the development of spinal microgliosis. A number of signalling pathways including growth factors such as Neuregulin-1, matrix metalloproteases such as MMP-9 and multiple chemokines enable direct communication between injured primary afferents and microglia. In addition, we describe a group of mediators which although not demonstrably shown to be released from neurons are known to modulate microglial phenotype. There is a great functional diversity of the microglial response to peripheral nerve injury which includes: Cellular migration, proliferation, cytokine release, phagocytosis, antigen presentation and recruitment of T cells. It should also be noted that in certain contexts microglia may have a role in the resolution of neuro-inflammation. Although there is still no direct evidence demonstrating that spinal microglia have a role in neuropathic pain in humans, these patients present a pro-inflammatory cytokine profile and it is a reasonable hypothesis that these cells may contribute to this inflammatory response. Modulating microglial functions offers a novel therapeutic opportunity following nerve injury which ideally would involve reducing the pro-inflammatory nature of these cells whilst retaining their potential beneficial functions.
Collapse
|
318
|
Kim CF, Moalem-Taylor G. Detailed characterization of neuro-immune responses following neuropathic injury in mice. Brain Res 2011; 1405:95-108. [DOI: 10.1016/j.brainres.2011.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 05/30/2011] [Accepted: 06/08/2011] [Indexed: 01/23/2023]
|
319
|
Zhu W, Oxford GS. Differential gene expression of neonatal and adult DRG neurons correlates with the differential sensitization of TRPV1 responses to nerve growth factor. Neurosci Lett 2011; 500:192-6. [PMID: 21741445 DOI: 10.1016/j.neulet.2011.06.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/27/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
Abstract
Cultures of neonatal and adult dorsal root ganglion (DRG) neurons are commonly used in in vitro models to study the ion channels and signaling events associated with peripheral sensation under various conditions. Differential responsiveness between neonatal and adult DRG neurons to physiological or pathological stimuli suggests potential differences in their gene expression profiles. We performed a microarray analysis of cultured adult and neonatal rat DRG neurons, which revealed distinct gene expression profiles especially of ion channels and signaling molecules at the genomic level. For example, Ca(2+)-stimulated adenylyl cyclase (AC) isoforms AC3 and AC8, PKCδ and CaMKIIα, the voltage-gated sodium channel β1 and β4, and potassium channels K(v)1.1, K(v)3.2, K(v)4.1, K(v)9.1, K(v)9.3, K(ir)3.4, K(ir)7.1, K(2P)1.1/TWIK-1 had significantly higher mRNA expression in adult rat DRG neurons, while Ca(2+)-inhibited AC5 and AC6, sodium channel Na(v)1.3 α subunit, potassium channels K(ir)6.1, K(2P)10.1/TREK-2, calcium channel Ca(v)2.2 α1 subunit, and its auxiliary subunits β1 and β3 were conversely down regulated in adult neurons. Importantly, higher adult neuron expression of ERK1/2, PI3K/P110α, but not of TRPV1 and TrkA, was found and confirmed by PCR and western blot. These latter findings are consistent with the key role of ERK and PI3K signaling in sensitization of TRPV1 by NGF and may explain our previously published observation that adult, but not neonatal, rat DRG neurons are sensitized by NGF.
Collapse
Affiliation(s)
- Weiguo Zhu
- Stark Neuroscience Research Institute and Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | | |
Collapse
|
320
|
Bartanusz V, Jezova D, Alajajian B, Digicaylioglu M. The blood-spinal cord barrier: morphology and clinical implications. Ann Neurol 2011; 70:194-206. [PMID: 21674586 DOI: 10.1002/ana.22421] [Citation(s) in RCA: 323] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 02/18/2011] [Accepted: 03/04/2011] [Indexed: 12/11/2022]
Abstract
The blood-spinal cord barrier (BSCB) is the functional equivalent of the blood-brain barrier (BBB) in the sense of providing a specialized microenvironment for the cellular constituents of the spinal cord. Even if intuitively the BSCB could be considered as the morphological extension of the BBB into the spinal cord, evidence suggests that this is not so. The BSCB shares the same principal building blocks with the BBB; nevertheless, it seems that morphological and functional differences may exist between them. Dysfunction of the BSCB plays a fundamental role in the etiology or progression of several pathological conditions of the spinal cord, such as spinal cord injury, amyotrophic lateral sclerosis, and radiation-induced myelopathy. This review summarizes current knowledge of the morphology of the BSCB, the methodology of studying the BSCB, and the potential role of BSCB dysfunction in selected disorders of the spinal cord, and finally summarizes therapeutic approaches to the BSCB.
Collapse
Affiliation(s)
- Viktor Bartanusz
- Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | |
Collapse
|
321
|
Leger T, Grist J, D'Acquisto F, Clark AK, Malcangio M. Glatiramer acetate attenuates neuropathic allodynia through modulation of adaptive immune cells. J Neuroimmunol 2011; 234:19-26. [DOI: 10.1016/j.jneuroim.2011.01.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 12/30/2022]
|
322
|
Berger JV, Knaepen L, Janssen SPM, Jaken RJP, Marcus MAE, Joosten EAJ, Deumens R. Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. ACTA ACUST UNITED AC 2011; 67:282-310. [PMID: 21440003 DOI: 10.1016/j.brainresrev.2011.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/16/2011] [Accepted: 03/18/2011] [Indexed: 12/15/2022]
Abstract
Neuropathic pain is currently being treated by a range of therapeutic interventions that above all act to lower neuronal activity in the somatosensory system (e.g. using local anesthetics, calcium channel blockers, and opioids). The present review highlights novel and often still largely experimental treatment approaches based on insights into pathological mechanisms, which impact on the spinal nociceptive network, thereby opening the 'gate' to higher brain centers involved in the perception of pain. Cellular and molecular mechanisms such as ectopia, sensitization of nociceptors, phenotypic switching, structural plasticity, disinhibition, and neuroinflammation are discussed in relation to their involvement in pain hypersensitivity following either peripheral neuropathies or spinal cord injury. A mechanism-based treatment approach may prove to be successful in effective treatment of neuropathic pain, but requires more detailed insights into the persistence of cellular and molecular pain mechanisms which renders neuropathic pain unremitting. Subsequently, identification of the therapeutic window-of-opportunities for each specific intervention in the particular peripheral and/or central neuropathy is essential for successful clinical trials. Most of the cellular and molecular pain mechanisms described in the present review suggest pharmacological interference for neuropathic pain management. However, also more invasive treatment approaches belong to current and/or future options such as neuromodulatory interventions (including spinal cord stimulation) and cell or gene therapies, respectively.
Collapse
Affiliation(s)
- Julie V Berger
- Department of Anesthesiology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
323
|
Grace PM, Hutchinson MR, Bishop A, Somogyi AA, Mayrhofer G, Rolan PE. Adoptive transfer of peripheral immune cells potentiates allodynia in a graded chronic constriction injury model of neuropathic pain. Brain Behav Immun 2011; 25:503-13. [PMID: 21134441 DOI: 10.1016/j.bbi.2010.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 11/30/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022] Open
Abstract
Recent evidence demonstrates that peripheral immune cells contribute to the nociceptive hypersensitivity associated with neuropathic pain by infiltrating the central nervous system (CNS). We have recently developed a rat model of graded chronic constriction injury (CCI) by varying the exposure of the sciatic nerve and control non-nerve tissue to surgical placement of chromic gut. We demonstrate that splenocytes can contribute significantly to CCI-induced allodynia, as adoptive transfer of these cells from high pain donors to low pain recipients potentiates allodynia (P<0.001). The phenomenon was replicated with peripheral blood mononuclear cells (P<0.001). Adoptive transfer of allodynia was not achieved in sham recipients, indicating that peripheral immune cells are only capable of potentiating existing allodynia, rather than establishing allodynia. As adoptively transferred cells were found by flow cytometry to migrate to the spleen (P<0.05) and potentiation of allodynia was prevented in splenectomised low pain recipients, adoptive transfer of high pain splenocytes may induce the migration of host-derived immune cells from the spleen to the CNS as observed by flow cytometry (P<0.05). Importantly, intrathecal transfer of CD45(+) cells prepared from spinal cords of high pain donors into low pain recipients led to potentiated allodynia (P<0.001), confirming that infiltrating immune cells are not passive bystanders, but actively contribute to nociceptive hypersensitivity in the lumbar spinal cord.
Collapse
Affiliation(s)
- Peter M Grace
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide 5005, Australia.
| | | | | | | | | | | |
Collapse
|
324
|
Dual Peripheral Actions of Immune Cells in Neuropathic Pain. Arch Immunol Ther Exp (Warsz) 2011; 59:11-24. [DOI: 10.1007/s00005-010-0106-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 09/13/2010] [Indexed: 12/27/2022]
|
325
|
Mélik-Parsadaniantz S. [CCL2 chemokine and transmission of nociceptive information]. Biol Aujourdhui 2011; 204:301-9. [PMID: 21215247 DOI: 10.1051/jbio/2010025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Indexed: 11/14/2022]
Abstract
Chemokines are small proteins belonging to the family of inflammatory cytokines whose main property is to attract and activate immune cells. Chemokines produce their biological activity by interacting with receptors belonging to the family of G protein-coupled receptors (GPCR). It is now clearly demonstrated that, under non-pathological conditions, chemokines and their receptors are constitutively expressed in the nervous system. Exploration of the implication of chemokines and their receptors in pain is a rapidly expanding domain of research. Recent results demonstrate that chemokines are active as modulators of nociceptive information both in the peripheral and central nervous system. After a brief recall of the chemokinergic system, we will discuss recent work on CCL2, a chemo-attractive cytokine which binds to the CCR2 receptor. There is a large body of data supporting the hypothesis that the CCL2 chemokine, released in the dorsal horn of the spinal cord, could have a direct effect on the transmission of nociceptive information and thus participate in neuronal adaptation and probably in the plasticity of glial cells and attractivity of immune cells observed during the installation and development of chronic pain arising from an inflammatory and/or neuropathic mechanism.
Collapse
Affiliation(s)
- Stéphane Mélik-Parsadaniantz
- Centre de Recherche de l'Institut Cerveau Moelle, UMR S 975 INSERM, UMR 7225 CNRS, UPMC, Equipe Douleurs, Faculté de Médecine Pitié Salpêtrière, Paris, France.
| |
Collapse
|
326
|
Microglia-neuronal signalling in neuropathic pain hypersensitivity 2.0. Curr Opin Neurobiol 2011; 20:474-80. [PMID: 20817512 DOI: 10.1016/j.conb.2010.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 08/04/2010] [Accepted: 08/05/2010] [Indexed: 12/15/2022]
Abstract
Microglia are increasingly recognized as critical in the pathogenesis of pain hypersensitivity caused by injury to peripheral nerves. The core signalling pathway is through P2X4 purinergic receptors on the microglia which, via the release of brain-derived neurotrophic factor, cause disinhibition of nociceptive dorsal horn neurons by raising intracellular chloride levels. This disinhibition works in synergy with enhanced excitatory synaptic transmission in the dorsal horn to transform the output of the nociceptive network. There is increased discharge output, unmasking of responses to innocuous peripheral inputs and spontaneous activity in neurons that otherwise only signal nociception. Together the changes caused by microglia-neuron signalling may account for the main symptoms of neuropathic pain in humans.
Collapse
|
327
|
Unal-Cevik I, Oaklander AL. Comparing Partial and Total Tibial-Nerve Axotomy: Long-Term Effects on Prevalence and Location of Evoked Pain Behaviors. Pain Pract 2010; 11:109-19. [DOI: 10.1111/j.1533-2500.2010.00429.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
328
|
Beggs S, Liu XJ, Kwan C, Salter MW. Peripheral nerve injury and TRPV1-expressing primary afferent C-fibers cause opening of the blood-brain barrier. Mol Pain 2010; 6:74. [PMID: 21044346 PMCID: PMC2984489 DOI: 10.1186/1744-8069-6-74] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Accepted: 11/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The blood-brain barrier (BBB) plays the crucial role of limiting exposure of the central nervous system (CNS) to damaging molecules and cells. Dysfunction of the BBB is critical in a broad range of CNS disorders including neurodegeneration, inflammatory or traumatic injury to the CNS, and stroke. In peripheral tissues, the vascular-tissue permeability is normally greater than BBB permeability, but vascular leakage can be induced by efferent discharge activity in primary sensory neurons leading to plasma extravasation into the extravascular space. Whether discharge activity of sensory afferents entering the CNS may open the BBB or blood-spinal cord barrier (BSCB) remains an open question. RESULTS Here we show that peripheral nerve injury (PNI) produced by either sciatic nerve constriction or transecting two of its main branches causes an increase in BSCB permeability, as assessed by using Evans Blue dye or horseradish peroxidase. The increase in BSCB permeability was not observed 6 hours after the PNI but was apparent 24 hours after the injury. The increase in BSCB permeability was transient, peaking about 24-48 hrs after PNI with BSCB integrity returning to normal levels by 7 days. The increase in BSCB permeability was prevented by administering the local anaesthetic lidocaine at the site of the nerve injury. BSCB permeability was also increased 24 hours after electrical stimulation of the sciatic nerve at intensity sufficient to activate C-fibers, but not when A-fibers only were activated. Likewise, BSCB permeability increased following application of capsaicin to the nerve. The increase in permeability caused by C-fiber stimulation or by PNI was not anatomically limited to the site of central termination of primary afferents from the sciatic nerve in the lumbar cord, but rather extended throughout the spinal cord and into the brain. CONCLUSIONS We have discovered that injury to a peripheral nerve and electrical stimulation of C-fibers each cause an increase in the permeability of the BSCB and the BBB. The increase in permeability is delayed in onset, peaks at about 24 hours and is dependent upon action potential propagation. As the increase is mimicked by applying capsaicin to the nerve, the most parsimonious explanation for our findings is that the increase in permeability is mediated by activation of TRPV1-expressing primary sensory neurons. Our findings may be relevant to the development of pain and neuroplastic changes in the CNS following nerve injury. In addition, our findings may provide the basis for developing methods to purposefully open the BBB when needed to increase brain penetration of therapeutic agents that might normally be excluded by an intact BBB.
Collapse
Affiliation(s)
- Simon Beggs
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Department of Physiology, University of Toronto, and University of Toronto Centre for the Study of Pain, Toronto, ON, Canada
| | | | | | | |
Collapse
|
329
|
Abstract
Immune cells and glia interact with neurons to alter pain sensitivity and to mediate the transition from acute to chronic pain. In response to injury, resident immune cells are activated and blood-borne immune cells are recruited to the site of injury. Immune cells not only contribute to immune protection but also initiate the sensitization of peripheral nociceptors. Through the synthesis and release of inflammatory mediators and interactions with neurotransmitters and their receptors, the immune cells, glia and neurons form an integrated network that coordinates immune responses and modulates the excitability of pain pathways. The immune system also reduces sensitization by producing immune-derived analgesic and anti-inflammatory or proresolution agents. A greater understanding of the role of the immune system in pain processing and modulation reveals potential targets for analgesic drug development and new therapeutic opportunities for managing chronic pain.
Collapse
|
330
|
Labuz D, Schreiter A, Schmidt Y, Brack A, Machelska H. T lymphocytes containing β-endorphin ameliorate mechanical hypersensitivity following nerve injury. Brain Behav Immun 2010; 24:1045-53. [PMID: 20385224 DOI: 10.1016/j.bbi.2010.04.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 03/19/2010] [Accepted: 04/07/2010] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain is a debilitating consequence of nerve injuries and is frequently resistant to classical therapies. T lymphocytes mediate adaptive immune responses and have been suggested to generate neuropathic pain. In contrast, in this study we investigated T cells as a source of opioidergic analgesic β-endorphin for the control of augmented tactile sensitivity following neuropathy. We employed in vivo nociceptive (von Frey) testing, flow cytometry and immunofluorescence in wild-type and mice with severe combined immunodeficiency (SCID) subjected to a chronic constriction injury of the sciatic nerve. In wild-type mice, T lymphocytes constituted approximately 11% of all immune cells infiltrating the injury site, and they expressed β-endorphin and receptors for corticotropin-releasing factor (CRF), an agent releasing opioids from leukocytes. CRF applied at the nerve injury site fully reversed neuropathy-induced mechanical hypersensitivity in wild-type animals. In SCID mice, T cells expressing β-endorphin and CRF receptors were absent at the damaged nerve. Consequently, these animals had substantially reduced CRF-mediated antinociception. Importantly, the decreased antinociception was fully restored by transfer of wild-type mice-derived T lymphocytes in SCID mice. The re-established CRF antinociception could be reversed by co-injection of an antibody against β-endorphin or an opioid receptor antagonist with limited access to the central nervous system. We propose that, in response to CRF stimulation, T lymphocytes accumulating at the injured nerves utilize β-endorphin for activation of local neuronal opioid receptors to reduce neuropathy-induced mechanical hypersensitivity. Our findings reveal β-endorphin-containing T cells as a crucial component of beneficial adaptive immune responses associated with painful peripheral nerve injuries.
Collapse
Affiliation(s)
- Dominika Labuz
- Klinik für Anaesthesiologie und operative Intensivmedizin, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Krahmerstrasse 6, Berlin, Germany
| | | | | | | | | |
Collapse
|
331
|
Chang M, Smith S, Thorpe A, Barratt MJ, Karim F. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping. Mol Pain 2010; 6:56. [PMID: 20846436 PMCID: PMC2949723 DOI: 10.1186/1744-8069-6-56] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 09/16/2010] [Indexed: 11/24/2022] Open
Abstract
Background We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Results Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Conclusion Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.
Collapse
Affiliation(s)
- Meiping Chang
- Indications Discovery Research Unit, Pfizer Global Research and Development, Chesterfield, MO 63017, USA
| | | | | | | | | |
Collapse
|
332
|
Costigan M, Belfer I, Griffin RS, Dai F, Barrett LB, Coppola G, Wu T, Kiselycznyk C, Poddar M, Lu Y, Diatchenko L, Smith S, Cobos EJ, Zaykin D, Allchorne A, Gershon E, Livneh J, Shen PH, Nikolajsen L, Karppinen J, Männikkö M, Kelempisioti A, Goldman D, Maixner W, Geschwind DH, Max MB, Seltzer Z, Woolf CJ. Multiple chronic pain states are associated with a common amino acid-changing allele in KCNS1. ACTA ACUST UNITED AC 2010; 133:2519-27. [PMID: 20724292 DOI: 10.1093/brain/awq195] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Not all patients with nerve injury develop neuropathic pain. The extent of nerve damage and age at the time of injury are two of the few risk factors identified to date. In addition, preclinical studies show that neuropathic pain variance is heritable. To define such factors further, we performed a large-scale gene profiling experiment which plotted global expression changes in the rat dorsal root ganglion in three peripheral neuropathic pain models. This resulted in the discovery that the potassium channel alpha subunit KCNS1, involved in neuronal excitability, is constitutively expressed in sensory neurons and markedly downregulated following nerve injury. KCNS1 was then characterized by an unbiased network analysis as a putative pain gene, a result confirmed by single nucleotide polymorphism association studies in humans. A common amino acid changing allele, the 'valine risk allele', was significantly associated with higher pain scores in five of six independent patient cohorts assayed (total of 1359 subjects). Risk allele prevalence is high, with 18-22% of the population homozygous, and an additional 50% heterozygous. At lower levels of nerve damage (lumbar back pain with disc herniation) association with greater pain outcome in homozygote patients is P = 0.003, increasing to P = 0.0001 for higher levels of nerve injury (limb amputation). The combined P-value for pain association in all six cohorts tested is 1.14 E-08. The risk profile of this marker is additive: two copies confer the most, one intermediate and none the least risk. Relative degrees of enhanced risk vary between cohorts, but for patients with lumbar back pain, they range between 2- and 3-fold. Although work still remains to define the potential role of this protein in the pathogenic process, here we present the KCNS1 allele rs734784 as one of the first prognostic indicators of chronic pain risk. Screening for this allele could help define those individuals prone to a transition to persistent pain, and thus requiring therapeutic strategies or lifestyle changes that minimize nerve injury.
Collapse
Affiliation(s)
- Michael Costigan
- F.M. Kirby Neurobiology Centre, Children’s Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
333
|
Zenonos G, Kim JE. A T cell-orchestrated immune response in the adult dorsal spinal cord as a cause of neuropathic pain-like hypersensitivity after peripheral nerve damage: a door to novel therapies? Neurosurgery 2010; 66:N24-5. [PMID: 20305485 DOI: 10.1227/01.neu.0000369902.53590.c3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
334
|
Gao YJ, Ji RR. Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010; 126:56-68. [PMID: 20117131 DOI: 10.1016/j.pharmthera.2010.01.002] [Citation(s) in RCA: 456] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 01/15/2010] [Indexed: 12/23/2022]
Abstract
Millions of people worldwide suffer from neuropathic pain as a result of damage to or dysfunction of the nervous system under various disease conditions. Development of effective therapeutic strategies requires a better understanding of molecular and cellular mechanisms underlying the pathogenesis of neuropathic pain. It has been increasingly recognized that spinal cord glial cells such as microglia and astrocytes play a critical role in the induction and maintenance of neuropathic pain by releasing powerful neuromodulators such as proinflammatory cytokines and chemokines. Recent evidence reveals chemokines as new players in pain control. In this article, we review evidence for chemokine modulation of pain via neuronal-glial interactions by focusing on the central role of two chemokines, CX3CL1 (fractalkine) and CCL2 (MCP-1), because they differentially regulate neuronal-glial interactions. Release of CX3CL1 from neurons is ideal to mediate neuronal-to-microglial signaling, since the sole receptor of this chemokine, CX3CR1, is expressed in spinal microglia and activation of the receptor leads to phosphorylation of p38 MAP kinase in microglia. Although CCL2 was implicated in neuronal-to-microglial signaling, a recent study shows a novel role of CCL2 in astroglial-to-neuronal signaling after nerve injury. In particular, CCL2 rapidly induces central sensitization by increasing the activity of NMDA receptors in dorsal horn neurons. Insights into the role of chemokines in neuronal-glial interactions after nerve injury will identify new targets for therapeutic intervention of neuropathic pain.
Collapse
Affiliation(s)
- Yong-Jing Gao
- Pain Research Center, Department of Anesthesiology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States.
| | | |
Collapse
|