301
|
Szablewski L. Glucose Transporters in Brain: In Health and in Alzheimer’s Disease. J Alzheimers Dis 2016; 55:1307-1320. [DOI: 10.3233/jad-160841] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
302
|
Berger AL. Insulin resistance and reduced brain glucose metabolism in the aetiology of Alzheimer’s disease. JOURNAL OF INSULIN RESISTANCE 2016. [DOI: 10.4102/jir.v1i1.15] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Significant epidemiological and clinical evidence has emerged that suggests Alzheimer’s disease (AD) can be added to the list of chronic illnesses that are primarily caused by modern diets and lifestyles at odds with human physiology. High intakes of refined carbohydrates insufficient physical activity, suboptimal sleep quantity and quality, and other factors that may contribute to insulin resistance combine to create a perfect storm of glycation and oxidative stress in the brain. Specific neurons lose the ability to metabolise and harness energy from glucose, ultimately resulting in neuronal degeneration and death. Simultaneously, chronic peripheral hyperinsulinaemia prevents ketogenesis, thus depriving struggling neurons of a highly efficient alternative fuel substrate. The intimate association between type 2 diabetes and AD suggests that they have common underlying causes, namely insulin resistance and perturbed glucose metabolism. Preclinical evidence of AD is detectable decades before over symptoms appear, indicating that AD progresses over time, with observable signs manifesting only after the brain’s compensatory mechanisms have failed and widespread neuronal atrophy begins to interfere with cognition and performance of daily life tasks. That dietary and environmental triggers play pivotal roles in causing AD suggests that nutrition and lifestyle based interventions may hold the key to ameliorating or preventing this debilitating condition for which conventional pharmaceutical treatments are largely ineffective. Results from small scale clinical studies indicate that dietary and lifestyle strategies may be effective for reversing dementia and cognitive impairment. Increased research efforts should be dedicated towards this promising avenue in the future.
Collapse
|
303
|
Athauda D, Foltynie T. Insulin resistance and Parkinson's disease: A new target for disease modification? Prog Neurobiol 2016; 145-146:98-120. [PMID: 27713036 DOI: 10.1016/j.pneurobio.2016.10.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/28/2016] [Accepted: 10/02/2016] [Indexed: 12/12/2022]
Abstract
There is growing evidence that patients with Type 2 diabetes have an increased risk of developing Parkinson's disease and share similar dysregulated pathways suggesting common underlying pathological mechanisms. Historically insulin was thought solely to be a peripherally acting hormone responsible for glucose homeostasis and energy metabolism. However accumulating evidence indicates insulin can cross the blood-brain-barrier and influence a multitude of processes in the brain including regulating neuronal survival and growth, dopaminergic transmission, maintenance of synapses and pathways involved in cognition. In conjunction, there is growing evidence that a process analogous to peripheral insulin resistance occurs in the brains of Parkinson's disease patients, even in those without diabetes. This raises the possibility that defective insulin signalling pathways may contribute to the development of the pathological features of Parkinson's disease, and thereby suggests that the insulin signalling pathway may potentially be a novel target for disease modification. Given these growing links between PD and Type 2 diabetes it is perhaps not unsurprising that drugs used the treatment of T2DM are amongst the most promising treatments currently being prioritised for repositioning as possible novel treatments for PD and several clinical trials are under way. In this review, we will examine the underlying cellular links between insulin resistance and the pathogenesis of PD and then we will assess current and future pharmacological strategies being developed to restore neuronal insulin signalling as a potential strategy for slowing neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- D Athauda
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| | - T Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology & The National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, United Kingdom.
| |
Collapse
|
304
|
Alemany S, Vilor-Tejedor N, Bustamante M, Pujol J, Macià D, Martínez-Vilavella G, Fenoll R, Alvárez-Pedrerol M, Forns J, Júlvez J, Suades-González E, Llop S, Rebagliato M, Sunyer J. A Genome-Wide Association Study of Attention Function in a Population-Based Sample of Children. PLoS One 2016; 11:e0163048. [PMID: 27656889 PMCID: PMC5033492 DOI: 10.1371/journal.pone.0163048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/01/2016] [Indexed: 01/19/2023] Open
Abstract
Background Attention function filters and selects behaviorally relevant information. This capacity is impaired in some psychiatric disorders and has been proposed as an endophenotype for Attention-Deficit/Hyperactivity Disorder; however, its genetic basis remains largely unknown. This study aimed to identify single nucleotide polymorphism (SNPs) associated with attention function. Materials and Methods The discovery sample included 1655 children (7–12 years) and the replication sample included 546 children (5–8 years). Five attention outcomes were assessed using the computerized Attentional Network Test (ANT): alerting, orienting, executive attention, Hit Reaction time (HRT) and the standard error of HRT (HRTSE). A Genome-wide Association Study was conducted for each outcome. Gene set enrichment analyses were performed to detect biological pathways associated with attention outcomes. Additional neuroimaging analyses were conducted to test neural effects of detected SNPs of interest. Results Thirteen loci showed suggestive evidence of association with attention function (P<10−5) in the discovery sample. One of them, the rs4321351 located in the PID1 gene, was nominally significant in the replication sample although it did not survive multiple testing correction. Neuroimaging analysis revealed a significant association between this SNP and brain structure and function involving the frontal-basal ganglia circuits. The mTOR signaling and Alzheimer disease-amyloid secretase pathways were significantly enriched for alerting, orienting and HRT respectively (FDR<5%). Conclusion These results suggest for the first time the involvement of the PID1 gene, mTOR signaling and Alzheimer disease-amyloid secretase pathways, in attention function during childhood. These genes and pathways have been proposed to play a role in neuronal plasticity, memory and neurodegenerative disease.
Collapse
Affiliation(s)
- Silvia Alemany
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- * E-mail:
| | - Natàlia Vilor-Tejedor
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Jesús Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Dídac Macià
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | | | - Raquel Fenoll
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
| | - Mar Alvárez-Pedrerol
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Joan Forns
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Department of Genes and Environment, Division of Epidemiology, Norwegian Institute of Public Health, Oslo, Norway
| | - Jordi Júlvez
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
| | - Elisabet Suades-González
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Learning Disabilities Unit (UTAE); Neuropediatrics Department, Hospital de Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain
| | - Sabrina Llop
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
| | - Marisa Rebagliato
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO−Universitat Jaume I−Universitat de València, Valencia, Spain
- University Jaime I (UJI), Castellón, Spain
| | - Jordi Sunyer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiology and Public Health (CIBERESP), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| |
Collapse
|
305
|
Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 2016; 100:97-109. [PMID: 27620814 DOI: 10.1016/j.neuint.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
A deviant level of melatonin in blood circulation has been associated with the development of diabetes and with learning and memory deficiencies. Melatonin might have an important function in diabetes control; however, the mechanism of melatonin in diabetes remains unknown. The present study aimed to investigate the hyperglycemic condition induced by high-fat diet (HFD) feeding and streptozotocin (STZ) injection and to examine the effect of melatonin on adult hippocampal functions. HFD-fed and STZ-treated rats significantly increased blood glucose level. The present study showed that HFD-fed and STZ-treated rats significantly impaired memory in the Morris Water Maze task, reduced neurogenesis in the hippocampus shown by a reduction in nestin, doublecortin (DCX) and β-III tubulin immunoreactivities, reduced axon terminal markers, synaptophysin, reduced dendritic marker including postsynaptic density 95 (PSD-95) and the glutamate receptor subunit NR2A. Moreover, a significant downregulation of melatonin receptor, insulin receptor-β (IR-β) and both p-IR-β and phosphorylated extracellular signal-regulated kinase (p-ERK) occurred in HFD-fed and STZ-treated rats, while the level of glial fibrillary acidic protein (GFAP) increased. Treatment of melatonin, rats had shorter escape latencies and remained in the target quadrant longer compared to the HFD-fed and STZ-treated rats. Melatonin attenuated the reduction of neurogenesis, synaptogenesis and the induction of astrogliosis. Moreover, melatonin countered the reduction of melatonin receptor, insulin receptor and downstream signaling pathway for insulin. Our data suggested that the dysfunction of insulin signaling pathway occurred in the diabetes may provide a convergent mechanism of hippocampal impaired neurogenesis and synaptogenesis lead to impair memory while melatonin reverses these effects, suggesting that melatonin may reduce the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Niyada Lansubsakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Utcharaporn Kamsrijai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
306
|
Salameh TS, Rhea EM, Banks WA, Hanson AJ. Insulin resistance, dyslipidemia, and apolipoprotein E interactions as mechanisms in cognitive impairment and Alzheimer's disease. Exp Biol Med (Maywood) 2016; 241:1676-83. [PMID: 27470930 PMCID: PMC4999626 DOI: 10.1177/1535370216660770] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An increased risk for Alzheimer's disease is associated with dyslipidemia and insulin resistance. A separate literature shows the genetic risk for developing Alzheimer's disease is strongly correlated to the presence of the E4 isoform of the apolipoprotein E carrier protein. Understanding how apolipoprotein E carrier protein, lipids, amyloid β peptides, glucose, central nervous system insulin, and peripheral insulin interact with one another in Alzheimer's disease is an area of increasing interest. Here, we will review the evidence relating apolipoprotein E carrier protein, lipids, and insulin action to Alzheimer's disease and Aβ peptides and then propose mechanisms as to how these factors might interact with one another to impair cognition and promote Alzheimer's disease.
Collapse
Affiliation(s)
- Therese S Salameh
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Elizabeth M Rhea
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Angela J Hanson
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98195, USA
| |
Collapse
|
307
|
Lee SH, Zabolotny JM, Huang H, Lee H, Kim YB. Insulin in the nervous system and the mind: Functions in metabolism, memory, and mood. Mol Metab 2016; 5:589-601. [PMID: 27656397 PMCID: PMC5021669 DOI: 10.1016/j.molmet.2016.06.011] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Insulin, a pleotrophic hormone, has diverse effects in the body. Recent work has highlighted the important role of insulin's action in the nervous system on glucose and energy homeostasis, memory, and mood. SCOPE OF REVIEW Here we review experimental and clinical work that has broadened the understanding of insulin's diverse functions in the central and peripheral nervous systems, including glucose and body weight homeostasis, memory and mood, with particular emphasis on intranasal insulin. MAJOR CONCLUSIONS Implications for the treatment of obesity, type 2 diabetes, dementia, and mood disorders are discussed in the context of brain insulin action. Intranasal insulin may have potential in the treatment of central nervous system-related metabolic disorders.
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Division of Endocrinology and Metabolism, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul 06591, South Korea.
| | - Janice M Zabolotny
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| | - Hu Huang
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA; Human Performance Laboratory, Department of Kinesiology and Physiology, East Carolina Diabetes and Obesity Institute, East Carolina University, 115 Heart Dr., Greenville, NC 27858, USA.
| | - Hyon Lee
- Department of Neurology, Neuroscience Research Institute, Gachon University Gil Medical Center, 21 Namdong-daero 774 beon-gil, Namdong-gu, Incheon 21565, South Korea.
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, and Harvard Medical School, 330 Brookline Ave., Boston, MA 02216, USA.
| |
Collapse
|
308
|
Abstract
Alzheimer disease (AD) is a slow progressive neurodegenerative disease that affects more elderly women than elderly men. It impairs memory, typically progresses into multidomain cognitive decline that destroys the quality of life, and ultimately leads to death. About 5.3 million older Americans are now living with this disease, and this number is projected to rise to 14 million by 2050. Annual health-care costs in the United States alone are projected to increase to about US$1.1 trillion by 2050. The initial theory that decreasing estrogen levels leads to AD development in postmenopausal women has been proven inconclusive. For example, Women's Health Research Initiative Memory Study and the population-based nested case-control study have failed to demonstrate that estrogen/progesterone (hormone replacement therapy [HRT]) or estrogen replacement therapy could prevent the cognitive decline or reduce the risk of AD. This led to the realization that AD development could be due to a progressive increase in luteinizing hormone (LH) levels in postmenopausal women. Accordingly, a large number of studies have demonstrated that an increase in LH levels is positively correlated with neuropathological, behavioral, and cognitive changes in AD. In addition, LH has been shown to promote amyloidogenic pathway of precursor protein metabolism and deposition of amyloid β plaques in the hippocampus, a region involved in AD. Cognate receptors that mediate LH effects are abundantly expressed in the hippocampus. Reducing the LH levels by treatment with gonadotropin-releasing hormone agonists could provide therapeutic benefits. Despite these advances, many questions remain and require further research.
Collapse
Affiliation(s)
- C V Rao
- 1 Department of Cellular Biology and Pharmacology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,2 Department of Molecular and Human Genetics, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA.,3 Department of Obstetrics and Gynecology, Reproduction and Development Program, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
309
|
Lindahl M, Saarma M, Lindholm P. Unconventional neurotrophic factors CDNF and MANF: Structure, physiological functions and therapeutic potential. Neurobiol Dis 2016; 97:90-102. [PMID: 27425895 DOI: 10.1016/j.nbd.2016.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/29/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022] Open
Abstract
Cerebral dopamine neurotrophic factor (CDNF) and mesencephalic astrocyte-derived neurotrophic factor (MANF) promote the survival of midbrain dopaminergic neurons which degenerate in Parkinson's disease (PD). However, CDNF and MANF are structurally and functionally clearly distinct from the classical, target-derived neurotrophic factors (NTFs) that are solely secreted proteins. In cells, CDNF and MANF localize in the endoplasmic reticulum (ER) and evidence suggests that MANF, and possibly CDNF, is important for the maintenance of ER homeostasis. MANF expression is particularly high in secretory tissues with extensive protein production and thus a high ER protein folding load. Deletion of MANF in mice results in a diabetic phenotype and the activation of unfolded protein response (UPR) in the pancreatic islets. However, information about the intracellular and extracellular mechanisms of MANF and CDNF action is still limited. Here we will discuss the structural motifs and physiological functions of CDNF and MANF as well as their therapeutic potential for the treatment of neurodegenerative diseases and diabetes. Currently available knockout models of MANF and CDNF in mice, zebrafish and fruit fly will increase information about the biology of these interesting proteins.
Collapse
Affiliation(s)
- Maria Lindahl
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland
| | - Mart Saarma
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland
| | - Päivi Lindholm
- Institute of Biotechnology, P.O.Box 56, Viikinkaari 5, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
310
|
Moreno-Ulloa A, Moreno-Ulloa J. Mortality reduction among persons with type 2 diabetes: (−)-Epicatechin as add-on therapy to metformin? Med Hypotheses 2016; 91:86-89. [DOI: 10.1016/j.mehy.2016.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/11/2016] [Indexed: 02/05/2023]
|
311
|
Tomioka M, Naito Y, Kuroyanagi H, Iino Y. Splicing factors control C. elegans behavioural learning in a single neuron by producing DAF-2c receptor. Nat Commun 2016; 7:11645. [PMID: 27198602 PMCID: PMC4876481 DOI: 10.1038/ncomms11645] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 01/18/2023] Open
Abstract
Alternative splicing generates protein diversity essential for neuronal properties. However, the precise mechanisms underlying this process and its relevance to physiological and behavioural functions are poorly understood. To address these issues, we focused on a cassette exon of the Caenorhabditis elegans insulin receptor gene daf-2, whose proper variant expression in the taste receptor neuron ASER is critical for taste-avoidance learning. We show that inclusion of daf-2 exon 11.5 is restricted to specific neuron types, including ASER, and is controlled by a combinatorial action of evolutionarily conserved alternative splicing factors, RBFOX, CELF and PTB families of proteins. Mutations of these factors cause a learning defect, and this defect is relieved by DAF-2c (exon 11.5+) isoform expression only in a single neuron ASER. Our results provide evidence that alternative splicing regulation of a single critical gene in a single critical neuron is essential for learning ability in an organism. Little is known about the molecular mechanisms regulating neuron-specific alternative splicing. Here, the authors identify a combination of RNA-binding proteins regulating neuron-specific expression of the C. elegans insulin receptor isoform DAF-2c and find disrupting these factors leads to learning deficits.
Collapse
Affiliation(s)
- Masahiro Tomioka
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuki Naito
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Yuichi Iino
- Molecular Genetics Research Laboratory, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
312
|
Mittal K, Mani RJ, Katare DP. Type 3 Diabetes: Cross Talk between Differentially Regulated Proteins of Type 2 Diabetes Mellitus and Alzheimer's Disease. Sci Rep 2016; 6:25589. [PMID: 27151376 PMCID: PMC4858691 DOI: 10.1038/srep25589] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/15/2016] [Indexed: 12/31/2022] Open
Abstract
Type 3 Diabetes (T3D) is a neuroendocrine disorder that represents the progression of Type 2 Diabetes Mellitus (T2DM) to Alzheimer’s disease (AD). T3D contributes in the increase of the total load of Alzheimer’s patients worldwide. The protein network based strategies were used for the analysis of protein interactions and hypothesis was derived describing the possible routes of communications among proteins. The hypothesis provides the insight on the probable mechanism of the disease progression for T3D. The current study also suggests that insulin degrading enzyme (IDE) could be the major player which holds the capacity to shift T2DM to T3D by altering metabolic pathways like regulation of beta-cell development, negative regulation of PI3K/AKT pathways and amyloid beta degradation.
Collapse
Affiliation(s)
- Khyati Mittal
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Ruchi Jakhmola Mani
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| | - Deepshikha Pande Katare
- Proteomic &Translational Research Lab, Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
313
|
Diabetes during pregnancy enhanced neuronal death in the hippocampus of rat offspring. Int J Dev Neurosci 2016; 51:28-35. [DOI: 10.1016/j.ijdevneu.2016.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/29/2016] [Accepted: 04/20/2016] [Indexed: 12/30/2022] Open
|
314
|
Yang HJ, Kim MJ, Kwon DY, Kim DS, Lee YH, Kim JE, Park S. Anti-Diabetic Activities of Gastrodia elata Blume Water Extracts Are Mediated Mainly by Potentiating Glucose-Stimulated Insulin Secretion and Increasing β-Cell Mass in Non-Obese Type 2 Diabetic Animals. Nutrients 2016; 8:161. [PMID: 26978400 PMCID: PMC4808889 DOI: 10.3390/nu8030161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 02/27/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
The brain is an important modulator of glucose metabolism, and is known to respond Gastrodia elata Blume water extract (GEB). Therefore, we examined whether long-term administration of GEB has hypoglycemic activity, and its action mechanism was explored in partially-pancreatectomized rats that exhibit similar characteristics as Asian type 2 diabetes, non-obese insulin-insufficient diabetes. The rats were provided high-fat diets supplemented with either of (1) 0.5% GEB (GEB-L), (2) 2% GEB (GEB-H), (3) 2% dextrin (control), or (4) 2% dextrin with rosiglitazone (20 mg/kg body weight; positive-control) for eight weeks. GEB dose-dependently improved hypothalamic insulin signaling, enhanced whole-body insulin sensitivity during hyperinsulinemic euglycemic clamp, and reduced hepatic glucose output in a hyperinsulinemic state. GEB dose-dependently increased the area under the curve of the serum insulin levels at the first and second phases during hyperglycemic clamp compared to the control, whereas the positive control had no effect. Insulin sensitivity during the hyperglycemic state also improved, dose-dependently, in response to GEB compared with that of the control, but was less than the positive control. GEB-H increased the mass of β-cells by potentiating proliferation and decreasing apoptosis. In conclusion, GEB could be a therapeutic agent for treating Asian type 2 diabetes.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Biomarkers/blood
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Energy Metabolism/drug effects
- Gastrodia/chemistry
- Hypoglycemic Agents/chemistry
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Insulin/blood
- Insulin/metabolism
- Insulin Resistance
- Insulin Secretion
- Insulin-Secreting Cells/drug effects
- Insulin-Secreting Cells/metabolism
- Insulin-Secreting Cells/pathology
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Pancreatectomy
- Phytotherapy
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Rats, Sprague-Dawley
- Solvents/chemistry
- Time Factors
- Water/chemistry
Collapse
Affiliation(s)
- Hye Jeong Yang
- Food Functional Research Division, Korean Food Research Institutes, Sungnam 463-746, Korea.
| | - Min Jung Kim
- Food Functional Research Division, Korean Food Research Institutes, Sungnam 463-746, Korea.
| | - Dae Young Kwon
- Food Functional Research Division, Korean Food Research Institutes, Sungnam 463-746, Korea.
| | - Da Sol Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea.
| | - Young Hyun Lee
- Department of Nanobiomechatronics, Hoseo University, Asan 336-795, Korea.
| | - Ji Eun Kim
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea.
| | - Sunmin Park
- Department of Food and Nutrition, Obesity/Diabetes Center, Hoseo University, Asan 336-795, Korea.
- Department of Nanobiomechatronics, Hoseo University, Asan 336-795, Korea.
| |
Collapse
|
315
|
Intranasal Insulin Prevents Anesthesia-Induced Spatial Learning and Memory Deficit in Mice. Sci Rep 2016; 6:21186. [PMID: 26879001 PMCID: PMC4754754 DOI: 10.1038/srep21186] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/19/2016] [Indexed: 01/13/2023] Open
Abstract
Elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). At present, there is no treatment that can prevent anesthesia-induced postoperative cognitive dysfunction. Here, we treated mice with daily intranasal administration of insulin (1.75 U/day) for one week before anesthesia induced by intraperitoneal injection of propofol and maintained by inhalation of sevoflurane for 1 hr. We found that the insulin treatment prevented anesthesia-induced deficit in spatial learning and memory, as measured by Morris water maze task during 1–5 days after exposure to anesthesia. The insulin treatment also attenuated anesthesia-induced hyperphosphorylation of tau and promoted the expression of synaptic proteins and insulin signaling in the brain. These findings show a therapeutic potential of intranasal administration of insulin before surgery to reduce the risk of anesthesia-induced cognitive decline and AD.
Collapse
|
316
|
Barone E, Di Domenico F, Cassano T, Arena A, Tramutola A, Lavecchia MA, Coccia R, Butterfield DA, Perluigi M. Impairment of biliverdin reductase-A promotes brain insulin resistance in Alzheimer disease: A new paradigm. Free Radic Biol Med 2016; 91:127-42. [PMID: 26698666 DOI: 10.1016/j.freeradbiomed.2015.12.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 01/12/2023]
Abstract
Clinical studies suggest a link between peripheral insulin resistance and cognitive dysfunction. Interestingly, post-mortem analyses of Alzheimer disease (AD) subjects demonstrated insulin resistance in the brain proposing a role for cognitive deficits observed in AD. However, the mechanisms responsible for the onset of brain insulin resistance (BIR) need further elucidations. Biliverdin reductase-A (BVR-A) emerged as a unique Ser/Thr/Tyr kinase directly involved in the insulin signaling and represents an up-stream regulator of the insulin signaling cascade. Because we previously demonstrated the oxidative stress (OS)-induced impairment of BVR-A in human AD brain, we hypothesize that BVR-A dysregulation could be associated with the onset of BIR in AD. In the present work, we longitudinally analyze the age-dependent changes of (i) BVR-A protein levels and activation, (ii) total oxidative stress markers levels (PC, HNE, 3-NT) as well as (iii) IR/IRS1 levels and activation in the hippocampus of the triple transgenic model of AD (3xTg-AD) mice. Furthermore, ad hoc experiments have been performed in SH-SY5Y neuroblastoma cells to clarify the molecular mechanism(s) underlying changes observed in mice. Our results show that OS-induced impairment of BVR-A kinase activity is an early event, which starts prior the accumulation of Aβ and tau pathology or the elevation of TNF-α, and that greatly contribute to the onset of BIR along the progression of AD pathology in 3xTg-Ad mice. Based on these evidence we, therefore, propose a new paradigm for which: OS-induced impairment of BVR-A is firstly responsible for a sustained activation of IRS1, which then causes the stimulation of negative feedback mechanisms (i.e. mTOR) aimed to turn-off IRS1 hyper-activity and thus BIR. Similar alterations characterize also the normal aging process in mice, positing BVR-A impairment as a possible bridge in the transition from normal aging to AD.
Collapse
Affiliation(s)
- Eugenio Barone
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy; Universidad Autónoma de Chile, Instituto de Ciencias Biomédicas, Facultad de Salud, Avenida Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Fabio Di Domenico
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Tommaso Cassano
- Department of Clinical and Experimental Medicine, University of Foggia, Via Napoli 20, 71122 Foggia, Italy
| | - Andrea Arena
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Michele Angelo Lavecchia
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Roma, Piazzale A. Moro 5, 00185 Roma, Italy
| | - Raffaella Coccia
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy
| | - D Allan Butterfield
- Department of Chemistry, Markey Cancer Center, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506-0055, USA.
| | - Marzia Perluigi
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185 Roma, Italy.
| |
Collapse
|
317
|
Castellano CA, Baillargeon JP, Nugent S, Tremblay S, Fortier M, Imbeault H, Duval J, Cunnane SC. Regional Brain Glucose Hypometabolism in Young Women with Polycystic Ovary Syndrome: Possible Link to Mild Insulin Resistance. PLoS One 2015; 10:e0144116. [PMID: 26650926 PMCID: PMC4674147 DOI: 10.1371/journal.pone.0144116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 11/15/2015] [Indexed: 01/20/2023] Open
Abstract
Objective To investigate whether cerebral metabolic rate of glucose (CMRglu) is altered in normal weight young women with polycystic ovary syndrome (PCOS) who exhibit mild insulin resistance. Materials and methods Seven women with PCOS were compared to eleven healthy female controls of similar age, education and body mass index. Regional brain glucose uptake was quantified using FDG with dynamic positron emission tomography and magnetic resonance imaging, and its potential relationship with insulin resistance assessed using the updated homeostasis model assessment (HOMA2-IR). A battery of cognitive tests was administered to evaluate working memory, attention and executive function. Results The PCOS group had 10% higher fasting glucose and 40% higher HOMA2-IR (p ≤ 0.035) compared to the Controls. The PCOS group had 9–14% lower CMRglu in specific regions of the frontal, parietal and temporal cortices (p ≤ 0.018). A significant negative relation was found between the CMRglu and HOMA2-IR mainly in the frontal, parietal and temporal cortices as well as in the hippocampus and the amygdala (p ≤ 0.05). Globally, cognitive performance was normal in both groups but scores on the PASAT test of working memory tended to be low in the PCOS group. Conclusions The PCOS group exhibited a pattern of low regional CMRglu that correlated inversely with HOMA2-IR in several brain regions and which resembled the pattern seen in aging and early Alzheimer’s disease. These results suggest that a direct association between mild insulin resistance and brain glucose hypometabolism independent of overweight or obesity can exist in young adults in their 20s. Further investigation of the influence of insulin resistance on brain glucose metabolism and cognition in younger and middle-aged adults is warranted.
Collapse
Affiliation(s)
- Christian-Alexandre Castellano
- Research Centre on Aging, Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- * E-mail:
| | - Jean-Patrice Baillargeon
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Research Center of the Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Scott Nugent
- Research Centre on Aging, Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien Tremblay
- Sherbrooke Molecular Imaging Center, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Mélanie Fortier
- Research Centre on Aging, Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
| | - Hélène Imbeault
- Health and Social Sciences Center–Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
| | - Julie Duval
- Health and Social Sciences Center–Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
- Department of Neurology, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C. Cunnane
- Research Centre on Aging, Sherbrooke University Geriatrics Institute, Sherbrooke, QC, Canada
- Department of Pharmacology and Physiology, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
318
|
Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 2015; 1:FSO25. [PMID: 28031898 PMCID: PMC5137856 DOI: 10.4155/fso.15.23] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The changes in the brain signaling systems play an important role in etiology and pathogenesis of Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), being a possible cause of these diseases. Therefore, their restoration at the early stages of T2DM and MS can be regarded as a promising way to treat and prevent these diseases and their complications. The data on the functional state of the brain signaling systems regulated by insulin, IGF-1, leptin, dopamine, serotonin, melanocortins and glucagon-like peptide-1, in T2DM and MS, are analyzed. The pharmacological approaches to restoration of these systems and improvement of insulin sensitivity, energy expenditure, lipid metabolism, and to prevent diabetic complications are discussed.
Collapse
|
319
|
Wang W, Mandel J, Bouaziz J, Commenges D, Nabirotchkine S, Chumakov I, Cohen D, Guedj M. A Multi-Marker Genetic Association Test Based on the Rasch Model Applied to Alzheimer's Disease. PLoS One 2015; 10:e0138223. [PMID: 26379234 PMCID: PMC4574966 DOI: 10.1371/journal.pone.0138223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/27/2015] [Indexed: 12/28/2022] Open
Abstract
Results from Genome-Wide Association Studies (GWAS) have shown that the genetic basis of complex traits often include many genetic variants with small to moderate effects whose identification remains a challenging problem. In this context multi-marker analysis at the gene and pathway level can complement traditional point-wise approaches that treat the genetic markers individually. In this paper we propose a novel statistical approach for multi-marker analysis based on the Rasch model. The method summarizes the categorical genotypes of SNPs by a generalized logistic function into a genetic score that can be used for association analysis. Through different sets of simulations, the false-positive rate and power of the proposed approach are compared to a set of existing methods, and shows good performances. The application of the Rasch model on Alzheimer's Disease (AD) ADNI GWAS dataset also allows a coherent interpretation of the results. Our analysis supports the idea that APOE is a major susceptibility gene for AD. In the top genes selected by proposed method, several could be functionally linked to AD. In particular, a pathway analysis of these genes also highlights the metabolism of cholesterol, that is known to play a key role in AD pathogenesis. Interestingly, many of these top genes can be integrated in a hypothetic signalling network.
Collapse
Affiliation(s)
- Wenjia Wang
- Pharnext, Issy-les-Moulineaux, Ile de France, France
- Inserm U897, University of Bordeaux, Bordeaux, Aquitaine, France
| | - Jonas Mandel
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Jan Bouaziz
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Daniel Commenges
- Inserm U897, University of Bordeaux, Bordeaux, Aquitaine, France
| | | | - Ilya Chumakov
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Daniel Cohen
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | - Mickaël Guedj
- Pharnext, Issy-les-Moulineaux, Ile de France, France
| | | |
Collapse
|
320
|
Transcription factor Nrf1 is negatively regulated by its O-GlcNAcylation status. FEBS Lett 2015; 589:2347-58. [PMID: 26231763 DOI: 10.1016/j.febslet.2015.07.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/30/2022]
Abstract
O-Linked N-acetylglucosamine transferase (OGT) was identified as an Nrf1-interacting protein. Herein, we show that Nrf1 enables interaction with OGT and their co-immunoprecipitates are O-GlcNAcylated by the enzyme. The putative O-GlcNAcylation negatively regulates Nrf1/TCF11 to reduce both its protein stability and transactivation activity of target gene expression. The turnover of Nrf1 is enhanced upon overexpression of OGT, which promotes ubiquitination of the CNC-bZIP protein. Furthermore, the serine/theorine-rich sequence of PEST2 degron within Nrf1 is identified to be involved in the protein O-GlcNAcylation by OGT. Overall, Nrf1 is negatively regulated by its O-GlcNAcylation status that depends on the glucose concentrations.
Collapse
|
321
|
DeFronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, Hu FB, Kahn CR, Raz I, Shulman GI, Simonson DC, Testa MA, Weiss R. Type 2 diabetes mellitus. Nat Rev Dis Primers 2015; 1:15019. [PMID: 27189025 DOI: 10.1038/nrdp.2015.19] [Citation(s) in RCA: 1118] [Impact Index Per Article: 124.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Type 2 diabetes mellitus (T2DM) is an expanding global health problem, closely linked to the epidemic of obesity. Individuals with T2DM are at high risk for both microvascular complications (including retinopathy, nephropathy and neuropathy) and macrovascular complications (such as cardiovascular comorbidities), owing to hyperglycaemia and individual components of the insulin resistance (metabolic) syndrome. Environmental factors (for example, obesity, an unhealthy diet and physical inactivity) and genetic factors contribute to the multiple pathophysiological disturbances that are responsible for impaired glucose homeostasis in T2DM. Insulin resistance and impaired insulin secretion remain the core defects in T2DM, but at least six other pathophysiological abnormalities contribute to the dysregulation of glucose metabolism. The multiple pathogenetic disturbances present in T2DM dictate that multiple antidiabetic agents, used in combination, will be required to maintain normoglycaemia. The treatment must not only be effective and safe but also improve the quality of life. Several novel medications are in development, but the greatest need is for agents that enhance insulin sensitivity, halt the progressive pancreatic β-cell failure that is characteristic of T2DM and prevent or reverse the microvascular complications. For an illustrated summary of this Primer, visit: http://go.nature.com/V2eGfN.
Collapse
Affiliation(s)
- Ralph A DeFronzo
- Diabetes Division, Department of Medicine, University of Texas Health Science Center, South Texas Veterans Health Care System and Texas Diabetes Institute, 701 S. Zarzamoro, San Antonio, Texas 78207, USA
| | | | - Leif Groop
- Department of Clinical Science Malmoe, Diabetes &Endocrinology, Lund University Diabetes Centre, Lund, Sweden
| | - Robert R Henry
- University of California, San Diego, Section of Diabetes, Endocrinology &Metabolism, Center for Metabolic Research, VA San Diego Healthcare System, San Diego, California, USA
| | | | | | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health and Department of Epidemiology, Harvard T.H. Chan School of Public Health and Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - C Ronald Kahn
- Harvard Medical School and Joslin Diabetes Center, Boston, Massachusetts, USA
| | - Itamar Raz
- Diabetes Unit, Division of Internal Medicine, Hadassah Hebrew University Hospital, Jerusalem, Israel
| | - Gerald I Shulman
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular &Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Donald C Simonson
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marcia A Testa
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ram Weiss
- Department of Human Metabolism and Nutrition, Braun School of Public Health, Hebrew University, Jerusalem, Israel
| |
Collapse
|
322
|
Christensen A, Pike CJ. Menopause, obesity and inflammation: interactive risk factors for Alzheimer's disease. Front Aging Neurosci 2015. [PMID: 26217222 PMCID: PMC4493396 DOI: 10.3389/fnagi.2015.00130] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disorder, the development of which is regulated by several environmental and genetic risk factors. Two factors theorized to contribute to the initiation and/or progression of AD pathogenesis are age-related increases in inflammation and obesity. These factors may be particularly problematic in women. The onset of menopause in mid-life elevates the vulnerability of women to AD, an increased risk that is likely associated with the depletion of estrogens. Menopause is also linked with an abundance of additional changes, including increased central adiposity and inflammation. Here, we review the current literature to explore the interactions between obesity, inflammation, menopause and AD.
Collapse
Affiliation(s)
- Amy Christensen
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| | - Christian J Pike
- Davis School of Gerontology, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
323
|
Ferrannini E, DeFronzo RA. Impact of glucose-lowering drugs on cardiovascular disease in type 2 diabetes. Eur Heart J 2015; 36:2288-96. [PMID: 26063450 DOI: 10.1093/eurheartj/ehv239] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/16/2015] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by multiple pathophysiologic abnormalities. With time, multiple glucose-lowering medications are commonly required to reduce and maintain plasma glucose concentrations within the normal range. Type 2 diabetes mellitus individuals also are at a very high risk for microvascular complications and the incidence of heart attack and stroke is increased two- to three-fold compared with non-diabetic individuals. Therefore, when selecting medications to normalize glucose levels in T2DM patients, it is important that the agent not aggravate, and ideally even improve, cardiovascular risk factors (CVRFs) and reduce cardiovascular morbidity and mortality. In this review, we examine the effect of oral (metformin, sulfonylureas, meglitinides, thiazolidinediones, DPP4 inhibitors, SGLT2 inhibitors, and α-glucosidase inhibitors) and injectable (glucagon-like peptide-1 receptor agonists and insulin) glucose-lowering drugs on established CVRFs and long-term studies of cardiovascular outcomes. Firm evidence that in T2DM cardiovascular disease can be reversed or prevented by improving glycaemic control is still incomplete and must await large, long-term clinical trials in patients at low risk using modern treatment strategies, i.e., drug combinations designed to maximize HbA1c reduction while minimizing hypoglycaemia and excessive weight gain.
Collapse
Affiliation(s)
- Ele Ferrannini
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | - Ralph A DeFronzo
- Diabetes Division, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
324
|
Modulation of hippocampal neural plasticity by glucose-related signaling. Neural Plast 2015; 2015:657928. [PMID: 25977822 PMCID: PMC4419237 DOI: 10.1155/2015/657928] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 04/02/2015] [Accepted: 04/05/2015] [Indexed: 12/20/2022] Open
Abstract
Hormones and peptides involved in glucose homeostasis are emerging as important modulators of neural plasticity. In this regard, increasing evidence shows that molecules such as insulin, insulin-like growth factor-I, glucagon-like peptide-1, and ghrelin impact on the function of the hippocampus, which is a key area for learning and memory. Indeed, all these factors affect fundamental hippocampal properties including synaptic plasticity (i.e., synapse potentiation and depression), structural plasticity (i.e., dynamics of dendritic spines), and adult neurogenesis, thus leading to modifications in cognitive performance. Here, we review the main mechanisms underlying the effects of glucose metabolism on hippocampal physiology. In particular, we discuss the role of these signals in the modulation of cognitive functions and their potential implications in dysmetabolism-related cognitive decline.
Collapse
|
325
|
Ma L, Wang J, Li Y. Insulin resistance and cognitive dysfunction. Clin Chim Acta 2015; 444:18-23. [PMID: 25661087 DOI: 10.1016/j.cca.2015.01.027] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 01/25/2015] [Accepted: 01/27/2015] [Indexed: 12/31/2022]
Abstract
Epidemiologic and biologic studies support a link between type 2 diabetes mellitus and Alzheimer's disease, but the precise mechanism linking the two remains unclear. Growing evidence supports the concept that insulin resistance is important in the pathogenesis of cognitive impairment and neurodegeneration. Insulin plays a profound role in cognitive function. Impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the pathophysiologic mechanisms of cognitive impairment. In this paper we discuss the relationship between insulin resistance and cognitive impairment and review potential mechanisms of this disease process. Evidence, to date, suggests that brain insulin resistance is an independent risk factor for cognitive impairment.
Collapse
Affiliation(s)
- Lina Ma
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Jieyu Wang
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China
| | - Yun Li
- Department of Geriatrics, Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| |
Collapse
|
326
|
Sasaki T. Age-Associated Weight Gain, Leptin, and SIRT1: A Possible Role for Hypothalamic SIRT1 in the Prevention of Weight Gain and Aging through Modulation of Leptin Sensitivity. Front Endocrinol (Lausanne) 2015; 6:109. [PMID: 26236282 PMCID: PMC4504171 DOI: 10.3389/fendo.2015.00109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 07/01/2015] [Indexed: 12/14/2022] Open
Abstract
The hypothalamus is the principal regulator of body weight and energy balance. It modulates both energy intake and energy expenditure by sensing the energy status of the body through neural inputs from the periphery as well as direct humoral inputs. Leptin, an adipokine, is one of the humoral factors responsible for alerting the hypothalamus that enough energy is stored in the periphery. Plasma leptin levels are positively linked to adiposity; leptin suppress energy intake and stimulates energy expenditure. However, prolonged increases in plasma leptin levels due to obesity cause leptin resistance, affecting both leptin access to hypothalamic neurons and leptin signal transduction within hypothalamic neurons. Decreased sensing of peripheral energy status through leptin may lead to a positive energy balance and gradual gains in weight and adiposity, further worsening leptin resistance. Leptin resistance, increased adiposity, and weight gain are all associated with aging in both humans and animals. Central insulin resistance is associated with similar observations. Therefore, improving the action of humoral factors in the hypothalamus may prevent gradual weight gain, especially during middle age. SIRT1 is a NAD(+)-dependent protein deacetylase with numerous substrates, including histones, transcription factors, co-factors, and various enzymes. SIRT1 improves both leptin sensitivity and insulin sensitivity by decreasing the levels of several molecules that impair leptin and insulin signal transduction. SIRT1 and NAD(+) levels decrease with age in the hypothalamus; increased hypothalamic SIRT1 levels prevent age-associated weight gain and improve leptin sensitivity in mice. Therefore, preventing the age-dependent loss of SIRT1 function in the hypothalamus could improve the action of humoral factors in the hypothalamus as well as central regulation of energy balance.
Collapse
Affiliation(s)
- Tsutomu Sasaki
- Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
- *Correspondence: Tsutomu Sasaki, Laboratory for Metabolic Signaling, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan,
| |
Collapse
|