301
|
Gregory H, Phillips JB. Materials for peripheral nerve repair constructs: Natural proteins or synthetic polymers? Neurochem Int 2020; 143:104953. [PMID: 33388359 DOI: 10.1016/j.neuint.2020.104953] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
The efficacious repair of severe peripheral nerve injuries is currently an unmet clinical need, and biomaterial constructs offer a promising approach to help promote nerve regeneration. Current research focuses on the development of more sophisticated constructs with complex architecture and the addition of regenerative agents to encourage timely reinnervation and promote functional recovery. This review surveyed the present landscape of nerve repair construct literature with a focus on six selected materials that are frequently encountered in this application: the natural proteins collagen, chitosan, and silk, and the synthetic polymers poly-ε-caprolactone (PCL), poly-lactic-co-glycolic acid (PLGA) and poly-glycolic acid (PGA). This review also investigated the use of cell therapy in nerve repair constructs, and in all instances concentrated on publications reporting constructs developed and tested in vivo in the last five years (2015-2020). Across the selected literature, the popularity of natural proteins and synthetic polymers appears to be broadly equivalent, with a similar number of studies reporting successful outcomes in vivo. Both material types are also utilised as vehicles for cell therapy, which has much potential to improve the results of nerve bridging for treating longer gaps.
Collapse
Affiliation(s)
- Holly Gregory
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK.
| | - James B Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
302
|
Islami M, Soleimanifar F. A Review of Evaluating Hematopoietic Stem Cells Derived from Umbilical Cord Blood's Expansion and Homing. Curr Stem Cell Res Ther 2020; 15:250-262. [PMID: 31976846 DOI: 10.2174/1574888x15666200124115444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/15/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022]
Abstract
Transplantation of hematopoietic stem cells (HSCs) derived from umbilical cord blood (UCB) has been taken into account as a therapeutic approach in patients with hematologic malignancies. Unfortunately, there are limitations concerning HSC transplantation (HSCT), including (a) low contents of UCB-HSCs in a single unit of UCB and (b) defects in UCB-HSC homing to their niche. Therefore, delays are observed in hematopoietic and immunologic recovery and homing. Among numerous strategies proposed, ex vivo expansion of UCB-HSCs to enhance UCB-HSC dose without any differentiation into mature cells is known as an efficient procedure that is able to alter clinical treatments through adjusting transplantation-related results and making them available. Accordingly, culture type, cytokine combinations, O2 level, co-culture with mesenchymal stromal cells (MSCs), as well as gene manipulation of UCB-HSCs can have effects on their expansion and growth. Besides, defects in homing can be resolved by exposing UCB-HSCs to compounds aimed at improving homing. Fucosylation of HSCs before expansion, CXCR4-SDF-1 axis partnership and homing gene involvement are among strategies that all depend on efficiency, reasonable costs, and confirmation of clinical trials. In general, the present study reviewed factors improving the expansion and homing of UCB-HSCs aimed at advancing hematopoietic recovery and expansion in clinical applications and future directions.
Collapse
Affiliation(s)
- Maryam Islami
- Department of Biotechnology, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| | - Fatemeh Soleimanifar
- Department of Biotechnology, School of Medicine, Alborz University of Medical Science, Karaj, Iran
| |
Collapse
|
303
|
Abstract
Regenerative medicine is a novel scientific field that employs the use of stem cells as cell-based therapy for the regeneration and functional restoration of damaged tissues and organs. Stem cells bear characteristics such as the capacity for self-renewal and differentiation towards specific lineages and, therefore, serve as a backup reservoir in case of tissue injuries. Therapeutically, they can be autologously or allogeneically transplanted for tissue regeneration; however, allogeneic stem cell transplantation can provoke host immune responses leading to a host-versus-transplant reaction. A probable solution to this problem is stem cell encapsulation, a technique that utilizes various biomaterials for the creation of a semi-permeable membrane that encases the stem cells. Stem cell encapsulation can be accomplished by employing a great variety of natural and/or synthetic hydrogels and offers many benefits in regenerative medicine, including protection from the host’s immune system and mechanical stress, improved cell viability, proliferation and differentiation, cryopreservation and controlled and continuous delivery of the stem-cell-secreted therapeutic agents. Here, in this review, we report and discuss almost all natural and synthetic hydrogels used in stem cell encapsulation, along with the benefits that these materials, alone or in combination, could offer to cell therapy through functional cell encapsulation.
Collapse
|
304
|
Fundamentals and Current Strategies for Peripheral Nerve Repair and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1249:173-201. [PMID: 32602098 DOI: 10.1007/978-981-15-3258-0_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A body of evidence indicates that peripheral nerves have an extraordinary yet limited capacity to regenerate after an injury. Peripheral nerve injuries have confounded professionals in this field, from neuroscientists to neurologists, plastic surgeons, and the scientific community. Despite all the efforts, full functional recovery is still seldom. The inadequate results attained with the "gold standard" autograft procedure still encourage a dynamic and energetic research around the world for establishing good performing tissue-engineered alternative grafts. Resourcing to nerve guidance conduits, a variety of methods have been experimentally used to bridge peripheral nerve gaps of limited size, up to 30-40 mm in length, in humans. Herein, we aim to summarize the fundamentals related to peripheral nerve anatomy and overview the challenges and scientific evidences related to peripheral nerve injury and repair mechanisms. The most relevant reports dealing with the use of both synthetic and natural-based biomaterials used in tissue engineering strategies when treatment of nerve injuries is envisioned are also discussed in depth, along with the state-of-the-art approaches in this field.
Collapse
|
305
|
Manufacturing micropatterned collagen scaffolds with chemical-crosslinking for development of biomimetic tissue-engineered oral mucosa. Sci Rep 2020; 10:22192. [PMID: 33335194 PMCID: PMC7747639 DOI: 10.1038/s41598-020-79114-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
The junction between the epithelium and the underlying connective tissue undulates, constituting of rete ridges, which lack currently available soft tissue constructs. In this study, using a micro electro mechanical systems process and soft lithography, fifteen negative molds, with different dimensions and aspect ratios in grid- and pillar-type configurations, were designed and fabricated to create three-dimensional micropatterns and replicated onto fish-scale type I collagen scaffolds treated with chemical crosslinking. Image analyses showed the micropatterns were well-transferred onto the scaffold surfaces, showing the versatility of our manufacturing system. With the help of rheological test, the collagen scaffold manufactured in this study was confirmed to be an ideal gel and have visco-elastic features. As compared with our previous study, its mechanical and handling properties were improved by chemical cross-linking, which is beneficial for grafting and suturing into the complex structures of oral cavity. Histologic evaluation of a tissue-engineered oral mucosa showed the topographical microstructures of grid-type were well-preserved, rather than pillar-type, a well-stratified epithelial layer was regenerated on all scaffolds and the epithelial rete ridge-like structure was developed. As this three-dimensional microstructure is valuable for maintaining epithelial integrity, our micropatterned collagen scaffolds can be used not only intraorally but extraorally as a graft material for human use.
Collapse
|
306
|
Mallis P, Kostakis A, Stavropoulos-Giokas C, Michalopoulos E. Future Perspectives in Small-Diameter Vascular Graft Engineering. Bioengineering (Basel) 2020; 7:E160. [PMID: 33321830 PMCID: PMC7763104 DOI: 10.3390/bioengineering7040160] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
The increased demands of small-diameter vascular grafts (SDVGs) globally has forced the scientific society to explore alternative strategies utilizing the tissue engineering approaches. Cardiovascular disease (CVD) comprises one of the most lethal groups of non-communicable disorders worldwide. It has been estimated that in Europe, the healthcare cost for the administration of CVD is more than 169 billion €. Common manifestations involve the narrowing or occlusion of blood vessels. The replacement of damaged vessels with autologous grafts represents one of the applied therapeutic approaches in CVD. However, significant drawbacks are accompanying the above procedure; therefore, the exploration of alternative vessel sources must be performed. Engineered SDVGs can be produced through the utilization of non-degradable/degradable and naturally derived materials. Decellularized vessels represent also an alternative valuable source for the development of SDVGs. In this review, a great number of SDVG engineering approaches will be highlighted. Importantly, the state-of-the-art methodologies, which are currently employed, will be comprehensively presented. A discussion summarizing the key marks and the future perspectives of SDVG engineering will be included in this review. Taking into consideration the increased number of patients with CVD, SDVG engineering may assist significantly in cardiovascular reconstructive surgery and, therefore, the overall improvement of patients' life.
Collapse
Affiliation(s)
- Panagiotis Mallis
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Alkiviadis Kostakis
- Center of Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece;
| | - Catherine Stavropoulos-Giokas
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| | - Efstathios Michalopoulos
- Hellenic Cord Blood Bank, Biomedical Research Foundation Academy of Athens, 4 Soranou Ephessiou Street, 115 27 Athens, Greece; (C.S.-G.); (E.M.)
| |
Collapse
|
307
|
Zarei M, Samimi A, Khorram M, Abdi MM, Golestaneh SI. Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. Int J Biol Macromol 2020; 168:175-186. [PMID: 33309657 DOI: 10.1016/j.ijbiomac.2020.12.031] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Conductive electrospun nanofiber scaffold containing conductive polypyrrole (PPy) polymer was fabricated to accelerate healing of damaged tissues. In order to prepare these scaffolds, various weight percentages of polypyrrole (5, 10, 15, 20, 25%) relative to the polymers combination (chitosan, collagen, and polyethylene oxide) were used. The fabricated composite scaffolds were characterized using chemical, morphological, physio-mechanical, and biological analyses including; FTIR spectroscopy, SEM, electrical conductivity, tensile test, in vitro degradation, MTT Assay and cell culture. The polypyrrole particles were perfectly dispersed inside the nanofibers, and the fibers average diameter were reducing by increasing the polypyrrole content in the composites. The presence of polypyrrole in fibers enhanced their conductivity up to 164.274 × 10-3 s/m which is in the range of semi-conductive and conductive polymers. MTT and SEM analyses displayed that nanofibers composing 10% polypyrrole possess better cell adhesion, growth and proliferation properties comparing to other compositions. Furthermore, the suitable mechanical properties of scaffolds ideally fitted them for different kinds of tissue applications including skin, nerve, heart muscle, etc. Therefore, these fabricated conductive nanofiber scaffolds are particularly appropriate for employing in body parts with electrical signals such as cardiovascular, heart muscles, or nerves.
Collapse
Affiliation(s)
- Maryam Zarei
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Abdolreza Samimi
- Chemical Engineering Department, Faculty of Engineering, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran.
| | - Mahnaz M Abdi
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran
| | - Seyyed Iman Golestaneh
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz 7134851154, Iran
| |
Collapse
|
308
|
Hogan KJ, Mikos AG. Biodegradable thermoresponsive polymers: Applications in drug delivery and tissue engineering. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123063] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
309
|
Ashoorirad M, Fallah A, Saviz M. Measuring and assessment of impedance spectrum of collagen thin films in the presence of deionized water. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
310
|
Elango J, Selvaganapathy PR, Lazzari G, Bao B, Wenhui W. Biomimetic collagen-sodium alginate-titanium oxide (TiO2) 3D matrix supports differentiated periodontal ligament fibroblasts growth for periodontal tissue regeneration. Int J Biol Macromol 2020; 163:9-18. [DOI: 10.1016/j.ijbiomac.2020.06.173] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022]
|
311
|
A Review of Zein as a Potential Biopolymer for Tissue Engineering and Nanotechnological Applications. Processes (Basel) 2020. [DOI: 10.3390/pr8111376] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tissue engineering (TE) is one of the most challenging fields of research since it provides current alternative protocols and materials for the regeneration of damaged tissue. The success of TE has been mainly related to the right selection of nano-sized biocompatible materials for the development of matrixes, which can display excellent anatomical structure, functionality, mechanical properties, and histocompatibility. Today, the research community has paid particular attention to zein as a potential biomaterial for TE applications and nanotechnological approaches. Considering the properties of zein and the advances in the field, there is a need to reviewing the current state of the art of using this natural origin material for TE and nanotechnological applications. Therefore, the goal of this review paper is to elucidate the latest (over the last five years) applications and development works in the field, including TE, encapsulations of drugs, food, pesticides and bandaging for external wounds. In particular, attention has been focused on studies proving new breakthroughs and findings. Also, a complete background of zein’s properties and features are addressed.
Collapse
|
312
|
Donate R, Monzón M, Alemán-Domínguez ME. Additive manufacturing of PLA-based scaffolds intended for bone regeneration and strategies to improve their biological properties. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0046] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.
Collapse
Affiliation(s)
- Ricardo Donate
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - Mario Monzón
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| | - María Elena Alemán-Domínguez
- Departamento de Ingeniería Mecánica, Universidad de Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas, Spain
| |
Collapse
|
313
|
Miele D, Catenacci L, Rossi S, Sandri G, Sorrenti M, Terzi A, Giannini C, Riva F, Ferrari F, Caramella C, Bonferoni MC. Collagen/PCL Nanofibers Electrospun in Green Solvent by DOE Assisted Process. An Insight into Collagen Contribution. MATERIALS 2020; 13:ma13214698. [PMID: 33105584 PMCID: PMC7659940 DOI: 10.3390/ma13214698] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/09/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023]
Abstract
Collagen, thanks to its biocompatibility, biodegradability and weak antigenicity, is widely used in dressings and scaffolds, also as electrospun fibers. Its mechanical stability can be improved by adding polycaprolactone (PCL), a synthetic and biodegradable aliphatic polyester. While previously collagen/PCL combinations were electrospun in solvents such as hexafluoroisopropanol (HFIP) or trifluoroethanol (TFE), more recently literature describes collagen/PCL nanofibers obtained in acidic aqueous solutions. A good morphology of the fibers represents in this case still a challenge, especially for high collagen/PCL ratios. In this work, thanks to preliminary rheological and physicochemical characterization of the solutions and to a Design of Experiments (DOE) approach on process parameters, regular and dimensionally uniform fibers were obtained with collagen/PCL ratios up to 1:2 and 1:1 w/w. Collagen ratio appeared relevant for mechanical strength of dry and hydrated fibers. WAXS and FTIR analysis showed that collagen denaturation is related both to the medium and to the electrospinning process. After one week in aqueous environment, collagen release was complete and a concentration dependent stimulatory effect on fibroblast growth was observed, suggesting the fiber suitability for wound healing. The positive effect of collagen on mechanical properties and on fibroblast biocompatibility was confirmed by a direct comparison of nanofiber performance after collagen substitution with gelatin.
Collapse
Affiliation(s)
- Dalila Miele
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Laura Catenacci
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Milena Sorrenti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Alberta Terzi
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Cinzia Giannini
- Institute of Crystallography, CNR-IC, Via Amendola 122/O, 70126 Bari, Italy; (A.T.); (C.G.)
| | - Federica Riva
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, via Forlanini 2, 27100 Pavia, Italy;
| | - Franca Ferrari
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Carla Caramella
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
| | - Maria Cristina Bonferoni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (D.M.); (L.C.); (S.R.); (G.S.); (M.S.); (F.F.); (C.C.)
- Correspondence:
| |
Collapse
|
314
|
Agban Y, Mugisho OO, Thakur SS, Rupenthal ID. Characterization of Zinc Oxide Nanoparticle Cross-Linked Collagen Hydrogels. Gels 2020; 6:E37. [PMID: 33105715 PMCID: PMC7709635 DOI: 10.3390/gels6040037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/18/2020] [Indexed: 11/16/2022] Open
Abstract
Collagen is the most abundant protein in mammals and possesses high biocompatibility and low antigenicity. These biological properties render it one of the most useful biomaterials for medical applications. This study investigated the mechanical and physical characteristics of collagen hydrogels cross-linked with different ratios of polyvinylpyrrolidone capped zinc oxide nanoparticles (ZPVP). Fourier transform infrared spectroscopy indicated molecular interactions between collagen fibers and ZPVP. Texture analysis revealed a significant increase in gel hardness, adhesiveness, and viscosity after cross-linking with ZPVP. Rheological measurements showed that as the ratio of ZPVP increased, stronger hydrogels were formed which in turn resulted in more sustained release of the model drug, dexamethasone sodium phosphate. We can therefore conclude that the mechanical properties of collagen hydrogels can be modified by controlling the ratio of ZPVP used for cross-linking, offering the potential to develop biocompatible sustained release drug delivery systems.
Collapse
Affiliation(s)
- Yosra Agban
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Odunayo O Mugisho
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Sachin S Thakur
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| |
Collapse
|
315
|
Kim MG, Park CH. Tooth-Supporting Hard Tissue Regeneration Using Biopolymeric Material Fabrication Strategies. Molecules 2020; 25:molecules25204802. [PMID: 33086674 PMCID: PMC7587995 DOI: 10.3390/molecules25204802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
The mineralized tissues (alveolar bone and cementum) are the major components of periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root surfaces. The integrated multiple tissues could generate biological or physiological responses to transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches have been developed to regenerate or repair periodontium but, engineered periodontal tissue formation is still challenging because there are still limitations to control spatial compartmentalization for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration and maturation. Here, we present the recently developed strategies to induce osteogenesis and cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric materials. These techniques in tooth-supporting hard tissue engineering are highly promising to promote the periodontal regeneration and advance the interfacial tissue formation for tissue integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum) for functioning restorations of the periodontal complex.
Collapse
Affiliation(s)
- Min Guk Kim
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
| | - Chan Ho Park
- Department of Dental Science, Graduate School, Kyungpook National University, Daegu 41940, Korea;
- Department of Dental Biomaterials, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Institute for Biomaterials Research and Development, Kyungpook National University, Daegu 41940, Korea
- Correspondence: ; Tel.: +82-53-660-6890
| |
Collapse
|
316
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
317
|
Kumar P, Saini M, Dehiya BS, Sindhu A, Kumar V, Kumar R, Lamberti L, Pruncu CI, Thakur R. Comprehensive Survey on Nanobiomaterials for Bone Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2019. [PMID: 33066127 PMCID: PMC7601994 DOI: 10.3390/nano10102019] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023]
Abstract
One of the most important ideas ever produced by the application of materials science to the medical field is the notion of biomaterials. The nanostructured biomaterials play a crucial role in the development of new treatment strategies including not only the replacement of tissues and organs, but also repair and regeneration. They are designed to interact with damaged or injured tissues to induce regeneration, or as a forest for the production of laboratory tissues, so they must be micro-environmentally sensitive. The existing materials have many limitations, including impaired cell attachment, proliferation, and toxicity. Nanotechnology may open new avenues to bone tissue engineering by forming new assemblies similar in size and shape to the existing hierarchical bone structure. Organic and inorganic nanobiomaterials are increasingly used for bone tissue engineering applications because they may allow to overcome some of the current restrictions entailed by bone regeneration methods. This review covers the applications of different organic and inorganic nanobiomaterials in the field of hard tissue engineering.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Meenu Saini
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Brijnandan S. Dehiya
- Department of Materials Science and Nanotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India; (M.S.); (B.S.D.)
| | - Anil Sindhu
- Department of Biotechnology, Deenbandhu Chhotu Ram University of Science and Technology, Murthal 131039, India;
| | - Vinod Kumar
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| | - Ravinder Kumar
- School of Mechanical Engineering, Lovely Professional University, Phagwara 144411, India
| | - Luciano Lamberti
- Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari, 70125 Bari, Italy;
| | - Catalin I. Pruncu
- Department of Design, Manufacturing & Engineering Management, University of Strathclyde, Glasgow G1 1XJ, UK
- Department of Mechanical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rajesh Thakur
- Department of Bio and Nanotechnology, Guru Jambheshwar University of Science and Technology, Hisar 125001, India; (V.K.); (R.T.)
| |
Collapse
|
318
|
Jiang J, Liu X, Chen H, Dai C, Niu X, Dai L, Chen X, Zhang S. 3D printing collagen/heparin sulfate scaffolds boost neural network reconstruction and motor function recovery after traumatic brain injury in canine. Biomater Sci 2020; 8:6362-6374. [PMID: 33026366 DOI: 10.1039/d0bm01116a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tissue engineering is considered highly promising for the repair of traumatic brain injury (TBI), and accumulating evidence has proved the efficacy of biomaterials and 3D printing. Although collagen is famous for its natural properties, some defects still restrict its potential applications in tissue repair. In this experimental study, we fabricated a kind of scaffold with collagen and heparin sulfate via 3D printing, which possesses favorable physical properties and suitable degradation rate along with satisfactory cytocompatibility. After implantation, the results of motor evoked potentials (MEPs) showed that the latency and amplitude can both be improved in hemiplegic limbs, and the structural integrity of the cerebral cortex and corticospinal tract can be enhanced significantly under magnetic resonance imaging (MRI) evaluation. Additionally, the results of in situ hybridization (ISH) and immunofluorescence staining also revealed the facilitating role of 3D printing collagen/heparin sulfate scaffolds on vascular and neural regeneration. Moreover, the individuals implanted with this kind of scaffold present better gait characteristics and preferable electromyography and myodynamia. In general, 3D printed collagen/heparin sulfate scaffolds have superb performance in both structural repair and functional improvement and may offer a new strategy for the repair of TBI.
Collapse
Affiliation(s)
- Jipeng Jiang
- Postgraduate School, Medical School of Chinese PLA, Beijing 100853, China.
| | | | | | | | | | | | | | | |
Collapse
|
319
|
Bian T, Zhang H, Xing H. Preparation and biological properties of collagen/nano-hydroxyapatite composite nanofibers based on ordered nano-hydroxyapatite ceramic fibers. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124802] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
320
|
Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111580. [PMID: 33321626 DOI: 10.1016/j.msec.2020.111580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022]
Abstract
Development of functional biological substitutes for skin tissue engineering applications has observed several advancements over the past few decades. In this regard, intelligent extracellular matrix (ECM) mimetic scaffolds have recently evolved as a promising paradigm by presenting instructive cues directing cell-matrix communication, tissue remodeling and homeostasis. However, orchestring multitude attributes of skin ECM yet presents an intriguing challenge to be addressed. In the present work, we have developed an in vitro skin scaffold by coating a bio-mimetic ECM cue κ-carrageenan on electrospun nanofibers for the first time. κ-Carrageenan, a natural sulfated algal polysaccharide exhibits close similarity with native glucosaminoglycans (GAGs) of skin ECM. On the other hand, electrospun nanofibers resemble the 3D nano-topographic architecture of ECM. In the coated form, κ-carrageenan could provide the biochemical cues necessary for cellular functions on the nanofibrous scaffold, thereby mimicking the native 3D microenvironment of skin ECM. The nano-architecture of the electrospun matrix is retained in the fabricated scaffold even after coating with κ-carrageenan. The developed biomimetic scaffold significantly supplements adhesion, growth, infiltration, survival and proliferation of fibroblasts. Furthermore, enhanced gene expression and excessive secretion of collagen proteins by fibroblasts communicate a conducive skin ECM micro-environment formation on the algal polysaccharide coated nanofibrous scaffold. Taken together, these findings present a simple yet effective strategy for the fabrication of ECM mimetic scaffold for promising skin tissue engineering applications.
Collapse
|
321
|
Fu L, Yang Z, Gao C, Li H, Yuan Z, Wang F, Sui X, Liu S, Guo Q. Advances and prospects in biomimetic multilayered scaffolds for articular cartilage regeneration. Regen Biomater 2020; 7:527-542. [PMID: 33365139 PMCID: PMC7748444 DOI: 10.1093/rb/rbaa042] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 12/12/2022] Open
Abstract
Due to the sophisticated hierarchical structure and limited reparability of articular cartilage (AC), the ideal regeneration of AC defects has been a major challenge in the field of regenerative medicine. As defects progress, they often extend from the cartilage layer to the subchondral bone and ultimately lead to osteoarthritis. Tissue engineering techniques bring new hope for AC regeneration. To meet the regenerative requirements of the heterogeneous and layered structure of native AC tissue, a substantial number of multilayered biomimetic scaffolds have been studied. Ideal multilayered scaffolds should generate zone-specific functional tissue similar to native AC tissue. This review focuses on the current status of multilayered scaffolds developed for AC defect repair, including design strategies based on the degree of defect severity and the zone-specific characteristics of AC tissue, the selection and composition of biomaterials, and techniques for design and manufacturing. The challenges and future perspectives of biomimetic multilayered scaffold strategies for AC regeneration are also discussed.
Collapse
Affiliation(s)
- Liwei Fu
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhen Yang
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Cangjian Gao
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Hao Li
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China.,Department of Bone and Joint Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, No. 160 Pujian Road, Pudong New District, Shanghai 200127, China
| | - Fuxin Wang
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- School of Medicine, Nankai University, No. 94 Weijin Road, Nankai District, Tianjin 300071, China.,Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma and War Injuries PLA, Institute of Orthopedics, The First Medical Center, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
322
|
Ooi KS, Haszman S, Wong YN, Soidin E, Hesham N, Mior MAA, Tabata Y, Ahmad I, Fauzi MB, Mohd Yunus MH. Physicochemical Characterization of Bilayer Hybrid Nanocellulose-Collagen as a Potential Wound Dressing. MATERIALS 2020; 13:ma13194352. [PMID: 33007893 PMCID: PMC7579490 DOI: 10.3390/ma13194352] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022]
Abstract
The eminent aim for advance wound management is to provide a great impact on the quality of life. Therefore, an excellent strategy for an ideal wound dressing is being developed that eliminates certain drawbacks while promoting tissue regeneration for the prevention of bacterial invasion. The aim of this study is to develop a bilayer hybrid biomatrix of natural origin for wound dressing. The bilayer hybrid bioscaffold was fabricated by the combination of ovine tendon collagen type I and palm tree-based nanocellulose. The fabricated biomatrix was then post-cross-linked with 0.1% (w/v) genipin (GNP). The physical characteristics were evaluated based on the microstructure, pore size, porosity, and water uptake capacity followed by degradation behaviour and mechanical strength. Chemical analysis was performed using energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectrophotometry (FTIR), and X-ray diffraction (XRD). The results demonstrated a uniform interconnected porous structure with optimal pore size ranging between 90 and 140 μm, acceptable porosity (>70%), and highwater uptake capacity (>1500%). The biodegradation rate of the fabricated biomatrix was extended to 22 days. Further analysis with EDX identified the main elements of the bioscaffold, which contains carbon (C) 50.28%, nitrogen (N) 18.78%, and oxygen (O) 30.94% based on the atomic percentage. FTIR reported the functional groups of collagen type I (amide A: 3302 cm-1, amide B: 2926 cm-1, amide I: 1631 cm-1, amide II: 1547 cm-1, and amide III: 1237 cm-1) and nanocellulose (pyranose ring), thus confirming the presence of collagen and nanocellulose in the bilayer hybrid scaffold. The XRD demonstrated a smooth wavy wavelength that is consistent with the amorphous material and less crystallinity. The combination of nanocellulose with collagen demonstrated a positive effect with an increase of Young's modulus. In conclusion, the fabricated bilayer hybrid bioscaffold demonstrated optimum physicochemical and mechanical properties that are suitable for skin wound dressing.
Collapse
Affiliation(s)
- Kai Shen Ooi
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
| | - Shafieq Haszman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
| | - Yon Nie Wong
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
| | - Emillia Soidin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
| | - Nadhirah Hesham
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
| | - Muhammad Amirul Arif Mior
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Yasuhiko Tabata
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku Kyoto 606-8507, Japan;
| | - Ishak Ahmad
- School of Chemical Sciences and Food Technology, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, Selangor 43600, Malaysia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
| | - Mohd Heikal Mohd Yunus
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (K.S.O.); (S.H.); (Y.N.W.); (E.S.); (N.H.); (M.A.A.M.)
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia;
- Correspondence: or ; Tel.: +60-3-91458624
| |
Collapse
|
323
|
Jafari H, Lista A, Siekapen MM, Ghaffari-Bohlouli P, Nie L, Alimoradi H, Shavandi A. Fish Collagen: Extraction, Characterization, and Applications for Biomaterials Engineering. Polymers (Basel) 2020; 12:E2230. [PMID: 32998331 PMCID: PMC7601392 DOI: 10.3390/polym12102230] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023] Open
Abstract
The utilization of marine-based collagen is growing fast due to its unique properties in comparison with mammalian-based collagen such as no risk of transmitting diseases, a lack of religious constraints, a cost-effective process, low molecular weight, biocompatibility, and its easy absorption by the human body. This article presents an overview of the recent studies from 2014 to 2020 conducted on collagen extraction from marine-based materials, in particular fish by-products. The fish collagen structure, extraction methods, characterization, and biomedical applications are presented. More specifically, acetic acid and deep eutectic solvent (DES) extraction methods for marine collagen isolation are described and compared. In addition, the effect of the extraction parameters (temperature, acid concentration, extraction time, solid-to-liquid ratio) on the yield of collagen is investigated. Moreover, biomaterials engineering and therapeutic applications of marine collagen have been summarized.
Collapse
Affiliation(s)
- Hafez Jafari
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| | - Alberto Lista
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milan, Italy;
| | - Manuela Mafosso Siekapen
- Department of Chemical Engineering and Industrial Chemistry, Vrije Universiteit Brussel, Boulevard de la Plaine 2, 1050 Brussels, Belgium;
| | - Pejman Ghaffari-Bohlouli
- Nano-Biopolymers Research Laboratory, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 11155-4563, Iran;
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Houman Alimoradi
- School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
| | - Amin Shavandi
- BioMatter Unit—BTL, École Polytechnique de Bruxelles, Université Libre de Bruxelles, Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium
| |
Collapse
|
324
|
Abstract
The extracellular matrix (ECM) is needed to maintain the structural integrity of tissues and to mediate cellular dynamics. Its main components are fibrous proteins and glycosaminoglycans, which provide a suitable environment for biological functions. Thus, biomaterials with ECM-like properties have been extensively developed by modulating their key components and properties. In the field of cardiac tissue engineering, the use of biomaterials offers several advantages in that biophysical and biochemical cues can be designed to mediate cardiac cells, which is critical for maturation and regeneration. This suggests that understanding biomaterials and their use in vivo and in vitro is beneficial in terms of advancing cardiac engineering. The current review provides an overview of both natural and synthetic biomaterials and their use in cardiac engineering. In addition, we focus on different strategies to recapitulate the cardiac tissue in 2D and 3D approaches, which is an important step for the maturation of cardiac tissues toward regeneration of the adult heart.
Collapse
|
325
|
Xu Z, Xu Y, Basuthakur P, Patra CR, Ramakrishna S, Liu Y, Thomas V, Nanda HS. Fibro-porous PLLA/gelatin composite membrane doped with cerium oxide nanoparticles as bioactive scaffolds for future angiogenesis. J Mater Chem B 2020; 8:9110-9120. [PMID: 32929440 DOI: 10.1039/d0tb01715a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Functionalized cerium oxide nanoparticle (CeNP)-loaded fibro-porous poly-l-lactic acid (PLLA)/gelatin composite membranes were prepared via an electrospinning technology. Considering the importance of such membrane scaffolds for promoting angiogenesis in tissue engineering and drug screening, a series of PLLA/gelatin composite fiber membranes loaded with different doses of CeNPs was prepared. The prepared composite membranes demonstrated hydrophilicity, water absorption, and improved mechanical properties compared to a PLLA and PLLA/gelatin membrane. Also, cell viability assay using somatic hybrid endothelial cells (EA.hy926) proved the biocompatible nature of the scaffolds. The biocompatibility was further supported by in vivo chick embryo angiogenesis assay using fertilized eggs. Our initial results support that these membrane scaffolds could be useful for angiogenesis-related disease treatment after further investigations.
Collapse
Affiliation(s)
- Zhiyang Xu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yulong Xu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Papia Basuthakur
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chitta Ranjan Patra
- Applied Biology Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad-500007, Telangana State, India and Academy of Scientific & Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Yong Liu
- College of Material Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Vinoy Thomas
- Department of Materials Science and Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Discipline of Mechanical Engineering, PDPM-Indian Institute of Information Technology Design and Manufacturing, Jabalpur, Dumna Airport Road, Jabalpur-482005, MP, India.
| |
Collapse
|
326
|
Citeroni MR, Ciardulli MC, Russo V, Della Porta G, Mauro A, El Khatib M, Di Mattia M, Galesso D, Barbera C, Forsyth NR, Maffulli N, Barboni B. In Vitro Innovation of Tendon Tissue Engineering Strategies. Int J Mol Sci 2020; 21:E6726. [PMID: 32937830 PMCID: PMC7555358 DOI: 10.3390/ijms21186726] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Tendinopathy is the term used to refer to tendon disorders. Spontaneous adult tendon healing results in scar tissue formation and fibrosis with suboptimal biomechanical properties, often resulting in poor and painful mobility. The biomechanical properties of the tissue are negatively affected. Adult tendons have a limited natural healing capacity, and often respond poorly to current treatments that frequently are focused on exercise, drug delivery, and surgical procedures. Therefore, it is of great importance to identify key molecular and cellular processes involved in the progression of tendinopathies to develop effective therapeutic strategies and drive the tissue toward regeneration. To treat tendon diseases and support tendon regeneration, cell-based therapy as well as tissue engineering approaches are considered options, though none can yet be considered conclusive in their reproduction of a safe and successful long-term solution for full microarchitecture and biomechanical tissue recovery. In vitro differentiation techniques are not yet fully validated. This review aims to compare different available tendon in vitro differentiation strategies to clarify the state of art regarding the differentiation process.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Maria Camilla Ciardulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano (SA), Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme (PD), Italy; (D.G.); (C.B.)
| | - Nicholas R. Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent ST4 7QB, UK;
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi (SA), Italy; (M.C.C.); (G.D.P.); (N.M.)
- Department of Musculoskeletal Disorders, Faculty of Medicine and Surgery, University of Salerno, Via San Leonardo 1, 84131 Salerno, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London E1 4DG, UK
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Thornburrow Drive, Stoke on Trent ST5 5BG, UK
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (V.R.); (A.M.); (M.E.K.); (M.D.M.); (B.B.)
| |
Collapse
|
327
|
Allan B, Ruan R, Landao-Bassonga E, Gillman N, Wang T, Gao J, Ruan Y, Xu Y, Lee C, Goonewardene M, Zheng M. Collagen Membrane for Guided Bone Regeneration in Dental and Orthopedic Applications. Tissue Eng Part A 2020; 27:372-381. [PMID: 32741266 DOI: 10.1089/ten.tea.2020.0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Treatment of cortical bone defects is a clinical challenge. Guided bone regeneration (GBR), commonly used in oral and maxillofacial dental surgery, may show promise for orthopedic applications in repair of cortical bone defects. However, a limitation in the use of GBR for cortical bone defects is the lack of an ideal scaffold that provides sufficient mechanical support to bridge the cortical bone with minimal interference in the repair process. We have developed a new collagen membrane, CelGro™, for use in GBR. We report the material characterization of CelGro and evaluate the performance of CelGro in translational preclinical and clinical studies. The results show CelGro has a bilayer structure of different fiber alignment and is composed almost exclusively of type I collagen. CelGro was found to be completely acellular and free from xenoantigen, α-gal (galactose-alpha-1,3-galactose). In the preclinical study of a rabbit cortical bone defect model, CelGro demonstrated enhanced bone-remodeling activity and cortical bone healing. Microcomputed tomography evaluation showed early bony bridging over the defect area 30 days postoperatively, and nearly complete restoration of mature cortical bone at the bone defect site 60 days postoperatively. Histological analysis 60 days after surgery further confirmed that CelGro enables bridging of the cortical bone defect by induction of newly formed cortical bone. Compared to a commercially available collagen membrane, Bio-Gide®, CelGro showed much better cortical alignment and reduced porosity at the defect interface. As selection of orthopedic patients with cortical bone defects is complex, we conducted a clinical study evaluating the performance of CelGro in guided bone regeneration around dental implants. CelGro was used in GBR procedures in a total of 16 implants placed in 10 participants. Cone-beam computed tomography images show significantly increased bone formation both horizontally and vertically, which provides sufficient support to stabilize implants within 4 months. Together, the findings of our study demonstrate that CelGro is an ideal membrane for GBR not only in oral and maxillofacial reconstructive surgery but also in orthopedic applications (Clinical Trial ID ACTRN12615000027516).
Collapse
Affiliation(s)
- Brent Allan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Oral and Maxillofacial Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia.,Orthodontics, Dental School, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Euphemie Landao-Bassonga
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas Gillman
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Tao Wang
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Junjie Gao
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Yuan Xu
- Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Clair Lee
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Mithran Goonewardene
- Orthodontics, Dental School, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
328
|
DeStefano V, Khan S, Tabada A. Applications of PLA in modern medicine. ENGINEERED REGENERATION 2020; 1:76-87. [PMID: 38620328 PMCID: PMC7474829 DOI: 10.1016/j.engreg.2020.08.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023] Open
Abstract
Polylactic acid (PLA) is a versatile biopolymer. PLA is synthesized with ease from abundant renewable resources and is biodegradable. PLA has shown promise as a biomaterial in a plethora of healthcare applications such as tissue engineering or regenerative medicine, cardiovascular implants, dental niches, drug carriers, orthopedic interventions, cancer therapy, skin and tendon healing, and lastly medical tools / equipment. PLA has demonstrated instrumental importance as a three-dimensionally (3D) printable biopolymer, which has further been bolstered by its role during the Coronavirus Disease of 2019 (Covid-19) global pandemic. As an abundant filament, PLA has created desperately needed personal protective equipment (PPE) and ventilator modifications. As polymer chemistry continues to advance, so too will the applications and continued efficacy of PLA-based modalities.
Collapse
Affiliation(s)
- Vincent DeStefano
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Salaar Khan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Alonzo Tabada
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
329
|
Xu X, Ren S, Li L, Zhou Y, Peng W, Xu Y. Biodegradable engineered fiber scaffolds fabricated by electrospinning for periodontal tissue regeneration. J Biomater Appl 2020; 36:55-75. [PMID: 32842852 DOI: 10.1177/0885328220952250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Considering the specificity of periodontium and the unique advantages of electrospinning, this technology has been used to fabricate biodegradable tissue engineering materials for functional periodontal regeneration. For better biomedical quality, a continuous technological progress of electrospinning has been performed. Based on property of materials (natural, synthetic or composites) and additive novel methods (drug loading, surface modification, structure adjustment or 3 D technique), various novel membranes and scaffolds that could not only relief inflammation but also influence the biological behaviors of cells have been fabricated to achieve more effective periodontal regeneration. This review provides an overview of the usage of electrospinning materials in treatments of periodontitis, in order to get to know the existing research situation and find treatment breakthroughs of the periodontal diseases.
Collapse
Affiliation(s)
- Xuanwen Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Shuangshuang Ren
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Lu Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yi Zhou
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Wenzao Peng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| | - Yan Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Periodontology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China *These authors contributed equally to this article
| |
Collapse
|
330
|
Kastania G, Campbell J, Mitford J, Volodkin D. Polyelectrolyte Multilayer Capsule (PEMC)-Based Scaffolds for Tissue Engineering. MICROMACHINES 2020; 11:E797. [PMID: 32842692 PMCID: PMC7570195 DOI: 10.3390/mi11090797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022]
Abstract
Tissue engineering (TE) is a highly multidisciplinary field that focuses on novel regenerative treatments and seeks to tackle problems relating to tissue growth both in vitro and in vivo. These issues currently involve the replacement and regeneration of defective tissues, as well as drug testing and other related bioapplications. The key approach in TE is to employ artificial structures (scaffolds) to support tissue development; these constructs should be capable of hosting, protecting and releasing bioactives that guide cellular behaviour. A straightforward approach to integrating bioactives into the scaffolds is discussed utilising polyelectrolyte multilayer capsules (PEMCs). Herein, this review illustrates the recent progress in the use of CaCO3 vaterite-templated PEMCs for the fabrication of functional scaffolds for TE applications, including bone TE as one of the main targets of PEMCs. Approaches for PEMC integration into scaffolds is addressed, taking into account the formulation, advantages, and disadvantages of such PEMCs, together with future perspectives of such architectures.
Collapse
Affiliation(s)
| | | | | | - Dmitry Volodkin
- School of Science and Technology, Department of Chemistry and Forensics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK; (G.K.); (J.C.); (J.M.)
| |
Collapse
|
331
|
Collagen scaffold for mesencyhmal stem cell from stromal vascular fraction (biocompatibility and attachment study): Experimental paper. Ann Med Surg (Lond) 2020; 59:31-34. [PMID: 32983445 PMCID: PMC7498726 DOI: 10.1016/j.amsu.2020.07.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/20/2022] Open
Abstract
Background One of the most important part of tissue engineering (TE) is a matrix called scaffold. A good scaffold integrates with the host tissue and support the growth and differentiation of the cells. Collagen is the most abundant protein in the ECM and has been considered to be a group of proteins with a characteristic molecular structure—fibrillar structure, which contributes to the extracellular scaffolding. Objective In this research we study the biocompatibility and attachment of collagen scaffold by measuring the level of availability of mesenchymal stem cell (MSC) cluster from stromal vascular fraction (SVF). Method This study was experimental invitro on MSC culture derived from SVF, with post-test control group design. Biocompatibility was measured by viability of MSC from SVF with marker Propidium Iodine through flowcytometry and electron microscope was used to assess the population density of MSC from SVF by measuring the number of cluster cells seen. Result Oxidize cellulose has the greatest value of MSC cluster with average number of 2003 cell cluster. This result was significant with p < 0.05 using One-Way Anova and Tukey Test. Conclusion Collagen scaffold is ideal for MSC from SVF because of its compatibility and attachment. Biocompatibility and attachment of collagen scaffold. Measuring the level of availability of mesenchymal stem cell (MSC) cluster from stromal vascular fraction (SVF). Experimental in vitro study on MSC culture derived from SVF. Biocompatibility was measured by viability of MSC from SVF with marker Propidium Iodine through flowcytometry. Electron microscope was used to assess the population density of MSC from SVF.
Collapse
|
332
|
Shelah O, Wertheimer S, Haj-Ali R, Lesman A. Coral-Derived Collagen Fibers for Engineering Aligned Tissues. Tissue Eng Part A 2020; 27:187-200. [PMID: 32524890 DOI: 10.1089/ten.tea.2020.0116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
There is a growing need for biomaterial scaffolds that support engineering of soft tissue substitutes featuring structure and mechanical properties similar to those of the native tissue. This work introduces a new biomaterial system that is based on centimeter-long collagen fibers extracted from Sarcophyton soft corals, wrapped around frames to create aligned fiber arrays. The collagen arrays displayed hyperelastic and viscoelastic mechanical properties that resembled those of collagenous-rich tissues. Cytotoxicity tests demonstrated that the collagen arrays were nontoxic to fibroblast cells. In addition, fibroblast cells seeded on the collagen arrays demonstrated spreading and increased growth for up to 40 days, and their orientation followed that of the aligned fibers. The possibility to combine the collagen cellular arrays with poly(ethylene glycol) diacrylate (PEG-DA) hydrogel, to create integrated biocomposites, was also demonstrated. This study showed that coral collagen fibers in combination with a hydrogel can support biological tissue-like growth, with predefined orientation over a long period of time in culture. As such, it is an attractive scaffold for the construction of various engineered tissues to match their native oriented morphology.
Collapse
Affiliation(s)
- Ortal Shelah
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Shir Wertheimer
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Rami Haj-Ali
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, The Fleischman Faculty of Engineering, Tel-Aviv University, Israel
| |
Collapse
|
333
|
|
334
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|
335
|
Tutuianu R, Rosca AM, Albu Kaya MG, Pruna V, Neagu TP, Lascar I, Simionescu M, Titorencu I. Mesenchymal stromal cell-derived factors promote the colonization of collagen 3D scaffolds with human skin cells. J Cell Mol Med 2020; 24:9692-9704. [PMID: 32666712 PMCID: PMC7520263 DOI: 10.1111/jcmm.15507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/07/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
The development of stem cell technology in combination with advances in biomaterials has opened new ways of producing engineered tissue substitutes. In this study, we investigated whether the therapeutic potential of an acellular porous scaffold made of type I collagen can be improved by the addition of a powerful trophic agent in the form of mesenchymal stromal cells conditioned medium (MSC-CM) in order to be used as an acellular scaffold for skin wound healing treatment. Our experiments showed that MSC-CM sustained the adherence of keratinocytes and fibroblasts as well as the proliferation of keratinocytes. Moreover, MSC-CM had chemoattractant properties for keratinocytes and endothelial cells, attributable to the content of trophic and pro-angiogenic factors. Also, for the dermal fibroblasts cultured on collagen scaffold in the presence of MSC-CM versus serum control, the ratio between collagen III and I mRNAs increased by 2-fold. Furthermore, the gene expression for α-smooth muscle actin, tissue inhibitor of metalloproteinase-1 and 2 and matrix metalloproteinase-14 was significantly increased by approximately 2-fold. In conclusion, factors existing in MSC-CM improve the colonization of collagen 3D scaffolds, by sustaining the adherence and proliferation of keratinocytes and by inducing a pro-healing phenotype in fibroblasts.
Collapse
Affiliation(s)
- Raluca Tutuianu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Ana-Maria Rosca
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | | | - Vasile Pruna
- INCDTP-Division Leather and Footwear Research Institute, Bucharest, Romania
| | | | - Ioan Lascar
- University of Medicine and Pharmacy "Carol Davila", Bucharest, Romania
| | - Maya Simionescu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| | - Irina Titorencu
- Institute of Cellular Biology and Pathology, "Nicolae Simionescu" of the Romanian Academy, Bucharest, Romania
| |
Collapse
|
336
|
Conductive carbon nanofibers incorporated into collagen bio-scaffold assists myocardial injury repair. Int J Biol Macromol 2020; 163:1136-1146. [PMID: 32621929 DOI: 10.1016/j.ijbiomac.2020.06.259] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/11/2022]
Abstract
Currently, treatment of myocardial infarction considered as unmet clinical need. Nanomaterials have been used in the regeneration of tissues such as bone, dental and neural tissue in the body and have increased hope for revitalizing of damaged tissues. Conductive carbon base nanomaterials with its superior physicochemical properties have emerged as promising materials for cardiovascular application. In this study, we applied a biosynthetic collagen scaffold containing carbon nanofiber for regenerating of damaged heart tissue. The collagen-carbon nanofiber scaffold was fabricated and fully characterised. The scaffold was grafted on the affected area of myocardial ischemia, immediately after ligation of the left anterior descending artery in the wistar rat's model. After 4 weeks, histological analyses were performed for investigation of formation of immature cardio-myocytes, epicardial cells, and angiogenesis. Compared to untreated hearts, this scaffold significantly protects heart tissue against injury. This improvement is accompanied by a reduction in fibrosis and the increased formation of a blood vessel network and immature cardio-myocytes in the infarction heart. No toxicity detected with apoptotic and TUNEL assays. In conclusion, the mechanical support of the collagen scaffold with carbon nanofiber enhanced the regeneration of myocardial tissue.
Collapse
|
337
|
Pang F, Li Y, Zhang W, Xia C, He Q, Li Z, Xiao L, Song S, Dong P, Zhou H, Shao T, Cai H, Li L. Biodegradable 131 Iodine-Labeled Microspheres: Potential Transarterial Radioembolization Biomaterial for Primary Hepatocellular Carcinoma Treatment. Adv Healthc Mater 2020; 9:e2000028. [PMID: 32431090 DOI: 10.1002/adhm.202000028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/28/2020] [Indexed: 02/05/2023]
Abstract
Transarterial radioembolization with radionuclide-labeled microspheres is successfully used in hepatocellular carcinoma (HCC) treatment, but the non-biodegradability and rapid settlement of the microsphere material are associated with unsatisfied distribution and unable for multiple administrations. In this study, a novel biodegradable chitosan-collagen composite microsphere (CCM) with ideal settlement rate is prepared. The Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) results indicate CCMs have desirable shapes with diameters around 10 µm, and considerable biodegradability within 12 weeks. These CCMs are successfully radiolabeled with 131 I and processed efficiency of 70.4 MBq mg-1 of microspheres as well as favorable stability in vitro. Then, 131 I-CCMs are injected into rats with orthotopic HCC via the hepatic artery which effectively improves the median overall survival from 19 to 44 days (p < 0.05). Single photon emission computed tomography (SPECT/CT) imaging and immunohistochemical analysis indicate well-localized biodistribution and consistent stability of 131 I-CCMs in the liver over 28 days. Magnetic resonance imaging (MRI) and gross specimens monitoring confirm the inhibited tumor growth after 131 I-CCMs treatment. In conclusion, these biodegradable 131 I-CCMs exhibit optimal radiolabeling efficiency, stability, and favorably radioembolization effect for orthotopic HCC in a rodent model, suggesting potential for interventional cancer therapy.
Collapse
Affiliation(s)
- Fuwen Pang
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Yuhao Li
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Wenjie Zhang
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Chunchao Xia
- Department of RadiologyWest China Hospital of Sichuan University Chengdu 610041 China
| | - Qing He
- Department of OncologyWest China Hospital of Sichuan University Chengdu 610041 China
| | - Zhenlin Li
- Department of RadiologyWest China Hospital of Sichuan University Chengdu 610041 China
| | - Liu Xiao
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Simin Song
- Department of Nuclear MedicineCentral Hospital Guangyuan China
| | - Ping Dong
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Huijun Zhou
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Tuo Shao
- Division of Nuclear Medicine and Molecular ImagingMassachusetts General Hospital & Department of RadiologyHarvard Medical School Boston MA 02114 USA
| | - Huawei Cai
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| | - Lin Li
- Laboratory of Clinical Nuclear MedicineDepartment of Nuclear MedicineWest China Hospital of Sichuan University Chengdu 610041 China
| |
Collapse
|
338
|
An insight on type I collagen from horse tendon for the manufacture of implantable devices. Int J Biol Macromol 2020; 154:291-306. [DOI: 10.1016/j.ijbiomac.2020.03.082] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 12/14/2022]
|
339
|
Isocyanate-terminated urethane-based methacrylate for in situ collagen scaffold modification. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110902. [DOI: 10.1016/j.msec.2020.110902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
|
340
|
Type I Collagen Suspension Induces Neocollagenesis and Myodifferentiation in Fibroblasts In Vitro. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6093974. [PMID: 34368344 PMCID: PMC8337109 DOI: 10.1155/2020/6093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 11/23/2022]
Abstract
The ability of a collagen-based matrix to support cell proliferation, migration, and infiltration has been reported; however, the direct effect of an aqueous collagen suspension on cell cultures has not been studied yet. In this work, the effects of a high-concentration aqueous suspension of a micronized type I equine collagen (EC-I) have been evaluated on a normal mouse fibroblast cell line. Immunofluorescence analysis showed the ability of EC-I to induce a significant increase of type I and III collagen levels, parallel with overexpression of crucial proteins in collagen biosynthesis, maturation, and secretion, prolyl 4-hydroxylase (P4H) and heat shock protein 47 (HSP47), as demonstrated by western blot experiments. The treatment led, also, to an increase of α-smooth muscle actin (α-SMA) expression, evaluated through western blot analysis, and cytoskeletal reorganization, as assessed by phalloidin staining. Moreover, scanning electron microscopy analysis highlighted the appearance of plasma membrane extensions and blebbing of extracellular vesicles. Altogether, these results strongly suggest that an aqueous collagen type I suspension is able to induce fibroblast myodifferentiation. Moreover, our findings also support in vitro models as a useful tool to evaluate the effects of a collagen suspension and understand the molecular signaling pathways possibly involved in the effects observed following collagen treatment in vivo.
Collapse
|
341
|
Alagha A, Nourallah A, Alhariri S. Dexamethasone- loaded polymeric porous sponge as a direct pulp capping agent. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1689-1705. [PMID: 32402228 DOI: 10.1080/09205063.2020.1769801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study aims to achieve the principles of tissue engineering using biopolymers to be applied in the field of vital endodontic treatment to stimulate stem cells and engineering and regeneration of dentin tissue. the polymer blend was loaded with the steroidal anti-inflammatory drug, dexamethasone, and the porous drug-loaded bio-sponge was produced by lyophilization. Bio-sponge, as a direct pulp capping agent, was histologically studied compared to calcium hydroxide Ca(OH)2 in an animal experiment. The results indicated the effectiveness of the bio-sponge as a direct pulp capping agent where the dentin bridge was formed faster than Ca(OH)2 treated samples. There was no inflammatory response in the pulp tissue throughout the follow-up period. The porous bio-sponge loaded with dexamethasone with a neutral pH resulted in enhancement of the odontoblast differentiation from stem cells, resulting in the formation of a renewed dentin bridge without the slightest inflammatory response in the pulp.
Collapse
Affiliation(s)
- Amjad Alagha
- Faculty of Dentistry, Department of Pediatric Dentistry, Tishreen University, Lattakia, Syria
| | - Abdulwahab Nourallah
- Faculty of Dentistry, Department of Pediatric Dentistry, Tishreen University, Lattakia, Syria
| | - Sahar Alhariri
- Faculty of Science, Department of Chemistry, Damascus University, Damascus, Syria
| |
Collapse
|
342
|
Mohammadi Nasr S, Rabiee N, Hajebi S, Ahmadi S, Fatahi Y, Hosseini M, Bagherzadeh M, Ghadiri AM, Rabiee M, Jajarmi V, Webster TJ. Biodegradable Nanopolymers in Cardiac Tissue Engineering: From Concept Towards Nanomedicine. Int J Nanomedicine 2020; 15:4205-4224. [PMID: 32606673 PMCID: PMC7314574 DOI: 10.2147/ijn.s245936] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and renewability but have some significant drawbacks such as rapid degradation, insufficient electrical conductivity, immunological reaction, and poor mechanical properties for cardiac tissue engineering. Synthetic biodegradable polymers have some advantages such as strong mechanical properties, controlled structure, great processing flexibility, and usually no immunological concerns; however, they have some drawbacks such as a lack of cell attachment and possible low biocompatibility. Some applications have combined the best of both and exciting new natural/synthetic composites have been utilized. Recently, the use of nanostructured polymers and polymer nanocomposites has revolutionized the field of cardiac tissue engineering due to their enhanced mechanical, electrical, and surface properties promoting tissue growth. In this review, recent research on the use of biodegradable natural/synthetic nanocomposite polymers in cardiac tissue engineering is presented with forward looking thoughts provided for what is needed for the field to mature.
Collapse
Affiliation(s)
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Sakineh Hajebi
- Faculty of Polymer Engineering, Sahand University of Technology, Tabriz, Iran
- Institute of Polymeric Materials, Sahand University of Technology, Tabriz, Iran
| | - Sepideh Ahmadi
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Masoumehossadat Hosseini
- Department of Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Tehran, Iran
- Soroush Mana Pharmed, Pharmaceutical Holding, Golrang Industrial Group, Tehran, Iran
| | | | | | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Vahid Jajarmi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA02115, United States
| |
Collapse
|
343
|
Sierra-Sánchez Á, Fernández-González A, Lizana-Moreno A, Espinosa-Ibáñez O, Martinez-Lopez A, Guerrero-Calvo J, Fernández-Porcel N, Ruiz-García A, Ordóñez-Luque A, Carriel V, Arias-Santiago S. Hyaluronic acid biomaterial for human tissue-engineered skin substitutes: Preclinical comparative in vivo study of wound healing. J Eur Acad Dermatol Venereol 2020; 34:2414-2427. [PMID: 32173915 DOI: 10.1111/jdv.16342] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/06/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND There is not an ideal biomaterial for tissue-engineered skin substitutes (TESSs), and most of the studies or existing therapies use xenogeneic origin natural biomaterials or biosynthetic scaffolds. OBJECTIVE To analyse clinical, histological integration and homeostasis parameters of a human TESS manufactured with fibrin-hyaluronic acid biomaterial (HA-Skin), grafted in immunodeficient mice for 8 weeks, and compared with the gold standard treatment (Autograft), a human TESS manufactured with fibrin-agarose biomaterial (AG-Skin) and secondary wound healing dressings. METHODS Human TESSs and autografts were implanted into BALB/c mice after surgical excision. Secondary wound healing approach was achieved with biosynthetic collagen wound dressing (Biobrane® ) and fibrin-hyaluronic acid or fibrin-agarose biomaterial without cells (Total N = 44). Clinical integration and homeostasis parameters were evaluated every two weeks for two months. Histological and immunohistochemical analyses were performed four and eight weeks after grafting. RESULTS HA-Skin, AG-Skin and Autograft groups showed a proper clinical integration and epithelization eight weeks later. Scar evaluation revealed better results for Autograft and HA-Skin. Homeostasis analysis indicated similar values of transepidermal water loss and elasticity between HA-Skin (6.42 ± 0.75 g/h/m2 , 0.42 ± 0.08 AU), Autograft (6.91 ± 1.28 g/h/m2 , 0.40 ± 0.08 AU) and healthy mouse skin (6.40 ± 0.43 g/h/m2 , 0.35 ± 0.03 AU). Histological results showed that human TESSs and autografts presented better skin structuration and higher expression of cytokeratins. CONCLUSIONS This study suggests that human TESS based on fibrin-hyaluronic acid biomaterial could be suitable for clinical application in the treatment of several dermatological pathologies (wound healing).
Collapse
Affiliation(s)
- Á Sierra-Sánchez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Lizana-Moreno
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - O Espinosa-Ibáñez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Martinez-Lopez
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain
| | - J Guerrero-Calvo
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - N Fernández-Porcel
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Ruiz-García
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - A Ordóñez-Luque
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain
| | - V Carriel
- Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Department of Histology and Tissue Engineering Group, Faculty of Medicine, University of Granada, Granada, Spain
| | - S Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, Andalusian Network of Design and Translation of Advanced Therapies, Granada, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada, Spain.,Dermatology Department, Virgen de las Nieves University Hospital, Granada, Spain.,Dermatology Department, Faculty of Medicine, University of Granada, Granada, Spain
| |
Collapse
|
344
|
Caballé-Serrano J, Zhang S, Sculean A, Staehli A, Bosshardt DD. Tissue Integration and Degradation of a Porous Collagen-Based Scaffold Used for Soft Tissue Augmentation. MATERIALS 2020; 13:ma13102420. [PMID: 32466244 PMCID: PMC7287763 DOI: 10.3390/ma13102420] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/30/2020] [Accepted: 05/18/2020] [Indexed: 12/23/2022]
Abstract
Collagen-based scaffolds hold great potential for tissue engineering, since they closely mimic the extracellular matrix. We investigated tissue integration of an engineered porous collagen-elastin scaffold developed for soft tissue augmentation. After implantation in maxillary submucosal pouches in 6 canines, cell invasion (vimentin), extracellular matrix deposition (collagen type I) and scaffold degradation (cathepsin k, tartrate-resistant acid phosphatase (TRAP), CD86) were (immuno)-histochemically evaluated. Invasion of vimentin+ cells (scattered and blood vessels) and collagen type I deposition within the pores started at 7 days. At 15 and 30 days, vimentin+ cells were still numerous and collagen type I increasingly filled the pores. Scaffold degradation was characterized by collagen loss mainly occurring around 15 days, a time point when medium-sized multinucleated cells peaked at the scaffold margin with simultaneous labeling for cathepsin k, TRAP, and CD86. Elastin was more resistant to degradation and persisted up to 90 days in form of packages well-integrated in the newly formed soft connective tissue. In conclusion, this collagen-based scaffold maintained long-enough volume stability to allow an influx of blood vessels and vimentin+ fibroblasts producing collagen type I, that filled the scaffold pores before major biomaterial degradation and collapse occurred. Cathepsin k, TRAP and CD86 appear to be involved in scaffold degradation.
Collapse
Affiliation(s)
- Jordi Caballé-Serrano
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (J.C.-S.); (S.Z.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (A.S.)
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, 08017 Barcelona, Spain
| | - Sophia Zhang
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (J.C.-S.); (S.Z.)
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (A.S.)
| | - Alexandra Staehli
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (A.S.)
| | - Dieter D. Bosshardt
- Robert K. Schenk Laboratory of Oral Histology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (J.C.-S.); (S.Z.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland; (A.S.); (A.S.)
- Correspondence: ; Tel.: +41-316328605
| |
Collapse
|
345
|
Filippi M, Born G, Chaaban M, Scherberich A. Natural Polymeric Scaffolds in Bone Regeneration. Front Bioeng Biotechnol 2020; 8:474. [PMID: 32509754 PMCID: PMC7253672 DOI: 10.3389/fbioe.2020.00474] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
Despite considerable advances in microsurgical techniques over the past decades, bone tissue remains a challenging arena to obtain a satisfying functional and structural restoration after damage. Through the production of substituting materials mimicking the physical and biological properties of the healthy tissue, tissue engineering strategies address an urgent clinical need for therapeutic alternatives to bone autografts. By virtue of their structural versatility, polymers have a predominant role in generating the biodegradable matrices that hold the cells in situ to sustain the growth of new tissue until integration into the transplantation area (i.e., scaffolds). As compared to synthetic ones, polymers of natural origin generally present superior biocompatibility and bioactivity. Their assembly and further engineering give rise to a wide plethora of advanced supporting materials, accounting for systems based on hydrogels or scaffolds with either fibrous or porous architecture. The present review offers an overview of the various types of natural polymers currently adopted in bone tissue engineering, describing their manufacturing techniques and procedures of functionalization with active biomolecules, and listing the advantages and disadvantages in their respective use in order to critically compare their actual applicability potential. Their combination to other classes of materials (such as micro and nanomaterials) and other innovative strategies to reproduce physiological bone microenvironments in a more faithful way are also illustrated. The regeneration outcomes achieved in vitro and in vivo when the scaffolds are enriched with different cell types, as well as the preliminary clinical applications are presented, before the prospects in this research field are finally discussed. The collection of studies herein considered confirms that advances in natural polymer research will be determinant in designing translatable materials for efficient tissue regeneration with forthcoming impact expected in the treatment of bone defects.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Mansoor Chaaban
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Arnaud Scherberich
- Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| |
Collapse
|
346
|
Subhan F, Hussain Z, Tauseef I, Shehzad A, Wahid F. A review on recent advances and applications of fish collagen. Crit Rev Food Sci Nutr 2020; 61:1027-1037. [PMID: 32345036 DOI: 10.1080/10408398.2020.1751585] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
During the processing of the fishery resources, the significant portion is either discarded or used to produce low-value fish meal and oil. However, the discarded portion is the rich source of valuable proteins such as collagen, vitamins, minerals, and other bioactive compounds. Collagen is a vital protein in the living body as a component of a fibrous structural protein in the extracellular matrix, connective tissue and building block of bones, tendons, skin, hair, nails, cartilage and joints. In recent years, the use of fish collagen as an increasingly valuable biomaterial has drawn considerable attention from biomedical researchers, owing to its enhanced physicochemical properties, stability and mechanical strength, biocompatibility and biodegradability. This review focuses on summarizing the growing role of fish collagen for biomedical applications. Similarly, the recent advances in various biomedical applications of fish collagen, including wound healing, tissue engineering and regeneration, drug delivery, cell culture and other therapeutic applications, are discussed in detail. These applications signify the commercial importance of fish collagen for the fishing industry, food processors and biomedical sector.
Collapse
Affiliation(s)
- Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences (NUMS), Rawalpindi, Pakistan
| | - Zohaib Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Pakistan.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, (GIST), Gwangju, Republic of Korea
| | - Isfahan Tauseef
- Department of Microbiology, Hazara University, Mansehra, KPK, Pakistan
| | - Adeeb Shehzad
- Department of Biomedical Engineering, School of Mechanical & Manufacturing Engineering, National University of Science and Technology, Islamabad, Pakistan
| | - Fazli Wahid
- Department of Biomedical Sciences, Pak-Austria Fachhochschule: Institute of Applied Sciences and Technology Haripur, Pakistan
| |
Collapse
|
347
|
Shang Y, Chen Z, Zhang Z, Yang Y, Zhao Y. Heart-on-chips screening based on photonic crystals. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00073-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
348
|
Efficient smooth muscle cell differentiation of iPS cells on curcumin-incorporated chitosan/collagen/polyvinyl-alcohol nanofibers. In Vitro Cell Dev Biol Anim 2020; 56:313-321. [PMID: 32307668 PMCID: PMC7223336 DOI: 10.1007/s11626-020-00445-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/16/2020] [Indexed: 12/21/2022]
Abstract
Bladder dysfunction is one of the most common diseases that occur for a number of reasons and the current treatment modalities do not improve much in its recovery process. Tissue engineering in the last two decades has given great hope for the treatment of these disorders. In this study, a composite nanofibrous scaffold was fabricated from chitosan, collagen, and polyvinyl-alcohol polymer blend while curcumin incorporated in scaffold fibers. The scaffold supportive functions from smooth muscle cell differentiation were studied when human-induced pluripotent stem cells were cultured on the scaffolds under differentiation medium. Biocompatibility of the fabricated scaffold increased significantly by incorporating curcumin in the scaffold fibers, where protein adsorption, cell attachment, and viability were increased in the nanofiber/curcumin group compared with the other groups. In addition, the expression level of smooth muscle cell-related genes, including alpha-smooth muscle actin (αSMA), smooth muscle 22 alpha (SM-22a), Caldesmon1, and Calponin1in the stem cells upregulated while cultured in the presence of curcumin, but this increase was significantly improved while cells cultured on the nanofibers/curcumin. In addition, αSMA protein in the cells cultured on the nanofibers/curcumin expressed significantly higher than those cells cultured on the nanofibers without curcumin. It can be concluded that smooth muscle cell differentiation of the induced pluripotent stem cells promoted by curcumin and this promotion was synergistically improved while curcumin incorporated in the nanofibers. Graphical abstract ![]()
Collapse
|
349
|
Coppola D, Oliviero M, Vitale GA, Lauritano C, D’Ambra I, Iannace S, de Pascale D. Marine Collagen from Alternative and Sustainable Sources: Extraction, Processing and Applications. Mar Drugs 2020; 18:E214. [PMID: 32326635 PMCID: PMC7230273 DOI: 10.3390/md18040214] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/11/2020] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.
Collapse
Affiliation(s)
- Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biosciences and BioResources (IBBR), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Maria Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Giovanni Andrea Vitale
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
| | - Isabella D’Ambra
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Salvatore Iannace
- Institute of Polymers, Composites and Biomaterials, National Research Council, P.le E. Fermi 1, Portici, 80055 Naples, Italy; (M.O.); (S.I.)
| | - Donatella de Pascale
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (D.C.); (C.L.)
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy;
| |
Collapse
|
350
|
Semenycheva LL, Egorikhina MN, Chasova VO, Valetova NB, Kuznetsova YL, Mitin AV. Enzymatic Hydrolysis of Marine Collagen and Fibrinogen Proteins in the Presence of Thrombin. Mar Drugs 2020; 18:E208. [PMID: 32290502 PMCID: PMC7230862 DOI: 10.3390/md18040208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
: Enzymatic hydrolysis of native collagen and fibrinogen was carried out under comparable conditions at room temperature. The molecular weight parameters of proteins before and after hydrolysis by thrombin were monitored by gel-penetrating chromatography (GPC). An analysis of the experiment results shows that the molecular weight parameters of the initial fibrinogen (Fn) and cod collagen (CC) are very similar. High molecular CC decays within the first minute, forming two low molecular fractions. The main part (~80%) falls on the fraction with a value of Mw less than 10 kDa. The initial high molecular fraction of Fn with Mw ~320-340 kDa is not completely hydrolyzed even after three days of control. The presence of low molecular fractions with Mw ~17 and Mw ~10 kDa in the solution slightly increases within an hour and noticeably increases for three days. The destruction of macromolecules of high molecular collagen to hydrolysis products appears almost completely within the first minute mainly to the polymer with Mw ~10 kDa, and enzymatic hydrolysis of fibrinogen proceeds slower than that of collagen, but also mainly to the polymer with Mw ~10 kDa. Comparative photos of the surfaces of native collagen, fibrinogen and the scaffold based on them were obtained.
Collapse
Affiliation(s)
- Ludmila L Semenycheva
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Marfa N Egorikhina
- Federal State Budgetary Educational Institution of Higher Education Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, Minin and Pozharsky square 10/1, 603950 Nizhny Novgorod, Russia
| | - Victoria O Chasova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Natalya B Valetova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Yulia L Kuznetsova
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| | - Alexander V Mitin
- Faculty of Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, 603950 Nizhny Novgorod, Russia
| |
Collapse
|