3851
|
Nunzi MG, Mugnaini E. Aspects of the neuroendocrine cerebellum: expression of secretogranin II, chromogranin A and chromogranin B in mouse cerebellar unipolar brush cells. Neuroscience 2009; 162:673-87. [PMID: 19217926 DOI: 10.1016/j.neuroscience.2009.02.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 02/07/2009] [Accepted: 02/07/2009] [Indexed: 11/26/2022]
Abstract
Morphologically distinct neuron classes can be subdivided in sublineages by differential chemical phenotypes that correlate with functional diversity. Here we show by immunocytochemistry that chromogranin A (CgA) chromogranin B (CgB) and secretogranin II (SgII), the principal granins situated in neuronal secretory granules and large dense-core vesicles, are widely but differentially expressed in cells of the mouse cerebellum and terminals of cerebellar afferents. While CgA and CgB were nearly panneuronal, SgII was more restricted in distribution. The cells most intensely immunoreactive for SgII were a class of small, excitatory interneurons enriched in the granular layer of the vestibulocerebellum, the unipolar brush cells (UBCs), although larger neurons likely to be a subset of the Golgi-Lugaro-globular cell population were also distinctly immunopositive; by contrast, Purkinje cells and granule cells were, at best, faintly stained and, stellate, basket cells were unstained. SgII was also present in subsets of mossy fibers, climbing fibers and varicose fibers. Neurons in the cerebellar nuclei and inferior olive were distinctly positive for the three granins. Double-labeling with subset-specific cell class markers indicated that, while both CgA and CgB were present in most UBCs, SgII immunoreactivity was present in the calretinin (CR)-expressing subset, but lacked in metabotropic glutamate receptor 1alpha (mGluR1alpha)-expressing UBCs. Thus, we have identified an additional cell class marker, SgII, which serves to study subtype properties in the UBC population. The abundance of SgII in only one of the two known subsets of UBCs is remarkable, as its expression in other neurons of the cortex was moderate or altogether lacking. The data suggest that the CR-positive UBCs represent a unique neuroendocrine component of the mammalian cerebellar cortex, presumably endowed with transynaptically regulated autocrine or paracrine action/s. Because of the well-known organization of the cerebellar system, several of its neuron classes may represent valuable cellular models to analyze granin functions in situ, in acute slices and in dissociated cell and organotypic slice cultures.
Collapse
Affiliation(s)
- M G Nunzi
- Department of Cell and Molecular Biology, The Feinberg School of Medicine of Northwestern University, Searle 5-474, 320 East Superior Street, Chicago, IL 60611, USA.
| | | |
Collapse
|
3852
|
Zhao Z, Wang Z, Gu Y, Feil R, Hofmann F, Ma L. Regulate axon branching by the cyclic GMP pathway via inhibition of glycogen synthase kinase 3 in dorsal root ganglion sensory neurons. J Neurosci 2009; 29:1350-60. [PMID: 19193882 PMCID: PMC2868143 DOI: 10.1523/jneurosci.3770-08.2009] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 11/26/2008] [Accepted: 12/24/2008] [Indexed: 01/09/2023] Open
Abstract
Cyclic GMP has been proposed to regulate axonal development, but the molecular and cellular mechanisms underlying the formation of axon branches are not well understood. Here, we report the use of rodent embryonic sensory neurons from the dorsal root ganglion (DRG) to demonstrate the role of cGMP signaling in axon branching and to identify the downstream molecular pathway mediating this novel regulation. Pharmacologically, a specific cGMP analog promotes DRG axon branching in culture, and this activity can be achieved by activating the endogenous soluble guanylyl cyclase that produces cGMP. At the molecular level, the cGMP-dependent protein kinase 1 (PrkG1) mediates this activity, as DRG neurons isolated from the kinase-deficient mouse fail to respond to cGMP activation to make branches, whereas overexpression of a PrkG1 mutant with a higher-than-normal basal kinase activity is sufficient to induce branching. In addition, cGMP activation in DRG neurons leads to phosphorylation of glycogen synthase kinase 3 (GSK3), a protein that normally suppresses branching. This interaction is direct, because PrkG1 binds GSK3 in heterologous cells and the purified kinase can phosphorylate GSK3 in vitro. More importantly, overexpression of a dominant active form of GSK3 suppresses cGMP-dependent branching in DRG neurons. Thus, our study establishes an intrinsic signaling cascade that links cGMP activation to GSK3 inhibition in controlling axon branching during sensory axon development.
Collapse
Affiliation(s)
- Zhen Zhao
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, and
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089, and
| | - Zheng Wang
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, and
| | - Ying Gu
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, and
| | - Robert Feil
- Institut für Pharmakologie und Toxikologie, Technische Universität, D-80802 Munich, Germany
| | - Franz Hofmann
- Institut für Pharmakologie und Toxikologie, Technische Universität, D-80802 Munich, Germany
| | - Le Ma
- Zilkha Neurogenetic Institute, Department of Cell and Neurobiology, Keck School of Medicine, and
- Neuroscience Graduate Program, University of Southern California, Los Angeles, California 90089, and
| |
Collapse
|
3853
|
Discovery of a functional protein complex of netrin-4, laminin gamma1 chain, and integrin alpha6beta1 in mouse neural stem cells. Proc Natl Acad Sci U S A 2009; 106:2903-8. [PMID: 19193855 DOI: 10.1073/pnas.0813286106] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Molecular and cellular interactions coordinating the origin and fate of neural stem cells (NSCs) in the adult brain are far from being understood. We present a protein complex that controls proliferation and migration of adult NSCs destined for the mouse olfactory bulb (OB). Combinatorial selection based on phage display technology revealed a previously unrecognized complex between the soluble protein netrin-4 and laminin gamma1 subunit that in turn activates an alpha6beta1 integrin-mediated signaling pathway in NSCs. Differentiation of NSCs is accompanied by a decrease in netrin-4 receptors, indicating that netrin-4 participates in the continual propagation of this stem cell population. Notably, the stem cells themselves do not synthesize netrin-4. Further, we show that netrin-4 is produced by selected GFAP-positive astrocytes positioned close to newborn neurons migrating in the anterior part of the rostral migratory stream (RMS) and within the OB. Our findings present a unique molecular mechanism mediating astrocytic/neuronal crosstalk that regulates ongoing neurogenesis in the adult olfactory system.
Collapse
|
3854
|
Chen CT, Liu Z, Ouellet M, Calon F, Bazinet RP. Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot Essent Fatty Acids 2009; 80:157-63. [PMID: 19237271 DOI: 10.1016/j.plefa.2009.01.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/05/2008] [Accepted: 01/08/2009] [Indexed: 01/06/2023]
Abstract
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly beta-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either (14)C-EPA or (14)C-DHA via in situ cerebral perfusion for 40s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. (14)C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (V(D), microl/g) was calculated. The V(D) between (14)C-EPA- and (14)C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the V(D) of (14)C-EPA in the aqueous fraction was 2.5 times higher than that of (14)C-DHA (p=0.025), suggesting a more extensive beta-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from (14)C-EPA but not from (14)C-DHA-perfused mice suggesting that beta-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid beta-oxidation upon uptake by the brain.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, Ontario, Canada M5S 3E2.
| | | | | | | | | |
Collapse
|
3855
|
Alavian KN, Simon HH. Linkage of cDNA expression profiles of mesencephalic dopaminergic neurons to a genome-wide in situ hybridization database. Mol Neurodegener 2009; 4:6. [PMID: 19178742 PMCID: PMC2637272 DOI: 10.1186/1750-1326-4-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022] Open
Abstract
Midbrain dopaminergic neurons are involved in control of emotion, motivation and motor behavior. The loss of one of the subpopulations, substantia nigra pars compacta, is the pathological hallmark of one of the most prominent neurological disorders, Parkinson's disease. Several groups have looked at the molecular identity of midbrain dopaminergic neurons and have suggested the gene expression profile of these neurons. Here, after determining the efficiency of each screen, we provide a linked database of the genes, expressed in this neuronal population, by combining and comparing the results of six previous studies and verification of expression of each gene in dopaminergic neurons, using the collection of in situ hybridization in the Allen Brain Atlas.
Collapse
Affiliation(s)
- Kambiz N Alavian
- Interdisciplinary Centre for Neuroscience (IZN) - Ruprecht Karls Universität 69120 Heidelberg, Germany.
| | | |
Collapse
|
3856
|
Zikova M, Corlett A, Bendova Z, Pajer P, Bartunek P. DISP3, a sterol-sensing domain-containing protein that links thyroid hormone action and cholesterol metabolism. Mol Endocrinol 2009; 23:520-8. [PMID: 19179482 DOI: 10.1210/me.2008-0271] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In the body, the brain is the most cholesterol-rich organ. Despite this, remarkably little is known about the mechanisms in the brain that regulate cholesterol homeostasis. Due to the blood-brain barrier, plasma lipoproteins are unable to traverse, and instead cholesterol must be synthesized de novo from within the central nervous system. Thyroid hormone receptors, activated in response to thyroid hormone (T(3)), are known to modulate the level of serum cholesterol via complex regulatory pathways. By screening for T(3)-regulated genes we have identified Disp3, a sterol-sensing domain-containing protein that is related to the Dispatched family of proteins. Analysis by RT-PCR and immunohistochemistry demonstrated that DISP3 is predominately expressed in specific cell types of the brain, retina, and testis. Using the model of hyperthyroidism in vivo, we observed the modulation of Disp3 expression in the retina. Furthermore, in vitro analysis of Disp3 expression in cells treated with T(3) revealed both positive and negative regulation. DISP3 localizes within the endoplasmic reticulum and was further found to colocalize with cholesterol. Ectopic expression of DISP3 in fibroblasts resulted in elevated cholesterol levels combined with an altered cholesterol distribution. Given that DISP3 is highly expressed in Purkinje cells, hippocampal neurons, and retinal ganglion cells and that its overexpression results in increased cholesterol levels, it is tempting to postulate that DISP3 may contribute to cholesterol homeostasis in neural cell types. Taken together, we propose that DISP3 represents a new molecular link between thyroid hormone and cholesterol metabolism.
Collapse
Affiliation(s)
- Martina Zikova
- Department of Cell Differentiation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, 142 20 Prague 4, Czech Republic
| | | | | | | | | |
Collapse
|
3857
|
Uhl GR, Drgon T, Johnson C, Liu QR. Addiction genetics and pleiotropic effects of common haplotypes that make polygenic contributions to vulnerability to substance dependence. J Neurogenet 2009; 23:272-82. [PMID: 19152208 PMCID: PMC4898946 DOI: 10.1080/01677060802572929] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abundant evidence from family, adoption, and twin studies point to large genetic contributions to individual differences in vulnerability to develop dependence on one or more addictive substances. Twin data suggest that most of this genetic vulnerability is shared by individuals who are dependent on a variety of addictive substances. Molecular genetic studies, especially genomewide and candidate gene association studies, have elucidated common haplotypes in dozens of genes that appear to make polygenic contributions to vulnerability to developing dependence. Most genes that harbor currently identified addiction-associated haplotypes are expressed in the brain. Haplotypes in many of the same genes are identified in genomewide association studies that compare allele frequencies in substance dependent vs. control individuals from European, African, and Asian racial/ethnic backgrounds. Many of these addiction-associated haplotypes display pleiotropic influences on a variety of related brain-based phenotypes that display 1) substantial heritability and 2) clinical cooccurence with substance dependence.
Collapse
Affiliation(s)
- George R Uhl
- Molecular Neurobiology Branch, NIH-IRP (NIDA), Baltimore, Maryland 21224, USA.
| | | | | | | |
Collapse
|
3858
|
Wondolowski J, Frerking M. Subunit-dependent postsynaptic expression of kainate receptors on hippocampal interneurons in area CA1. J Neurosci 2009; 29:563-74. [PMID: 19144856 PMCID: PMC2746435 DOI: 10.1523/jneurosci.4788-08.2009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2008] [Revised: 11/10/2008] [Accepted: 11/20/2008] [Indexed: 11/21/2022] Open
Abstract
Kainate receptors (KARs) contribute to postsynaptic excitation in only a select subset of neurons. To define the parameters that specify the postsynaptic expression of KARs, we examined the contribution of KARs to EPSCs on hippocampal interneurons in area CA1. Interneurons in stratum radiatum/lacunosum-moleculare express KARs both with and without the GluR5 subunit, but KAR-mediated EPSCs are generated mainly, if not entirely, by GluR5-containing KARs. Extrasynaptic glutamate spillover profoundly recruits AMPA receptors (AMPARs) with little effect on KARs, indicating that KARs are targeted at the synapse more precisely than AMPARs. However, spontaneous EPSCs with a conventional AMPAR component did not have a resolvable contribution of KARs, suggesting that the KARs that contribute to the evoked EPSCs are at a distinct set of synapses. GluR5-containing KARs on interneurons in stratum oriens do not contribute substantially to the EPSC. We conclude that KARs are localized to synapses by cell type-, synapse-, and subunit-selective mechanisms.
Collapse
Affiliation(s)
- Joyce Wondolowski
- Department of Behavioral Neuroscience and Neuroscience Graduate Program, Oregon Health & Science University, Beaverton, Oregon 97006
| | - Matthew Frerking
- Department of Behavioral Neuroscience and Neuroscience Graduate Program, Oregon Health & Science University, Beaverton, Oregon 97006
| |
Collapse
|
3859
|
Coombs ID, Cull-Candy SG. Transmembrane AMPA receptor regulatory proteins and AMPA receptor function in the cerebellum. Neuroscience 2009; 162:656-65. [PMID: 19185052 PMCID: PMC3217091 DOI: 10.1016/j.neuroscience.2009.01.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Accepted: 01/05/2009] [Indexed: 11/16/2022]
Abstract
Heterogeneity among AMPA receptor (AMPAR) subtypes is thought to be one of the key postsynaptic factors giving rise to diversity in excitatory synaptic signaling in the CNS. Recently, compelling evidence has emerged that ancillary AMPAR subunits—the so-called transmembrane AMPA receptor regulatory proteins (TARPs)—also play a vital role in influencing the variety of postsynaptic signaling. This TARP family of molecules controls both trafficking and functional properties of AMPARs at most, if not all, excitatory central synapses. Furthermore, individual TARPs differ in their effects on the biophysical and pharmacological properties of AMPARs. The critical importance of TARPs in synaptic transmission was first revealed in experiments on cerebellar granule cells from stargazer mice. These lack the prototypic TARP stargazin, present in granule cells from wild-type animals, and consequently lack synaptic transmission at the mossy fibre-to-granule cell synapse. Subsequent work has identified many other members of the stargazin family which act as functional TARPs. It has also provided valuable information about specific TARPs present in many central neurons. Because much of the initial work on TARPs was carried out on stargazer granule cells, the important functional properties of TARPs present throughout the cerebellum have received particular attention. Here we discuss some of these recent findings in relation to the main TARPs and the AMPAR subunits identified in cerebellar neurons and glia.
Collapse
Affiliation(s)
- I D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
3860
|
Convergent functional genomics of oligodendrocyte differentiation identifies multiple autoinhibitory signaling circuits. Mol Cell Biol 2009; 29:1538-53. [PMID: 19139271 DOI: 10.1128/mcb.01375-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inadequate remyelination of brain white matter lesions has been associated with a failure of oligodendrocyte precursors to differentiate into mature, myelin-producing cells. In order to better understand which genes play a critical role in oligodendrocyte differentiation, we performed time-dependent, genome-wide gene expression studies of mouse Oli-neu cells as they differentiate into process-forming and myelin basic protein-producing cells, following treatment with three different agents. Our data indicate that different inducers activate distinct pathways that ultimately converge into the completely differentiated state, where regulated gene sets overlap maximally. In order to also gain insight into the functional role of genes that are regulated in this process, we silenced 88 of these genes using small interfering RNA and identified multiple repressors of spontaneous differentiation of Oli-neu, most of which were confirmed in rat primary oligodendrocyte precursors cells. Among these repressors were CNP, a well-known myelin constituent, and three phosphatases, each known to negatively control mitogen-activated protein kinase cascades. We show that a novel inhibitor for one of the identified genes, dual-specificity phosphatase DUSP10/MKP5, was also capable of inducing oligodendrocyte differentiation in primary oligodendrocyte precursors. Oligodendrocytic differentiation feedback loops may therefore yield pharmacological targets to treat disease related to dysfunctional myelin deposition.
Collapse
|
3861
|
Matsui T, Yamamoto T, Wyder S, Zdobnov EM, Kadowaki T. Expression profiles of urbilaterian genes uniquely shared between honey bee and vertebrates. BMC Genomics 2009; 10:17. [PMID: 19138430 PMCID: PMC2656531 DOI: 10.1186/1471-2164-10-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Accepted: 01/12/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large-scale comparison of metazoan genomes has revealed that a significant fraction of genes of the last common ancestor of Bilateria (Urbilateria) is lost in each animal lineage. This event could be one of the underlying mechanisms involved in generating metazoan diversity. However, the present functions of these ancient genes have not been addressed extensively. To understand the functions and evolutionary mechanisms of such ancient Urbilaterian genes, we carried out comprehensive expression profile analysis of genes shared between vertebrates and honey bees but not with the other sequenced ecdysozoan genomes (honey bee-vertebrate specific, HVS genes) as a model. RESULTS We identified 30 honey bee and 55 mouse HVS genes. Many HVS genes exhibited tissue-selective expression patterns; intriguingly, the expression of 60% of honey bee HVS genes was found to be brain enriched, and 24% of mouse HVS genes were highly expressed in either or both the brain and testis. Moreover, a minimum of 38% of mouse HVS genes demonstrated neuron-enriched expression patterns, and 62% of them exhibited expression in selective brain areas, particularly the forebrain and cerebellum. Furthermore, gene ontology (GO) analysis of HVS genes predicted that 35% of genes are associated with DNA transcription and RNA processing. CONCLUSION These results suggest that HVS genes include genes that are biased towards expression in the brain and gonads. They also demonstrate that at least some of Urbilaterian genes retained in the specific animal lineage may be selectively maintained to support the species-specific phenotypes.
Collapse
Affiliation(s)
- Toshiaki Matsui
- Department of Applied Biological Sciences, School of Agricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | | | | | | | | |
Collapse
|
3862
|
Hendriks WJAJ, Dilaver G, Noordman YE, Kremer B, Fransen JAM. PTPRR protein tyrosine phosphatase isoforms and locomotion of vesicles and mice. THE CEREBELLUM 2009; 8:80-8. [PMID: 19137382 PMCID: PMC2694922 DOI: 10.1007/s12311-008-0088-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 12/08/2008] [Indexed: 02/02/2023]
Abstract
Protein tyrosine phosphatases (PTPs) are central players in many different cellular processes and their aberrant activity is associated with multiple human pathologies. In this review, we present current knowledge on the PTPRR subfamily of classical PTPs that is expressed in neuronal cells and comprises receptor-type (PTPBR7, PTP-SL) as well as cytosolic (PTPPBSγ-37, PTPPBSγ-42) isoforms. The two receptor-type isoforms PTPBR7 and PTP-SL both localize in late endosomes and the Golgi area. PTPBR7, however, is additionally localized at the cell surface and on early endosomes. During cerebellar maturation, PTPBR7 expression in developing Purkinje cells ceases and is replaced by PTP-SL expression in the mature Purkinje cells. All PTPRR isoforms contain a kinase interacting motif that makes them mitogen-activated protein kinase phosphatases. The distinct subcellular localization of the different PTPRR isoforms may reflect differential roles in growth-factor-induced MAPK-mediated retrograde signaling cascades. Studies in PTPRR-deficient mice established that PTPRR isoforms are physiological regulators of MAPK phosphorylation levels. Surprisingly, PTPRR-deficient mice display defects in motor coordination and balancing skills, while cerebellar morphological abnormalities, which are often encountered in ataxic mouse models, are absent. This is reminiscent of the phenotype observed in a handful of mouse mutants that have alterations in cerebellar calcium ion homeostasis. Elucidation of the molecular mechanisms by which PTPRR deficiency imposes impairment of cerebellar neurons and motor coordination may provide candidate molecules for hereditary cerebellar ataxias that still await identification of the corresponding disease genes.
Collapse
Affiliation(s)
- Wiljan J A J Hendriks
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
3863
|
Kell DB. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med Genomics 2009; 2:2. [PMID: 19133145 PMCID: PMC2672098 DOI: 10.1186/1755-8794-2-2] [Citation(s) in RCA: 380] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 01/08/2009] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular 'reactive oxygen species' (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. REVIEW We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation).The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible.This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, since in some circumstances (especially the presence of poorly liganded iron) molecules that are nominally antioxidants can actually act as pro-oxidants. The reduction of redox stress thus requires suitable levels of both antioxidants and effective iron chelators. Some polyphenolic antioxidants may serve both roles.Understanding the exact speciation and liganding of iron in all its states is thus crucial to separating its various pro- and anti-inflammatory activities. Redox stress, innate immunity and pro- (and some anti-)inflammatory cytokines are linked in particular via signalling pathways involving NF-kappaB and p38, with the oxidative roles of iron here seemingly involved upstream of the IkappaB kinase (IKK) reaction. In a number of cases it is possible to identify mechanisms by which ROSs and poorly liganded iron act synergistically and autocatalytically, leading to 'runaway' reactions that are hard to control unless one tackles multiple sites of action simultaneously. Some molecules such as statins and erythropoietin, not traditionally associated with anti-inflammatory activity, do indeed have 'pleiotropic' anti-inflammatory effects that may be of benefit here. CONCLUSION Overall we argue, by synthesising a widely dispersed literature, that the role of poorly liganded iron has been rather underappreciated in the past, and that in combination with peroxide and superoxide its activity underpins the behaviour of a great many physiological processes that degrade over time. Understanding these requires an integrative, systems-level approach that may lead to novel therapeutic targets.
Collapse
Affiliation(s)
- Douglas B Kell
- School of Chemistry and Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess St, Manchester, M1 7DN, UK.
| |
Collapse
|
3864
|
Tsai KJ, Yang CH, Lee PC, Wang WT, Chiu MJ, Shen CKJ. Asymmetric expression patterns of brain transthyretin in normal mice and a transgenic mouse model of Alzheimer's disease. Neuroscience 2009; 159:638-46. [PMID: 19167467 DOI: 10.1016/j.neuroscience.2008.12.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Brain asymmetry is linked with several neurological diseases, and transthyretin (TTR) is a protein sequestering beta-amyloid (Abeta) and helping to prevent the Alzheimer's disease (AD). We show, by real time reverse transcription-polymerase chain reaction (RT-PCR), in situ hybridization and Western blotting, that TTR exhibits a pattern of adult male-specific, leftward distribution in the mouse brain. This asymmetry appeared to be mainly due to the asymmetric distribution of the choroid plexus cells in the ventricles. Unlike the normal mice, however, the hemispheric levels of TTR transcripts of 2- and 6-month-old Tg2576 mice, a transgenic AD mouse model overexpressing Abeta, were symmetric in both sexes. Furthermore, at the age of 10 months when the pathological AD-like features had developed, the level of TTR transcripts in the left hemisphere of the male Tg2576 became significantly lower than the right one. This lowering of TTR transcript is accompanied with a higher Abeta level in the left hemisphere of the 10-month Tg2576 males. Finally, for both genders, the TTR transcript levels in the two hemispheres of aged Tg2576 mice were lower than either the adult Tg2576 or the aged nontransgenic controls. Based on the above, we suggest scenarios to correlate the changes in the levels and hemispheric patterns of TTR expression to the pathogenesis of AD.
Collapse
Affiliation(s)
- K-J Tsai
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei 115, Taiwan
| | | | | | | | | | | |
Collapse
|
3865
|
Morris JA. Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. PROGRESS IN BRAIN RESEARCH 2009; 179:97-106. [DOI: 10.1016/s0079-6123(09)17911-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
3866
|
Abstract
The second messenger cyclic guanosine 3',5'-monophosphate (cGMP) plays a crucial role in the control of cardiovascular and gastrointestinal homeostastis, but its effects on neuronal functions are less established. This review summarizes recent biochemical and functional data on the role of the cGMP signalling pathway in the mammalian brain, with a focus on the regulation of synaptic plasticity, learning, and other complex behaviours. Expression profiling, along with pharmacological and genetic manipulations, indicates important functions of nitric oxide (NO)-sensitive soluble guanylyl cyclases (sGCs), cGMP-dependent protein kinases (cGKs), and cGMP-regulated phosphodiesterases (PDEs) as generators, effectors, and modulators of cGMP signals in the brain, respectively. In addition, neuronal cGMP signalling can be transmitted through cyclic nucleotide-gated (CNG) or hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels. The canonical NO/sGC/cGMP/cGK pathway modulates long-term changes of synaptic activity in the hippocampus, amygdala, cerebellum, and other brain regions, and contributes to distinct forms of learning and memory, such as fear conditioning, motor adaptation, and object recognition. Behavioural studies indicate that cGMP signalling is also involved in anxiety, addiction, and the pathogenesis of depression and schizophrenia. At the molecular level, different cGK isoforms appear to mediate effects of cGMP on presynaptic transmitter release and postsynaptic functions. The cGKs have been suggested to modulate cytoskeletal organization, vesicle and AMPA receptor trafficking, and gene expression via phosphorylation of various substrates including VASP, RhoA, RGS2, hSERT, GluR1, G-substrate, and DARPP-32. These and other components of the cGMP signalling cascade may be attractive new targets for the treatment of cognitive impairment, drug abuse, and psychiatric disorders.
Collapse
|
3867
|
Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, Moore GE, Oakey RJ. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet 2009; 18:118-27. [PMID: 18836209 PMCID: PMC2666296 DOI: 10.1093/hmg/ddn322] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 09/21/2008] [Accepted: 10/02/2008] [Indexed: 02/05/2023] Open
Abstract
The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Ruth B. McCole
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Kathryn Woodfine
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Andrew J. Wood
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - Mandeep Chahal
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | - David Monk
- Clinical and Molecular Genetics, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Gudrun E. Moore
- Clinical and Molecular Genetics, Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| |
Collapse
|
3868
|
Menuz K, Kerchner GA, O’Brien JL, Nicoll RA. Critical role for TARPs in early development despite broad functional redundancy. Neuropharmacology 2009; 56:22-9. [PMID: 18634809 PMCID: PMC3111090 DOI: 10.1016/j.neuropharm.2008.06.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/18/2008] [Accepted: 06/19/2008] [Indexed: 11/23/2022]
Abstract
Transmembrane AMPA receptor regulatory proteins (TARPs), including gamma-2, gamma-3, gamma-4, and gamma-8, are auxiliary subunits for AMPA receptors. Based on studies in single knockout mice, it has been suggested that nearly all native AMPA receptors are associated with TARPs. To study the interplay between TARP family members and AMPA receptors in vivo, we generated mice lacking multiple TARPs. Triple knockout mice lacking gamma-3, gamma-4, and gamma-8 are viable and fertile, and synaptic AMPA receptor activity is reduced to a level comparable to that seen in gamma-8 single knockout mice. In contrast, triple knockout mice lacking gamma-2, gamma-3, and either gamma-4 or gamma-8 cannot survive ex utero. In particular, gamma-2, gamma-3, gamma-4 triple knockout mice are born apneic and paralyzed, despite normal AMPA receptor function in cortical and spinal neurons. We found that gamma-8 is expressed at low levels in early postnatal mice and regulates AMPA receptor levels at this developmental time period. Thus, the early expression of gamma-8 may be responsible for maintaining AMPA receptor functions in neonatal neurons. Together, our data indicate that TARPs, in particular gamma-2, are essential for early development, and that most neurons express multiple members of this functionally redundant protein family.
Collapse
Affiliation(s)
- Karen Menuz
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- The Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
| | - Geoffrey A. Kerchner
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- The Graduate Program in Neuroscience, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143 USA
| | - Jessica L. O’Brien
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, California 94143 USA
| |
Collapse
|
3869
|
Abstract
Over the past twenty years there have been great advances in light microscopy with the result that multidimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition is reported frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remain largely unsolved. As in the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges, and discuss our own vision for future development of bioimage informatics solutions.
Collapse
Affiliation(s)
- Jason R. Swedlow
- Wellcome Trust Centre for Gene Regulation and Expression College of Life Sciences University of Dundee Dow Street Dundee DD1 5EH Scotland UK
| | - Ilya G. Goldberg
- Image Informatics and Computational Biology Unit Laboratory of Genetics National Institute on Aging, IRP NIH Biomedical Research Center 251 Bayview Boulevard, Suite 100 Baltimore MD 21224 USA
| | - Kevin W. Eliceiri
- Laboratory for Optical and Computational Instrumentation University of Wisconsin at Madison 1675 Observatory Drive Madison, WI 53706 USA
| | | |
Collapse
|
3870
|
Hartmann J, Konnerth A. Mechanisms of metabotropic glutamate receptor-mediated synaptic signalling in cerebellar Purkinje cells. Acta Physiol (Oxf) 2009. [DOI: 10.1111/j.1748-1716.2008.01923.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3871
|
Barot SK, Kyono Y, Clark EW, Bernstein IL. Visualizing stimulus convergence in amygdala neurons during associative learning. Proc Natl Acad Sci U S A 2008; 105:20959-63. [PMID: 19091953 PMCID: PMC2634890 DOI: 10.1073/pnas.0808996106] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Indexed: 01/14/2023] Open
Abstract
A central feature of models of associative memory formation is the reliance on information convergence from pathways responsive to the conditioned stimulus (CS) and unconditioned stimulus (US). In particular, cells receiving coincident input are held to be critical for subsequent plasticity. Yet identification of neurons in the mammalian brain that respond to such coincident inputs during a learning event remains elusive. Here we use Arc cellular compartmental analysis of temporal gene transcription by fluorescence in situ hybridization (catFISH) to locate populations of neurons in the mammalian brain that respond to both the CS and US during training in a one-trial learning task, conditioned taste aversion (CTA). Individual neurons in the basolateral nucleus of the amygdala (BLA) responded to both the CS taste and US drug during conditioning. Coincident activation was not evident, however, when stimulus exposure was altered so as to be ineffective in promoting learning (backward conditioning, latent inhibition). Together, these data provide clear visualization of neurons in the mammalian brain receiving convergent information about the CS and US during acquisition of a learned association.
Collapse
Affiliation(s)
- Sabiha K. Barot
- Program in Neurobiology and Behavior
- Department of Psychology, University of Washington, Seattle, WA 98195; and
| | - Yasuhiro Kyono
- Neuroscience Program, University of Michigan, Ann Arbor, MI 48109
| | - Emily W. Clark
- Department of Psychology, University of Washington, Seattle, WA 98195; and
| | - Ilene L. Bernstein
- Program in Neurobiology and Behavior
- Department of Psychology, University of Washington, Seattle, WA 98195; and
| |
Collapse
|
3872
|
Abstract
It could be argued that the greatest transformative aspect of the Human Genome Project has been not the sequencing of the genome itself, but the resultant development of new technologies. A host of new approaches has fundamentally changed the way we approach problems in basic and translational research. Now, a new generation of high-throughput sequencing technologies promises to again transform the scientific enterprise, potentially supplanting array-based technologies and opening up many new possibilities. By allowing DNA/RNA to be assayed more rapidly than previously possible, these next-generation platforms promise a deeper understanding of genome regulation and biology. Significantly enhancing sequencing throughput will allow us to follow the evolution of viral and bacterial resistance in real time, to uncover the huge diversity of novel genes that are currently inaccessible, to understand nucleic acid therapeutics, to better integrate biological information for a complete picture of health and disease at a personalized level and to move to advances that we cannot yet imagine.
Collapse
|
3873
|
Tzingounis AV, Nicoll RA. Contribution of KCNQ2 and KCNQ3 to the medium and slow afterhyperpolarization currents. Proc Natl Acad Sci U S A 2008; 105:19974-9. [PMID: 19060215 PMCID: PMC2604953 DOI: 10.1073/pnas.0810535105] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Indexed: 01/27/2023] Open
Abstract
Benign familial neonatal convulsion (BNFC) is a neurological disorder caused by mutations in the potassium channel genes KCNQ2 and KCNQ3, which are thought to contribute to the medium afterhyperpolarization (mAHP). Despite their importance in normal brain function, it is unknown whether they invariably function as heteromeric complexes. Here, we examined the contribution of KCNQ3 and KCNQ2 in mediating the apamin-insensitive mAHP current (ImAHP) in hippocampus. The ImAHP was not impaired in CA1 pyramidal neurons from mice genetically deficient for either KCNQ3 or KCNQ2 but was reduced approximately 50% in dentate granule cells. While recording from KCNQ-deficient mice, we observed that the calcium-activated slow afterhyperpolarization current (IsAHP) was also reduced in dentate granule cells, suggesting that KCNQ channels might also contribute to this potassium current whose molecular identity is unknown. Further pharmacological and molecular experiments manipulating KCNQ channels provided evidence in support of this possibility. Together our data suggest that multiple KCNQ subunit compositions can mediate the ImAHP, and that the very same subunits may also contribute to the IsAHP. We also present data suggesting that the neuronal calcium sensor protein hippocalcin may allow for these dual signaling processes.
Collapse
Affiliation(s)
- Anastassios V. Tzingounis
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269; and
- Department of Cellular and Molecular Pharmacology and Department of Physiology, University of California San Francisco, CA 94143
| | - Roger A. Nicoll
- Department of Cellular and Molecular Pharmacology and Department of Physiology, University of California San Francisco, CA 94143
| |
Collapse
|
3874
|
Basic molecular fingerprinting of immature cerebellar cortical inhibitory interneurons and their precursors. Neuroscience 2008; 159:69-82. [PMID: 19141316 DOI: 10.1016/j.neuroscience.2008.12.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/06/2008] [Accepted: 12/09/2008] [Indexed: 11/21/2022]
Abstract
While the development of cerebellar granule and Purkinje neurons has been extensively studied, little is known about the developmental mechanisms that lead to the generation and diversification of inhibitory GABAergic interneurons of the cerebellar cortex. To address this issue, we compared gene expression in complete, early postnatal murine cerebella to that in cerebella from which immature inhibitory interneurons and their precursors had been stripped based on their expression of green fluorescent protein (GFP) from the Pax2 locus. We identified some 300 candidate genes selectively enriched within immature cerebellar cortical inhibitory interneurons and/or their precursors, many of which were also expressed in their adult descendants and/or the embryonic cerebellar ventricular epithelium that gives rise to these cells. None of the genes identified, among them Tcfap2alpha, Tcfap2beta, Lbxcor1 and Lbx1, was cell-type specific. Rather, gene expression, and also splicing, changed dynamically during development and rather reflects stage of differentiation than lineage. Consistently, cluster analysis of transcriptional regulators and genes specific for adult cerebellar GABAergic cells does not suggest a hierarchical lineage relationship or an early commitment of subtypes of cerebellar cortical inhibitory interneurons. Together, these data support the notion that diversification of cerebellar inhibitory interneurons is highly regulative and subject to local signaling to postmigratory precursors.
Collapse
|
3875
|
Wynshaw-Boris A. Molecular navigation of the brain. Development 2008. [DOI: 10.1242/dev.023440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Anthony Wynshaw-Boris
- Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, San Francisco, CA 94143-0794, USA
| |
Collapse
|
3876
|
Genetic analysis of crawling and swimming locomotory patterns in C. elegans. Proc Natl Acad Sci U S A 2008; 105:20982-7. [PMID: 19074276 DOI: 10.1073/pnas.0810359105] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Alternative patterns of neural activity drive different rhythmic locomotory patterns in both invertebrates and mammals. The neuro-molecular mechanisms responsible for the expression of rhythmic behavioral patterns are poorly understood. Here we show that Caenorhabditis elegans switches between distinct forms of locomotion, or crawling versus swimming, when transitioning between solid and liquid environments. These forms of locomotion are distinguished by distinct kinematics and different underlying patterns of neuromuscular activity, as determined by in vivo calcium imaging. The expression of swimming versus crawling rhythms is regulated by sensory input. In a screen for mutants that are defective in transitioning between crawl and swim behavior, we identified unc-79 and unc-80, two mutants known to be defective in NCA ion channel stabilization. Genetic and behavioral analyses suggest that the NCA channels enable the transition to rapid rhythmic behaviors in C. elegans. unc-79, unc-80, and the NCA channels represent a conserved set of genes critical for behavioral pattern generation.
Collapse
|
3877
|
Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, Kawazu C, Murata M, Nishiyori H, Lazarevic D, Motti D, Marstrand TT, Tang MHE, Zhao X, Krogh A, Winther O, Arakawa T, Kawai J, Wells C, Daub C, Harbers M, Hayashizaki Y, Gustincich S, Sandelin A, Carninci P. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE. Genome Res 2008; 19:255-65. [PMID: 19074369 DOI: 10.1101/gr.084541.108] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Finding and characterizing mRNAs, their transcription start sites (TSS), and their associated promoters is a major focus in post-genome biology. Mammalian cells have at least 5-10 magnitudes more TSS than previously believed, and deeper sequencing is necessary to detect all active promoters in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters used only in a small subset of cells within the complex tissue.
Collapse
Affiliation(s)
- Eivind Valen
- The Bioinformatics Centre, Department of Biology and Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaloes vej 5, DK-2200, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3878
|
Garden DLF, Dodson PD, O'Donnell C, White MD, Nolan MF. Tuning of synaptic integration in the medial entorhinal cortex to the organization of grid cell firing fields. Neuron 2008; 60:875-89. [PMID: 19081381 DOI: 10.1016/j.neuron.2008.10.044] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 08/14/2008] [Accepted: 10/23/2008] [Indexed: 11/21/2022]
Abstract
Neurons important for cognitive function are often classified by their morphology and integrative properties. However, it is unclear if within a single class of neuron these properties tune synaptic responses to the salient features of the information that each neuron represents. We demonstrate that for stellate neurons in layer II of the medial entorhinal cortex, the waveform of postsynaptic potentials, the time window for detection of coincident inputs, and responsiveness to gamma frequency inputs follow a dorsal-ventral gradient similar to the topographical organization of grid-like spatial firing fields of neurons in this area. We provide evidence that these differences are due to a membrane conductance gradient mediated by HCN and leak potassium channels. These findings suggest key roles for synaptic integration in computations carried out within the medial entorhinal cortex and imply that tuning of neural information processing by membrane ion channels is important for normal cognitive function.
Collapse
Affiliation(s)
- Derek L F Garden
- Centre for Neuroscience Research and Centre for Integrative Physiology, R(D)SVS, University of Edinburgh, Hugh Robson Building, Edinburgh, EH8 9XD, Scotland, UK
| | | | | | | | | |
Collapse
|
3879
|
Takahata T, Komatsu Y, Watakabe A, Hashikawa T, Tochitani S, Yamamori T. Differential expression patterns of occ1-related genes in adult monkey visual cortex. ACTA ACUST UNITED AC 2008; 19:1937-51. [PMID: 19073625 PMCID: PMC2705702 DOI: 10.1093/cercor/bhn220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We have previously revealed that occ1 is preferentially expressed in the primary visual area (V1) of the monkey neocortex. In our attempt to identify more area-selective genes in the macaque neocortex, we found that testican-1, an occ1-related gene, and its family members also exhibit characteristic expression patterns along the visual pathway. The expression levels of testican-1 and testican-2 mRNAs as well as that of occ1 mRNA start of high in V1, progressively decrease along the ventral visual pathway, and end of low in the temporal areas. Complementary to them, the neuronal expression of SPARC mRNA is abundant in the association areas and scarce in V1. Whereas occ1, testican-1, and testican-2 mRNAs are preferentially distributed in thalamorecipient layers including “blobs,” SPARC mRNA expression avoids these layers. Neither SC1 nor testican-3 mRNA expression is selective to particular areas, but SC1 mRNA is abundantly observed in blobs. The expressions of occ1, testican-1, testican-2, and SC1 mRNA were downregulated after monocular tetrodotoxin injection. These results resonate with previous works on chemical and functional gradients along the primate occipitotemporal visual pathway and raise the possibility that these gradients and functional architecture may be related to the visual activity–dependent expression of these extracellular matrix glycoproteins.
Collapse
Affiliation(s)
- Toru Takahata
- Division of Brain Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | | | | | | | | | | |
Collapse
|
3880
|
Hodges MR, Richerson GB. Contributions of 5-HT neurons to respiratory control: neuromodulatory and trophic effects. Respir Physiol Neurobiol 2008; 164:222-32. [PMID: 18595785 PMCID: PMC2642893 DOI: 10.1016/j.resp.2008.05.014] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 05/14/2008] [Accepted: 05/14/2008] [Indexed: 11/19/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a neurotransmitter produced by a small number of neurons in the midbrain, pons and medulla. These neurons project widely throughout the neuraxis, where they release 5-HT and co-localized neuropeptides such as substance P (SP) and thyrotropin-releasing hormone (TRH). Each of these chemicals produce effects largely through G protein-coupled receptors, second messenger systems and subsequent neuromodulatory effects on target neurons. Emerging evidence suggests that 5-HT has additional modes of action during development and in adult mammals, including trophic effects (neurogenesis, cell differentiation, proliferation, migration and maturation) and influences on synaptic plasticity. Here, we discuss some of the neuromodulatory and trophic roles of 5-HT in general and in the context of respiratory control, as well as the regulation of release of modulatory neurotransmitters from 5-HT neurons. Future directions of study are also discussed.
Collapse
Affiliation(s)
- Matthew R Hodges
- Department of Neurology and Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520, USA.
| | | |
Collapse
|
3881
|
Visualising the Epigenome. Epigenomics 2008. [DOI: 10.1007/978-1-4020-9187-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
3882
|
|
3883
|
Salas R, Main A, Gangitano DA, Zimmerman G, Ben-Ari S, Soreq H, De Biasi M. Nicotine relieves anxiogenic-like behavior in mice that overexpress the read-through variant of acetylcholinesterase but not in wild-type mice. Mol Pharmacol 2008; 74:1641-8. [PMID: 18776044 DOI: 10.1124/mol.108.048454] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Stress increases vulnerability and causes relapse to drugs of abuse. The usually rare read-through variant of acetylcholinesterase (AChE-R) is causally involved in stress-related behaviors, and transgenic mice constitutively overexpressing AChE-R (TgR) show behaviors characteristic of chronic stress. We measured anxiety-like behavior on TgR and control mice under normal conditions and under long-term nicotine treatment. In addition, we measured epibatidine binding in the brain and transcription status in the striatum, using microarrays, in wild-type and TgR mice. TgR mice behaved as more anxious than controls, an effect normalized by long-term nicotine intake. In control mice, long-term nicotine augmented epibatidine binding in several areas of the brain, including the hippocampus and striatum. In TgR transgenics, long-term nicotine increased epibatidine binding in some areas but not in the hippocampus or the striatum. Because the striatum is involved in the mechanisms of drug addiction, we studied how the transgene affected striatal gene expression. Whole-genome DNA microarray showed that 23 transcripts were differentially expressed in TgR mouse striata, including 15 known genes, 7 of which are anxiety-related. Subsequent reverse-transcriptase polymerase chain reaction validated changes in 7 of those 15 genes, confirmed the increase trend in 5 more transcripts, and further revealed changes in 5 genes involved in cholinergic signaling. In summary, we found that nicotine acts as an anxiolytic in TgR mice but not in control mice and that continuously overexpressed AChE-R regulates striatal gene expression, modulating cholinergic signaling and stress-related pathways.
Collapse
Affiliation(s)
- R Salas
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
3884
|
McHugh PC, Rogers GR, Glubb DM, Allington MD, Hughes M, Joyce PR, Kennedy MA. Downregulation of Ccnd1 and Hes6 in rat hippocampus after chronic exposure to the antidepressant paroxetine. Acta Neuropsychiatr 2008; 20:307-13. [PMID: 25384412 DOI: 10.1111/j.1601-5215.2008.00334.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The mechanism of action of antidepressant drugs is not fully understood. Application of genomic methods enables the identification of biochemical pathways that are regulated by antidepressants, and this may provide novel clues to the molecular and cellular actions of these drugs. The present study examined gene expression profiles in the hippocampus of rats exposed to chronic antidepressant treatment. METHODS Animals were treated for 12 days with the selective serotonin reuptake inhibitor paroxetine; then, hippocampal ribonucleic acid was recovered, and changes in gene expression were assessed by microarray analysis. RESULTS A total of 160 genes that showed differential expression after paroxetine exposure were identified. Using functional relevance and observed fold change as selection criteria, the expression changes in a subset of these genes were confirmed by quantitative polymerase chain reaction. CONCLUSION Of this subset, only two genes, cyclin D1 (Ccnd1) and hairy and enhancer of split 6 (Hes6), showed robust and consistent changes in expression. Both genes were downregulated by paroxetine, and both have been previously implicated in neurogenesis. Further investigation of these two genes may provide new insight into the mechanism of action of antidepressants.
Collapse
Affiliation(s)
- Patrick C McHugh
- 1Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | - Geraldine R Rogers
- 1Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | - Dylan M Glubb
- 1Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | - Melanie D Allington
- 1Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| | - Mark Hughes
- 2Genetics Factors, Riccarton, Christchurch, New Zealand
| | - Peter R Joyce
- 3Department of Psychological Medicine, University of Otago, Christchurch, Christchurch, New Zealand
| | - Martin A Kennedy
- 1Department of Pathology, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
3885
|
Thompson CL, Pathak SD, Jeromin A, Ng LL, MacPherson CR, Mortrud MT, Cusick A, Riley ZL, Sunkin SM, Bernard A, Puchalski RB, Gage FH, Jones AR, Bajic VB, Hawrylycz MJ, Lein ES. Genomic Anatomy of the Hippocampus. Neuron 2008; 60:1010-21. [DOI: 10.1016/j.neuron.2008.12.008] [Citation(s) in RCA: 305] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/03/2008] [Accepted: 12/08/2008] [Indexed: 11/16/2022]
|
3886
|
Justice NJ, Yuan ZF, Sawchenko PE, Vale W. Type 1 corticotropin-releasing factor receptor expression reported in BAC transgenic mice: implications for reconciling ligand-receptor mismatch in the central corticotropin-releasing factor system. J Comp Neurol 2008; 511:479-96. [PMID: 18853426 PMCID: PMC2597626 DOI: 10.1002/cne.21848] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In addition to its established role in initiating the endocrine arm of the stress response, corticotropin-releasing factor (CRF) can act in the brain to modulate neural pathways that effect coordinated physiological and behavioral adjustments to stress. Although CRF is expressed in a set of interconnected limbic and autonomic cell groups implicated as primary sites of stress-related peptide action, most of these are lacking or impoverished in CRF receptor (CRFR) expression. Understanding the distribution of functional receptor expression has been hindered by the low resolution of ligand binding approaches and the lack of specific antisera, which have supported immunolocalizations at odds with analyses at the mRNA level. We have generated a transgenic mouse that shows expression of the principal, or type 1, CRFR (CRFR1). This mouse expresses GFP in a cellular distribution that largely mimics that of CRFR1 mRNA and is extensively colocalized with it in individual neurons. GFP-labeled cells display indices of activation (Fos induction) in response to central CRF injection. At the cellular level, GFP labeling marks somatic and proximal dendritic morphology with high resolution and is also localized to axonal projections of at least some labeled cell groups. This includes a presence in synaptic inputs to central autonomic structures such as the central amygdalar nucleus, which is implicated as a stress-related site of CRF action, but lacks cellular CRFR1 expression. These findings validate a new tool for pursuing the role of central CRFR signaling in stress adaptation and suggest means by which the pervasive ligand-receptor mismatch in this system may be reconciled.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Chromosomes, Artificial, Bacterial
- Cloning, Molecular
- Corticotropin-Releasing Hormone/metabolism
- Genetic Techniques
- Green Fluorescent Proteins/biosynthesis
- Green Fluorescent Proteins/genetics
- Image Processing, Computer-Assisted
- Immunohistochemistry
- In Situ Hybridization
- Ligands
- Mice
- Mice, Transgenic
- Microscopy, Immunoelectron
- RNA, Messenger/analysis
- Receptors, Corticotropin-Releasing Hormone/biosynthesis
- Receptors, Corticotropin-Releasing Hormone/genetics
- CRF Receptor, Type 1
Collapse
Affiliation(s)
- Nicholas J. Justice
- The Salk Institute for Biological Studies, La Jolla, California, Clayton Foundation Laboratories for Peptide Biology, 10010 North Torrey Pines Rd. La Jolla, California, 92037 USA
| | - Zung Fan Yuan
- Laboratory of Neuronal Structure and Function, 10010 North Torrey Pines Rd. La Jolla, California, 92037 USA
| | - Paul E. Sawchenko
- Laboratory of Neuronal Structure and Function, 10010 North Torrey Pines Rd. La Jolla, California, 92037 USA
| | - Wylie Vale
- The Salk Institute for Biological Studies, La Jolla, California, Clayton Foundation Laboratories for Peptide Biology, 10010 North Torrey Pines Rd. La Jolla, California, 92037 USA
| |
Collapse
|
3887
|
Busser BW, Bulyk ML, Michelson AM. Toward a systems-level understanding of developmental regulatory networks. Curr Opin Genet Dev 2008; 18:521-9. [PMID: 18848887 PMCID: PMC2704888 DOI: 10.1016/j.gde.2008.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 02/01/2023]
Abstract
Developmental regulatory networks constitute all the interconnections among molecular components that guide embryonic development. Developmental transcriptional regulatory networks (TRNs) are circuits of transcription factors and cis-acting DNA elements that control expression of downstream regulatory and effector genes. Developmental networks comprise functional subnetworks that are deployed sequentially in requisite spatiotemporal patterns. Here, we discuss integrative genomics approaches for elucidating TRNs, with an emphasis on those involved in Drosophila mesoderm development and mammalian embryonic stem cell maintenance and differentiation. As examples of regulatory subnetworks, we consider the transcriptional and signaling regulation of genes that interact to control cell morphology and migration. Finally, we describe integrative experimental and computational strategies for defining the entirety of molecular interactions underlying developmental regulatory networks.
Collapse
Affiliation(s)
- Brian W. Busser
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
- Harvard/MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, MA 02115
| | - Alan M. Michelson
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3888
|
Park JW, Park ES, Choi EN, Park HY, Jung SC. Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 2008; 401:90-9. [PMID: 19073163 DOI: 10.1016/j.cca.2008.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/15/2008] [Accepted: 11/18/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase (PAH), which catalyzes the conversion of phenylalanine to tyrosine. The resultant hyperphenylalaninemia causes mental retardation, seizure, and abnormalities in behavior and movement. METHODS We analyzed gene expression profiles in brain tissues of Pah(enu2) mice to elucidate the mechanisms involved in phenylalanine-induced neurological damage. The altered gene expression was confirmed by real-time PCR and Western blotting. To identify markers associated with neurological damage, we examined TTR expression in serum by Western blotting. RESULTS Gene expression profiling of brain tissue from a mouse model of PKU revealed overexpression of transthyretin (Ttr), sclerostin domain containing 1 (Sostdc1), alpha-Klotho (Kl), prolactin receptor (Prlr), and early growth response 2 (Egr2). In contrast to its overexpression in the brain, TTR expression was low in the sera of PKU mice offered unrestricted access to a diet containing phenylalanine. Expression of TTR decreased in a time-dependent manner in phenylalanine-treated HepG2 cells. CONCLUSIONS These findings indicate that Ttr, Sostdc1, Kl, Prlr, and Egr2 can be involved in the pathogenesis of PKU and that phenylalanine might have a direct effect on the level of TTR in serum.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
3889
|
Steinert JR, Kopp-Scheinpflug C, Baker C, Challiss RAJ, Mistry R, Haustein MD, Griffin SJ, Tong H, Graham BP, Forsythe ID. Nitric oxide is a volume transmitter regulating postsynaptic excitability at a glutamatergic synapse. Neuron 2008; 60:642-56. [PMID: 19038221 DOI: 10.1016/j.neuron.2008.08.025] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 08/26/2008] [Accepted: 08/29/2008] [Indexed: 01/14/2023]
Abstract
Neuronal nitric oxide synthase (nNOS) is broadly expressed in the brain and associated with synaptic plasticity through NMDAR-mediated calcium influx. However, its physiological activation and the mechanisms by which nitric oxide (NO) influences synaptic transmission have proved elusive. Here, we exploit the unique input-specificity of the calyx of Held to characterize NO modulation at this glutamatergic synapse in the auditory pathway. NO is generated in an activity-dependent manner by MNTB principal neurons receiving a calyceal synaptic input. It acts in the target neuron and adjacent inactive neurons to modulate excitability and synaptic efficacy, inhibiting postsynaptic Kv3 potassium currents (via phosphorylation), reducing EPSCs and so increasing action potential duration and reducing transmission fidelity. We conclude that NO serves as a volume transmitter and slow dynamic modulator, integrating spontaneous and evoked neuronal firing, thereby providing an index of global activity and regulating information transmission across a population of active and inactive neurons.
Collapse
Affiliation(s)
- Joern R Steinert
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3890
|
Abstract
Alzheimer's disease is characterized by abnormal elevation of Abeta peptide and abnormal hyperphosphorylation of the tau protein. The "amyloid hypothesis," which is based on molecular defects observed in autosomal-dominant early-onset Alzheimer's disease (EOAD), suggests a serial model of causality, whereby elevation of Abeta drives other disease features including tau hyperphosphorylation. Here, we review recent evidence from drug trials, genetic studies, and experimental work in animal models that suggests that an alternative model might exist in late-onset AD (LOAD), the complex and more common form of the disease. Specifically, we hypothesize a "dual pathway" model of causality, whereby Abeta and tau can be linked by separate mechanisms driven by a common upstream driver. This model may account for the results of recent drug trials and, if confirmed, may guide future drug development.
Collapse
Affiliation(s)
- Scott A. Small
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Departments of Neurology and Pathology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Karen Duff
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Departments of Neurology and Pathology, Columbia University College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
3891
|
Anderson LA, Christianson GB, Linden JF. Mouse auditory cortex differs from visual and somatosensory cortices in the laminar distribution of cytochrome oxidase and acetylcholinesterase. Brain Res 2008; 1252:130-42. [PMID: 19061871 DOI: 10.1016/j.brainres.2008.11.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 12/29/2022]
Abstract
Cytochrome oxidase (CYO) and acetylcholinesterase (AChE) staining density varies across the cortical layers in many sensory areas. The laminar variations likely reflect differences between the layers in levels of metabolic activity and cholinergic modulation. The question of whether these laminar variations differ between primary sensory cortices has never been systematically addressed in the same set of animals, since most studies of sensory cortex focus on a single sensory modality. Here, we compared the laminar distribution of CYO and AChE activity in the primary auditory, visual, and somatosensory cortices of the mouse, using Nissl-stained sections to define laminar boundaries. Interestingly, for both CYO and AChE, laminar patterns of enzyme activity were similar in the visual and somatosensory cortices, but differed in the auditory cortex. In the visual and somatosensory areas, staining densities for both enzymes were highest in layers III/IV or IV and in lower layer V. In the auditory cortex, CYO activity showed a reliable peak only at the layer III/IV border, while AChE distribution was relatively homogeneous across layers. These results suggest that laminar patterns of metabolic activity and cholinergic influence are similar in the mouse visual and somatosensory cortices, but differ in the auditory cortex.
Collapse
Affiliation(s)
- L A Anderson
- UCL Ear Institute, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK
| | | | | |
Collapse
|
3892
|
Sillitoe RV, Stephen D, Lao Z, Joyner AL. Engrailed homeobox genes determine the organization of Purkinje cell sagittal stripe gene expression in the adult cerebellum. J Neurosci 2008; 28:12150-62. [PMID: 19020009 PMCID: PMC2864318 DOI: 10.1523/jneurosci.2059-08.2008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/11/2008] [Accepted: 09/26/2008] [Indexed: 11/21/2022] Open
Abstract
Underlying the seemingly uniform cellular composition of the adult mammalian cerebellum (Cb) are striking parasagittal stripes of gene expression along the medial-lateral (ML) axis that are organized with respect to the lobules that divide the Cb along the anterior-posterior (AP) axis. Although there is a clear correlation between the organization of gene expression stripes and Cb activity patterns, little is known about the genetic pathways that determine the intrinsic stripe molecular code. Here we establish that ML molecular code patterning is highly dependent on two homeobox transcription factors, Engrailed1 (En1) and En2, both of which are also required for patterning the lobules. Gene expression analysis of an allelic series of En1/2 mutant mice that have an intact Purkinje cell layer revealed severe patterning defects using three known components of the ML molecular code and a new marker of Hsp25 negative stripes (Neurofilament heavy chain, Nfh). Importantly, the complementary expression of ZebrinII/PhospholipaseC beta4 and Hsp25/Nfh changes in unison in each mutant. Furthermore, each En gene has unique as well as overlapping functions in patterning the ML molecular code and each En protein has dominant functions in different AP domains (subsets of lobules). Remarkably, in En1/2 mutants with almost normal foliation, ML molecular code patterning is severely disrupted. Thus, independent mechanisms that use En1/2 must pattern foliation and spatial gene expression separately. Our studies reveal that En1/2 are fundamental components of the genetic pathways that pattern the two intersecting coordinate systems of the Cb, morphological divisions and the molecular code.
Collapse
Affiliation(s)
- Roy V. Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
| | - Daniel Stephen
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
| | - Zhimin Lao
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York 10021
| |
Collapse
|
3893
|
Sakakibara SI, Nakadate K, Tanaka-Nakadate S, Yoshida K, Nogami S, Shirataki H, Ueda S. Developmental and spatial expression pattern of alpha-taxilin in the rat central nervous system. J Comp Neurol 2008; 511:65-80. [PMID: 18729150 DOI: 10.1002/cne.21817] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Alpha-taxilin has been identified as a binding partner of syntaxin family members and thus has been proposed to function in syntaxin-mediated intracellular vesicle trafficking. However, the lack of detailed information concerning the cellular and subcellular localization of alpha-taxilin impedes an understanding of the role of this protein. In the present study, we characterized alpha-taxilin-expressing cells in the rat CNS with a specific antibody. During embryonic development, alpha-taxilin was prominently expressed in nestin-positive neural stem cells in vivo and in vitro. As CNS development proceeded, the alpha-taxilin expression level was rapidly down-regulated. In the postnatal CNS, alpha-taxilin expression was almost confined to the neuronal lineage, with the highest levels of expression in motor neurons within the brainstem nuclei and spinal cord and in primary sensory neurons in mesencephalic trigeminal nucleus. At the cellular level, alpha-taxilin was preferentially located in Nissl substance-like structures with a tigroid or globular morphology within the soma and proximal to dendrites, but it was excluded from terminals. Combined staining with propidium iodide demonstrated that alpha-taxilin distribution overlapped with the cytoplasmic compartment enriched in RNA species, suggesting a close association of alpha-taxilin with actively translating ribosomes or polysomes in neurons. In agreement with this, a recent study indicated the preferential binding of alpha-taxilin to the nascent polypeptide-associated complex (alphaNAC), a dynamic component of the ribosomal exit tunnel in eukaryotic cells. Taken together, these findings suggest that alpha-taxilin plays multiple roles in the generation and maintenance of neurons through modulation of the NAC-mediated translational machinary and/or the syntaxin-mediated vesicle traffic in the soma.
Collapse
Affiliation(s)
- Shin-ichi Sakakibara
- Department of Histology and Neurobiology, Graduate School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan.
| | | | | | | | | | | | | |
Collapse
|
3894
|
Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G, Bupp S, Shrestha P, Shah RD, Doughty ML, Gong S, Greengard P, Heintz N. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 2008; 135:749-62. [PMID: 19013282 PMCID: PMC2763427 DOI: 10.1016/j.cell.2008.10.029] [Citation(s) in RCA: 713] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/18/2008] [Accepted: 10/28/2008] [Indexed: 12/19/2022]
Abstract
Comparative analysis can provide important insights into complex biological systems. As demonstrated in the accompanying paper, translating ribosome affinity purification (TRAP) permits comprehensive studies of translated mRNAs in genetically defined cell populations after physiological perturbations. To establish the generality of this approach, we present translational profiles for 24 CNS cell populations and identify known cell-specific and enriched transcripts for each population. We report thousands of cell-specific mRNAs that were not detected in whole-tissue microarray studies and provide examples that demonstrate the benefits deriving from comparative analysis. To provide a foundation for further biological and in silico studies, we provide a resource of 16 transgenic mouse lines, their corresponding anatomic characterization, and translational profiles for cell types from a variety of central nervous system structures. This resource will enable a wide spectrum of molecular and mechanistic studies of both well-known and previously uncharacterized neural cell populations.
Collapse
Affiliation(s)
- Joseph P. Doyle
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Joseph D. Dougherty
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Myriam Heiman
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Eric F. Schmidt
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Tanya R. Stevens
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Guojun Ma
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Sujata Bupp
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Prerana Shrestha
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rajiv D. Shah
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Martin L. Doughty
- GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shiaoching Gong
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathaniel Heintz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3895
|
Heiman M, Schaefer A, Gong S, Peterson J, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N. A translational profiling approach for the molecular characterization of CNS cell types. Cell 2008; 135:738-48. [PMID: 19013281 PMCID: PMC2696821 DOI: 10.1016/j.cell.2008.10.028] [Citation(s) in RCA: 908] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 07/18/2008] [Accepted: 10/28/2008] [Indexed: 01/01/2023]
Abstract
The cellular heterogeneity of the brain confounds efforts to elucidate the biological properties of distinct neuronal populations. Using bacterial artificial chromosome (BAC) transgenic mice that express EGFP-tagged ribosomal protein L10a in defined cell populations, we have developed a methodology for affinity purification of polysomal mRNAs from genetically defined cell populations in the brain. The utility of this approach is illustrated by the comparative analysis of four types of neurons, revealing hundreds of genes that distinguish these four cell populations. We find that even two morphologically indistinguishable, intermixed subclasses of medium spiny neurons display vastly different translational profiles and present examples of the physiological significance of such differences. This genetically targeted translating ribosome affinity purification (TRAP) methodology is a generalizable method useful for the identification of molecular changes in any genetically defined cell type in response to genetic alterations, disease, or pharmacological perturbations.
Collapse
Affiliation(s)
- Myriam Heiman
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Anne Schaefer
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shiaoching Gong
- GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jayms Peterson
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Michelle Day
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Keri E. Ramsey
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | - Mayte Suárez-Fariñas
- The Rockefeller University Hospital, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Cordelia Schwarz
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Dietrich A. Stephan
- Neurogenomics Division, Translational Genomics Research Institute, 445 North 5th Street, Phoenix, AZ 85004, USA
| | - D. James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Nathaniel Heintz
- GENSAT Project, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
- Laboratory of Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
3896
|
Mozhui K, Ciobanu DC, Schikorski T, Wang X, Lu L, Williams RW. Dissection of a QTL hotspot on mouse distal chromosome 1 that modulates neurobehavioral phenotypes and gene expression. PLoS Genet 2008; 4:e1000260. [PMID: 19008955 PMCID: PMC2577893 DOI: 10.1371/journal.pgen.1000260] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 10/14/2008] [Indexed: 11/18/2022] Open
Abstract
A remarkably diverse set of traits maps to a region on mouse distal chromosome 1 (Chr 1) that corresponds to human Chr 1q21-q23. This region is highly enriched in quantitative trait loci (QTLs) that control neural and behavioral phenotypes, including motor behavior, escape latency, emotionality, seizure susceptibility (Szs1), and responses to ethanol, caffeine, pentobarbital, and haloperidol. This region also controls the expression of a remarkably large number of genes, including genes that are associated with some of the classical traits that map to distal Chr 1 (e.g., seizure susceptibility). Here, we ask whether this QTL-rich region on Chr 1 (Qrr1) consists of a single master locus or a mixture of linked, but functionally unrelated, QTLs. To answer this question and to evaluate candidate genes, we generated and analyzed several gene expression, haplotype, and sequence datasets. We exploited six complementary mouse crosses, and combed through 18 expression datasets to determine class membership of genes modulated by Qrr1. Qrr1 can be broadly divided into a proximal part (Qrr1p) and a distal part (Qrr1d), each associated with the expression of distinct subsets of genes. Qrr1d controls RNA metabolism and protein synthesis, including the expression of approximately 20 aminoacyl-tRNA synthetases. Qrr1d contains a tRNA cluster, and this is a functionally pertinent candidate for the tRNA synthetases. Rgs7 and Fmn2 are other strong candidates in Qrr1d. FMN2 protein has pronounced expression in neurons, including in the dendrites, and deletion of Fmn2 had a strong effect on the expression of few genes modulated by Qrr1d. Our analysis revealed a highly complex gene expression regulatory interval in Qrr1, composed of multiple loci modulating the expression of functionally cognate sets of genes.
Collapse
Affiliation(s)
- Khyobeni Mozhui
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Daniel C. Ciobanu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Schikorski
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Xusheng Wang
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
3897
|
Kilduff TS, Lein ES, de la Iglesia H, Sakurai T, Fu YH, Shaw P. New developments in sleep research: molecular genetics, gene expression, and systems neurobiology. J Neurosci 2008; 28:11814-8. [PMID: 19005045 PMCID: PMC2628168 DOI: 10.1523/jneurosci.3768-08.2008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 11/21/2022] Open
Abstract
Understanding the mechanisms that underlie the control of sleep and wakefulness is a major research area in neuroscience. This mini-symposium review highlights some recent developments at the gene, molecular, cellular, and systems levels that have advanced this field. The studies discussed below use organisms ranging from flies to humans and focus on the interaction between the sleep homeostatic and circadian systems, the consequences of mutations in genes involved in the circadian clock on sleep timing, the effects of sleep deprivation on brain gene expression, the discovery of "sleep active" neurons in the cerebral cortex, the role of the hypocretin/orexin system in the maintenance of sleep and wakefulness, and the interaction between sleep and learning.
Collapse
Affiliation(s)
- Thomas S Kilduff
- Biosciences Division, SRI International, Menlo Park, California 94025, USA.
| | | | | | | | | | | |
Collapse
|
3898
|
Mason SS, Baker KB, Davis KW, Pogorelov VM, Malbari MM, Ritter R, Wray SP, Gerhardt B, Lanthorn TH, Savelieva KV. Differential sensitivity to SSRI and tricyclic antidepressants in juvenile and adult mice of three strains. Eur J Pharmacol 2008; 602:306-15. [PMID: 19038246 DOI: 10.1016/j.ejphar.2008.11.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Revised: 10/28/2008] [Accepted: 11/01/2008] [Indexed: 10/21/2022]
Abstract
Clinical studies have shown differential efficacy of several antidepressants in children and adolescents compared to adults, yet few animal studies have sought to characterize this phenomenon. We compared effects of fluoxetine and imipramine in two common behavioral assays that hold high predictive validity for antidepressant activity, tail suspension and forced swim test, using juvenile (5 weeks) and adult (12 weeks) mice from 3 strains. C57BL/6J-Tyr(c-Brd) (C57), hybrid C57BL/6J-Tyr(c-Brd)x129S5/SvEvBrd (F2), and Balb/cAnNTac (Balb/C) mice were tested in forced swim test and tail suspension after i.p. dosing with either fluoxetine or imipramine. Brain tissues were analyzed to evaluate levels of VMAT2, a possible modulator of age-dependent sensitivity to antidepressants. Imipramine had more consistent antidepressant effect across age groups and strains. Imipramine increased struggle in mice of both ages. Fluoxetine did not have an effect on immobility in Balb/C of both ages in tail suspension. Fluoxetine also did not increase forced swim struggle behavior in juvenile mice of all strains, but was effective in increasing struggle in adults. Juvenile mice had higher immobility and lower struggle than adults in forced swim, and juveniles also had higher immobility in tail suspension test for Balb/C and C57. In addition, VMAT2 levels were increased in juveniles. These results confirm that standard antidepressants produce effects in both juveniles and adults but age-related differences were evident in both tests. Further examination of these effects is needed to determine whether it may be related to age-dependent difference in the clinical response to antidepressants of these classes.
Collapse
Affiliation(s)
- Sara S Mason
- Department of Neuroscience, Lexicon Pharmaceuticals, Inc, The Woodlands, TX 77381, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3899
|
Croning MDR, Marshall MC, McLaren P, Armstrong JD, Grant SGN. G2Cdb: the Genes to Cognition database. Nucleic Acids Res 2008; 37:D846-51. [PMID: 18984621 PMCID: PMC2686544 DOI: 10.1093/nar/gkn700] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neuroscience databases linking genes, proteins, (patho)physiology, anatomy and behaviour across species will be valuable in a broad range of studies of the nervous system. G2Cdb is such a neuroscience database aiming to present a global view of the role of synapse proteins in physiology and disease. G2Cdb warehouses sets of genes and proteins experimentally elucidated by proteomic mass spectroscopy of signalling complexes and proteins biochemically isolated from mammalian synapse preparations, giving an experimentally validated definition of the constituents of the mammalian synapse. Using automated text-mining and expert (human) curation we have systematically extracted information from published neurobiological studies in the fields of synaptic signalling electrophysiology and behaviour in knockout and other transgenic mice. We have also surveyed the human genetics literature for associations to disease caused by mutations in synaptic genes. The synapse proteome datasets that G2Cdb provides offer a basis for future work in synapse biology and provide useful information on brain diseases. They have been integrated in a such way that investigators can rapidly query whether a gene or protein is found in brain-signalling complex(es), has a phenotype in rodent models or whether mutations are associated with a human disease. G2Cdb can be freely accessed at http://www.genes2cognition.org.
Collapse
Affiliation(s)
- Mike D R Croning
- Genes to Cognition Programme, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | |
Collapse
|
3900
|
Ramos RL, Smith PT, DeCola C, Tam D, Corzo O, Brumberg JC. Cytoarchitecture and transcriptional profiles of neocortical malformations in inbred mice. Cereb Cortex 2008; 18:2614-28. [PMID: 18308707 PMCID: PMC2733319 DOI: 10.1093/cercor/bhn019] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Malformations of neocortical development are associated with cognitive dysfunction and increased susceptibility to epileptogenesis. Rodent models are widely used to study neocortical malformations and have revealed important genetic and environmental mechanisms that contribute to neocortical development. Interestingly, several inbred mice strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations. In the present report we examine the cytoarchitecture and myeloarchitecture of the neocortex of 11 inbred mouse strains and identified malformations of cortical development, including molecular layer heterotopia, in all but one strain. We used in silico methods to confirm our observations and determined the transcriptional profiles of cells found within heterotopia. These data indicate cellular and transcriptional diversity present in cells in malformations. Furthermore, the presence of dysplasia in nearly every inbred strain examined suggests that malformations of neocortical development are a common feature in the neocortex of inbred mice.
Collapse
MESH Headings
- Animals
- Animals, Outbred Strains
- Choristoma/genetics
- Choristoma/pathology
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Ion Channels/genetics
- Mice
- Mice, Inbred A
- Mice, Inbred AKR
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Inbred Strains
- Neocortex/abnormalities
- Neocortex/physiology
- Receptors, Neurotransmitter/genetics
- Species Specificity
- Transcription, Genetic
Collapse
Affiliation(s)
- Raddy L. Ramos
- Department of Psychology, Queens College, CUNY, Flushing, NY 11367, USA
| | - Phoebe T. Smith
- Department of Math & Science, Suffolk County Community College, SUNY, Riverhead, NY 11901, USA
| | | | - Danny Tam
- Department of Psychology, Queens College, CUNY, Flushing, NY 11367, USA
| | - Oscar Corzo
- Department of Psychology, Queens College, CUNY, Flushing, NY 11367, USA
| | | |
Collapse
|