351
|
Ahn YJ, Lim JW, Kim H. Docosahexaenoic Acid Induces Expression of NAD(P)H: Quinone Oxidoreductase and Heme Oxygenase-1 through Activation of Nrf2 in Cerulein-Stimulated Pancreatic Acinar Cells. Antioxidants (Basel) 2020; 9:antiox9111084. [PMID: 33158207 PMCID: PMC7694300 DOI: 10.3390/antiox9111084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a major risk factor for acute pancreatitis. Reactive oxygen species (ROS) mediate expression of inflammatory cytokines such as interleukin-6 (IL-6) which reflects the severity of acute pancreatitis. The nuclear factor erythroid-2-related factor 2 (Nrf2) pathway is activated to induce the expression of antioxidant enzymes such as NAD(P)H: quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) as a cytoprotective response to oxidative stress. In addition, binding of Kelch-like ECH-associated protein 1 (Keap1) to Nrf2 promotes degradation of Nrf2. Docosahexaenoic acid (DHA)—an omega-3 fatty acid—exerts anti-inflammatory and antioxidant effects. Oxidized omega-3 fatty acids react with Keap1 to induce Nrf2-regulated gene expression. In this study, we investigated whether DHA reduces ROS levels and inhibits IL-6 expression via Nrf2 signaling in pancreatic acinar (AR42J) cells stimulated with cerulein, as an in vitro model of acute pancreatitis. The cells were pretreated with or without DHA for 1 h and treated with cerulein (10−8 M) for 1 (ROS levels, protein levels of NQO1, HO-1, pNrf2, Nrf2, and Keap1), 6 (IL-6 mRNA expression), and 24 h (IL-6 protein level in the medium). Our results showed that DHA upregulates the expression of NQO1 and HO-1 in cerulein-stimulated AR42J cells by promoting phosphorylation and nuclear translocation of Nrf2. DHA increased interaction between Keap1 and Nrf2 in AR42J cells, which may increase Nrf2 activity by inhibiting Keap1-mediated sequestration of Nrf2. In addition, DHA-induced expression of NQO1 and HO-1 is related to reduction of ROS and IL-6 levels in cerulein-stimulated AR42J cells. In conclusion, DHA inhibits ROS-mediated IL-6 expression by upregulating Nrf2-mediated expression of NQO1 and HO-1 in cerulein-stimulated pancreatic acinar cells. DHA may exert positive modulatory effects on acute pancreatitis by inhibiting oxidative stress and inflammatory cytokine production by activating Nrf2 signaling in pancreatic acinar cells.
Collapse
Affiliation(s)
| | | | - Hyeyoung Kim
- Correspondence: ; Tel.: +82-2-2123-3125; Fax: +82-2-364-5781
| |
Collapse
|
352
|
Montes de Oca Balderas P, Matus Núñez M, Picones A, Hernández-Cruz A. NMDAR in cultured astrocytes: Flux-independent pH sensor and flux-dependent regulator of mitochondria and plasma membrane-mitochondria bridging. FASEB J 2020; 34:16622-16644. [PMID: 33131132 DOI: 10.1096/fj.202001300r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/28/2020] [Accepted: 10/13/2020] [Indexed: 01/21/2023]
Abstract
Glutamate N-methyl-D-aspartate (NMDA) receptor (NMDAR) is critical for neurotransmission as a Ca2+ channel. Nonetheless, flux-independent signaling has also been demonstrated. Astrocytes express NMDAR distinct from its neuronal counterpart, but cultured astrocytes have no electrophysiological response to NMDA. We recently demonstrated that in cultured astrocytes, NMDA at pH6 (NMDA/pH6) acting through the NMDAR elicits flux-independent Ca2+ release from the Endoplasmic Reticulum (ER) and depletes mitochondrial membrane potential (mΔΨ). Here we show that Ca2+ release is due to pH6 sensing by NMDAR, whereas mΔΨ depletion requires both: pH6 and flux-dependent NMDAR signaling. Plasma membrane (PM) NMDAR guard a non-random distribution relative to the ER and mitochondria. Also, NMDA/pH6 induces ER stress, endocytosis, PM electrical capacitance reduction, mitochondria-ER, and -nuclear contacts. Strikingly, it also produces the formation of PM invaginations near mitochondria along with structures referred to here as PM-mitochondrial bridges (PM-m-br). These and earlier data strongly suggest PM-mitochondria communication. As proof of the concept of mass transfer, we found that NMDA/pH6 provoked mitochondria labeling by the PM dye FM-4-64FX. NMDA/pH6 caused PM depolarization, cell acidification, and Ca2+ release from most mitochondria. Finally, the MCU and microtubules were not involved in mΔΨ depletion, while actin cytoskeleton was partially involved. These findings demonstrate that NMDAR has concomitant flux-independent and flux-dependent actions in cultured astrocytes.
Collapse
Affiliation(s)
- Pavel Montes de Oca Balderas
- Unidad de Neurobiología Dinámica, Department of Neurochemistry, Instituto Nacional de Neurología y Neurocirugía, México City, México.,Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Mauricio Matus Núñez
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Picones
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| | - Arturo Hernández-Cruz
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Department of Cognitive Neuroscience, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
353
|
Estaras M, Marchena AM, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM, Gonzalez A. The melatonin receptor antagonist luzindole induces the activation of cellular stress responses and decreases viability of rat pancreatic stellate cells. J Appl Toxicol 2020; 40:1554-1565. [PMID: 32567733 DOI: 10.1002/jat.4018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022]
Abstract
In this study, we have examined the effects of luzindole, a melatonin receptor-antagonist, on cultured pancreatic stellate cells. Intracellular free-Ca2+ concentration, production of reactive oxygen species (ROS), activation of mitogen-activated protein kinases (MAPK), endoplasmic reticulum stress and cell viability were analyzed. Stimulation of cells with the luzindole (1, 5, 10 and 50 μm) evoked a slow and progressive increase in intracellular free Ca2+ ([Ca2+ ]i ) towards a plateau. The effect of the compound on Ca2+ mobilization depended on the concentration used. Incubation of cells with the sarcoendoplasmic reticulum Ca2+ -ATPase inhibitor thapsigargin (1 μm), in the absence of Ca2+ in the extracellular medium, induced a transient increase in [Ca2+ ]i . In the presence of thapsigargin, the addition of luzindole to the cells failed to induce further mobilization of Ca2+ . Luzindole induced a concentration-dependent increase in ROS generation, both in the cytosol and in the mitochondria. This effect was smaller in the absence of extracellular Ca2+ . In the presence of luzindole the phosphorylation of p44/42 and p38 MAPKs was increased, whereas no changes in the phosphorylation of JNK could be noted. Moreover, the detection of the endoplasmic reticulum stress-sensor BiP was increased in the presence of luzindole. Finally, viability was decreased in cells treated with luzindole. Because cellular membrane receptors for melatonin have not been detected in pancreatic stellate cells, we conclude that luzindole could exert direct effects that are not mediated through its action on melatonin membrane receptors.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Ana M Marchena
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
354
|
Estaras M, Ameur FZ, Estévez M, Díaz-Velasco S, Gonzalez A. The lysine derivative aminoadipic acid, a biomarker of protein oxidation and diabetes-risk, induces production of reactive oxygen species and impairs trypsin secretion in mouse pancreatic acinar cells. Food Chem Toxicol 2020; 145:111594. [PMID: 32738373 DOI: 10.1016/j.fct.2020.111594] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023]
Abstract
We have examined the effects of α-aminoadipic acid, an oxidized derivative from the amino acid lysine, on the physiology of mouse pancreatic acinar cells. Changes in intracellular free-Ca2+ concentration, the generation of reactive oxygen species, the levels of carbonyls and thiobarbituric-reactive substances, cellular metabolic activity and trypsin secretion were studied. Stimulation of mouse pancreatic cells with cholecystokinin (1 nM) evoked a transient increase in [Ca2+]i. In the presence of α-amoniadipic acid increases in [Ca2+]i were observed. In the presence of the compound, cholecystokinin induced a Ca2+ response that was smaller compared with that observed when cholecystokinin was applied alone. Stimulation of cells with cholecystokinin in the absence of Ca2+ in the extracellular medium abolished further mobilization of Ca2+ by α-aminoadipic acid. In addition, potential pro-oxidant conditions, reflected as increases in ROS generation, oxidation of proteins and lipids, were noted in the presence of α-aminoadipic acid. Finally, the compound impaired trypsin secretion induced by the secretagogue cholecystokinin. We conclude that the oxidized derivative from the amino acid lysine induces pro-oxidative conditions and the impairment of enzyme secretion in pancreatic acinar cells. α-aminoadipic acid thus creates a situation that could potentially lead to disorders in the physiology of the pancreas.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Fatma Z Ameur
- Laboratoire de Physiologie de la Nutrition et de Sécurité Alimentaire, Université d'Oran1 Ahmed BenBella, Algeria
| | - Mario Estévez
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Silvia Díaz-Velasco
- IPROCAR Research Institute, TECAL Research Group, University of Extremadura, 10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
355
|
Nikam VS, Singh D, Takawale R, Ghante MR. Zebrafish: An emerging whole-organism screening tool in safety pharmacology. Indian J Pharmacol 2020; 52:505-513. [PMID: 33666192 PMCID: PMC8092182 DOI: 10.4103/ijp.ijp_482_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 04/14/2020] [Accepted: 01/04/2021] [Indexed: 12/18/2022] Open
Abstract
During the last two decades, the development in drug discovery is slackening due to drug withdrawal from the market or reported to have postmarket safety events. The vital organ toxicities, especially cardiotoxicity, hepatotoxicity, pulmonary toxicity, and neurotoxicity are the major concerns for high drug attrition rates. The pharmaceutical industry is looking for high throughput, high content analysis based novel assays that would be fast, efficient, reproducible, and cost-effective; would address toxicity, the safety of lead molecules, and complement currently used cell-based assays in preclinical testing. The use of zebrafish, a vertebrate screening model, for preclinical testing is increasing owing to the number of advantages and striking similarities with the mammal. The zebrafish embryo development is fast and all vital organs such as the heart, liver, brain, pancreas, and kidneys in zebrafish are functional within 96-120hpf. The maintenance cost of zebrafish is reasonably low as compared to mammalian systems. Due to these features, zebrafish has arisen as a potential experimental screening model in lead identification and validation in the drug efficacy, toxicity, and safety evaluation. Numbers of drugs and chemicals are screened using zebrafish embryos, and results were found to show 100% concordance with mammalian screening data. The application of zebrafish, being a whole-organism screening model, would show a significant reduction in the cost and time required in the drug development process. The present challenge includes complete automation of the zebrafish screening model, i.e., from sorting, imaging of embryos to data analysis to accelerate the therapeutic target identification, and validation process.
Collapse
Affiliation(s)
- Vandana S. Nikam
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Deeksha Singh
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Rohan Takawale
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| | - Minal R. Ghante
- Department of Pharmacology, Sinhgad Technical Education Society's Smt. Kashibai Navale College of Pharmacy, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
356
|
Wang M, Ma J, Wang X, Wang Z, Tang L, Chen H, Li Z. Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: from extracellular to intracellular. Appl Microbiol Biotechnol 2020; 104:10181-10190. [PMID: 33043391 DOI: 10.1007/s00253-020-10952-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/26/2020] [Accepted: 10/05/2020] [Indexed: 01/17/2023]
Abstract
The red yeast (Rhodotorula mucilaginosa: Rho) has abundant extracellular polymeric substances (EPS) and intracellular vesicles (Ves). This study explored the mechanisms of Rho to resist Cu toxicity from extracellular to intracellular, i.e., EPS, membrane, and Ves. The Cu2+ concentrations were set from 0 to 200 mg/L. In contrast to other heavy metals (e.g., Pb2+), low Cu2+ stress has no evident stimulation to EPS production. In particular, GSH content in EPS did not show significant changes. The Cu removal was decreased from ~ 35 to ~ 0% as Cu stress raised from 0 to 200 mg/L, which confirmed the low binding of Cu cations to EPS. Moreover, redox peaks at - 0.35 V (reduction) and - 0.02 V (oxidation) in EPS were observed based on electrochemical analysis. Subsequently, the potential Haber-Weiss reaction in EPS lowered fungal ability to shield against the Cu toxicity. Then, the contrast of Cu concentration between the extracellular and intracellular regions was enlarged. Moreover, the thickness of cell membrane decreased from 450 to 116 nm during the elevation of Cu stress. These accelerated the transport of Cu cations into intracellular, but the redox reaction in both cell membrane and intracellular region was limited. Under transmission electron microscopy, the intracellular Ves showed evident sorption of Cu cations (100 mg/L). However, the Ves started to deform and gradually lost their activity at 200 mg/L. Therefore, this study successfully elucidated the correlated extracellular and intracellular mechanisms of metal detoxification by yeast. KEY POINTS: •This study provides a comprehensive explanation for the invasion of Cu2+ into fungal (Rhodotorula mucilaginosa) cells based on microbial physiological and biochemical analysis, electrochemical analysis, and transmitted electron microscopy. •Cu nanoparticles are involved in redox reactions in the EPS, thus greatly reducing the prophase protection for fungal cells by EPS. •At 200 mg/L Cu2+ stress, deformation of cell membrane intensifies the contrast of Cu concentrations between extra- and intracellular regions. This further suppresses the transportation of Cu2+ by intracellular vesicles. Graphical abstract.
Collapse
Affiliation(s)
- Mengxiao Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jingxuan Ma
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xuewei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Lingyi Tang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Haoming Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China. .,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
357
|
Posada-Duque RA, Cardona-Gómez GP. CDK5 Targeting as a Therapy for Recovering Neurovascular Unit Integrity in Alzheimer's Disease. J Alzheimers Dis 2020; 82:S141-S161. [PMID: 33016916 DOI: 10.3233/jad-200730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The neurovascular unit (NVU) is responsible for synchronizing the energetic demand, vasodynamic changes, and neurochemical and electrical function of the brain through a closed and interdependent interaction of cell components conforming to brain tissue. In this review, we will focus on cyclin-dependent kinase 5 (CDK5) as a molecular pivot, which plays a crucial role in the healthy function of neurons, astrocytes, and the endothelium and is implicated in the cross-talk of cellular adhesion signaling, ion transmission, and cytoskeletal remodeling, thus allowing the individual and interconnected homeostasis of cerebral parenchyma. Then, we discuss how CDK5 overactivation affects the integrity of the NVU in Alzheimer's disease (AD) and cognitive impairment; we emphasize how CDK5 is involved in the excitotoxicity spreading of glutamate and Ca2+ imbalance under acute and chronic injury. Additionally, we present pharmacological and gene therapy strategies for producing partial depletion of CDK5 activity on neurons, astrocytes, or endothelium to recover neuroplasticity and neurotransmission, suggesting that the NVU should be the targeted tissue unit in protective strategies. Finally, we conclude that CDK5 could be effective due to its intervention on astrocytes by its end feet on the endothelium and neurons, acting as an intermediary cell between systemic and central communication in the brain. This review provides integrated guidance regarding the pathogenesis of and potential repair strategies for AD.
Collapse
Affiliation(s)
- Rafael Andrés Posada-Duque
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia.,Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Gloria Patricia Cardona-Gómez
- Cellular and Molecular Neurobiology Area, Group of Neuroscience of Antioquia, SIU, University of Antioquia, Medellín, Colombia
| |
Collapse
|
358
|
Pathak GA, Polimanti R, Silzer TK, Wendt FR, Chakraborty R, Phillips NR. Genetically-regulated transcriptomics & copy number variation of proctitis points to altered mitochondrial and DNA repair mechanisms in individuals of European ancestry. BMC Cancer 2020; 20:954. [PMID: 33008348 PMCID: PMC7530964 DOI: 10.1186/s12885-020-07457-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Background Proctitis is an inflammation of the rectum and may be induced by radiation treatment for cancer. The genetic heritability of developing radiotoxicity and prior role of genetic variants as being associated with side-effects of radiotherapy necessitates further investigation for underlying molecular mechanisms. In this study, we investigated gene expression regulated by genetic variants, and copy number variation in prostate cancer survivors with radiotoxicity. Methods We investigated proctitis as a radiotoxic endpoint in prostate cancer patients who received radiotherapy (n = 222). We analyzed the copy number variation and genetically regulated gene expression profiles of whole-blood and prostate tissue associated with proctitis. The SNP and copy number data were genotyped on Affymetrix® Genome-wide Human SNP Array 6.0. Following QC measures, the genotypes were used to obtain gene expression by leveraging GTEx, a reference dataset for gene expression association based on genotype and RNA-seq information for prostate (n = 132) and whole-blood tissue (n = 369). Results In prostate tissue, 62 genes were significantly associated with proctitis, and 98 genes in whole-blood tissue. Six genes - CABLES2, ATP6AP1L, IFIT5, ATRIP, TELO2, and PARD6G were common to both tissues. The copy number analysis identified seven regions associated with proctitis, one of which (ALG1L2) was also associated with proctitis based on transcriptomic profiles in the whole-blood tissue. The genes identified via transcriptomics and copy number variation association were further investigated for enriched pathways and gene ontology. Some of the enriched processes were DNA repair, mitochondrial apoptosis regulation, cell-to-cell signaling interaction processes for renal and urological system, and organismal injury. Conclusions We report gene expression changes based on genetic polymorphisms. Integrating gene-network information identified these genes to relate to canonical DNA repair genes and processes. This investigation highlights genes involved in DNA repair processes and mitochondrial malfunction possibly via inflammation. Therefore, it is suggested that larger studies will provide more power to infer the extent of underlying genetic contribution for an individual’s susceptibility to developing radiotoxicity.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Talisa K Silzer
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Frank R Wendt
- Department of Psychiatry, Yale School of Medicine, Yale University, New Haven, CT, USA.,Veteran Affairs Connecticut Healthcare System, West Haven, CT, USA
| | - Ranajit Chakraborty
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX, 76107, USA.
| |
Collapse
|
359
|
Schwarz M, Lossow K, Schirl K, Hackler J, Renko K, Kopp JF, Schwerdtle T, Schomburg L, Kipp AP. Copper interferes with selenoprotein synthesis and activity. Redox Biol 2020; 37:101746. [PMID: 33059313 PMCID: PMC7567034 DOI: 10.1016/j.redox.2020.101746] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/04/2020] [Indexed: 12/19/2022] Open
Abstract
Selenium and copper are essential trace elements for humans, needed for the biosynthesis of enzymes contributing to redox homeostasis and redox-dependent signaling pathways. Selenium is incorporated as selenocysteine into the active site of redox-relevant selenoproteins including glutathione peroxidases (GPX) and thioredoxin reductases (TXNRD). Copper-dependent enzymes mediate electron transfer and other redox reactions. As selenoprotein expression can be modulated e.g. by H2O2, we tested the hypothesis that copper status affects selenoprotein expression. To this end, hepatocarcinoma HepG2 cells and mice were exposed to a variable copper and selenium supply in a physiologically relevant concentration range, and transcript and protein expression as well as GPX and TXNRD activities were compared. Copper suppressed selenoprotein mRNA levels of GPX1 and SELENOW, downregulated GPX and TXNRD activities and decreased UGA recoding efficiency in reporter cells. The interfering effects were successfully suppressed by applying the copper chelators bathocuproinedisulfonic acid or tetrathiomolybdate. In mice, a decreased copper supply moderately decreased the copper status and negatively affected hepatic TXNRD activity. We conclude that there is a hitherto unknown interrelationship between copper and selenium status, and that copper negatively affects selenoprotein expression and activity most probably via limiting UGA recoding. This interference may be of physiological relevance during aging, where a particular shift in the selenium to copper ratio has been reported. An increased concentration of copper in face of a downregulated selenoprotein expression may synergize and negatively affect the cellular redox homeostasis contributing to disease processes.
Collapse
Affiliation(s)
- Maria Schwarz
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany
| | - Kristina Lossow
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Institute of Human Nutrition, Nuthetal, 14558, Germany
| | - Katja Schirl
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany
| | - Julian Hackler
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Kostja Renko
- Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Johannes Florian Kopp
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Tanja Schwerdtle
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; German Federal Institute for Risk Assessment (BfR), Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, 14558, Germany
| | - Lutz Schomburg
- TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany; Institute for Experimental Endocrinology, Charité - University Medical School Berlin, Berlin, 13353, Germany
| | - Anna Patricia Kipp
- Department of Molecular Nutritional Physiology, Institute of Nutritional Sciences, Friedrich Schiller University Jena, Jena, 07743, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Germany.
| |
Collapse
|
360
|
Estaras M, Martinez-Morcillo S, García A, Martinez R, Estevez M, Perez-Lopez M, Miguez MP, Fernandez-Bermejo M, Mateos JM, Vara D, Blanco G, Lopez D, Roncero V, Salido GM, Gonzalez A. Pancreatic stellate cells exhibit adaptation to oxidative stress evoked by hypoxia. Biol Cell 2020; 112:280-299. [PMID: 32632968 DOI: 10.1111/boc.202000020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/31/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND INFORMATION Pancreatic stellate cells play a key role in the fibrosis that develops in diseases such as pancreatic cancer. In the growing tumour, a hypoxia condition develops under which cancer cells are able to proliferate. The growth of fibrotic tissue contributes to hypoxia. In this study, the effect of hypoxia (1% O2 ) on pancreatic stellate cells physiology was investigated. Changes in intracellular free-Ca2+ concentration, mitochondrial free-Ca2+ concentration and mitochondrial membrane potential were studied by fluorescence techniques. The status of enzymes responsible for the cellular oxidative state was analyzed by quantitative reverse transcription-polymerase chain reaction, high-performance liquid chromatography, spectrophotometric and fluorimetric methods and by Western blotting analysis. Cell viability and proliferation were studied by crystal violet test, 5-bromo-2-deoxyuridine cell proliferation test and Western blotting analysis. Finally, cell migration was studied employing the wound healing assay. RESULTS Hypoxia induced an increase in intracellular and mitochondrial free-Ca2+ concentration, whereas mitochondrial membrane potential was decreased. An increase in mitochondrial reactive oxygen species production was observed. Additionally, an increase in the oxidation of proteins and lipids was detected. Moreover, cellular total antioxidant capacity was decreased. Increases in the expression of superoxide dismutase 1 and 2 were observed and superoxide dismutase activity was augmented. Hypoxia evoked a decrease in the oxidized/reduced glutathione ratio. An increase in the phosphorylation of nuclear factor erythroid 2-related factor and in expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 were detected. The expression of cyclin A was decreased, whereas expression of cyclin D and the content of 5-bromo-2-deoxyuridine were increased. This was accompanied by an increase in cell viability. The phosphorylation state of c-Jun NH2 -terminal kinase was increased, whereas that of p44/42 and p38 was decreased. Finally, cells subjected to hypoxia maintained migration ability. CONCLUSIONS AND SIGNIFICANCE Hypoxia creates pro-oxidant conditions in pancreatic stellate cells to which cells adapt and leads to increased viability and proliferation.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Alfredo García
- Department of Animal Production, Cicytex-La Orden, Badajoz, Spain
| | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Mario Estevez
- IPROCAR Research Institute, Food Technology, University of Extremadura, Caceres, 10003, Spain
| | - Marcos Perez-Lopez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Maria P Miguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
361
|
Radoslavova S, Ouadid-Ahidouch H, Prevarskaya N. Ca2+ signaling is critical for pancreatic stellate cell’s pathophysiology : from fibrosis to cancer hallmarks. CURRENT OPINION IN PHYSIOLOGY 2020. [DOI: 10.1016/j.cophys.2020.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
362
|
Morvaridzadeh M, Sadeghi E, Agah S, Nachvak SM, Fazelian S, Moradi F, Persad E, Heshmati J. Effect of melatonin supplementation on oxidative stress parameters: A systematic review and meta-analysis. Pharmacol Res 2020; 161:105210. [PMID: 33007423 DOI: 10.1016/j.phrs.2020.105210] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Oxidative stress, defined as an imbalance between pro-oxidants and neutralizing antioxidants within the body, is a growing public health concern. Oxidative stress is involved in the progression of nearly all chronic diseases. Melatonin has been suggested to reduce oxidative stress by its potential radical scavenging properties. OBJECTIVE To determine the efficacy and safety of melatonin as a therapy for the improvement of oxidative stress parameters in randomized controlled trials. METHODS A systematic database search using Scopus, PubMed/Medline, EMBASE, Web of Science, the Cochrane Controlled Register of Trials and clinicaltrials.gov (https://clinicaltrials.gov) for studies published up to July 2020 was conducted. We included studies which investigated the effect of supplemental melatonin compared to placebo on oxidative stress parameters in unhealthy patients. Quantitative data synthesis was conducted using a random-effects model with standard mean difference (SMD) and 95 % confidence intervals (CI). Cochrane's Q and I2 values were used to evaluate heterogeneity. RESULTS A total of 12 randomized controlled trials (RCTs) were eligible. The meta-analysis indicated an association between melatonin intake and a significant increase in total antioxidant capacity (TAC) (SMD: 0.76; 95 % CI: 0.30, 1.21; I2 = 80.1 %), glutathione (GSH) levels (SMD: 0.57; 95 % CI: 0.32, 0.83; I2 = 15.1 %), superoxide dismutase (SOD) (SMD: 1.38; 95 % CI: 0.13, 2.62; I2 = 86.9 %), glutathione peroxidase (GPx) (SMD: 1.36; 95 % CI: 0.46, 2.30; I2 = 89.3 %), glutathione reductase (GR) (SMD: 1.21; 95 % CI: 0.65, 1.77; I2 = 00.0 %) activities, and a significant reduction in malondialdehyde (MDA) levels (SMD: -0.79; 95 % CI: -1.19, -0.39; I2 = 73.1 %). Melatonin intake was not shown to significantly affect nitric oxide (NO) levels (SMD: -0.24; 95 % CI: -0.61, 0.14; I2 = 00.0 %) or catalase (CAT) activity (SMD: -1.38; 95 % CI: -1.42, 4.18; I2 = 96.6 %). CONCLUSION Melatonin intake was shown to have a significant impact on improving Oxidative stress parameters. However, future research through large, well-designed randomized controlled trials are required to determine the effect of melatonin on oxidative stress parameters in different age groups and different disease types.
Collapse
Affiliation(s)
- Mojgan Morvaridzadeh
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ehsan Sadeghi
- Research Center for Environmental Determinants of Health (RCEDH), Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Shahram Agah
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mostafa Nachvak
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Siavash Fazelian
- Clinical Research Development Unit, Ayatollah Kashani Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Emma Persad
- Department for Evidence-based Medicine and Evaluation, Danube University Krems, Krems, Austria
| | - Javad Heshmati
- Department of Nutritional Science, School of Nutritional Science and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
363
|
Gong Y, Yang J, Cai J, Liu Q, Zhang Z. Selenoprotein Gpx3 knockdown induces myocardial damage through Ca 2+ leaks in chickens. Metallomics 2020; 12:1713-1728. [PMID: 32968752 DOI: 10.1039/d0mt00027b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glutathione peroxidase 3 (Gpx3) is a pivotal selenoprotein that acts as an antioxidant. However, the role of Gpx3 in maintaining the normal metabolism of cardiomyocytes remains to be elucidated in more detail. Herein, we employed a model of Gpx3 interference in chicken embryos in vivo and Gpx3 knockdown chicken cardiomyocytes in vitro. Real-time PCR, western blotting and fluorescent staining were performed to detect reactive oxygen species (ROS), the calcium (Ca2+) concentration, endoplasmic reticulum (ER) stress, myocardial contraction, inflammation and heat shock proteins (HSPs). Our results revealed that Gpx3 suppression increased the level of ROS, which induced Ca2+ leakage in the cytoplasm by blocking the expression of Ca2+ channels. The imbalance of Ca2+ homeostasis triggered ER stress and blocked myocardial contraction. Furthermore, we found that Ca2+ imbalance in the cytoplasm induced severe inflammation, and HSPs might play a protective role throughout these processes. In conclusion, Gpx3 suppression induces myocardial damage through the activation of Ca2+-dependent ER stress.
Collapse
Affiliation(s)
- Yafan Gong
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P. R. China
| | | | | | | | | |
Collapse
|
364
|
Tiong YL, Ng KY, Koh RY, Ponnudurai G, Chye SM. Melatonin promotes Schwann cell dedifferentiation and proliferation through the Ras/Raf/ERK and MAPK pathways, and glial cell-derived neurotrophic factor expression. Exp Ther Med 2020; 20:16. [PMID: 32934681 PMCID: PMC7471953 DOI: 10.3892/etm.2020.9143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 11/22/2019] [Indexed: 12/24/2022] Open
Abstract
Upon peripheral nerve injury (PNI), continuous proliferation of Schwann cells is critical for axon regeneration and tubular reconstruction for nerve regeneration. Melatonin is a hormone that is able to induce proliferation in various cell types. In the present study, the effects of melatonin on promoting Schwann cell proliferation and the molecular mechanism involved were investigated. The present results showed that melatonin enhanced the melatonin receptors (MT1 and MT2) expression in Schwann cells. Melatonin induced Schwann cell dedifferentiation into progenitor-like Schwann cells, as observed by immunofluorescence staining, which showed Sox2 marker expression. In addition, melatonin enhanced Schwann cell proliferation, mediated by the upregulation of glial cell-derived neurotropic factor (GNDF) and protein kinase C (PKC). Furthermore, the Ras/Raf/ERK and MAPK signaling pathways were also involved in Schwann cell dedifferentiation and proliferation. In conclusion, melatonin induced Schwann cell dedifferentiation and proliferation via the Ras/Raf/ERK, MAPK and GDNF/PKC pathways. The present results suggested that melatonin could be used to enhance the recovery of PNI.
Collapse
Affiliation(s)
- Yee Lian Tiong
- School of Postgraduate, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Selangor 47500, Malaysia
| | - Rhun Yian Koh
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| | | | - Soi Moi Chye
- School of Health Science, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
365
|
Yu C, Zhang J, Li X, Liu J, Niu Y. Astragaloside IV-induced Nrf2 nuclear translocation ameliorates lead-related cognitive impairments in mice. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118853. [PMID: 32941941 DOI: 10.1016/j.bbamcr.2020.118853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Abstract
Recently, oxidative stress is a common denominator in the pathogenesis of metal-induced neurotoxicity. Thus, antioxidant therapy is considered as a promising strategy for treating lead-related cognitive impairment. Here, we tested the hypothesis that astragaloside IV (AS-IV) ameliorates lead-associated cognitive deficits through Nrf2-dependent antioxidant mechanisms. Male Nrf2-KO and WT mice received drinking water with 2000 ppm lead and/or AS-IV by gavage for 8 weeks starting at 4 weeks of age. Morris water maze test and biochemical assays were employed to study cognition-enhancing and antioxidant effects of AS-IV. The signaling pathways involved were analyzed using RT-PCR and western blot technology. Significantly, AS-IV attenuated Morris water maze-based cognitive impairment in lead-intoxicated mice. Importantly, cognition-enhancing effect of AS-IV was lost in Nrf2-KO mice. In parallel, AS-IV suppressed lead acetate (PbAc)-induced oxidative stress, as measured by MDA. Mechanistically, AS-IV can up-regulate the expressions of the GCLc and HO-1 at the level of transcription and translation, but not SOD, TrxR activity, GCLm, Trx1, and NQO1 expression. Interestingly, AS-IV induced accumulation of Nrf2 in the nucleus, whereas Nrf2 mRNA levels were unchanged. Furthermore, AS-IV treatment resulted in elevated levels of phosphorylated Akt (active form) and phosphorylated GSK-3β (inactive forms) but decreased level of phosphorylated Fyn. Collectively, our findings indicate that AS-IV may target Nrf2 to attenuate lead-triggered oxidative stress and subsequent cognitive impairments, suggesting that AS-IV is a potential candidate for the treatment of lead-associated cognitive diseases.
Collapse
Affiliation(s)
- Chunlei Yu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jing Zhang
- Department of Hematology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China
| | - Xiaoming Li
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Jicheng Liu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yingcai Niu
- The Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China.
| |
Collapse
|
366
|
Veres-Székely A, Bernáth M, Pap D, Rokonay R, Szebeni B, Takács IM, Lippai R, Cseh Á, Szabó AJ, Vannay Á. PARK7 Diminishes Oxidative Stress-Induced Mucosal Damage in Celiac Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4787202. [PMID: 32963695 PMCID: PMC7492931 DOI: 10.1155/2020/4787202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Coeliac disease (CD) is a chronic, immune-mediated small intestinal enteropathy, accompanied with gluten-triggered oxidative damage of duodenal mucosa. Previously, our research group reported an increased mucosal level of the antioxidant protein Parkinson's disease 7 (PARK7) in children with CD. In the present study, we investigated the role of increased PARK7 level on the epithelial cell and mucosal integrity of the small intestine. The presence of PARK7 was investigated using immunofluorescent staining on duodenal mucosa of children with CD and on FHs74Int duodenal epithelial cells. To investigate the role of oxidative stress, FHs74Int cells were treated with H2O2 in the absence or presence of Comp23, a PARK7-binding compound. Intracellular accumulation of reactive oxygen species (ROS) was determined by DCFDA-based assay. Cell viability was measured by MTT, LDH, and Annexin V apoptosis assays. Disruption of cytoskeleton and cell adhesion was investigated by immunofluorescence staining and by real-time RT PCR. Effect of PARK7 on mucosal permeability was investigated ex vivo using intestinal sacs derived from control and Comp-23-pretreated mice. Comp23 treatment reduced the H2O2-induced intracellular accumulation of ROS, thus preserving the integrity of the cytoskeleton and also the viability of the FHs74Int cells. Accordingly, Comp23 treatment increased the expression of antioxidants (NRF2, TRX1, GCLC, HMOX1, NQO1), cell-cycle regulators (TP53, CDKN1A, PCNA, BCL2, BAX), and cell adhesion molecules (ZO1, CDH1, VCL, ITGB5) of H2O2-treated cells. Pretreatment with Comp23 considerably decreased the small intestinal permeability. In this study, we demonstrate that PARK7-binding Comp23 reduces the oxidative damage of duodenal epithelial cells, via increased expression of NRF2- and P53-regulated genes. Our results suggest that PARK7 plays a significant role in the maintenance of mucosal integrity in CD.
Collapse
Affiliation(s)
- Apor Veres-Székely
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Mária Bernáth
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Domonkos Pap
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - Réka Rokonay
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Beáta Szebeni
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - István M. Takács
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Rita Lippai
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Áron Cseh
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
| | - Attila J. Szabó
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| | - Ádám Vannay
- 1st Department of Paediatrics, Semmelweis University, 1085 Budapest, Hungary
- MTA-SE Pediatrics and Nephrology Research Group, 1085 Budapest, Hungary
| |
Collapse
|
367
|
Bae H, Yang C, Lee JY, Park S, Bazer FW, Song G, Lim W. Melatonin improves uterine-conceptus interaction via regulation of SIRT1 during early pregnancy. J Pineal Res 2020; 69:e12670. [PMID: 32421880 DOI: 10.1111/jpi.12670] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023]
Abstract
Melatonin has been shown to improve in vitro fertilization and offspring survival after bacterial infection, but its role in regulating maternal-fetal communication during early pregnancy has not been investigated. Results of this study demonstrated expression of abundant melatonin receptors in conceptus and endometrium during early pregnancy. In gilts, expression of melatonin receptor 1A (MTNR1A or MT1) and melatonin receptor 1B (MTNR1B or MT2) increased in trophectoderm (Tr) and uterine luminal epithelium (LE) with advancing days during early pregnancy in a different manner. Melatonin increased proliferation and migration of porcine trophectoderm (pTr) cell, the percent pTr cells in the G2 phase of the cell cycle, and the expression of implantation-related genes by pTr cells and endometrial luminal epithelium (pLE). Melatonin also attenuated the production of LPS-induced pro-inflammatory cytokines and tunicamycin-induced endoplasmic reticulum (ER) stress-sensing proteins. The expression of sirtuin 1 (SIRT1) as a potential target of melatonin increased between Days 9 and 14 of gestation. Co-treatment with SIRT1 inhibitor EX527 and melatonin restored cell-cell interactions through PI3K and MAPK signaling. Knockdown of SIRT1 decreased the expression of implantation-related genes, as well as migration of pTr and pLE cells. The expression of microRNAs regulated by SIRT1 was suppressed in response to melatonin. Furthermore, melatonin significantly increased lipopolysaccharide (LPS)-reduced fertilization and embryogenesis in zebrafish model. These results suggest that melatonin may improve the uterine-conceptus interactions via the regulation of SIRT1 during early pregnancy.
Collapse
Affiliation(s)
- Hyocheol Bae
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Changwon Yang
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jin-Young Lee
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sunwoo Park
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Fuller W Bazer
- Department of Animal Science, Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, TX, USA
| | - Gwonhwa Song
- Department of Biotechnology, Institute of Animal Molecular Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Whasun Lim
- Department of Food and Nutrition, College of Science and Technology, Kookmin University, Seoul, Korea
| |
Collapse
|
368
|
Pourhanifeh MH, Mehrzadi S, Kamali M, Hosseinzadeh A. Melatonin and gastrointestinal cancers: Current evidence based on underlying signaling pathways. Eur J Pharmacol 2020; 886:173471. [PMID: 32877658 DOI: 10.1016/j.ejphar.2020.173471] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
Gastrointestinal (GI) cancers, leading causes of cancer-related deaths, have been serious challenging human diseases up to now. Because of high rates of mortality, late-stage diagnosis, metastasis to distant locations, and low effectiveness and adverse events of routine standard therapies, the quality of life and survival time are low in patients with GI cancers. Hence, many efforts need to be done to explore and find novel efficient treatments. Beneficial effects of melatonin have been reported in a wide variety of human diseases. Melatonin has antioxidant, anti-inflammatory, antimicrobial, and anticancer effects. Various studies have showed the regulatory effects of melatonin on apoptotsis, autophagy and angiogenesis; these properties result in the inhibition of invasion, migration, and proliferation of GI cancer cells in vivo and in vitro. Together, this review suggests that melatonin in combination with anticancer agents may improve the efficacy of routine medicine and survival rate of patients with cancer.
Collapse
Affiliation(s)
- Mohammad Hossein Pourhanifeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
369
|
Murphy A, Costa M. Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer. Cancer Lett 2020; 494:132-141. [PMID: 32835767 DOI: 10.1016/j.canlet.2020.08.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Nuclear protein 1 (NUPR1) also known as p8 and candidate of metastasis 1 (COM1) functions as a transcriptional regulator, and plays a role in cell cycle, DNA damage response, apoptosis, autophagy, and chromatin remodeling in response to various cellular stressors. Since it was first suggested to contribute to cancer development and progression in 1999, a number of studies have sought to reveal its function. However, NUPR1 and its biological relevance in cancer have proven difficult to pinpoint. Based on evidence of NUPR1 expression in cancers, its function extends from carcinogenesis and tumorigenesis to metastasis and chemotherapeutic resistance. A tumor suppressive function of NUPR1 has also been documented in multiple cancers. By and large, literature involving NUPR1 and cancer is confined to pancreatic and breast cancers, yet significant progress has been made with respect to NUPR1 expression and its function in lung, colorectal, blood, and prostate cancers, among others. Recent evidence strongly supports the notion that NUPR1 is key in chemotherapeutic resistance by mediating both anti-apoptotic activity and autophagy when challenged with anti-cancer compounds. Therefore, it is of significant importance to understand the broad range of molecular functions directed by NUPR1. In this review, NUPR1 expression and its role in breast, lung, and colorectal cancer development and progression will be addressed.
Collapse
Affiliation(s)
- Anthony Murphy
- Department of Environmental Medicine, New York University School of Medicine, USA.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, USA.
| |
Collapse
|
370
|
Lithium chloride enhances serotonin induced calcium activity in EGFP-GnIH neurons. Sci Rep 2020; 10:13876. [PMID: 32807874 PMCID: PMC7431857 DOI: 10.1038/s41598-020-70710-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/20/2020] [Indexed: 11/10/2022] Open
Abstract
Neurons synthesizing gonadotropin-inhibitory hormone (GnIH) have been implicated in the control of reproduction, food intake and stress. Serotonin (5-HT) receptors have been shown in GnIH neurons; however, their functional role in the regulation of GnIH neurons remains to be elucidated. In this study, we measured intracellular calcium ion levels following 5-HT treatment to hypothalamic primary cultures of enhanced fluorescent green protein-tagged GnIH (EGFP-GnIH) neurons from Wistar rat pups of mixed sex. Three days after initial seeding of the primary cultures, the test groups were pre-treated with lithium chloride to selectively inhibit glycogen synthase kinase 3 beta to promote intracellular calcium levels, whereas the control groups received culture medium with no lithium chloride treatment. 24 h later, the cultures were incubated with rhodamine-2AM (rhod-2AM) calcium indicator dye for one hour prior to imaging. 5-HT was added to the culture dishes 5 min after commencement of imaging. Analysis of intracellular calcium levels in EGFP-GnIH neurons showed that pre-treatment with lithium chloride before 5-HT treatment resulted in significant increase in intracellular calcium levels, two times higher than the baseline. This suggests that lithium chloride enhances the responsiveness of GnIH neurons to 5-HT.
Collapse
|
371
|
Maugard M, Vigneron PA, Bolaños JP, Bonvento G. l-Serine links metabolism with neurotransmission. Prog Neurobiol 2020; 197:101896. [PMID: 32798642 DOI: 10.1016/j.pneurobio.2020.101896] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 08/09/2020] [Indexed: 12/12/2022]
Abstract
Brain energy metabolism is often considered as a succession of biochemical steps that metabolize the fuel (glucose and oxygen) for the unique purpose of providing sufficient ATP to maintain the huge information processing power of the brain. However, a significant fraction (10-15 %) of glucose is shunted away from the ATP-producing pathway (oxidative phosphorylation) and may be used to support other functions. Recent studies have pointed to the marked compartmentation of energy metabolic pathways between neurons and glial cells. Here, we focused our attention on the biosynthesis of l-serine, a non-essential amino acid that is formed exclusively in glial cells (mostly astrocytes) by re-routing the metabolic fate of the glycolytic intermediate, 3-phosphoglycerate (3PG). This metabolic pathway is called the phosphorylated pathway and transforms 3PG into l-serine via three enzymatic reactions. We first compiled the available data on the mechanisms that regulate the flux through this metabolic pathway. We then reviewed the current evidence that is beginning to unravel the roles of l-serine both in the healthy and diseased brain, leading to the notion that this specific metabolic pathway connects glial metabolism with synaptic activity and plasticity. We finally suggest that restoring astrocyte-mediated l-serine homeostasis may provide new therapeutic strategies for brain disorders.
Collapse
Affiliation(s)
- Marianne Maugard
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Pierre-Antoine Vigneron
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain; Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Institute of Biomedical Research of Salamanca, 37007, Salamanca, Spain
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France.
| |
Collapse
|
372
|
He B, Ni Y, Jin Y, Fu Z. Pesticides-induced energy metabolic disorders. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:139033. [PMID: 32388131 DOI: 10.1016/j.scitotenv.2020.139033] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Metabolic disorders have become a heavy burden on society. Recently, through excessive use, pesticides have been found to be present in environmental matrixes and sometimes even accumulate in humans or other mammals through the food chain, which then causes health concerns. Evidence has indicated that pesticides have the potential to induce energy metabolic disorders by disturbing the physical process of energy absorption in the intestine and energy storage in the liver, adipose tissue and skeletal muscle in humans or other mammals. In addition, the homeostasis of energy regulation by the pancreas and immune cells is also affected by pesticides. These pesticide-induced disruptions ultimately cause abnormal levels of blood glucose and lipids, which in turn induce the development of related metabolic diseases, including overweight, underweight, insulin resistance and even diabetes. In this review, the results of previous studies focused on the induction of metabolic disorders by pesticides are summarized. We hope that this work will facilitate the discovery of a potential strategy for the treatment of diseases caused by pesticides.
Collapse
Affiliation(s)
- Bingnan He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yinhua Ni
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhengwei Fu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
373
|
Chen YT, Huang CR, Chang CL, Chiang JY, Luo CW, Chen HH, Yip HK. Jagged2 progressively increased expression from Stage I to III of Bladder Cancer and Melatonin-mediated downregulation of Notch/Jagged2 suppresses the Bladder Tumorigenesis via inhibiting PI3K/AKT/mTOR/MMPs signaling. Int J Biol Sci 2020; 16:2648-2662. [PMID: 32792862 PMCID: PMC7415428 DOI: 10.7150/ijbs.48358] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Background: This study assessed the expression of Jagged2 in human bladder cancer (BC) tested the hypothesis that melatonin (Mel) inhibited the tumorigenesis of BC cells mainly through downregulating the Notch/Jagged2 and PI3K/AKT/mTOR/MMPs(2&9) signaling pathways. Methods and Results: Tissue array from BC patients showed that the gene and protein expressions of JAG2/Jagged2 were significantly upregulated from T1 to T3 (primary tumor size) and from stage I to III (all p<0.001). In vitro study showed that in BC cell line of UMUC3, the cellular and protein expressions of Jagged2 were significantly attenuated in Mel-treated UMUC3 and further attenuated in UMUC3 shRNA silenced Notch/JAG2 (UMUC3KD) than in UMUC3 only (all p<0.0001). The protein expressions of Notch/Jagged2/MMPs(2&9)/PI3K/p-AKT/mTOR/p53/ratio of LC3BII/LC3B-I were significantly progressively reduced from UMUC3 to UMUC3+Mel/1.0mM, further to UMUC3+Mel/2.0mM and furthermore to UMUC3KD (all p<0.0001). The cell proliferation/invasion/colony formation/healing-process were significantly inhibited in Mel-treated/2.0mM UMUC3 and further significantly inhibited in UMUC3KD regardless of Mel treatment as compared with UMUC3 only (all p<0.0001). By day 28 after UMUC3 implanted into nude mouse back, the BC weight/volume were significantly reduced in UMUC3+Mel (100 mg/kg/day) and furthermore reduced in UMUC3KD (all p<0.0001) as compared with UMUC3 only (all p<0.0001). The cellular (MMPs(2&9)/Notch/Jagged2) and protein (Notch/Jagged2/PI3K/p-AKT/mTOR/MMPs(2&9)) exhibited a similar trend, whereas the PTEN protein level exhibited an opposite pattern of PI3K among three groups (all p<0.0001). Conclusion: Notch/Jagged-PI3K/p-AKT/mTOR/MMPs is one essential signaling pathway for BC survival, proliferation and invasion that were remarkably suppressed by Mel treatment.
Collapse
Affiliation(s)
- Yen-Ta Chen
- Division of Urology, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - John Y Chiang
- Department of Computer Science and Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan.,Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
374
|
Thyagarajan A, Forino AS, Konger RL, Sahu RP. Dietary Polyphenols in Cancer Chemoprevention: Implications in Pancreatic Cancer. Antioxidants (Basel) 2020; 9:651. [PMID: 32717779 PMCID: PMC7464582 DOI: 10.3390/antiox9080651] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/26/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Naturally occurring dietary agents present in a wide variety of plant products, are rich sources of phytochemicals possessing medicinal properties, and thus, have been used in folk medicine for ages to treat various ailments. The beneficial effects of such dietary components are frequently attributed to their anti-inflammatory and antioxidant properties, particularly in regards to their antineoplastic activities. As many tumor types exhibit greater oxidative stress levels that are implicated in favoring autonomous cell growth activation, most chemotherapeutic agents can also enhance tumoral oxidative stress levels in part via generating reactive oxygen species (ROS). While ROS-mediated imbalance of the cellular redox potential can provide novel drug targets, as a consequence, this ROS-mediated excessive damage to cellular functions, including oncogenic mutagenesis, has also been implicated in inducing chemoresistance. This remains one of the major challenges in the treatment and management of human malignancies. Antioxidant-enriched natural compounds offer one of the promising approaches in mitigating some of the underlying mechanisms involved in tumorigenesis and metastasis, and therefore, have been extensively explored in cancer chemoprevention. Among various groups of dietary phytochemicals, polyphenols have been extensively explored for their underlying chemopreventive mechanisms in other cancer models. Thus, the current review highlights the significance and mechanisms of some of the highly studied polyphenolic compounds, with greater emphasis on pancreatic cancer chemoprevention.
Collapse
Affiliation(s)
- Anita Thyagarajan
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| | - Andrew S. Forino
- Department of Anatomy and Physiology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA;
| | - Raymond L. Konger
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Ravi P. Sahu
- Department of Pharmacology and Toxicology, Boonshoft School of medicine Wright State University, Dayton, OH 45435, USA
| |
Collapse
|
375
|
Almeida L, Andreu-Fernández V, Navarro-Tapia E, Aras-López R, Serra-Delgado M, Martínez L, García-Algar O, Gómez-Roig MD. Murine Models for the Study of Fetal Alcohol Spectrum Disorders: An Overview. Front Pediatr 2020; 8:359. [PMID: 32760684 PMCID: PMC7373736 DOI: 10.3389/fped.2020.00359] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is associated to different physical, behavioral, cognitive, and neurological impairments collectively known as fetal alcohol spectrum disorder. The underlying mechanisms of ethanol toxicity are not completely understood. Experimental studies during human pregnancy to identify new diagnostic biomarkers are difficult to carry out beyond genetic or epigenetic analyses in biological matrices. Therefore, animal models are a useful tool to study the teratogenic effects of alcohol on the central nervous system and analyze the benefits of promising therapies. Animal models of alcohol spectrum disorder allow the analysis of key variables such as amount, timing and frequency of ethanol consumption to describe the harmful effects of prenatal alcohol exposure. In this review, we aim to synthetize neurodevelopmental disabilities in rodent fetal alcohol spectrum disorder phenotypes, considering facial dysmorphology and fetal growth restriction. We examine the different neurodevelopmental stages based on the most consistently implicated epigenetic mechanisms, cell types and molecular pathways, and assess the advantages and disadvantages of murine models in the study of fetal alcohol spectrum disorder, the different routes of alcohol administration, and alcohol consumption patterns applied to rodents. Finally, we analyze a wide range of phenotypic features to identify fetal alcohol spectrum disorder phenotypes in murine models, exploring facial dysmorphology, neurodevelopmental deficits, and growth restriction, as well as the methodologies used to evaluate behavioral and anatomical alterations produced by prenatal alcohol exposure in rodents.
Collapse
Affiliation(s)
- Laura Almeida
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Vicente Andreu-Fernández
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Nutrition and Health Deparment, Valencian International University (VIU), Valencia, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elisabet Navarro-Tapia
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rosa Aras-López
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
| | - Mariona Serra-Delgado
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| | - Leopoldo Martínez
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Congenital Malformations Lab, Institute of Medicine and Molecular Genetic (INGEMM), Institute for Health Research of La Paz Universitary Hospital (IdiPAZ), Madrid, Spain
- Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain
| | - Oscar García-Algar
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Grup de Recerca Infancia i Entorn (GRIE), Institut D'investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, IDIBAPS, BCNatal, Barcelona, Spain
| | - María Dolores Gómez-Roig
- Maternal and Child Health and Development Network II (SAMID II), Instituto de Salud Carlos III (ISCIII), Barcelona, Spain
- Fundació Sant Joan de Déu, Barcelona, Spain
- BCNatal Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Barcelona, Spain
| |
Collapse
|
376
|
Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, Arnouil D, Saraswat D, Varilh M, Cannich A, Julio-Kalajzic F, Bonilla-Del Río I, Almeida A, Puente N, Achicallende S, Lopez-Rodriguez ML, Jollé C, Déglon N, Pellerin L, Josephine C, Bonvento G, Panatier A, Lutz B, Piazza PV, Guzmán M, Bellocchio L, Bouzier-Sore AK, Grandes P, Bolaños JP, Marsicano G. Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature 2020; 583:603-608. [PMID: 32641832 DOI: 10.1038/s41586-020-2470-y] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Astrocytes take up glucose from the bloodstream to provide energy to the brain, thereby allowing neuronal activity and behavioural responses1-5. By contrast, astrocytes are under neuronal control through specific neurotransmitter receptors5-7. However, whether the activation of astroglial receptors can directly regulate cellular glucose metabolism to eventually modulate behavioural responses is unclear. Here we show that activation of mouse astroglial type-1 cannabinoid receptors associated with mitochondrial membranes (mtCB1) hampers the metabolism of glucose and the production of lactate in the brain, resulting in altered neuronal functions and, in turn, impaired behavioural responses in social interaction assays. Specifically, activation of astroglial mtCB1 receptors reduces the phosphorylation of the mitochondrial complex I subunit NDUFS4, which decreases the stability and activity of complex I. This leads to a reduction in the generation of reactive oxygen species by astrocytes and affects the glycolytic production of lactate through the hypoxia-inducible factor 1 pathway, eventually resulting in neuronal redox stress and impairment of behavioural responses in social interaction assays. Genetic and pharmacological correction of each of these effects abolishes the effect of cannabinoid treatment on the observed behaviour. These findings suggest that mtCB1 receptor signalling can directly regulate astroglial glucose metabolism to fine-tune neuronal activity and behaviour in mice.
Collapse
Affiliation(s)
- Daniel Jimenez-Blasco
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Arnau Busquets-Garcia
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Integrative Pharmacology and Systems Neuroscience, IMIM Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Etienne Hebert-Chatelain
- Canada Research Chair in Mitochondrial Signaling and Physiopathology, Université de Moncton, Moncton, New Brunswick, Canada.,Department of Biology, Université de Moncton, Moncton, New Brunswick, Canada
| | - Roman Serrat
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Carlos Vicente-Gutierrez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Christina Ioannidou
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Paula Gómez-Sotres
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Irene Lopez-Fabuel
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Monica Resch-Beusher
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Eva Resel
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Dorian Arnouil
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Dave Saraswat
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Marjorie Varilh
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Astrid Cannich
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | | | - Itziar Bonilla-Del Río
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain
| | - Nagore Puente
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Svein Achicallende
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | | | - Charlotte Jollé
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Nicole Déglon
- Department of Clinical Neurosciences, Laboratory of Cellular and Molecular Neurotherapies (LCMN), University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-University of Bordeaux, Bordeaux, France.,INSERM U1082, University of Poitiers, Poitiers, France
| | - Charlène Josephine
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Gilles Bonvento
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, France
| | - Aude Panatier
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center, Mainz, Germany.,Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Pier-Vincenzo Piazza
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France.,Aelis Farma, Bordeaux, France
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Instituto Universitario de Investigación Neuroquímica (IUIN) and Department of Biochemistry and Molecular Biology, Complutense University, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Luigi Bellocchio
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France.,University of Bordeaux, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Centre de Résonance Magnétique des Systèmes Biologiques UMR 5536, CNRS-University of Bordeaux, Bordeaux, France
| | - Pedro Grandes
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain. .,Centro de Investigación Biomédica en Red sobre Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain. .,Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.
| | - Giovanni Marsicano
- INSERM, U1215 NeuroCentre Magendie, Bordeaux, France. .,University of Bordeaux, Bordeaux, France.
| |
Collapse
|
377
|
Farkhondeh T, Mehrpour O, Forouzanfar F, Roshanravan B, Samarghandian S. Oxidative stress and mitochondrial dysfunction in organophosphate pesticide-induced neurotoxicity and its amelioration: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24799-24814. [PMID: 32358751 DOI: 10.1007/s11356-020-09045-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Organophosphorus pesticides (OPs) are widely used for controlling pests worldwide. The inhibitory effects of these pesticides on acetylcholinesterase lead to neurotoxic damages. The oxidative stress is responsible for several neurological diseases, including Parkinson's disease, seizure, depression, and Alzheimer's disease. Strong evidence suggests that dysfunction of mitochondria and oxidative stress are involved in neurological diseases. OPs can disturb the function of mitochondria by inducing oxidative stress. In the present study, we tried to highlight the role of dysfunction of mitochondria and the induction of oxidative stress in the neurotoxicity induced by OPs. Additionally, the amelioration of OP-induced oxidative damage and mitochondrial dysfunctional through the chemical and natural antioxidants have been discussed.
Collapse
Affiliation(s)
- Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences(BUMS), Birjand, Iran
- Rocky Mountain Poison and Drug Safety, Denver Health, Denver, CO, USA
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Roshanravan
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
378
|
Ali T, Hao Q, Ullah N, Rahman SU, Shah FA, He K, Zheng C, Li W, Murtaza I, Li Y, Jiang Y, Tan Z, Li S. Melatonin Act as an Antidepressant via Attenuation of Neuroinflammation by Targeting Sirt1/Nrf2/HO-1 Signaling. Front Mol Neurosci 2020; 13:96. [PMID: 32595452 PMCID: PMC7304371 DOI: 10.3389/fnmol.2020.00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Physical or psychological stress can cause an immunologic imbalance that disturbs the central nervous system followed by neuroinflammation. The association between inflammation and depression has been widely studied in recent years, though the molecular mechanism is still largely unknown. Thus, targeting the signaling pathways that link stress to neuroinflammation might be a useful strategy against depression. The current study investigated the protective effect of melatonin against lipopolysaccharide (LPS)-induced neuroinflammation and depression. Our results showed that LPS treatment significantly induced depressive-like behavior in mice. Moreover, LPS-treatment enhanced oxidative stress, pro-inflammatory cytokines including TNFα, IL-6, and IL-1β, NF-κB phosphorylation, and glial cell activation markers including GFAP and Iba-1 in the brain of mice. Melatonin treatment significantly abolished the effect of LPS, as indicated by improved depressive-like behaviors, reduced cytokines level, reduced oxidative stress, and normalized LPS-altered Sirt1, Nrf2, and HO-1 expression. However, the melatonin protective effects were reduced after luzindole administration. Collectively, it is concluded that melatonin receptor-dependently protects against LPS-induced depressive-like behaviors via counteracting LPS-induced neuroinflammation.
Collapse
Affiliation(s)
- Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Qiang Hao
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Najeeb Ullah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shafiq Ur Rahman
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal, Pakistan
| | - Fawad Ali Shah
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Kaiwu He
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Chengyou Zheng
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Iram Murtaza
- Signal Transduction Lab, Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Yang Li
- Laboratory of Receptor Research, Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, China
| | - Yuhua Jiang
- Cancer Centre, The Second Hospital of Shandong University, Jinan, China
| | - Zhen Tan
- Health Management Center, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.,Campbell Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
379
|
Maeda A. Recruitment of Mesenchymal Stem Cells to Damaged Sites by Plant-Derived Components. Front Cell Dev Biol 2020; 8:437. [PMID: 32582713 PMCID: PMC7295908 DOI: 10.3389/fcell.2020.00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into a limited number of diverse cells and secrete regenerative factors that contribute to the repair of damaged tissue. In response to signals emitted by tissue damage, MSCs migrate from the bone marrow and area surrounding blood vessels within tissues into the circulating blood, and accumulate at the site of damage. Hence, MSC transplantation therapy is beginning to be applied to the treatment of various intractable human diseases. Recent medicinal plants studies have shown that plant-derived components can activate cell functions. For example, several plant-derived components activate cell signaling pathways, such as phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK), enhance expression of the CXCL12/CXCR4 axis, stimulate extracellular matrix remodeling, and consequently, promote cell migration of MSCs. Moreover, plant-derived components have been shown to promote recruitment of MSCs to damaged tissues and enhance healing in disease models, potentially advancing their therapeutic use. This article provides a comprehensive review of several plant-derived components that activate MSC migration and homing to damaged sites to promote tissue repair.
Collapse
Affiliation(s)
- Akito Maeda
- Skin Regeneration, PIAS Collaborative Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| |
Collapse
|
380
|
Melatonin-induced ApoE expression in mouse astrocytes protects endothelial cells from OGD-R induced injuries. Transl Psychiatry 2020; 10:181. [PMID: 32513932 PMCID: PMC7280243 DOI: 10.1038/s41398-020-00864-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 05/10/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022] Open
Abstract
Stroke is a leading reason of death and long-term disability, and most studies mainly focus on efforts to protect neurons. However, failed clinical trials suggest that therapies against single target in neurons may not be sufficient and the involvement of endothelial cells and glial cells have been underestimated. Astrocytes are the major source of ApoE in the brain and endothelial cells express high level of ApoE receptors. Thus, ApoE may mediate the interaction between astrocytes and endothelial cells. To address whether and how ApoE-mediated astrocytes-endothelial cells interaction contributes to the pathogenesis of stroke, we used oxygen and glucose deprivation-reoxygenation (OGD-R) as a stroke model and investigated the effects of OGD-R on astrocytes-endothelial cell co-cultures in the current study. We find that OGD-R leads to various damages to endothelial cells, including compromised cell viability, increased ROS level, enhanced caspase activity, and higher apoptotic rate. Meanwhile, mouse astrocytes could secrete ApoE to activate PI3K/eNOS signaling in endothelial cells to prevent OGD-R induced injuries. In addition, OGD-R induces down-regulation of ApoE in astrocyte-endothelial cell co-cultures while melatonin restores astrocytic ApoE expression via pCREB pathway and protects endothelial cell in OGD-R treated co-cultures. Our study provides evidence that astrocytes could protect endothelial cells via ApoE in OGD-R condition and Melatonin could induce ApoE expression to protect endothelial cells.
Collapse
|
381
|
Wilde S, Queisser N, Sutter A. Image analysis of mechanistic protein biomarkers for the characterization of genotoxicants: Aneugens, clastogens, and reactive oxygen species inducers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:534-550. [PMID: 32297368 DOI: 10.1002/em.22374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The early detection of genotoxicity contributes to cutting-edge drug discovery and development, requiring effective identification of genotoxic hazards posed by drugs while providing mode of action (MoA) information in a high throughput manner. In other words, there is a need to complement standard genotoxicity testing according to the test battery given in ICH S2(R1) with new in vitro tools, thereby contributing to a more in-depth analysis of genotoxic effects. Here, we report on a proof-of-concept MoA approach based on post-translational modifications of proteins (PTMs) indicative of clastogenic and aneugenic effects in TK6 cells using imaging technology (with automated analysis). Cells were exposed in a 96-well plate format with a panel of reference (geno)toxic compounds and subsequently analyzed at 4 and 24 hr to detect dose-dependent changes in PTMs, relevant for mechanistic analysis. All tested compounds that interfere with the spindle apparatus yielded a BubR1 (S640) (3/3) and phospho-histone H3 (S28) (7/9) positive dose-response reflecting aneugenicity, whereas compounds inducing DNA double-strand-breaks were associated with positive FANCD2 (S1404) and 53BP1 (S1778) responses pointing to clastogenicity (2/3). The biomarker p53 (K373) was able to distinguish genotoxicants from non-genotoxicants (2/4), while the induction of reactive oxygen species (ROS), potentially causing DNA damage, was associated with a positive Nrf2 (S40) response (2/2). This work demonstrates that genotoxicants and non-genotoxicants induce different biomarker responses in TK6 cells which can be used for reliable classification into MoA groups (aneugens/clastogens/non-genotoxicants/ROS inducers), supporting a more in-depth safety assessment of drug candidates.
Collapse
Affiliation(s)
- Sabrina Wilde
- Fraunhofer ITEM, Preclinical Pharmacology and In Vitro Toxicology, Hannover, Germany
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | - Nina Queisser
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | | |
Collapse
|
382
|
Ali M, Farooq U, Lyu S, Sun Y, Li M, Ahmad A, Shan A, Abbas Z. Synthesis of controlled release calcium peroxide nanoparticles (CR-nCPs): Characterizations, H2O2 liberate performances and pollutant degradation efficiency. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116729] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
383
|
Li KY, Gong PF, Li JT, Xu NJ, Qin S. Morphological and molecular alterations of reactive astrocytes without proliferation in cerebral cortex of an APP/PS1 transgenic mouse model and Alzheimer's patients. Glia 2020; 68:2361-2376. [PMID: 32469469 DOI: 10.1002/glia.23845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/16/2022]
Abstract
Astrocytes are fundamental for maintaining brain homeostasis and are commonly involved in the progression of neurodegenerative diseases including Alzheimer's disease (AD). In response to injury or toxic material, astrocytes undergo activation that results in hypertrophy and process ramification. Although numerous studies have shown that reactive astrocytes are intimately related to the pathogenesis of AD, their characteristic features including morphological and molecular alterations that occur during different stages of AD progression remain to be elucidated. Here, we crossed astrocyte-specific reporter mice hGFAP-CreERT2;Rosa-tdTomato with APP/PS1 mice, and then used genetic tracing to characterize the morphological profiles and expression of molecular biomarkers associated with progressive β-amyloid deposits in the cortical region of AD mice. Expression of glutamine synthetase (GS) was lower in cortical reactive astrocytes, in contrast to the higher expression of glial fibrillary acidic protein, of APP/PS1 mice and AD patients relative to that in cortical astrocytes of wild-type mice and age-matched controls, respectively. GS activity was also decreased obviously in the cortex of APP/PS1 mice at 6 and 12 months of age relative to that in the wild-type mice of the same ages. Furthermore, cortical reactive astrocytes in APP/PS1 mice and AD patients did not undergo proliferation. Finally, based on RNA-sequencing analysis, we identified differentially expressed transcripts of signal transduction molecules involved in early induction of reactive astrocytes in the cortex of APP/PS1 mice. These findings provide a morphological and molecular basis with which to understand the function and mechanism of reactive astrocytes in the progression of AD.
Collapse
Affiliation(s)
- Kun-Yu Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Pi-Fang Gong
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jia-Tong Li
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Nan-Jie Xu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Song Qin
- Department of Anatomy, Histology and Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
384
|
Abstract
This review concerns the current knowledge of melatonin and alcohol-related disorders. Chronobiological effects of ethanol are related to melatonin suppression and in relation to inflammation, stress, free radical scavenging, autophagy and cancer risk. It is postulated that both alcohol- and inflammation-induced production of reactive oxygen species (ROS) alters cell membrane properties leading to tissue dysfunction and, subsequent further ROS production. Lysosomal enzymes are often used to assess the relationships between intensified inflammation states caused by alcohol abuse and oxidative stress as well as level of tissue damage estimated by the increased release of cellular enzymes into the extracellular space. Studies have established a link between alcoholism and desynchronosis (circadian disruption). Desynchronosis results from the disorganization of the body's circadian time structure and is an aspect of the pathology of chronic alcohol intoxication. The inflammatory conditions and the activity of lysosomal enzymes in acute alcohol poisoning or chronic alcohol-dependent diseases are in most cases interrelated. Inflammation can increase the activity of lysosomal enzymes, which can be regarded as a marker of lysosomal dysfunction and abnormal cellular integrity. Studies show alcohol toxicity is modulated by the melatonin (Mel) circadian rhythm. This hormone, produced by the pineal gland, is the main regulator of 24 h (sleep-wake cycle) and seasonal biorhythms. Mel exhibits antioxidant properties and may be useful in the prevention of oxidative stress reactions known to be responsible for alcohol-related diseases. Naturally produced Mel and exogenous sources in food can act in free radical reactions and activate the endogenous defense system. Mel plays an important role in the normalization of the post-stress state by its influence on neurotransmitter systems and the synchronization of circadian rhythms. Acting simultaneously on the neuroendocrine and immune systems, Mel optimizes homeostasis and provides protection against stress. Abbreviations: ROS, reactive oxygen species; Mel, melatonin; SRV, resveratrol; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells; ANT, arylalkylamine-N-acetyltransferase; EC cells, gastrointestinal enterochromaffin cells; MT1, melatonin high-affinity nanomolecular receptor site; MT2, melatonin low-affinity nanomolecular receptor site; ROR/RZR, orphan nuclear retinoid receptors; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase; GR, glutathione reductase; GSH, reduced form of glutathione; GSSG, oxidized form of glutathione; TAC, total antioxidant capacity; ONOO∙-, peroxynitrite radical; NCAM, neural cell adhesion molecules; LPO, lipid peroxidation; α-KG, α-ketoglutarate, HIF-1α, Hypoxia-inducible factor 1-α, IL-2, interleukin-2; HPA axis, hypothalamic-pituitary-adrenal axis; Tph1, tryptophan hydroxylase 1; AA-NAT, arylalkylamine-N-acetyltransferase; AS-MT, acetylserotonin O-methyltransferase; NAG, N-acetyl-beta-D-glucosaminidase; HBA1c glycated hemoglobin; LPS, lipopolysaccharide; AAP, alanyl-aminopeptidase; β-GR, β-glucuronidase; β-GD, β-galactosidase; LAP, leucine aminopeptidase.
Collapse
Affiliation(s)
- Natalia Kurhaluk
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| | - Halyna Tkachenko
- Department of Zoology and Animal Physiology, Institute of Biology and Earth Sciences, Pomeranian University in Słupsk , Słupsk, Poland
| |
Collapse
|
385
|
Hummitzsch K, Hatzirodos N, Macpherson AM, Schwartz J, Rodgers RJ, Irving-Rodgers HF. Transcriptome analyses of ovarian stroma: tunica albuginea, interstitium and theca interna. Reproduction 2020; 157:545-565. [PMID: 30925461 DOI: 10.1530/rep-18-0323] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/29/2019] [Indexed: 01/15/2023]
Abstract
The ovary has specialised stromal compartments, including the tunica albuginea, interstitial stroma and theca interna, which develops concurrently with the follicular antrum. To characterise the molecular determinants of these compartments, stroma adjacent to preantral follicles (pre-theca), interstitium and tunica albuginea were laser microdissected (n = 4 per group) and theca interna was dissected from bovine antral follicles (n = 6). RNA microarray analysis showed minimal differences between interstitial stroma and pre-theca, and these were combined for some analyses and referred to as stroma. Genes significantly upregulated in theca interna compared to stroma included INSL3, LHCGR, HSD3B1, CYP17A1, ALDH1A1, OGN, POSTN and ASPN. Quantitative RT-PCR showed significantly greater expression of OGN and LGALS1 in interstitial stroma and theca interna versus tunica and greater expression of ACD in tunica compared to theca interna. PLN was significantly higher in interstitial stroma compared to tunica and theca. Ingenuity pathway, network and upstream regulator analyses were undertaken. Cell survival was also upregulated in theca interna. The tunica albuginea was associated with GPCR and cAMP signalling, suggesting tunica contractility. It was also associated with TGF-β signalling and increased fibrous matrix. Western immunoblotting was positive for OGN, LGALS1, ALDH1A1, ACD and PLN with PLN and OGN highly expressed in tunica and interstitial stroma (each n = 6), but not in theca interna from antral follicles (n = 24). Immunohistochemistry localised LGALS1 and POSTN to extracellular matrix and PLN to smooth muscle cells. These results have identified novel differences between the ovarian stromal compartments.
Collapse
Affiliation(s)
- Katja Hummitzsch
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Hatzirodos
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anne M Macpherson
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Jeff Schwartz
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Raymond J Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Helen F Irving-Rodgers
- Discipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia.,School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
386
|
Santofimia-Castaño P, Rizzuti B, Xia Y, Abian O, Peng L, Velázquez-Campoy A, Neira JL, Iovanna J. Targeting intrinsically disordered proteins involved in cancer. Cell Mol Life Sci 2020; 77:1695-1707. [PMID: 31667555 PMCID: PMC7190594 DOI: 10.1007/s00018-019-03347-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/23/2019] [Accepted: 10/16/2019] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) do not have a well-defined structure under physiological conditions, but they have key roles in cell signaling and regulation, and they are frequently related to the development of diseases, such as cancer and other malignancies. This has converted IDPs in attractive therapeutic targets; however, targeting IDPs is challenging because of their dynamic nature. In the last years, different experimental and computational approaches, as well as the combination of both, have been explored to identify molecules to target either the hot-spots or the allosteric sites of IDPs. In this review, we summarize recent developments in successful targeting of IDPs, all of which are involved in different cancer types. The strategies used to develop and design (or in one particular example, to repurpose) small molecules targeting IDPs are, in a global sense, similar to those used in well-folded proteins: (1) screening of chemically diverse or target-oriented compound libraries; or (2) study of the interfaces involved in recognition of their natural partners, and design of molecular candidates capable of binding to such binding interface. We describe the outcomes of using these approaches in targeting IDPs involved in cancer, in the view to providing insight, to target IDPs in general. In a broad sense, the designed small molecules seem to target the most hydrophobic regions of the IDPs, hampering macromolecule (DNA or protein)-IDP interactions; furthermore, in most of the molecule-IDP complexes described so far, the protein remains disordered.
Collapse
Affiliation(s)
- Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Bruno Rizzuti
- CNR-NANOTEC, Licryl-UOS Cosenza and CEMIF.Cal, Department of Physics, University of Calabria, Via P. Bucci, Cubo 31 C, Arcavacata di Rende, 87036, Cosenza, Italy
| | - Yi Xia
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, No. 55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Instituto Aragonés de Ciencias de la Salud (IACS), 50009, Zaragoza, Spain
| | - Ling Peng
- Aix-Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR 7325, Equipe Labellisée Ligue Contre le Cancer, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain
- Fundacion ARAID, Government of Aragon, 50018, Zaragoza, Spain
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, Avda. del Ferrocarril s/n, Elche, 03202, Alicante, Spain.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS, UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 163 Avenue de Luminy, 13288, Marseille, France.
| |
Collapse
|
387
|
Estaras M, Peña FJ, Tapia JA, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Blanco G, Lopez D, Salido GM, Gonzalez A. Melatonin modulates proliferation of pancreatic stellate cells through caspase-3 activation and changes in cyclin A and D expression. J Physiol Biochem 2020; 76:345-355. [PMID: 32361979 DOI: 10.1007/s13105-020-00740-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022]
Abstract
In this study, the effects of melatonin (1 μM-1 mM) on pancreatic stellate cells (PSC) have been examined. Cell viability and proliferation, caspase-3 activation, and the expression of cyclin A and cyclin D were analyzed. Our results show that melatonin decreased PSC viability in a time- and concentration-dependent manner. This effect was not inhibited by treatment of cells with MT1, MT2, calmodulin, or ROR-alpha inhibitors prior to melatonin addition. Activation of caspase-3 in response to melatonin was detected. The expression of cyclin A and cyclin D was decreased in cells treated with melatonin. Finally, changes in BrdU incorporation into the newly synthesized DNA of proliferating cells were also observed in the presence of melatonin. We conclude that melatonin, at pharmacological concentrations, modulates proliferation of PSC through activation of apoptosis and involving crucial regulators of the cell cycle. These actions might not require specific melatonin receptors. Our observations suggest that melatonin, at high doses, could potentially exert anti-fibrotic effects and, thus, could be taken into consideration as supportive treatment in the therapy of pancreatic diseases.
Collapse
Affiliation(s)
- Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - José A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Cáceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Cáceres, Spain
| | - Gerardo Blanco
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003, Cáceres, Spain.
| |
Collapse
|
388
|
Taherian M, Norenberg MD, Panickar KS, Shamaladevi N, Ahmad A, Rahman P, Jayakumar AR. Additive Effect of Resveratrol on Astrocyte Swelling Post-exposure to Ammonia, Ischemia and Trauma In Vitro. Neurochem Res 2020; 45:1156-1167. [PMID: 32166573 DOI: 10.1007/s11064-020-02997-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 12/12/2019] [Accepted: 02/22/2020] [Indexed: 12/16/2022]
Abstract
Swelling of astrocytes represents a major component of the brain edema associated with many neurological conditions, including acute hepatic encephalopathy (AHE), traumatic brain injury (TBI) and ischemia. It has previously been reported that exposure of cultured astrocytes to ammonia (a factor strongly implicated in the pathogenesis of AHE), oxygen/glucose deprivation, or to direct mechanical trauma results in an increase in cell swelling. Since dietary polyphenols have been shown to exert a protective effect against cell injury, we examined whether resveratrol (RSV, 3,5,4'-trihydroxy-trans-stilbene, a stilbenoid phenol), has a protective effect on astrocyte swelling following its exposure to ammonia, oxygen-glucose deprivation (OGD), or trauma in vitro. Ammonia increased astrocyte swelling, and pre- or post-treatment of astrocytes with 10 and 25 µM RSV displayed an additive effect, while 5 µM did not prevent the effect of ammonia. However, pre-treatment of astrocytes with 25 µM RSV slightly, but significantly, reduced the trauma-induced astrocyte swelling at earlier time points (3 h), while post-treatment had no significant effect on the trauma-induced cell swelling at the 3 h time point. Instead, pre- or post-treatment of astrocytes with 25 µM RSV had an additive effect on trauma-induced astrocyte swelling. Further, pre- or post-treatment of astrocytes with 5 or 10 µM RSV had no significant effect on trauma-induced astrocyte swelling. When 5 or 10 µM RSV were added prior to, or during the process of OGD, as well as post-OGD, it caused a slight, but not statistically significant decline in cell swelling. However, when 25 µM RSV was added during the process of OGD, as well as after the cells were returned to normal condition (90 min period), such treatment showed an additive effect on the OGD-induced astrocyte swelling. Noteworthy, a higher concentration of RSV (25 µM) exhibited an additive effect on levels of phosphorylated forms of ERK1/2, and p38MAPK, as well as an increased activity of the Na+-K+-Cl- co-transporter-1 (NKCC1), factors known to induce astrocytes swelling, when the cells were treated with ammonia or after trauma or ischemia. Further, inhibition of ERK1/2, and p38MAPK diminished the RSV-induced exacerbation of cell swelling post-ammonia, trauma and OGD treatment. These findings strongly suggest that treatment of cultured astrocytes with RSV enhanced the ammonia, ischemia and trauma-induced cell swelling, likely through the exacerbation of intercellular signaling kinases and ion transporters. Accordingly, caution should be exercised when using RSV for the treatment of these neurological conditions, especially when brain edema is also suspected.
Collapse
Affiliation(s)
- Mehran Taherian
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | - Michael D Norenberg
- Department of Pathology, University of Miami School of Medicine, Miami, FL, USA
- Department of Biochemistry & Molecular Biology, University of Miami School of Medicine, Miami, FL, USA
- Department of Neurology and Neurological Surgery, University of Miami School of Medicine, Miami, FL, USA
| | - Kiran S Panickar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
| | | | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, USA
| | - Purbasha Rahman
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA
- Department of Microbiology and Immunology, University of Miami, Coral Cables, Miami, FL, USA
| | - Arumugam R Jayakumar
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- South Florida VA Foundation for Research and Education Inc, Veterans Affairs Medical Center, Miami, FL, 33125, USA.
- General Medical Research, Neuropathology Section, R&D Service, Veterans Affairs Medical Center, 1201 NW 16th St, Res-151, Room 314, Miami, FL, USA.
| |
Collapse
|
389
|
Gurunathan S, Jeyaraj M, Kang MH, Kim JH. Melatonin Enhances Palladium-Nanoparticle-Induced Cytotoxicity and Apoptosis in Human Lung Epithelial Adenocarcinoma Cells A549 and H1229. Antioxidants (Basel) 2020; 9:E357. [PMID: 32344592 PMCID: PMC7222421 DOI: 10.3390/antiox9040357] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/18/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Palladium nanoparticles (PdNPs) are increasingly being used in medical and biological applications due to their unique physical and chemical properties. Recent evidence suggests that these nanoparticles can act as both a pro-oxidant and as an antioxidant. Melatonin (MLT), which also shows pro- and antioxidant properties, can enhance the efficacy of chemotherapeutic agents when combined with anticancer drugs. Nevertheless, studies regarding the molecular mechanisms underlying the anticancer effects of PdNPs and MLT in cancer cells are still lacking. Therefore, we aimed to investigate the potential toxicological and molecular mechanisms of PdNPs, MLT, and the combination of PdNPs with MLT in A549 lung epithelial adenocarcinoma cells. We evaluated cell viability, cell proliferation, cytotoxicity, oxidative stress, mitochondrial dysfunction, and apoptosis in cells treated with different concentrations of PdNPs and MLT. PdNPs and MLT induced cytotoxicity, which was confirmed by leakage of lactate dehydrogenase, increased intracellular protease, and reduced membrane integrity. Oxidative stress increased the levels of reactive oxygen species (ROS), malondialdehyde (MDA), nitric oxide (NO), protein carbonyl content (PCC), lipid hydroperoxide (LHP), and 8-isoprostane. Combining PdNPs with MLT elevated the levels of mitochondrial dysfunction by decreasing mitochondrial membrane potential (MMP), ATP content, mitochondrial number, and expression levels of the main regulators of mitochondrial biogenesis. Additionally, PdNPs and MLT induced apoptosis and oxidative DNA damage due to accumulation of 4-hydroxynonenal (HNE), 8-oxo-2'-deoxyguanosine (8-OhdG), and 8-hydroxyguanosine (8-OHG). Finally, PdNPs and MLT increased mitochondrially mediated stress and apoptosis, which was confirmed by the increased expression levels of apoptotic genes. To our knowledge, this is the first study demonstrating the effects of combining PdNPs and MLT in human lung cancer cells. These findings provide valuable insights into the molecular mechanisms involved in PdNP- and MLT-induced toxicity, and it may be that this combination therapy could be a potential effective therapeutic approach. This combination effect provides information to support the clinical evaluation of PdNPs and MLT as a suitable agents for lung cancer treatment, and the combined effect provides therapeutic value, as non-toxic concentrations of PdNPs and MLT are more effective, better tolerated, and show less adverse effects. Finally, this study suggests that MLT could be used as a supplement in nano-mediated combination therapies used to treat lung cancer.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| | | | | | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea; (M.J.); (M.-H.K.)
| |
Collapse
|
390
|
Kiss E, Groeneweg F, Gorgas K, Schlicksupp A, Kins S, Kirsch J, Kuhse J. Amyloid-β Fosters p35/CDK5 Signaling Contributing to Changes of Inhibitory Synapses in Early Stages of Cerebral Amyloidosis. J Alzheimers Dis 2020; 74:1167-1187. [DOI: 10.3233/jad-190976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Eva Kiss
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
- Department of Cellular and Molecular Biology, “Emil Palade” University of Medicine, Pharmacy, Science and Technology of Târgu Mureş, Târgu Mureş, Romania
| | - Femke Groeneweg
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karin Gorgas
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Andrea Schlicksupp
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Joachim Kirsch
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Jochen Kuhse
- Institute of Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
391
|
Gonzalez A, Estaras M, Martinez-Morcillo S, Martinez R, García A, Estévez M, Santofimia-Castaño P, Tapia JA, Moreno N, Pérez-López M, Míguez MP, Blanco-Fernández G, Lopez-Guerra D, Fernandez-Bermejo M, Mateos JM, Vara D, Roncero V, Salido GM. Melatonin modulates red-ox state and decreases viability of rat pancreatic stellate cells. Sci Rep 2020; 10:6352. [PMID: 32286500 PMCID: PMC7156707 DOI: 10.1038/s41598-020-63433-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this work we have studied the effects of pharmacological concentrations of melatonin (1 µM-1 mM) on pancreatic stellate cells (PSC). Cell viability was analyzed by AlamarBlue test. Production of reactive oxygen species (ROS) was monitored following CM-H2DCFDA and MitoSOX Red-derived fluorescence. Total protein carbonyls and lipid peroxidation were analyzed by HPLC and spectrophotometric methods respectively. Mitochondrial membrane potential (ψm) was monitored by TMRM-derived fluorescence. Reduced (GSH) and oxidized (GSSG) levels of glutathione were determined by fluorescence techniques. Quantitative reverse transcription-polymerase chain reaction was employed to detect the expression of Nrf2-regulated antioxidant enzymes. Determination of SOD activity and total antioxidant capacity (TAC) were carried out by colorimetric methods, whereas expression of SOD was analyzed by Western blotting and RT-qPCR. The results show that melatonin decreased PSC viability in a concentration-dependent manner. Melatonin evoked a concentration-dependent increase in ROS production in the mitochondria and in the cytosol. Oxidation of proteins was detected in the presence of melatonin, whereas lipids oxidation was not observed. Depolarization of ψm was noted with 1 mM melatonin. A decrease in the GSH/GSSG ratio was observed, that depended on the concentration of melatonin used. A concentration-dependent increase in the expression of the antioxidant enzymes catalytic subunit of glutamate-cysteine ligase, catalase, NAD(P)H-quinone oxidoreductase 1 and heme oxygenase-1 was detected in cells incubated with melatonin. Finally, decreases in the expression and in the activity of superoxide dismutase were observed. We conclude that pharmacological concentrations melatonin modify the redox state of PSC, which might decrease cellular viability.
Collapse
Affiliation(s)
- Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain.
| | - Matias Estaras
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | | | - Remigio Martinez
- Department of Animal Health, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, Guadajira, Badajoz, Spain
| | - Mario Estévez
- IPROCAR Research Institute, Food Technology, University of Extremadura, 10003, Cáceres, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Jose A Tapia
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Noelia Moreno
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| | - Marcos Pérez-López
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - María P Míguez
- Unit of Toxicology, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gerardo Blanco-Fernández
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | - Diego Lopez-Guerra
- Hepatobiliary-Pancreatic Surgery and Liver Transplant Unit, Infanta Cristina Hospital, Badajoz, Spain
| | | | - Jose M Mateos
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Daniel Vara
- Department of Gastroenterology, San Pedro de Alcantara Hospital, Caceres, Spain
| | - Vicente Roncero
- Unit of Histology and Pathological Anatomy, Veterinary Faculty, University of Extremadura, Caceres, Spain
| | - Gines M Salido
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Caceres, Spain
| |
Collapse
|
392
|
Ballesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, Cifuentes A, Valdés A. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Res Int 2020; 130:108938. [DOI: 10.1016/j.foodres.2019.108938] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 02/06/2023]
|
393
|
Kowalski CW, Lindberg JEM, Fowler DK, Simasko SM, Peters JH. Contributing mechanisms underlying desensitization of cholecystokinin-induced activation of primary nodose ganglia neurons. Am J Physiol Cell Physiol 2020; 318:C787-C796. [PMID: 32073876 DOI: 10.1152/ajpcell.00192.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholecystokinin (CCK) is a gut-derived peptide that potently promotes satiety and facilitates gastric function in part by activating G protein-coupled CCK1 receptors on primary vagal afferent neurons. CCK signaling is dynamic and rapidly desensitizes, due to decreases in either receptor function and the resulting signal cascade, ion channel effectors, or both. Here we report a decay-time analytical approach using fluorescent calcium imaging that relates peak and steady-state calcium responses in dissociated vagal afferent neurons, enabling discrimination between receptor and ion channel effector functions. We found desensitization of CCK-induced activation was predictable, consistent across cells, and strongly concentration dependent. The decay-time constant (tau) was inversely proportional to CCK concentration, apparently reflecting the extent of receptor activation. To test this possibility, we directly manipulated the ion channel effector(s) with either decreased bath calcium or the broad-spectrum pore blocker ruthenium red. Conductance inhibition diminished the magnitude of the CCK responses without altering decay kinetics, confirming changes in tau reflect changes in receptor function selectively. Next, we investigated the contributions of the PKC and PKA signaling cascades on the magnitude and decay-time constants of CCK calcium responses. While inhibition of either PKC or PKA increased CCK calcium response magnitude, only general PKC inhibition significantly decreased the decay-time constant. These findings suggest that PKC alters CCK receptor signaling dynamics, while PKA alters the ion channel effector of the CCK response. This analytical approach should prove useful in understanding receptor/effector changes underlying acute desensitization of G-protein coupled signaling and provide insight into CCK receptor dynamics.
Collapse
Affiliation(s)
- Cody W Kowalski
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Jonathan E M Lindberg
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Daniel K Fowler
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - Steven M Simasko
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| | - James H Peters
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, Washington
| |
Collapse
|
394
|
Joshi A, Naatz H, Faber K, Pokhrel S, Dringen R. Iron-Doping of Copper Oxide Nanoparticles Lowers Their Toxic Potential on C6 Glioma Cells. Neurochem Res 2020; 45:809-824. [PMID: 31997104 PMCID: PMC7078150 DOI: 10.1007/s11064-020-02954-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 01/27/2023]
Abstract
Copper oxide nanoparticles (CuO-NPs) are well known for their cytotoxicity which in part has been attributed to the release of copper ions from CuO-NPs. As iron-doping has been reported to reduce the susceptibility of CuO-NPs to dissolution, we have compared pure CuO-NPs and CuO-NPs that had been doped with 10% iron (CuO-Fe-NPs) for copper release and for their toxic potential on C6 glioma cells. Physicochemical characterization revealed that dimercaptosuccinate (DMSA)-coated CuO-NPs and CuO-Fe-NPs did not differ in their size or zeta potential. However, the redox activity and liberation of copper ions from CuO-Fe-NPs was substantially slower compared to that from CuO-NPs, as demonstrated by cyclic voltammetry and by the photometric quantification of the copper ion-bathocuproine complex, respectively. Exposure of C6 cells to these NPs caused an almost identical cellular copper accumulation and each of the two types of NPs induced ROS production and cell toxicity. However, the time- and concentration-dependent loss in cell viability was more severe for cells that had been treated with CuO-NPs compared to cells exposed to CuO-Fe-NPs. Copper accumulation and toxicity after exposure to either CuO-NPs or CuO-Fe-NPs was prevented in the presence of copper chelators, while neutralization of the lysosomal pH by bafilomycin A1 prevented toxicity without affecting cellular copper accumulation or ROS production. These data demonstrate that iron-doping does not affect cellular accumulation of CuO-NPs and suggests that the intracellular liberation of copper ions from CuO-NPs is slowed by the iron doping, which in turn lowers the cell toxic potential of iron-doped CuO-NPs.
Collapse
Affiliation(s)
- Arundhati Joshi
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Hendrik Naatz
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Kathrin Faber
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany
| | - Suman Pokhrel
- Faculty of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359, Bremen, Germany
- Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse 5, 28359, Bremen, Germany.
| |
Collapse
|
395
|
Ameur FZ, Mehedi N, Soler Rivas C, Gonzalez A, Kheroua O, Saidi D. Effect of tartrazine on digestive enzymatic activities: in vivo and in vitro studies. Toxicol Res 2020; 36:159-166. [PMID: 32257928 PMCID: PMC7099100 DOI: 10.1007/s43188-019-00023-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/27/2019] [Accepted: 08/22/2019] [Indexed: 01/21/2023] Open
Abstract
Tartrazine (E102) is a synthetic food coloring, which belongs to the class of mono azo dyes and is known to cause numerous health problems. The current research aimed to evaluate the effect of this food dye on the enzymatic activity of amylase, lipase and proteases after a subchronic ingestion in Swiss mice. Additionally, an in vitro digestion model was used to highlight the relationship between the probable toxicity of tartrazine and the nature of the food ingested. The results show that there were no adverse effects of tartrazine on the body weight gain, and on amylase or lipase activities. However, in the high dose of tartrazine (0.05%) group, a significant decrease in trypsin and chymotrypsin enzymatic activities were observed. Regarding the in vitro digestion model, our findings show that there were no changes in the trypsin and chymotrypsin enzymatic activities either using 7.5 or 75 mg of tartrazine mixed with rice, butter or milk. We conclude that excessive consumption of tartrazine appears to alter the enzymatic activity of proteases in vivo which may have deleterious consequences on digestion. Even thought the dose close to the acceptable daily intake does not affect those activities, a strict control of tartrazine dose in high-consumption foods especially among children is an indispensable task.
Collapse
Affiliation(s)
- Fatma Zohra Ameur
- Laboratory of Physiology of Nutrition and Food Security, University Oran1 Ahmed BenBella, Oran, Algeria
| | - Nabila Mehedi
- Laboratory of Physiology of Nutrition and Food Security, University Oran1 Ahmed BenBella, Oran, Algeria
| | - Cristina Soler Rivas
- Department of Production and Characterization of Novel Foods, CIAL-Research Institute in Food Science (UAM-CSIC), Madrid, Spain
| | - Antonio Gonzalez
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Cáceres, Spain
| | - Omar Kheroua
- Laboratory of Physiology of Nutrition and Food Security, University Oran1 Ahmed BenBella, Oran, Algeria
| | - Djamel Saidi
- Laboratory of Physiology of Nutrition and Food Security, University Oran1 Ahmed BenBella, Oran, Algeria
| |
Collapse
|
396
|
MicroRNA-325-3p prevents sevoflurane-induced learning and memory impairment by inhibiting Nupr1 and C/EBPβ/IGFBP5 signaling in rats. Aging (Albany NY) 2020; 12:5209-5220. [PMID: 32191629 PMCID: PMC7138556 DOI: 10.18632/aging.102942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022]
Abstract
Endoplasmic reticulum stress-induced neuronal apoptosis contributes to neurotoxicity observed after sevoflurane exposure. However, the molecular mechanism underlying the resulting learning and memory impairments remains unknown. Here, we investigated the roles of miR-325-3p and Nupr1 in sevoflurane-induced learning and memory impairments in neonatal rats and HCN-2 human cortical neuronal cells. We found that in both neonatal rats and HCN-2 cells, sevoflurane exposure impairs learning and memory in neonatal rats and increases expression of Nupr1, the endoplasmic reticulum stress marker proteins C/EBPβ and IGFBP5, and the apoptosis-related protein markers cleaved-Caspase-3 and Bax. Using bioinformatics tools to identify microRNAs that bind to Nupr1, we found that miR-325-3p is downregulated in hippocampal neurons exposed to sevoflurane. Moreover, Nupr1 knockdown and miR-325-3p overexpression improved the rats’ performance in learning and memory tests and reduced sevoflurane-induced apoptosis in vitro and in vivo. These results suggest that miR-325-3p blocks sevoflurane-induced learning and memory impairments by inhibiting Nupr1 and the downstream C/EBPβ/IGFBP5 signaling axis in neonatal rats. MiR-325-3p may therefore be a useful therapeutic target in sevoflurane-induced neurotoxicity.
Collapse
|
397
|
Rodriguez C, Agulla J, Delgado-Esteban M. Refocusing the Brain: New Approaches in Neuroprotection Against Ischemic Injury. Neurochem Res 2020; 46:51-63. [PMID: 32189131 DOI: 10.1007/s11064-020-03016-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/28/2020] [Accepted: 03/12/2020] [Indexed: 12/13/2022]
Abstract
A new era for neuroprotective strategies is emerging in ischemia/reperfusion. This has forced to review the studies existing to date based in neuroprotection against oxidative stress, which have undoubtedly contributed to clarify the brain endogenous mechanisms, as well as to identify possible therapeutic targets or biomarkers in stroke and other neurological diseases. The efficacy of exogenous administration of neuroprotective compounds has been shown in different studies so far. However, something must be missing to get these treatments successfully applied in the clinical environment. Here, the mechanisms involved in neuronal protection against physiological level of ROS and the main neuroprotective signaling pathways induced by excitotoxic and ischemic stimuli are reviewed. Also, the endogenous ischemic tolerance in terms of brain self-protection mechanisms against subsequent cerebral ischemia is revisited to highlight how the preconditioning has emerged as a powerful tool to understand these phenomena. A better understanding of endogenous defense against exacerbated ROS and metabolism in nervous cells will therefore aid to design pharmacological antioxidants targeted specifically against oxidative damage induced by ischemic injury, but also might be very valuable for translational medicine.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - Jesús Agulla
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain.,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain
| | - María Delgado-Esteban
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, Salamanca, Spain. .,Institute of Functional Biology and Genomics, University of Salamanca, CSIC, Salamanca, Spain. .,Department of Biochemistry and Molecular Biology, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
398
|
In Vitro Anti-Prostate Cancer Activity of Two Ebselen Analogues. Pharmaceuticals (Basel) 2020; 13:ph13030047. [PMID: 32192052 PMCID: PMC7151718 DOI: 10.3390/ph13030047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/12/2020] [Accepted: 03/15/2020] [Indexed: 01/26/2023] Open
Abstract
Scientific research has been underway for decades in order to develop an effective anticancer drug, and it has become crucial to find a novel and effective chemotherapeutics in the case of prostate cancer treatment. Ebselen derivatives have been shown to possess a variety of biological activities, including cytostatic and cytotoxic action against tumor cells. In this study, the cytotoxic effect and anticancer mechanism of action of two organoselenium compounds— (N-allyl-1,2-benzisoselenazol-3(2H)-one (N-allyl-BS) and N-(3-methylbutyl)-1,2-benzisoselenazol-3(2H)-one) (N-(3-mb)-BS)—were investigated on two phenotypically different prostate cancer cell lines DU 145 and PC-3. The influence of analyzed compounds on the viability parameter was also assessed on normal prostate cell line PNT1A. The results showed that both organoselenium compounds (OSCs) efficiently inhibited cancer cell proliferation, whereas normal PNT1A cells were less sensitive to the analazyed ebselen analouges. Both OSCs induced G2/M cell cycle arrest and prompted cell death through apoptosis. The detection of cleaved Poly (ADP-ribose) Polymerase (PARP) confirmed this. In addition, N-allyl-BS and N-(3-m)-b-BS increased the level of reactive oxygen species (ROS) formation, however only N-allyl-BS induced DNA damage. Based on our data, we assume that OSCs’ anticancer action can be associated with oxidative stress induction and inactivation of the Akt- dependent signalling pathway. In conclusion, our data demonstrate that ebselen derivatives showed strong cytotoxic efficiency towards prostate cancer cells and may be elucidated as a novel, potent anticancer agent.
Collapse
|
399
|
Qiu J, Dando O, Febery JA, Fowler JH, Chandran S, Hardingham GE. Neuronal Activity and Its Role in Controlling Antioxidant Genes. Int J Mol Sci 2020; 21:ijms21061933. [PMID: 32178355 PMCID: PMC7139385 DOI: 10.3390/ijms21061933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/14/2022] Open
Abstract
Forebrain neurons have relatively weak intrinsic antioxidant defenses compared to astrocytes, in part due to hypo-expression of Nrf2, an oxidative stress-induced master regulator of antioxidant and detoxification genes. Nevertheless, neurons do possess the capacity to auto-regulate their antioxidant defenses in response to electrical activity. Activity-dependent Ca2+ signals control the expression of several antioxidant genes, boosting redox buffering capacity, thus meeting the elevated antioxidant requirements associated with metabolically expensive electrical activity. These genes include examples which are reported Nrf2 target genes and yet are induced in a Nrf2-independent manner. Here we discuss the implications for Nrf2 hypofunction in neurons and the mechanisms underlying the Nrf2-independent induction of antioxidant genes by electrical activity. A significant proportion of Nrf2 target genes, defined as those genes controlled by Nrf2 in astrocytes, are regulated by activity-dependent Ca2+ signals in human stem cell-derived neurons. We propose that neurons interpret Ca2+ signals in a similar way to other cell types sense redox imbalance, to broadly induce antioxidant and detoxification genes.
Collapse
Affiliation(s)
- Jing Qiu
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Owen Dando
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - James A. Febery
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Jill H. Fowler
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
| | - Siddharthan Chandran
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Clinical Brain Sciences, University of Edinburgh Chancellor’s Building, Edinburgh, EH16 4SB, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, The Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK; (J.Q.); (O.D.); (S.C.)
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK; (J.A.F.); (J.H.F.)
- Correspondence:
| |
Collapse
|
400
|
Wu B, Zeng W, Ouyang W, Xu Q, Chen J, Wang B, Zhang X. Quercetin induced NUPR1-dependent autophagic cell death by disturbing reactive oxygen species homeostasis in osteosarcoma cells. J Clin Biochem Nutr 2020; 67:137-145. [PMID: 33041510 PMCID: PMC7533857 DOI: 10.3164/jcbn.19-121] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/25/2019] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a primary bone aggressive cancer, affecting adolescents worldwide. Quercetin (a natural polyphenolic compound) is a polyphenolic flavonoid compound found in a variety of plants. It has been demonstrated to exert cytostatic activity against a variety of human cancer, including the human osteosarcoma. However, its efficacy in the treatment of osteosarcoma and the underlying antitumor mechanism has not been fully elucidated yet. In this study, we exposed MG-63 cells to different concentrations of quercetin (50, 100 and 200 µM) for 24 h. Here, we show that quercetin increased autophagic flux in the MG-63 cells, as evidenced by the upregulation of LC3B-II/LC3B-I and downregulation of P62/SQSTM1. Moreover, the autophagy inhibitor Bafilomycin A1 or genetic blocking autophagy with ATG5 knockdown decreased quercetin-induced cell death, indicating quercetin triggered autophagic cell death in MG-63 cells. Specifically, quercetin increased NUPR1 expression and activated of NUPR1 reporter activity, which contributed to the expression of autophagy-related genes and subsequent initiated autophagic cell death in osteosarcoma cells. Importantly, the increased expression NUPR1 were tightly related to the disturbance of reactive oxygen species (ROS) homeostasis, which could be prevented by inhibiting intracellular ROS with NAC. Finally, NAC also abolished quercetin-induced autophagic cell death in vivo. Taken together, these data demonstrate that quercetin induces osteosarcoma cell death via inducing excessive autophagy, which is mediated through the ROS-NUPR1 pathway. Quercetin application may be a promising and practical strategy for osteosarcoma treatment in clinical practice.
Collapse
Affiliation(s)
- Bowen Wu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Wusi Zeng
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Wei Ouyang
- Department of Oncology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Qiang Xu
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Jian Chen
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Biao Wang
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| | - Xiping Zhang
- Department of Orthopedics, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Zhuzhou 412007, China
| |
Collapse
|