351
|
Fu C, Cao N, Zeng S, Zhu W, Fu X, Liu W, Fan S. Role of mitochondria in the regulation of ferroptosis and disease. Front Med (Lausanne) 2023; 10:1301822. [PMID: 38155662 PMCID: PMC10753798 DOI: 10.3389/fmed.2023.1301822] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 12/30/2023] Open
Abstract
Ferroptosis is a distinctive form of iron-dependent cell death characterized by significant ultrastructural changes in mitochondria. Given the crucial involvement of mitochondria in various cellular processes such as reactive oxygen species production, energy metabolism, redox status, and iron metabolism, mounting evidence suggests a vital role of mitochondria in the regulation and execution of ferroptosis. Furthermore, there exists a strong correlation between ferroptosis and various diseases. In this review, we aim to summarize the mechanisms underlying the induction and defense of ferroptosis, emphasizing the influence of mitochondria on this intricate process. Additionally, we provide an overview of the role of ferroptosis in disease, particularly cancer, and elucidate the mechanisms by which drugs targeting mitochondria impact ferroptosis. By presenting a theoretical foundation and reference point, this review aims to contribute to both basic cell biology research and the investigation of clinically relevant diseases.
Collapse
Affiliation(s)
- Cheng Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Nan Cao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Sen Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenhui Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xinliang Fu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Wenjun Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shuangqi Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
352
|
Calandria JM, Bhattacharjee S, Kala-Bhattacharjee S, Mukherjee PK, Feng Y, Vowinckel J, Treiber T, Bazan NG. Elovanoid-N34 modulates TXNRD1 key in protection against oxidative stress-related diseases. Cell Death Dis 2023; 14:819. [PMID: 38086796 PMCID: PMC10716158 DOI: 10.1038/s41419-023-06334-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
The thioredoxin (TXN) system is an NADPH + H+/FAD redox-triggered effector that sustains homeostasis, bioenergetics, detoxifying drug networks, and cell survival in oxidative stress-related diseases. Elovanoid (ELV)-N34 is an endogenously formed lipid mediator in neural cells from omega-3 fatty acid precursors that modulate neuroinflammation and senescence gene programming when reduction-oxidation (redox) homeostasis is disrupted, enhancing cell survival. Limited proteolysis (LiP) screening of human retinal pigment epithelial (RPE) cells identified TXNRD1 isoforms 2, 3, or 5, the reductase of the TXN system, as an intracellular target of ELV-N34. TXNRD1 silencing confirmed that the ELV-N34 target was isoform 2 or 3. This lipid mediator induces TXNRD1 structure changes that modify the FAD interface domain, leading to its activity modulation. The addition of ELV-N34 decreased membrane and cytosolic TXNRD1 activity, suggesting localizations for the targeted reductase. These results show for the first time that the lipid mediator ELV-N34 directly modulates TXNRD1 activity, underling its protection in several pathologies when uncompensated oxidative stress (UOS) evolves.
Collapse
Affiliation(s)
- Jorgelina M Calandria
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Surjyadipta Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Sayantani Kala-Bhattacharjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Pranab K Mukherjee
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | | | | | | | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA.
| |
Collapse
|
353
|
Elmetwalli A, Kamosh NH, El Safty R, Youssef AI, Salama MM, Abd El-Razek KM, El-Sewedy T. Novel phloretin-based combinations targeting glucose metabolism in hepatocellular carcinoma through GLUT2/PEPCK axis of action: in silico molecular modelling and in vivo studies. Med Oncol 2023; 41:12. [PMID: 38078989 DOI: 10.1007/s12032-023-02236-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is commonly associated with disturbances in glucose metabolism and enhanced glycolysis. However, a controversial role for gluconeogenesis was reported to be tumor-promoting and tumor-suppressive. We investigated novel anti-HCC treatments through either the simultaneous inhibition of glycolysis and gluconeogenesis by "phloretin" and "sodium meta-arsenite", respectively (Combination 1); or the concurrent inhibition of glycolysis and induction of gluconeogenesis by phloretin and dexamethasone, respectively, (combination 2). A total of 110 Swiss albino mice were divided into eleven groups, HCC was induced by N, N-dimethyl-4-aminoazobenzene. We have measured the expression of the glucose transporter 2 (GLUT2), Phosphoenolpyruvate carboxykinases (PEPCK), Caspase-3, Beclin 1, Cyclin D1, and cytokeratin 18 genes; blood glucose and ATP levels; alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Furthermore, in silico molecular docking was performed to investigate the potential drug-receptor interactions. Histologically, the phloretin-based combinations resulted in a significant regression of malignant tissue compared to various treatments. GLUT2 and PEPCK mRNA analysis indicated successful off/on modulation of glycolysis and gluconeogenesis. Docking confirmed the potent binding between phloretin, sodium meta-arsenite, and dexamethasone with GLUT2, PEPCK, and Retinoid X Receptor Alpha, respectively. Molecularly, Combination 2 resulted in the highest reduction in cyclin D1, cytokeratin 18, and Beclin 1 expression contemporaneously with the upregulation in Caspase-3 levels. Biochemically, both combinations caused a significant reduction in ATP levels, ALT, and AST activity compared to the other groups. In conclusion, we propose two novel phloretin-based combinations that can be used in treating HCC through the regulation of glucose metabolism and ATP production.
Collapse
Affiliation(s)
- Alaa Elmetwalli
- Department of Clinical Trial Research Unit and Drug Discovery, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
- Microbiology Division, Higher Technological Institute of Applied Health Sciences, Egyptian Liver Research Institute and Hospital (ELRIAH), Mansoura, Egypt.
| | | | | | - Amany I Youssef
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mohammed M Salama
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Khaled M Abd El-Razek
- Experimental Animal Unit, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
354
|
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, Calderaro A, Laganà G. Ferroptosis: Emerging Role in Diseases and Potential Implication of Bioactive Compounds. Int J Mol Sci 2023; 24:17279. [PMID: 38139106 PMCID: PMC10744228 DOI: 10.3390/ijms242417279] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Ferroptosis is a form of cell death that is distinguished from other types of death for its peculiar characteristics of death regulated by iron accumulation, increase in ROS, and lipid peroxidation. In the past few years, experimental evidence has correlated ferroptosis with various pathological processes including neurodegenerative and cardiovascular diseases. Ferroptosis also is involved in several types of cancer because it has been shown to induce tumor cell death. In particular, the pharmacological induction of ferroptosis, contributing to the inhibition of the proliferative process, provides new ideas for the pharmacological treatment of cancer. Emerging evidence suggests that certain mechanisms including the Xc- system, GPx4, and iron chelators play a key role in the regulation of ferroptosis and can be used to block the progression of many diseases. This review summarizes current knowledge on the mechanism of ferroptosis and the latest advances in its multiple regulatory pathways, underlining ferroptosis' involvement in the diseases. Finally, we focused on several types of ferroptosis inducers and inhibitors, evaluating their impact on the cell death principal targets to provide new perspectives in the treatment of the diseases and a potential pharmacological development of new clinical therapies.
Collapse
Affiliation(s)
| | - Stefano Putaggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | - Ester Tellone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (G.T.P.); (D.B.); (S.F.); (C.M.); (A.C.); (G.L.)
| | | | | | | | | | | |
Collapse
|
355
|
Schäffer DE, Li W, Elbasir A, Altieri DC, Long Q, Auslander N. Microbial gene expression analysis of healthy and cancerous esophagus uncovers bacterial biomarkers of clinical outcomes. ISME COMMUNICATIONS 2023; 3:128. [PMID: 38049632 PMCID: PMC10696091 DOI: 10.1038/s43705-023-00338-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/06/2023]
Abstract
Local microbiome shifts are implicated in the development and progression of gastrointestinal cancers, and in particular, esophageal carcinoma (ESCA), which is among the most aggressive malignancies. Short-read RNA sequencing (RNAseq) is currently the leading technology to study gene expression changes in cancer. However, using RNAseq to study microbial gene expression is challenging. Here, we establish a new tool to efficiently detect viral and bacterial expression in human tissues through RNAseq. This approach employs a neural network to predict reads of likely microbial origin, which are targeted for assembly into longer contigs, improving identification of microbial species and genes. This approach is applied to perform a systematic comparison of bacterial expression in ESCA and healthy esophagi. We uncover bacterial genera that are over or underabundant in ESCA vs healthy esophagi both before and after correction for possible covariates, including patient metadata. However, we find that bacterial taxonomies are not significantly associated with clinical outcomes. Strikingly, in contrast, dozens of microbial proteins were significantly associated with poor patient outcomes and in particular, proteins that perform mitochondrial functions and iron-sulfur coordination. We further demonstrate associations between these microbial proteins and dysregulated host pathways in ESCA patients. Overall, these results suggest possible influences of bacteria on the development of ESCA and uncover new prognostic biomarkers based on microbial genes. In addition, this study provides a framework for the analysis of other human malignancies whose development may be driven by pathogens.
Collapse
Affiliation(s)
- Daniel E Schäffer
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Wistar Institute, Philadelphia, PA, 19104, USA
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenrui Li
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Qi Long
- University of Pennsylvania, Philadelphia, PA, USA
| | - Noam Auslander
- The Wistar Institute, Philadelphia, PA, 19104, USA.
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
356
|
Niu F, Yang R, Feng H, Liu Y, Liu R, Ma B. A GPX4 non-enzymatic domain and MDM2 targeting peptide PROTAC for acute lymphoid leukemia therapy through ferroptosis induction. Biochem Biophys Res Commun 2023; 684:149125. [PMID: 37897912 DOI: 10.1016/j.bbrc.2023.149125] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Ferroptosis, an emerging form of programmed cell death, has garnered substantial attention as a potential target for cancer therapy. However, despite the potential promise, no ferroptosis-related therapies have progressed to clinical trials. Identifying disease types sensitive to ferroptosis and developing specific ferroptosis-targeting drugs are critical focal points in the field of ferroptosis-based treatment. In this study, we conducted a comprehensive database analysis and presented compelling evidence indicating a high expression of GPX4 in patients with acute lymphoblastic leukemia (ALL), significantly correlating with poor prognosis. Notably, elevated GPX4 expression is closely associated with ALL relapse, a major challenge in the treatment of this disease. Building upon these findings, we devised a novel peptide-based Proteolysis Targeting Chimeras (PROTAC) drug targeting GPX4 through computer-aided design. In contrast to existing drugs that target the conjugative enzyme active site, our design focused on a peptide drug targeting the non-active site of GPX4. Furthermore, we strategically selected MDM2, an E3 ligase highly expressed in ALL, for the PROTAC drug design. This deliberate choice amplifies the drug's effect on cancer cells while minimizing its impact on normal cells, achieving desirable selectivity for cancer cells. Leveraging nanogold delivery, we successfully facilitated intracellular action of the GPX4-targeting peptide PROTAC drug, denoted as Au-PGPD (peptide GPX4 PROTAC drug). Au-PGPD effectively induced GPX4 degradation and inhibited ALL cell proliferation. Remarkably, Au-PGPD exhibited significantly less efficacy on normal cells, underscoring the selectivity and safety of our design.
Collapse
Affiliation(s)
- Fan Niu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Runyu Yang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hui Feng
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Liu
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bohan Ma
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
357
|
Wang J, Zhu G. A precise prognostic signature in CTNNB1-mutant hepatocellular carcinoma: Prognosis prediction and precision treatment exploration. Heliyon 2023; 9:e22382. [PMID: 38125518 PMCID: PMC10730442 DOI: 10.1016/j.heliyon.2023.e22382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/27/2023] [Accepted: 11/10/2023] [Indexed: 12/23/2023] Open
Abstract
Background CTNNB1 mutates in most hepatocellular carcinoma (HCC) which is the most familiar form of liver cancer with high heterogeneity. It is critical to create a specific prognostication methodology and to investigate additional treatment options for CTNNB1-mutant HCCs. Methods A total of 926 samples in five independent cohorts were enrolled in this study, including 127 CTNNB1-mutant samples and 75 estimated CTNNB1-mutant samples. The prognostic signature was constructed by LASSO-Cox regression and evaluated by bioinformatics analyses. The selection of possible drug targets and agents was produced based on the expression profiles and drug sensitivity data of cancer cell lines in two databases. Results A prognostic signature based on 15 genes categorized the CTNNB1-mutant HCCs into two groups with different risks. Compared to low-risk patients, high-risk patients had significantly inferior prognoses. ROC curve and multivariate analysis also indicated the superior performance of our signature on the prognosis estimation, particularly in CTNNB1-mutant HCCs. Besides, the nomogram was constructed according to the prognostic signature with excellent predictive performance confirmed by the calibration curve. Subsequently, we suggested that AT-7519 and PHA-793887 might be potential drug agents for high-risk patients. Conclusion We established a 15-gene prognostic model, particularly in HCCs with CTNNB1 mutations with good predictive efficiency. Besides, we explored the potential drug targets and agents for patients with high risk. Our findings offered a fresh idea for personalized prognosis management in HCCs with CTNNB1 mutations and threw new insight for precise treatment in HCCs as well.
Collapse
Affiliation(s)
- Junying Wang
- Department of Interventional and Vascular Surgery, Zhongda Hospital, Southeast University, Jiangsu, 210009, China
| | - Guangyu Zhu
- Department of Interventional and Vascular Surgery, Zhongda Hospital, Southeast University, Jiangsu, 210009, China
| |
Collapse
|
358
|
Zhang M, Wang Z, Yang G, Han L, Wang X. NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of oral squamous cell carcinoma. J Bioenerg Biomembr 2023; 55:467-478. [PMID: 37848756 DOI: 10.1007/s10863-023-09987-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is a common head and neck malignancy with increasing mortality and high recurrence. In this work, we aim to explore the functional role of NFE2 like bZIP transcription factor 1 (NFE2L1) in OSCC progression. Based on databases analysis, we found that NFE2L1 was overexpressed in OSCC tumor tissues, and elevated NFE2L1 level induced poor prognosis of OSCC patients. Our results showed that NFE2L1 is upregulated in OSCC cells and overexpression of NFE2L1 promotes cell proliferation, and reduces the sensitivity of OSCC cells to erastin-induced ferroptosis. NFE2L1 upregulation decreased the levels of Fe2+, lipid reactive oxygen species and content of malondialdehyde, and increased the level of the key negative regulator of ferroptosis, GPX4 and SLC7A11. In NFE2L1 suppressed cells, these trends were reversed. Further results of dual luciferase reporter and chromatin immunoprecipitation assays confirmed that NFE2L1 could bind to the promoter of Holliday junction recognition protein (HJURP) to increase the transcriptional activity of HJURP, thus upregulating its expression. Inhibition of HJURP attenuated the proliferation and ferroptosis inhibition in NFE2L1 upregulated cells. In vivo tumorigenicity assay further proved that NFE2L1 promotes OSCC tumor growth. In summary, NFE2L1 restrains ferroptosis by transcriptionally regulating HJURP and participates in the progress of OSCC. Thus, NFE2L1 plays a key role in OSCC development and may be a promising therapeutic target for OSCC.
Collapse
Affiliation(s)
- Meixia Zhang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
- Department of Stomatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Zhonghou Wang
- Department of Stomatology, The First Affiliated Hospital of Baotou Medical College, Baotou, Inner Mongolia, P. R. China
| | - Guang Yang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
- Department of Oral & Maxillofacial Surgery, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, P. R. China
| | - Linfu Han
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China
| | - Xiaofeng Wang
- Department of Stomatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
| |
Collapse
|
359
|
Petrova B, Maynard AG, Wang P, Kanarek N. Regulatory mechanisms of one-carbon metabolism enzymes. J Biol Chem 2023; 299:105457. [PMID: 37949226 PMCID: PMC10758965 DOI: 10.1016/j.jbc.2023.105457] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023] Open
Abstract
One-carbon metabolism is a central metabolic pathway critical for the biosynthesis of several amino acids, methyl group donors, and nucleotides. The pathway mostly relies on the transfer of a carbon unit from the amino acid serine, through the cofactor folate (in its several forms), and to the ultimate carbon acceptors that include nucleotides and methyl groups used for methylation of proteins, RNA, and DNA. Nucleotides are required for DNA replication, DNA repair, gene expression, and protein translation, through ribosomal RNA. Therefore, the one-carbon metabolism pathway is essential for cell growth and function in all cells, but is specifically important for rapidly proliferating cells. The regulation of one-carbon metabolism is a critical aspect of the normal and pathological function of the pathway, such as in cancer, where hijacking these regulatory mechanisms feeds an increased need for nucleotides. One-carbon metabolism is regulated at several levels: via gene expression, posttranslational modification, subcellular compartmentalization, allosteric inhibition, and feedback regulation. In this review, we aim to inform the readers of relevant one-carbon metabolism regulation mechanisms and to bring forward the need to further study this aspect of one-carbon metabolism. The review aims to integrate two major aspects of cancer metabolism-signaling downstream of nutrient sensing and one-carbon metabolism, because while each of these is critical for the proliferation of cancerous cells, their integration is critical for comprehensive understating of cellular metabolism in transformed cells and can lead to clinically relevant insights.
Collapse
Affiliation(s)
- Boryana Petrova
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Adam G Maynard
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Graduate Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Peng Wang
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA
| | - Naama Kanarek
- Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA; Harvard Medical School, Boston, Massachusetts, USA; The Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.
| |
Collapse
|
360
|
Jin Z, Liu F, Zhang G, Zhang J, Zhao X, Huo X, Huang X, Xu C. An effective disease diagnostic model related to pyroptosis in ischemic cardiomyopathy. J Cell Mol Med 2023; 27:3816-3826. [PMID: 37724419 PMCID: PMC10718138 DOI: 10.1111/jcmm.17957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/10/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Pyroptosis is involved in ischemic cardiomyopathy (ICM). The study aimed to investigate the pyroptosis-related genes and clarify their diagnostic value in ICM. The bioinformatics method identified the differential pyroptosis genes between the normal control and ICM samples from online datasets. Then, protein-protein interaction (PPI) and function analysis were carried out to explore the function of these genes. Following, subtype analysis was performed using ConsensusClusterPlus, functions, immune score, stromal score, immune cell proportion and human leukocyte antigen (HLA) genes between subtypes were investigated. Moreover, optimal pyroptosis genes were selected using the least absolute shrinkage and selection operator (LASSO) analysis to construct a diagnostic model and evaluate its effectiveness using receiver operator characteristic (ROC) analysis. Twenty-one differential expressed pyroptosis genes were identified, and these genes were related to immune and pyroptosis. Subtype analysis identified two obvious subtypes: sub-1 and sub-2. And LASSO identified 13 optimal genes used to construct the diagnostic model. The diagnostic model in ICM diagnosis with the area under ROC (AUC) was 0.965. Our results suggested that pyroptosis was tightly associated with ICM.
Collapse
Affiliation(s)
- Zhankui Jin
- Department of OrthopedicsShaanxi Provincial People's HospitalXi'anChina
| | - Fuqiang Liu
- Department of CardiologyShaanxi Provincial People's HospitalXi'anChina
| | - Guoan Zhang
- Department of Cardiovascular SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Jingtao Zhang
- Department of Cardiovascular SurgeryShaanxi Provincial People's HospitalXi'anChina
| | - Xiangrong Zhao
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Xueping Huo
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune DiseasesShaanxi Provincial People's HospitalXi'anChina
- Shaanxi Engineering Research Center of Cell ImmunologyShaanxi Provincial People's HospitalXi'anChina
| |
Collapse
|
361
|
Zou P, Lin R, Fang Z, Chen J, Guan H, Yin J, Chang Z, Xing L, Lang J, Xue X, Chen M. Implanted, Wireless, Self-Powered Photodynamic Therapeutic Tablet Synergizes with Ferroptosis Inducer for Effective Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302731. [PMID: 37957541 PMCID: PMC10754143 DOI: 10.1002/advs.202302731] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/13/2023] [Indexed: 11/15/2023]
Abstract
The effective and targeted treatment of resistant cancer cells presents a significant challenge. Targeting cell ferroptosis has shown remarkable efficacy against apoptosis-resistant tumors due to their elevated iron metabolism and oxidative stress levels. However, various obstacles have limited its effectiveness. To overcome these challenges and enhance ferroptosis in cancer cells, we have developed a self-powered photodynamic therapeutic tablet that integrates a ferroptosis inducer (FIN), imidazole ketone erastin (IKE). FINs augment the sensitivity of photodynamic therapy (PDT) by increasing oxidative stress and lipid peroxidation. Furthermore, they utilize the Fenton reaction to supplement oxygen, generating a greater amount of reactive oxygen species (ROS) during PDT. Additionally, PDT facilitates the release of iron ions from the labile iron pool (LIP), accelerating lipid peroxidation and inducing ferroptosis. In vitro and in vivo experiments have demonstrated a more than 85% tumor inhibition rate. This synergistic treatment approach not only addresses the limitations of inadequate penetration and tumor hypoxia associated with PDT but also reduces the required medication dosage. Its high efficiency and specificity towards targeted cells minimize adverse effects, presenting a novel approach to combat clinical resistance in cancer treatment.
Collapse
Affiliation(s)
- Pingjin Zou
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Rui Lin
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Zengyi Fang
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Junyang Chen
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
- Chengdu University of Traditional Chinese MedicineChengdu611137China
| | - Hongye Guan
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jie Yin
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Zhiheng Chang
- School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Lili Xing
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jinyi Lang
- School of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610054China
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| | - Xinyu Xue
- School of PhysicsUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Meihua Chen
- Department of Radiation OncologyRadiation Oncology Key Laboratory of Sichuan ProvinceSichuan Clinical Research Center for CancerSichuan Cancer CenterSichuan Cancer Hospital & InstituteAffiliated Cancer Hospital of University of Electronic Science and Technology of ChinaChengdu610042China
| |
Collapse
|
362
|
Fang S, Zheng L, Chen X, Guo X, Ding Y, Ma J, Ding J, Chen W, Yang Y, Chen M, Zhao Z, Tu J, Ji J. MEX3A determines in vivo hepatocellular carcinoma progression and induces resistance to sorafenib in a Hippo-dependent way. Hepatol Int 2023; 17:1500-1518. [PMID: 37460832 DOI: 10.1007/s12072-023-10565-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 06/23/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is most common malignant tumor worldwide, and one of the most lethal malignancies. MEX3A, RNA-binding protein, is profoundly implicated in tumor initiation and progression. But its role and potential mechanism in HCC remains fully unclear. METHODS The expression of MEX3A in HCC was analysis using the data derived from the Cancer Genome Atlas (TCGA) dataset and further confirmed by HCC samples and cells lines. The roles of MEX3A in the proliferation, migration and sorafenib resistance were detected both in vitro and vivo. In addition, the underline mechanism was investigated. RESULTS In this study, MEX3A expression was upregulated in HCC tissue and cell lines. Knockdown or overexpression of MEX3A disturbed the proliferation, migration and apoptosis of HCC cells by modulating the activation of Hippo signaling pathway. The expression of MEX3A was negatively associated with sorafenib sensitivity and upregulated in sorafenib resistant HCC cells. MEX3A knockdown facilitated the expression of WWC1, a negative modulator of Hippo signaling pathway, and led to increase of the phosphorylation of LATS1 and YAP1. Pharmacological inhibition of LATS1 or WWC1 overexpression alleviated the proliferative and migrated suppression and increased sorafenib sensitivity, whereas WWC1 inhibition using genetic interference strategy showed opposite trend in MEX3A knockdown HCC cells. Importantly, MEX3A knockdown led to growth and lung metastasis inhibition using xenograft model established by means of subcutaneous or tail vein injection. In addition, a combination of MEX3A knockdown and WWC1 overexpression dramatically enhances the growth inhibition of sorafenib in vivo. CONCLUSION MEX3A may facilitate HCC progression and hinder sorafenib sensitivity via inactivating Hippo signaling. The present study suggested that targeting MEX3A can be served as a novel therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Liyun Zheng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Xiaoxiao Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Xiaoju Guo
- Shaoxing University School of Medicine, Shaoxing, 312099, China
| | - Yiming Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Ji Ma
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Jiayi Ding
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
| | - Weiqian Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Yang Yang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Zhongwei Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Jianfei Tu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Institute of Imaging Diagnosis and Minimally Invasive Intervention Research, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.
- Department of Radiology, School of Medicine, Lishui Hospital of Zhejiang University, Lishui, 323000, China.
- Shaoxing University School of Medicine, Shaoxing, 312099, China.
| |
Collapse
|
363
|
Guo Q, Yu Y, Tang W, Zhou S, Lv X. Matrine exerts an anti-tumor effect via regulating HN1 in triple breast cancer both in vitro and in vivo. Chem Biol Drug Des 2023; 102:1469-1477. [PMID: 37674344 DOI: 10.1111/cbdd.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
The treatment of triple-negative breast cancer (TNBC) cannot meet medical needs, and it is urgent to find new drugs for intervention. This study aimed to investigate the anti-tumor effect of matrine on the proliferation and apoptosis of TNBC cells based on HN1 regulation in vitro and in vivo. TNBC cell lines (MDA-MB-453 and HCC-1806) were treated with varying concentrations of matrine (0, 1.0, 2.0, 3.0, 4.0, and 5.0 mM). CCK-8, colony formation assay, transwell assay, and flow cytometry assay were employed to detect proliferation, clone formation, invasion, and apoptosis of TNBC cells. Western blot analysis was applied to detect the protein expression of apoptosis HN1. The effects of matrine on tumor growth, protein expression of HN1, and apoptosis in vivo were validated by xenograft tumor models and histology. It was found that matrine inhibited proliferation, colony formation, and invasion and promoted apoptosis of TNBC cells in vitro. HN1 expression was suppressed by matrine. HN1 overexpression perceptibly reversed the above-mentioned additive effect in vitro. In vivo experiments found that matrine inhibited tumor growth and the expression of HN1 protein but promoted the protein expression of Cleared-Caspase-3. Above all, this study demonstrated that matrine inhibited proliferation and promoted apoptosis of TNBC cells via suppressing HN1 expression. Targeting HN1 by matrine may provide new insights into the therapeutic management of patients with TNBC.
Collapse
Affiliation(s)
- Qiusheng Guo
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yuan Yu
- Zhejiang Cancer Research Institute, Cancer Hospital of The University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou, China
| | - Wanfen Tang
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Shishi Zhou
- Department of Medical Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xianmei Lv
- Department of Radiotherapy, Jinhua People's Hospital, Jinhua, China
| |
Collapse
|
364
|
Huang J, Liang L, Jiang S, Liu Y, He H, Sun X, Li Y, Xie L, Tao Y, Cong L, Jiang Y. BDH1-mediated LRRC31 regulation dependent on histone lysine β-hydroxybutyrylation to promote lung adenocarcinoma progression. MedComm (Beijing) 2023; 4:e449. [PMID: 38098610 PMCID: PMC10719427 DOI: 10.1002/mco2.449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 12/17/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common form of lung cancer, with a consistently low 5-year survival rate. Therefore, we aim to identify key genes involved in LUAD progression to pave the way for targeted therapies in the future. BDH1 plays a critical role in the conversion between acetoacetate and β-hydroxybutyrate. The presence of β-hydroxybutyrate is essential for initiating lysine β-hydroxybutyrylation (Kbhb) modifications. Histone Kbhb at the H3K9 site is attributed to transcriptional activation. We unveiled that β-hydroxybutyrate dehydrogenase 1 (BDH1) is not only conspicuously overexpressed in LUAD, but it also modulates the overall intracellular Kbhb modification levels. The RNA sequencing analysis revealed leucine-rich repeat-containing protein 31 (LRRC31) as a downstream target gene regulated by BDH1. Ecologically expressed BDH1 hinders the accumulation of H3K9bhb in the transcription start site of LRRC31, consequently repressing the transcriptional expression of LRRC31. Furthermore, we identified potential BDH1 inhibitors, namely pimozide and crizotinib, which exhibit a synergistic inhibitory effect on the proliferation of LUAD cells exhibiting high expression of BDH1. In summary, this study elucidates the molecular mechanism by which BDH1 mediates LUAD progression through the H3K9bhb/LRRC31 axis and proposes a therapeutic strategy targeting BDH1-high-expressing LUAD, providing a fresh perspective for LUAD treatment.
Collapse
Affiliation(s)
- Jingjing Huang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Lu Liang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Shiyao Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yueying Liu
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Hua He
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Xiaoyan Sun
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yi Li
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Li Xie
- Department of Head and Neck SurgeryHunan Cancer Hospital, Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Yongguang Tao
- Department of PathologyKey Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, School of Basic Medicine, Central South UniversityChangshaHunanChina
| | - Li Cong
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| | - Yiqun Jiang
- The Key Laboratory of Model Animal and Stem Cell Biology in Hunan Province, Hunan Normal UniversityChangshaHunanChina
- Department of Basic Medicine, School of Medicine, Hunan Normal UniversityChangshaHunanChina
| |
Collapse
|
365
|
Zhang D, Jia X, Lin D, Ma J. Melatonin and ferroptosis: Mechanisms and therapeutic implications. Biochem Pharmacol 2023; 218:115909. [PMID: 37931663 DOI: 10.1016/j.bcp.2023.115909] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/03/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Ferroptosis, a regulated form of cell death, is characterized by iron-dependent lipid peroxidation leading to oxidative damage to cell membranes. Cell sensitivity to ferroptosis is influenced by factors such as iron overload, lipid metabolism, and the regulation of the antioxidant system. Melatonin, with its demonstrated capacity to chelate iron, modulate iron metabolism proteins, regulate lipid peroxidation, and regulate antioxidant systems, has promise as a potential therapeutic agent in mediating ferroptosis. The availability of approved drugs targeting ferroptosis is limited; therefore, melatonin is a candidate for broad application due to its safety and efficacy in attenuating ferroptosis in noncancerous diseases. Melatonin has been demonstrated to attenuate ferroptosis in cellular and animal models of noncancerous diseases, showcasing effectiveness in organs such as the heart, brain, lung, liver, kidney, and bone. This review outlines the molecular mechanisms of ferroptosis, investigates melatonin's potential effects on ferroptosis, and discusses melatonin's therapeutic potential as a promising intervention against diseases associated with ferroptosis. Through this discourse, we aim to lay a strong foundation for developing melatonin as a therapeutic strategy to modulate ferroptosis in a variety of disease contexts.
Collapse
Affiliation(s)
- Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
| | - Xiaotong Jia
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Duomao Lin
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China.
| |
Collapse
|
366
|
Zhang K, Tian XM, Li W, Hao LY. Ferroptosis in cardiac hypertrophy and heart failure. Biomed Pharmacother 2023; 168:115765. [PMID: 37879210 DOI: 10.1016/j.biopha.2023.115765] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/08/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023] Open
Abstract
Heart failure has become a public health problem that we cannot avoid choosing to face in today's context. In the case of heart failure, pathological cardiac hypertrophy plays a major role because of its condition of absolute increase in ventricular mass under various stresses. Ferroptosis, it could be defined as regulatory mechanisms that regulate cell death in the absence of apoptosis in iron-dependent cells. This paper introduces various new research findings on the use of different regulatory mechanisms of cellular ferroptosis for the treatment of heart failure and cardiac hypertrophy, providing new therapeutic targets and research directions for clinical treatment. The role and mechanism of ferroptosis in the field of heart failure has been increasingly demonstrated, and the relationship between cardiac hypertrophy, which is one of the causes of heart failure, is also an area of research that we should focus on. In addition, the latest applications and progress of inducers and inhibitors of ferroptosis are reported in this paper, updating the breakthroughs in their fields.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xin-Miao Tian
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Wei Li
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Li-Ying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
367
|
Zheng X, Zhao D, Liu Y, Jin Y, Liu T, Li H, Liu D. Regeneration and anti-inflammatory effects of stem cells and their extracellular vesicles in gynecological diseases. Biomed Pharmacother 2023; 168:115739. [PMID: 37862976 DOI: 10.1016/j.biopha.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
There are many gynecological diseases, among which breast cancer (BC), cervical cancer (CC), endometriosis (EMs), and polycystic ovary syndrome (PCOS) are common and difficult to cure. Stem cells (SCs) are a focus of regenerative medicine. They are commonly used to treat organ damage and difficult diseases because of their potential for self-renewal and multidirectional differentiation. SCs are also commonly used for difficult-to-treat gynecological diseases because of their strong directional differentiation ability with unlimited possibilities, their tendency to adhere to the diseased tissue site, and their use as carriers for drug delivery. SCs can produce exosomes in a paracrine manner. Exosomes can be produced in large quantities and have the advantage of easy storage. Their safety and efficacy are superior to those of SCs, which have considerable potential in gynecological treatment, such as inhibiting endometrial senescence, promoting vascular reconstruction, and improving anti-inflammatory and immune functions. In this paper, we review the mechanisms of the regenerative and anti-inflammatory capacity of SCs and exosomes in incurable gynecological diseases and the current progress in their application in genetic engineering to provide a foundation for further research.
Collapse
Affiliation(s)
- Xu Zheng
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Dan Zhao
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Yang Liu
- Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun 130000, China
| | - Ye Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Tianjia Liu
- Changchun University of Chinese Medicine, Changchun 130117, China; Baicheng Medical College, Baicheng 137000, China.
| | - Huijing Li
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Da Liu
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
368
|
Wang Y, Wang T, Xiang Q, Li N, Wang J, Liu J, Zhang Y, Yang T, Bian J. GPR116 promotes ferroptosis in sepsis-induced liver injury by suppressing system Xc -/GSH/GPX4. Cell Biol Toxicol 2023; 39:3015-3030. [PMID: 37266730 DOI: 10.1007/s10565-023-09815-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
The disease sepsis is caused by an infection that damages organs. Liver injury, with ferroptosis playing a key role, is an early sign of sepsis. G protein-coupled receptor 116 (GPR116) is essential in the maintenance of functional homeostasis in various systems of the body and has been proven to play a protective role in septic lung injury. However, it's role in septic liver injury remains unclear. In this study, we found that hepatic ferroptosis during sepsis was accompanied by GPR116 upregulation. Hepatocyte-specific GPR116 gene deletion can prevent hepatic ferroptosis, thereby alleviating sepsis-induced liver dysfunction and improving mouse survival, which was verified in vivo. Mechanistically, GPR116 aggravated mitochondrial damage and lipid peroxidation in hepatocytes by inhibiting system Xc-/GSH/GPX4 in overexpression experiments. In conclusion, we have identified GPR116 as a vital mediator of ferroptosis in sepsis-induced liver injury. It is thus an attractive therapeutic target in sepsis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Ting Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qian Xiang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Na Li
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jun Wang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiahao Liu
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Zhang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Tao Yang
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jinjun Bian
- Department of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
369
|
Yao Y, Ren J, Lu J, Sui Y, Gong J, Chen X. Prognostic significance of high NPC2 expression in gastric cancer. Sci Rep 2023; 13:20710. [PMID: 38001127 PMCID: PMC10673825 DOI: 10.1038/s41598-023-47882-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and the third leading cause of cancer-related death. The identification of novel biomarkers and therapeutic targets is critical to improve the prognosis. A total of 380 patients with primary gastric cancer from the TCGA database were analyzed. The receiver operating characteristic curves were plotted. We further evaluated the independent prognostic ability of NPC2 expression for overall survival (OS) and relapse-free survival (RFS) through the Kaplan-Meier curve and Cox analysis. The NPC2 expression was significantly higher (P < 0.001) in gastric cancer. High NPC2 expression was significantly (P < 0.0001) associated with poor OS and poor RFS. The age, stage, radiation therapy, residual tumor, and NPC2 expression showed independent prognostic value for OS. The gender and NPC2 expression showed independent prognostic value for RFS. The higher NPC2 expression was observed in gastric cancer, compared with adjacent normal tissue (P < 0.001), confirmed by the IHC staining. The CCK-8 assay showed that NPC2 knockdown inhibits cell proliferation while NPC2 overexpression promotes cell proliferation (P < 0.05). NPC2 expression may serve as a promising prognostic biomarker for patients with gastric cancer.
Collapse
Affiliation(s)
- Yunzhuang Yao
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
- Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Jinnan Ren
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Junhui Lu
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Yue Sui
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Jingwen Gong
- Faculty of Graduate Studies, Shanxi Medical University, Taiyuan, 030000, China
| | - Xing Chen
- Department of Gastroenterology, First Hospital of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
370
|
Ma Y, Chen B, Zhang B, Zhang C, Zhu Q, Wang X, Liu Z, Liu H. High expression of integrin-binding sialoprotein (IBSP) is associated with poor prognosis of osteosarcoma. Aging (Albany NY) 2023; 16:28-42. [PMID: 38006395 PMCID: PMC10817378 DOI: 10.18632/aging.205235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/19/2023] [Indexed: 11/27/2023]
Abstract
INTRODUCTION Osteosarcoma is a malignant tumor, accounting for 20% of primary malignant bone tumors worldwide. However, the role of IBSP as a biomarker in osteosarcoma progression has not been studied yet. METHODS 85 cases of IBSP expression and clinical characteristics were obtained from TARGET database. Through the Kaplan-Meier curve, subgroup analysis, and univariate and multivariate Cox analysis, we further assessed the independent predictive capacity of IBSP expression for overall survival (OS) and relapse-free survival (RFS). RESULTS The mRNA expression of IBSP was higher in osteosarcoma than normal tissue (P < 0.0001). IBSP expression grouped by vital status showed statistical differences (P = 0.042). The race (P = 0.0183), vital status (P = 0.0034), and sample type (P = 0.0020) showed significant differences. IBSP expression exhibited satisfied diagnostic ability for osteosarcoma. The univariate and multivariate analysis confirmed that IBSP expression was an independent risk factor for OS (HR = 3.425, 95% CI: 1.604-7.313, P = 0.002) and RFS (HR = 3.377, 95% CI: 1.775-6.424, P < 0.001) in osteosarcoma patients. High IBSP expression was significantly associated with poor OS and RFS (P < 0.0001). The higher IBSP expression was observed in osteosarcoma (P < 0.001), confirmed by the IHC staining. The CCK-8 and colony formation assay showed that IBSP knockdown inhibits cell proliferation while overexpression promotes cell proliferation (P < 0.05). CONCLUSION High expression of IBSP was associated with poor OS and RFS. IBSP could serve as a potential biomarker for osteosarcoma, which could aid in early detection and disease monitoring.
Collapse
Affiliation(s)
- Yihang Ma
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Bing Chen
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Boyin Zhang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Chao Zhang
- Department of Operating Room, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Qingsan Zhu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Xu Wang
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Zhengang Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| | - Haochuan Liu
- Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, People’s Republic of China
| |
Collapse
|
371
|
Xing Z, Lin D, Hong Y, Ma Z, Jiang H, Lu Y, Sun J, Song J, Xie L, Yang M, Xie X, Wang T, Zhou H, Chen X, Wang X, Gao J. Construction of a prognostic 6-gene signature for breast cancer based on multi-omics and single-cell data. Front Oncol 2023; 13:1186858. [PMID: 38074669 PMCID: PMC10698552 DOI: 10.3389/fonc.2023.1186858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/25/2023] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Breast cancer (BC) is one of the females' most common malignant tumors there are large individual differences in its prognosis. We intended to uncover novel useful genetic biomarkers and a risk signature for BC to aid determining clinical strategies. METHODS A combined significance (p combined) was calculated for each gene by Fisher's method based on the RNA-seq, CNV, and DNA methylation data from TCGA-BRCA. Genes with a p combined< 0.01 were subjected to univariate cox and Lasso regression, whereby an RS signature was established. The predicted performance of the RS signature would be assessed in GSE7390 and GSE20685, and emphatically analyzed in triple-negative breast cancer (TNBC) patients, while the expression of immune checkpoints and drug sensitivity were also examined. GSE176078, a single-cell dataset, was used to validate the differences in cellular composition in tumors between TNBC patients with different RS. RESULTS The RS signature consisted of C15orf52, C1orf228, CEL, FUZ, PAK6, and SIRPG showed good performance. It could distinguish the prognosis of patients well, even stratified by disease stages or subtypes and also showed a stronger predictive ability than traditional clinical indicators. The down-regulated expressions of many immune checkpoints, while the decreased sensitivity of many antitumor drugs was observed in TNBC patients with higher RS. The overall cells and lymphocytes composition differed between patients with different RS, which could facilitate a more personalized treatment. CONCLUSION The six genes RS signature established based on multi-omics data exhibited well performance in predicting the prognosis of BC patients, regardless of disease stages or subtypes. Contributing to a more personalized treatment, our signature might benefit the outcome of BC patients.
Collapse
Affiliation(s)
- Zeyu Xing
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongcai Lin
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yuting Hong
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Zihuan Ma
- Department of Scientific Research Projects, Beijing ChosenMed Clinical Laboratory Co. Ltd., Beijing, China
| | - Hongnan Jiang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Ye Lu
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiale Sun
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jiarui Song
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Li Xie
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Man Yang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xintong Xie
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Tianyu Wang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Hong Zhou
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiaoqi Chen
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Xiang Wang
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Gao
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| |
Collapse
|
372
|
He JR, Li D, Zhang QX, Liu T, Ding Y, Wu CY, Chen SS, Chen JL. Inhibiting KLRB1 expression is associated with impairing cancer immunity and leading to cancer progression and poor prognosis in breast invasive carcinoma patients. Aging (Albany NY) 2023; 15:13265-13286. [PMID: 37988189 DOI: 10.18632/aging.205239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND The association between Killer cell lectin like receptor B1 (KLRB1) and cancer has been reported, but the roles of KLRB1 in breast invasive carcinoma (BRCA) has not been fully revealed. METHODS Our study utilized the Cancer Genome Atlas (TCGA), Kaplan-Meier (K-M) Plotter, and TIMER databases to investigate the expression and clinical relevance of KLRB1 in BRCA and to explore its roles and mechanism in BRCA progression using gene set enrichment analysis, CCK-8, migration, apoptosis, and western blotting. We examined the relationship between KLRB1 expression and the BRCA immune microenvironment, using data from TCGA, and Gene Expression Profiling Interactive Analysis (GEPIA) databases and validated these findings in K-M Plotter databases. RESULTS A significant decrease of KLRB1 expression was observed in BRCA patients. BRCA patients with low KLRB1 levels were associated with older age, advanced disease stage, HER2-positivity, poor prognosis, and a decreased survival probability compared to the high-expression group. Increased KLRB1 expression levels were correlated with inhibition of breast cancer cell proliferation, migration, and invasion, as well as promotion of cell apoptosis, possible through regulation of the NF-κB, PI3K/AKT, and TNF signaling pathways. Moreover, the study also indicated that decreased KLRB1 expression correlated with tumor purity, immune score, and immune cell infiltration (B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, among others), cell markers, and immunotherapy. CONCLUSION Decreased KLRB1 expression in BRCA is associated with poor prognosis and immune microenvironment. This study also highlights KLRB1 as a potential molecular marker for poor prognosis in BRCA patients, and therefore, it may provide clinical implications for the management of patients with BRCA.
Collapse
Affiliation(s)
- Jin-Rong He
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Dan Li
- Department of Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei, China
| | - Qun-Xian Zhang
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei, China
| | - Tao Liu
- Department of Cardiothoracic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan 442012, Hubei, China
| | - Yu Ding
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Chuang-Yan Wu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| | - Shan-Shan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430014, Hubei, China
| | - Jiu-Ling Chen
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
| |
Collapse
|
373
|
Nassani R, Bokhari Y, Alrfaei BM. Molecular signature to predict quality of life and survival with glioblastoma using Multiview omics model. PLoS One 2023; 18:e0287448. [PMID: 37972206 PMCID: PMC10653472 DOI: 10.1371/journal.pone.0287448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 11/19/2023] Open
Abstract
Glioblastoma multiforme (GBM) patients show a variety of signs and symptoms that affect their quality of life (QOL) and self-dependence. Since most existing studies have examined prognostic factors based only on clinical factors, there is a need to consider the value of integrating multi-omics data including gene expression and proteomics with clinical data in identifying significant biomarkers for GBM prognosis. Our research aimed to isolate significant features that differentiate between short-term (≤ 6 months) and long-term (≥ 2 years) GBM survival, and between high Karnofsky performance scores (KPS ≥ 80) and low (KPS ≤ 60), using the iterative random forest (iRF) algorithm. Using the Cancer Genomic Atlas (TCGA) database, we identified 35 molecular features composed of 19 genes and 16 proteins. Our findings propose molecular signatures for predicting GBM prognosis and will improve clinical decisions, GBM management, and drug development.
Collapse
Affiliation(s)
- Rayan Nassani
- Center for Computational Biology, Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Yahya Bokhari
- Department of AI and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- Department of Health Informatics, College of Public Health and Health Informatics, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| | - Bahauddeen M. Alrfaei
- King Abdullah International Medical Research Center (KAIMRC), King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
| |
Collapse
|
374
|
Tu KJ, Diplas BH, Regal JA, Waitkus MS, Pirozzi CJ, Reitman ZJ. Mining cancer genomes for change-of-metabolic-function mutations. Commun Biol 2023; 6:1143. [PMID: 37950065 PMCID: PMC10638295 DOI: 10.1038/s42003-023-05475-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023] Open
Abstract
Enzymes with novel functions are needed to enable new organic synthesis techniques. Drawing inspiration from gain-of-function cancer mutations that functionally alter proteins and affect cellular metabolism, we developed METIS (Mutated Enzymes from Tumors In silico Screen). METIS identifies metabolism-altering cancer mutations using mutation recurrence rates and protein structure. We used METIS to screen 298,517 cancer mutations and identify 48 candidate mutations, including those previously identified to alter enzymatic function. Unbiased metabolomic profiling of cells exogenously expressing a candidate mutant (OGDHLp.A400T) supports an altered phenotype that boosts in vitro production of xanthosine, a pharmacologically useful chemical that is currently produced using unsustainable, water-intensive methods. We then applied METIS to 49 million cancer mutations, yielding a refined set of candidates that may impart novel enzymatic functions or contribute to tumor progression. Thus, METIS can be used to identify and catalog potentially-useful cancer mutations for green chemistry and therapeutic applications.
Collapse
Affiliation(s)
- Kevin J Tu
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 21044, USA
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, CB2 0RE, UK
| | - Bill H Diplas
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Joshua A Regal
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA
| | | | | | - Zachary J Reitman
- Department of Radiation Oncology, Duke University, Durham, NC, 27710, USA.
- Department of Neurosurgery, Duke University, Durham, NC, 27710, USA.
- Department of Pathology, Duke University, Durham, NC, 27710, USA.
| |
Collapse
|
375
|
Tang LH, Dai M, Wang DH. ANO6 is a reliable prognostic biomarker and correlates to macrophage polarization in breast cancer. Medicine (Baltimore) 2023; 102:e36049. [PMID: 37960776 PMCID: PMC10637410 DOI: 10.1097/md.0000000000036049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
To investigate the value of Anoctamin 6 (ANO6) in breast cancer (BC) by analyzing its expression, prognostic impact, biological function, and its association with immune characteristics. We initially performed the expression and survival analyses, followed by adopting restricted cubic spline to analyze the nonlinear relationship between ANO6 and overall survival (OS). Stratified and interaction analyses were conducted to further evaluate its prognostic value in BC. Next, we performed enrichment analyses to explore the possible pathways regulated by ANO6. Finally, the correlations between ANO6 and immune characteristics were analyzed to reveal its role in immunotherapy. Lower ANO6 expression was observed in BC than that in the normal breast group, but its overexpression independently predicted poor OS among BC patients (P < .05). Restricted cubic spline analysis revealed a linear relationship between ANO6 and OS (P-Nonlinear > 0.05). Interestingly, menopause status was an interactive factor in the correlation between ANO6 and OS (P for interaction = 0.016). Additionally, ANO6 was involved in stroma-associated pathways, and its elevation was significantly linked to high stroma scores and macrophage polarization (P < .05). Moreover, ANO6 was notably correlated with immune checkpoint expression levels, and scores of tumor mutation burden and microsatellite instability (all P < .05). ANO6 was an independent prognostic factor for BC, and might be a potential target for the BC treatment. Besides, ANO6 might affect BC progression via the regulation of stroma-related pathways and macrophage polarization.
Collapse
Affiliation(s)
- Long-Huan Tang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| | - Min Dai
- Department of General Surgery, Hai'an Hospital Affiliated to Nantong University, Hai'an, China
| | - Dong-Hai Wang
- General Surgical Department One, FengHua People's Hospital, Ningbo, China
| |
Collapse
|
376
|
Zhou P, Shen J, Ge X, Cheng H, Sun Y, Li M, Li H, Yi Z, Li Z. Identification and validation of ubiquitination-related signature and subgroups in immune microenvironment of tuberculosis. Aging (Albany NY) 2023; 15:12570-12587. [PMID: 37950733 PMCID: PMC10683621 DOI: 10.18632/aging.205198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/07/2023] [Indexed: 11/13/2023]
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) is the bacterial pathogen responsible for causing tuberculosis (TB), a severe public health concern that results in numerous deaths worldwide. Ubiquitination (Ub) is an essential physiological process that aids in maintaining homeostasis and contributes to the development of TB. Therefore, the main objective of our study was to investigate the potential role of Ub-related genes in TB. METHODS Our research entailed utilizing single sample gene set enrichment analysis (ssGSEA) in combination with several machine learning techniques to discern the Ub-related signature of TB and identify potential diagnostic markers that distinguish TB from healthy controls (HC). RESULTS In summary, we used the ssGSEA algorithm to determine the score of Ub families (E1, E2, E3, DUB, UBD, and ULD). Notably, the score of E1, E3, and UBD were lower in TB patients than in HC individuals, and we identified 96 Ub-related differentially expressed genes (UbDEGs). Employing machine learning algorithms, we identified 11 Ub-related hub genes and defined two distinct Ub-related subclusters. Notably, through GSVA and functional analysis, it was determined that these subclusters were implicated in numerous immune-related processes. We further investigated these Ub-related hub genes in four TB-related diseases and found that TRIM68 exhibited higher correlations with various immune cells in different conditions, indicating that it may play a crucial role in the immune process of these diseases. CONCLUSION The observed enrichment of Ub-related gene expression in TB patients emphasizes the potential involvement of ubiquitination in the progression of TB. These significant findings establish a basis for future investigations to elucidate the molecular mechanisms associated with TB, select suitable diagnostic biomarkers, and design innovative therapeutic interventions for combating this fatal infectious disease.
Collapse
Affiliation(s)
- Peipei Zhou
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Jie Shen
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Xiao Ge
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Haien Cheng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Yanli Sun
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Meng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
| | - Heng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| | - Zhengjun Yi
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| | - Zhenpeng Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong 261053, People’s Republic of China
- Engineering Research Institute of Precision Medicine Innovation and Transformation of Infections Diseases, Weifang Medical University, Weifang, Shandong 261053
| |
Collapse
|
377
|
Cui H, Lian J, Xu B, Yu Z, Xiang H, Shi J, Gao Y, Han T. Identification of a bile acid and bile salt metabolism-related lncRNA signature for predicting prognosis and treatment response in hepatocellular carcinoma. Sci Rep 2023; 13:19512. [PMID: 37945918 PMCID: PMC10636107 DOI: 10.1038/s41598-023-46805-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
Bile acids and salts have been shown to play a role in liver carcinogenesis through DNA damage, inflammation, and tumor proliferation. However, the correlation between bile acid metabolism and hepatocellular carcinoma (HCC) prognosis remains unclear. This study aimed to identify a predictive signature of bile acid and bile salt metabolism-related long non-coding RNAs (lncRNAs) for HCC prognosis and treatment response. The study used HCC RNA-sequencing data and corresponding clinical and prognostic data from The Cancer Genome Atlas. A prognostic model consisting of five bile acid and bile salt metabolism-related lncRNAs was developed and evaluated in a training set, a validation set and an external set. The model demonstrated good performance in predicting HCC prognosis and was shown to be an independent biomarker for prognosis. Additionally, our study revealed a significant association between the signature and immune cell infiltration, as well as its predictive value for therapeutic responses to both immunotherapy and chemotherapy. Furthermore, three LncRNAs (LUCAT1, AL031985.3 and AC015908.3) expression levels in our signature were validated through qRT-PCR in a cohort of 50 pairs of HCC patient tumor samples and corresponding adjacent non-tumor samples, along with 10 samples of normal liver tissue adjacent to benign lesions. These findings suggest that this novel bile acid and bile salt metabolism-related lncRNA signature can independently predict the prognosis of patients with HCC and may be utilized as a potential predictor of response to treatment in this setting.
Collapse
Affiliation(s)
- Hao Cui
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Jia Lian
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Baiguo Xu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China
| | - Zhenjun Yu
- Department of Gastroenterology and Hepatology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Huiling Xiang
- Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Jingxiang Shi
- Department of Hepatobiliary Surgery, The Third Central Hospital of Tianjin, Tianjin, China.
| | - Yingtang Gao
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Institute of Hepatobiliary Disease, Nankai University Affinity the Third Central Hospital, Tianjin, China.
| | - Tao Han
- Department of Gastroenterology and Hepatology, Tianjin Union Medical Center, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
378
|
Ursu Ș, Ciocan A, Ursu CP, Gherman CD, Ciocan RA, Pop RS, Spârchez Z, Zaharie F, Al Hajjar N. Role of Metabolomics in Pathogenesis and Prompt Diagnosis of Gastric Cancer Metastasis-A Systematic Review. Diagnostics (Basel) 2023; 13:3401. [PMID: 37998537 PMCID: PMC10670422 DOI: 10.3390/diagnostics13223401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
INTRODUCTION Gastric cancer is the fourth most frequently diagnosed form of cancer and the third leading cause of cancer-related mortality worldwide. The aim of this review is to identify individual metabolic biomarkers and their association with accurate diagnostic values, which can predict gastric cancer metastasis. MATERIALS AND METHODS After searching the keywords, 83 articles were found over a period of 13 years. One was eliminated because it was not written in English, and two were published outside the selected period. Seven scientific papers were qualified for this investigation after eliminating duplicates, non-related articles, systematic reviews, and restricted access studies. RESULTS New metabolic biomarkers with predictive value for gastric cancer metastasis and for elucidating metabolic pathways of the metastatic process have been found. The pathogenic processes can be outlined as follows: pro-oxidant capacity, T-cell inactivation, cell cycle arrest, energy production and mitochondrial enzyme impairment, cell viability and pro-apoptotic effect, enhanced degradation of collagen extracellular matrix, migration, invasion, structural protein synthesis, and tumoral angiogenesis. CONCLUSION Metabolic biomarkers have been recognized as independent risk factors in the molecular process of gastric cancer metastasis, with good diagnostic and prognostic value.
Collapse
Affiliation(s)
- Ștefan Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (Ș.U.); (C.-P.U.); (F.Z.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| | - Andra Ciocan
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (Ș.U.); (C.-P.U.); (F.Z.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| | - Cristina-Paula Ursu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (Ș.U.); (C.-P.U.); (F.Z.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (C.D.G.); (R.A.C.)
| | - Răzvan Alexandru Ciocan
- Department of Surgery-Practical Abilities, “Iuliu Hațieganu” University of Medicine and Pharmacy, Marinescu Street, No. 23, 400337 Cluj-Napoca, Romania; (C.D.G.); (R.A.C.)
| | - Rodica Sorina Pop
- Department of Community Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Avram Iancu Street, No. 31, 400347 Cluj-Napoca, Romania;
| | - Zeno Spârchez
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania;
| | - Florin Zaharie
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (Ș.U.); (C.-P.U.); (F.Z.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| | - Nadim Al Hajjar
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania; (Ș.U.); (C.-P.U.); (F.Z.); (N.A.H.)
- “Prof. Dr. Octavian Fodor” Regional Institute of Gastroenterology and Hepatology, Croitorilor Street, No. 19–21, 400162 Cluj-Napoca, Romania
| |
Collapse
|
379
|
Lei J, Zhang S, Wu Z, Sun X, Zhou B, Huang P, Fang M, Li L, Luo C, He Z. Self-engineered binary nanoassembly enabling closed-loop glutathione depletion-amplified tumor ferroptosis. Biomater Sci 2023; 11:7373-7386. [PMID: 37791561 DOI: 10.1039/d3bm01153d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Ferroptosis has emerged as a promising target for anticancer treatment, comprising iron-dependent lipid peroxidation and excessive accumulation of reactive oxygen species. Given that glutathione (GSH) overproduced in tumor cells antagonizes the cellular oxidation system, the reduction of GSH production has been extensively explored to induce ferroptosis. However, reducing GSH production alone is insufficient to trigger an intense lipid peroxidation storm. It is highly desirable to achieve systemic GSH depletion through simultaneous production and consumption intervention. Herein, we propose a bidirectional blockage strategy for closed-loop GSH depletion-amplified tumor ferroptosis. Sorafenib (Sor) and gambogic acid (GA) were elaborately fabricated as a self-engineered carrier-free nanoassembly without any nanocarrier materials. The PEGylated dual-drug nanoassembly enables favorable co-delivery and tumor-specific release of Sor and GA. Notably, a closed-loop GSH depletion is observed as a result of a Sor-induced decrease in GSH production and GA-accelerated GSH consumption in vitro and in vivo. As expected, this uniquely engineered dual-drug nanoassembly demonstrates vigorous antitumor activity in 4T1 breast tumor-bearing mice. This study presents a novel nanotherapeutic modality for ferroptosis-driven cancer treatment.
Collapse
Affiliation(s)
- Jin Lei
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Zehua Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Xinxin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Binghong Zhou
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Peiqi Huang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Mingzhu Fang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Lin Li
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing, 401147, China.
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
380
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
381
|
Gao Y, Wu C, Huang J, Huang Z, Jin Z, Guo S, Tao X, Lu S, Zhang J, Zhang F, Zhai Y, Shi R, Ye P, Wu J. A new strategy to identify ADAM12 and PDGFRB as a novel prognostic biomarker for matrine regulates gastric cancer via high throughput chip mining and computational verification. Comput Biol Med 2023; 166:107562. [PMID: 37847945 DOI: 10.1016/j.compbiomed.2023.107562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
BACKGROUND Gastric cancer is a life-threatening disease that poses a serious risk to human health. Although there are numerous molecular targets for gastric cancer in clinical practice, they often exhibit low specificity and sensitivity. Consequently, this can result in a low early diagnosis rate, delayed treatment, and poor prognosis for patients with gastric cancer. Hence, it remains crucial to identify more precise diagnostic markers for this disease. METHODS This study utilized ceRNA chips and bioinformatics methods to investigate the key genes and mechanisms involved in matrine intervention in gastric cancer cells. RESULTS ADAM12 and PDGFRB are the key genes that are down-regulated after matrine intervention in gastric cancer cells. By conducting bioinformatics analysis, two ceRNA regulatory axes were identified, which are associated with the prognosis of gastric cancer. These axes are lncRNA DGCR5/hsa-miR-206/ADAM12 and circRNA ITGA3/hsa-miR-24-3p/PDGFRB. CONCLUSION The low expression of ADAM12 may weaken the digestion of extracellular matrix (ECM) molecules, which can result in the invasion and metastasis of tumor cells. This occurs without the catalysis of ECM proteases, thereby impacting the invasion and metastasis of gastric cancer cells. Additionally, the analysis of immune infiltration suggests that ADAM12 and PDGFRB may influence changes in the tumor immune microenvironment, thereby affecting the occurrence and development of gastric cancer. This study contributes to a deeper understanding of the role of the matrine-related ceRNA network in gastric cancer, providing a reference for clinical diagnosis and treatment. It holds significant importance in discovering new drug treatment targets.
Collapse
Affiliation(s)
- Yifei Gao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chao Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jiaqi Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhihong Huang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhengsen Jin
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Siyu Guo
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaoyu Tao
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shan Lu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jingyuan Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fanqin Zhang
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yiyan Zhai
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Shi
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Peizhi Ye
- National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiarui Wu
- Department of Clinical Pharmacology of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
382
|
Białczyk A, Wełniak A, Kamińska B, Czajkowski R. Oxidative Stress and Potential Antioxidant Therapies in Vitiligo: A Narrative Review. Mol Diagn Ther 2023; 27:723-739. [PMID: 37737953 PMCID: PMC10590312 DOI: 10.1007/s40291-023-00672-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2023] [Indexed: 09/23/2023]
Abstract
Vitiligo is a chronic skin disorder characterised by the loss of melanocytes and subsequent skin depigmentation. Although many theories have been proposed in the literature, none alone explains the pathogenesis of vitiligo. Oxidative stress has been identified as a potential factor in the pathogenesis of vitiligo. A growing body of evidence suggests that antioxidant therapies may offer a promising approach to managing this condition. This review summarises the potential mechanisms of oxidative stress and the types of melanocyte death in vitiligo. We also provide a brief overview of the most commonly studied antioxidants. Melanocytes in vitiligo are thought to be damaged by an accumulation of reactive oxygen species to destroy the structural and functional integrity of their DNA, lipids, and proteins. Various causes, including exogenous and endogenous stress factors, an imbalance between prooxidants and antioxidants, disruption of antioxidant pathways, and gene polymorphisms, lead to the overproduction of reactive oxygen species. Although necroptosis, pyroptosis, ferroptosis, and oxeiptosis are newer types of cell death that may contribute to the pathophysiology of vitiligo, apoptosis remains the most studied cell death mechanism in vitiligo. According to studies, vitamin E helps to treat lipid peroxidation of the skin caused by psoralen ultra-violet A treatment. In addition, Polypodium leucotomos increased the efficacy of psoralen ultra-violet A or narrow-band ultraviolet B therapy. Our review provides valuable insights into the potential role of oxidative stress in pathogenesis and antioxidant-based supporting therapies in treating vitiligo, offering a promising avenue for further research and the development of effective treatment strategies.
Collapse
Affiliation(s)
- Aleksandra Białczyk
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland.
| | - Adam Wełniak
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Barbara Kamińska
- Students' Scientific Club of Dermatology, Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, 9 Skłodowskiej-Curie Street, 85-094, Bydgoszcz, Poland
| | - Rafał Czajkowski
- Department of Dermatology and Venerology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
383
|
Yun WJ, Zhang L, Yang N, Cui ZG, Jiang HM, Ha MW, Yu DY, Zhao MZ, Zheng HC. FAM64A aggravates proliferation, invasion, lipid droplet formation, and chemoresistance in gastric cancer: A biomarker for aggressiveness and a gene therapy target. Drug Dev Res 2023; 84:1537-1552. [PMID: 37571819 DOI: 10.1002/ddr.22105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/13/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
FAM64A is a mitogen-induced regulator of the metaphase and anaphase transition. Here, we found that FAM64A messenger RNA (mRNA) and protein expression levels were higher in gastric cancer tissue than in normal mucosa (p < .05). FAM64A methylation was negatively correlated with FAM64A mRNA expression (p < .05). The differentially expressed genes of FAM64A were mainly involved in digestion, potassium transporting or exchanging ATPase, contractile fibers, endopeptidase, and pancreatic secretion (p < .05). The FAM64A-related genes were principally categorized into ubiquitin-mediated proteolysis, cell cycle, chromosome segregation and mitosis, microtubule binding and organization, metabolism of amino acids, cytokine receptors, lipid droplet, central nervous system, and collagen trimer (p < .05). FAM64A protein expression was lower in normal gastric mucosa than intestinal metaplasia, adenoma, and primary cancer (p < .05), negatively correlated with older age, T stage, lymphatic and venous invasion, tumor, node, metastasis stage, and dedifferentiation (p < .05), and associated with a favorable overall survival of gastric cancer patients. FAM64A overexpression promoted proliferation, antiapoptosis, migration, invasion, and epithelial-mesenchymal transition via the EGFR/Akt/mTOR/NF-κB, while the opposite effect was observed for FAM64A knockdown. FAM64A also induced chemoresistance directly or indirectly through lipid droplet formation via ING5. These results suggested that upregulation of FAM64A expression might induce aggressive phenotypes, leading to gastric carcinogenesis and its subsequent progression. Thus, FAM64A could be regarded as a prognosis biomarker and a target for gene therapy.
Collapse
Affiliation(s)
- Wen-Jing Yun
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Li Zhang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Ning Yang
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Zheng-Guo Cui
- Department of Environmental Health, University of Fukui School of Medical Sciences, Fukui, Japan
| | - Hua-Mao Jiang
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Min-Wen Ha
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Da-Yong Yu
- Department of Cell Biology, Basic Medical College of Chengde Medical University, Chengde, China
| | - Ming-Zhen Zhao
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| | - Hua-Chuan Zheng
- Department of Oncology and Central Laboratory, The Affiliated Hospital of Chengde Medical University, Chengde, China
| |
Collapse
|
384
|
Icard P, Simula L, Zahn G, Alifano M, Mycielska ME. The dual role of citrate in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188987. [PMID: 37717858 DOI: 10.1016/j.bbcan.2023.188987] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/19/2023]
Abstract
Citrate is a key metabolite of the Krebs cycle that can also be exported in the cytosol, where it performs several functions. In normal cells, citrate sustains protein acetylation, lipid synthesis, gluconeogenesis, insulin secretion, bone tissues formation, spermatozoid mobility, and immune response. Dysregulation of citrate metabolism is implicated in several pathologies, including cancer. Here we discuss how cancer cells use citrate to sustain their proliferation, survival, and metastatic progression. Also, we propose two paradoxically opposite strategies to reduce tumour growth by targeting citrate metabolism in preclinical models. In the first strategy, we propose to administer in the tumor microenvironment a high amount of citrate, which can then act as a glycolysis inhibitor and apoptosis inducer, whereas the other strategy targets citrate transporters to starve cancer cells from citrate. These strategies, effective in several preclinical in vitro and in vivo cancer models, could be exploited in clinics, particularly to increase sensibility to current anti-cancer agents.
Collapse
Affiliation(s)
- Philippe Icard
- Normandie Univ, UNICAEN, INSERM U1086 Interdisciplinary Research Unit for Cancer Prevention and Treatment, Caen, France; Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France.
| | - Luca Simula
- Cochin Institute, INSERM U1016, CNRS UMR8104, University of Paris-Cité, Paris 75014, France
| | | | - Marco Alifano
- Service of Thoracic Surgery, Cochin Hospital, AP-, HP, 75014, Paris, France; INSERM U1138, Integrative Cancer Immunology, University of Paris, 75006 Paris, France
| | - Maria E Mycielska
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
385
|
Luo P, Zhang Q, Shen S, An Y, Yuan L, Wong YK, Huang S, Huang S, Huang J, Cheng G, Tian J, Chen Y, Zhang X, Li W, He S, Wang J, Du Q. Mechanistic engineering of celastrol liposomes induces ferroptosis and apoptosis by directly targeting VDAC2 in hepatocellular carcinoma. Asian J Pharm Sci 2023; 18:100874. [PMID: 38149060 PMCID: PMC10749887 DOI: 10.1016/j.ajps.2023.100874] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 12/28/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common and deadliest malignancies. Celastrol (Cel), a natural product derived from the Tripterygium wilfordii plant, has been extensively researched for its potential effectiveness in fighting cancer. However, its clinical application has been hindered by the unclear mechanism of action. Here, we used chemical proteomics to identify the direct targets of Cel and enhanced its targetability and anti-tumor capacity by developing a Cel-based liposomes in HCC. We demonstrated that Cel selectively targets the voltage-dependent anion channel 2 (VDAC2). Cel directly binds to the cysteine residues of VDAC2, and induces cytochrome C release via dysregulating VDAC2-mediated mitochondrial permeability transition pore (mPTP) function. We further found that Cel induces ROS-mediated ferroptosis and apoptosis in HCC cells. Moreover, coencapsulation of Cel into alkyl glucoside-modified liposomes (AGCL) improved its antitumor efficacy and minimized its side effects. AGCL has been shown to effectively suppress the proliferation of tumor cells. In a xenograft nude mice experiment, AGCL significantly inhibited tumor growth and promoted apoptosis. Our findings reveal that Cel directly targets VDAC2 to induce mitochondria-dependent cell death, while the Cel liposomes enhance its targetability and reduces side effects. Overall, Cel shows promise as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Piao Luo
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shuo Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yehai An
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Lixia Yuan
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yin-Kwan Wong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Sizhe Huang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Shaohui Huang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingnan Huang
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jiahang Tian
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yu Chen
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoyong Zhang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiguang Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong 100872, China
| | - Songqi He
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jigang Wang
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Nephrology, Shenzhen key Laboratory of Kidney Diseases, and Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen 518020, China
- Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- National Pharmaceutical Engineering Center for Solid Preparation of Chinese Herbal Medicine, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Qingfeng Du
- School of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
386
|
Wang Y, Lv MN, Zhao WJ. Research on ferroptosis as a therapeutic target for the treatment of neurodegenerative diseases. Ageing Res Rev 2023; 91:102035. [PMID: 37619619 DOI: 10.1016/j.arr.2023.102035] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Ferroptosis is an iron- and lipid peroxidation (LPO)-mediated programmed cell death type. Recently, mounting evidence has indicated the involvement of ferroptosis in neurodegenerative diseases, especially in Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and so on. Treating ferroptosis presents opportunities as well as challenges for neurodegenerative diseases. This review provides a comprehensive overview of typical features of ferroptosis and the underlying mechanisms that contribute to its occurrence, as well as their implications in the pathogenesis and advancement of major neurodegenerative disorders. Meanwhile, we summarize the utilization of ferroptosis inhibition in both experimental and clinical approaches for the treatment of major neurodegenerative disorders. In addition, we specifically summarize recent advances in developing therapeutic means targeting ferroptosis in these diseases, which may guide future approaches for the effective management of these devastating medical conditions.
Collapse
Affiliation(s)
- Yi Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Meng-Nan Lv
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Wei-Jiang Zhao
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China; Department of Cell Biology, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
387
|
Feng G, Wang P, Zhang H, Cheng S, Xing Y, Wang Y. MEX3A induces the development of thyroid cancer via targeting CREB1. Cell Biol Int 2023; 47:1843-1853. [PMID: 37529875 DOI: 10.1002/cbin.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023]
Abstract
Thyroid cancer is a prevalent form of endocrine cancer, and its global incidence has been steadily increasing. MEX3A is a protein that is known to be highly expressed in various human malignant tumors, including thyroid cancer, and it has been linked to patient prognosis. However, the molecular mechanisms underlying MEX3A's tumorigenic capabilities in thyroid cancer are not fully understood. In this study, we aimed to investigate the role of MEX3A in thyroid cancer. We confirmed that MEX3A was overexpressed in both thyroid cancer tissues and cell lines. Additionally, we found a positive correlation between high levels of MEX3A and the AJCC stage. To further understand the functional significance of MEX3A in thyroid cancer, we depleted MEX3A expression in B-CPAP and TPC-1 cells. Interestingly, we observed a significant reduction in thyroid cancer cell proliferation and migration, as well as ameliorated cell apoptosis and arrested tumor growth upon MEX3A depletion. These findings strongly suggested that MEX3A played a critical role in the development of thyroid cancer. Furthermore, our study uncovered an important interaction between MEX3A and CREB1 (cAMP response element-binding protein 1). The interaction between MEX3A and CREB1 appeared to contribute to the tumor-promoting effects of MEX3A in thyroid cancer by directly targeting CREB1. Silencing CREB1 was observed to alleviate the malignant phenotypes promoted by MEX3A in thyroid cancer cells. Together, this study highlighted the importance of the MEX3A-CREB1 interaction in thyroid cancer development and suggested the therapeutic potential of targeting MEX3A for the treatment of this disease.
Collapse
Affiliation(s)
- Guoxun Feng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Penghui Wang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Hongyi Zhang
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Shi Cheng
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Ying Xing
- Department of General Surgery, Beijing Tiantan Hospital, Beijing, China
| | - Yuan Wang
- Department of General Surgery, Peking University People Hospital, Beijing, China
| |
Collapse
|
388
|
Khajehdehi M, Khalaj-Kondori M, Baradaran B. The siRNA-mediated knockdown of SNHG4 efficiently induced pro-apoptotic signaling and suppressed metastasis in SW1116 colorectal cancer cell line. Mol Biol Rep 2023; 50:8995-9006. [PMID: 37715875 DOI: 10.1007/s11033-023-08742-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/07/2023] [Indexed: 09/18/2023]
Abstract
BACKGROUND Long non-coding RNAs are broadly dysregulated in disease conditions, especially cancer, and are associated with tumor initiation, invasion, and overall survival. This study aimed to elucidate the expression level of Small Nucleolar RNA Host Gene 4 (SNHG4) lncRNA in colorectal cancer (CRC) and its effect on cell cycle progression, invasion, and death. METHODS AND RESULTS We evaluated the expression level of SNHG4 in clinical samples, including CRC tissues, adenomatous colorectal polyps (ACP), and their marginals. SNHG4-silenced SW1116 cells were used to evaluate the cell viability, cycle arrest, invasion, and apoptosis using MTT assay, scratching, flow cytometry, and immunoblotting. We also predicted molecular networks related to the SNHG4 involvement in CRC development. Results showed that SNHG4 expresses in cancerous tissues significantly higher than in polyps and marginals. This overexpression discriminated CRC from marginals and ACP with a suitable prognostic potential. Silencing of SNHG4 arrested the cell cycle at S and G2 phases and promoted early apoptosis in SW1116. It affected the active form of MMP2 and prevented cell invasion. Sponging of miRNAs which promotes the choline metabolism is the probable mechanism of SNHG4 involvement in CRC. CONCLUSIONS In conclusion, SNHG4 promotes CRC by dysregulating apoptosis and cell migration, and shows significant prognostic potential for CRC.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
389
|
Wang Y, Feng Z, Zhang Y, Zhang Y. Establishment and verification of a prognostic risk score model based on immune genes for hepatocellular carcinoma in an Asian population. Transl Cancer Res 2023; 12:2806-2822. [PMID: 37969383 PMCID: PMC10643976 DOI: 10.21037/tcr-23-128] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/25/2023] [Indexed: 11/17/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, with the highest incidence in East Asia, and hepatitis B virus (HBV) infection is the most common cause of HCC in Asian population. The immune system is closely related to the development of HCC and plays an important role in the treatment of this disease. In this study, we analyzed the data of HCC from The Cancer Genome Atlas (TCGA) database and constructed a risk-score prognostic model based on immune genes of an Asian HCC population, aiming to provide new perspectives for clinical treatment and management of HCC in Asian population. Methods Data concerning clinical attributes and transcriptomic profiles of individuals in the Asian population diagnosed with HCC were retrieved from the TCGA database. Concurrently, immune-related genes were sourced from the Immport database for incorporation into our analysis. A total of 265 immune-related genes displaying differential expression were identified through wilcoxTest analysis in R. Further refinement using univariate and multivariate Cox regression analysis led to the identification of 15 genes that exhibited strong associations with prognosis. MICB/PSMD14/TRAF3/SP1/NDRG1/HDAC1/HRAS/NRAS/SEMA5B/GMFB/ACVR2B/BRD8/MMP12/KITLG/DCK, and a prognostic risk score model was constructed based on the above genes. Results The findings demonstrated notable differences in survival rates between the low-risk and high-risk groups, as depicted by the Kaplan-Meier (K-M) survival curves (P<0.001). Furthermore, the model's predictive capability was evidenced by receiver operating characteristic (ROC) curves, with area under the curve (AUC) =0.901. Finally, the relationship of the model with each clinical trait and immune cells was assessed by correlation analysis. Conclusions The prognostic risk score model constructed by immune genes based on the Asian HCC population has certain predictive capacity.
Collapse
Affiliation(s)
- Yanjie Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhengyang Feng
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yingtian Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yusong Zhang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
390
|
Li H, Deng N, Puopolo T, Jiang X, Seeram NP, Liu C, Ma H. Cannflavins A and B with Anti-Ferroptosis, Anti-Glycation, and Antioxidant Activities Protect Human Keratinocytes in a Cell Death Model with Erastin and Reactive Carbonyl Species. Nutrients 2023; 15:4565. [PMID: 37960218 PMCID: PMC10650133 DOI: 10.3390/nu15214565] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Precursors of advanced glycation endproducts, namely, reactive carbonyl species (RCSs), are aging biomarkers that contribute to cell death. However, the impact of RCSs on ferroptosis-an iron-dependent form of cell death-in skin cells remains unknown. Herein, we constructed a cellular model (with human keratinocyte; HaCaT cells) to evaluate the cytotoxicity of the combinations of RCSs (including glyoxal; GO and methyglyoxal; MGO) and erastin (a ferroptosis inducer) using bioassays (measuring cellular lipid peroxidation and iron content) and proteomics with sequential window acquisition of all theoretical mass spectra. Additionally, a data-independent acquisition approach was used to characterize RCSs' and erastin's molecular network including genes, canonical pathways, and upstream regulators. Using this model, we evaluated the cytoprotective effects of two dietary flavonoids including cannflavins A and B against RCSs and erastin-induced cytotoxicity in HaCaT cells. Cannflavins A and B (at 0.625 to 20 µM) inhibited ferroptosis by restoring the cell viability (by 56.6-78.6% and 63.8-81.1%) and suppressing cellular lipid peroxidation (by 42.3-70.2% and 28.8-63.6%), respectively. They also alleviated GO + erastin- or MGO + erastin-induced cytotoxicity by 62.2-67.6% and 56.1-69.3%, and 35.6-54.5% and 33.8-62.0%, respectively. Mechanistic studies supported that the cytoprotective effects of cannflavins A and B are associated with their antioxidant activities including free radical scavenging capacity and an inhibitory effect on glycation. This is the first study showing that cannflavins A and B protect human keratinocytes from RCSs + erastin-induced cytotoxicity, which supports their potential applications as dietary interventions for aging-related skin conditions.
Collapse
Affiliation(s)
- Huifang Li
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Ni Deng
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Tess Puopolo
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Xian Jiang
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Navindra P. Seeram
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Chang Liu
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Proteomics Facility, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
- Department of Dermatology, Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
391
|
Song J, Wang H, Sheng J, Zhang W, Lei J, Gan W, Cai F, Yang Y. Vitexin attenuates chronic kidney disease by inhibiting renal tubular epithelial cell ferroptosis via NRF2 activation. Mol Med 2023; 29:147. [PMID: 37891461 PMCID: PMC10612207 DOI: 10.1186/s10020-023-00735-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) involves a variety of pathological processes, and ferroptosis plays a vital role in CKD progression. Targeting ferroptosis is a promising strategy for the treatment of CKD. However, inhibitors of ferroptosis have not been used in the clinical treatment of CKD. Vitexin is a natural flavonoid with many biological activities and protective effects against various diseases. However, whether vitexin can prevent the progression of CKD is not known. METHODS In vivo, the effect of vitexin on CKD was evaluated by using mouse models of unilateral ureteral obstruction (UUO) and unilateral ischemia-reperfusion (UIR). Western blotting, Sirius red staining and transmission electron microscopy were used to analyze renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. In vitro, CCK8 assays and lipid peroxidation assays were performed to analyze cell viability and lipid peroxidation in human renal tubular epithelial cells (HK2 cells) induced by erastin. The activation of renal fibroblasts (NRK-49 F cells) was also analyzed. Additionally, an in-silico protein-drug docking model and coimmunoprecipitation were performed to determine the direct substrate of vitexin. RESULTS In vivo, vitexin treatment significantly ameliorated renal tubular injury, interstitial fibrosis, and inflammation in the kidneys of UUO and UIR mice. Additionally, our results showed that vitexin significantly attenuated UUO- and UIR-induced ferroptosis in renal tubular epithelial cells by upregulating glutathione peroxidase 4 (GPX4) protein levels and inhibiting lipid peroxidation in mouse kidneys. In vitro, treatment with vitexin inhibited erastin-induced ferroptosis in HK2 cells. Moreover, vitexin inhibited the expression of collagen I and α-SMA (alpha-smooth muscle actin) in NRK-49 F cells induced by the supernatant of erastin-treated HK2 cells. Mechanistically, our results suggested that vitexin could activate the NRF2/heme oxygenase-1 (HO-1) pathway by inhibiting the KEAP1- and ubiquitination-mediated degradation of NRF2, thereby increasing the expression of GPX4, and further inhibiting lipid peroxidation and ferroptosis. Additionally, knockout of NRF2 greatly inhibited the antiferroptotic effects of vitexin. CONCLUSIONS Taken together, our results indicate that vitexin can protect against renal tubular epithelial cell ferroptosis in CKD by activating the KEAP1/NRF2/HO-1 pathway and is a promising drug to treat CKD.
Collapse
Affiliation(s)
- Jiayu Song
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Hongri Wang
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Jingyi Sheng
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Wen Zhang
- Department of Nephrology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Juan Lei
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China
| | - Weihua Gan
- Department of Pediatric Nephrology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu, China.
| | - Fangfang Cai
- School of Biopharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, China.
| | - Yunwen Yang
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing, 210008, China.
| |
Collapse
|
392
|
Xie Y, Ye J, Luo H. HOXC Cluster Antisense RNA 3, a Novel Long Non-Coding RNA as an Oncological Biomarker and Therapeutic Target in Human Malignancies. Onco Targets Ther 2023; 16:849-865. [PMID: 37899986 PMCID: PMC10612484 DOI: 10.2147/ott.s425523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 10/31/2023] Open
Abstract
HOXC cluster antisense RNA 3 (HOXC-AS3) is a novel long noncoding RNA (lncRNA) that exhibits aberrant expression patterns in various cancer types. Its expression is closely related to clinicopathological features, demonstrating significant clinical relevance across multiple tumors. And HOXC-AS3 plays multifaceted roles in tumor progression, impacting cell proliferation, apoptosis, migration, invasion, epithelial-mesenchymal transition (EMT), autophagy, senescence, tumor growth, and metastasis. In this review, we summarized and comprehensively analyzed the expression and clinical significance of HOXC-AS3 as a diagnostic and prognostic biomarker for malignancies. Additionally, we presented an in-depth update on HOXC-AS3's functions and regulatory mechanisms in cancer pathogenesis. This narrative review underscores the importance of HOXC-AS3 as a promising lncRNA candidate in cancer research and its potential as a predictive biomarker and therapeutic target in clinical applications.
Collapse
Affiliation(s)
- Yunhe Xie
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330008, People’s Republic of China
- Department of General Surgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332007, People’s Republic of China
| | - Jiarong Ye
- Queen Mary School, Nanchang University, Nanchang, Jiangxi, 330038, People’s Republic of China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330008, People’s Republic of China
| |
Collapse
|
393
|
Li Y, Xu K, Zhang Y, Mao H, Qiu Q, Yan Z, Liu X, Du Y, Chen Z. Identification of a basement membrane-related genes signature with immune correlation in bladder urothelial carcinoma and verification in vitro. BMC Cancer 2023; 23:1021. [PMID: 37872487 PMCID: PMC10591420 DOI: 10.1186/s12885-023-11340-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 08/26/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Bladder urothelial carcinoma (BLCA) is the most common genitourinary cancer and the prognosis of patients is often poor. However, studies of basement membrane-related genes (BM-related genes) in BLCA are less reported. Therefore, we established a BM-related genes signature to explore their functional and prognostic value in BLCA. METHODS In this study, a BM-related genes signature was constructed by LASSO-Cox regression analysis, and then a series of bioinformatics methods was used to assess the accuracy and validity of the signature. We constructed a nomogram for clinical application and also screened for possible therapeutic drugs. To investigate the functions and pathways affected by BM-related genes in BLCA, we performed functional enrichment analyses. In addition, we analyzed the immune cell infiltration landscape and immune checkpoint-related genes in the high and low-risk groups. Finally, we confirmed the prognostic value of BM-related genes in BLCA in vitro. RESULTS Combining multiple bioinformatics approaches, we identified a seven-gene signature. The accuracy and validity of this signature in predicting BLCA patients were confirmed by the test cohort. In addition, the risk score was strongly correlated with prognosis, immune checkpoint genes, drug sensitivity, and immune cell infiltration landscape. The risk score is an independent prognostic factor for BLCA patients. Further experiments revealed that all seven signature genes were differentially expressed between BLCA cell lines and normal bladder cells. Finally, overexpression of LAMA2 inhibited the migration and invasion ability of BLCA cell lines. CONCLUSIONS In summary, the BM-related genes signature was able to predict the prognosis of BLCA patients accurately, indicating that the BM-related genes possess great clinical value in the diagnosis and treatment of BLCA. Moreover, LAMA2 could be a potential therapeutic target, which provides new insights into the application of the BM-related genes in BLCA patients.
Collapse
Affiliation(s)
- Yanze Li
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Kai Xu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Ye Zhang
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Hu Mao
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Qiangmin Qiu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Zhiwei Yan
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China
| | - Xiuheng Liu
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Yang Du
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| | - Zhiyuan Chen
- Department of Urology, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
- Institute of Urologic Disease, Renmin Hospital, Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
394
|
Huang Y, Li X, Zhang Z, Xiong L, Wang Y, Wen Y. Photodynamic Therapy Combined with Ferroptosis Is a Synergistic Antitumor Therapy Strategy. Cancers (Basel) 2023; 15:5043. [PMID: 37894410 PMCID: PMC10604985 DOI: 10.3390/cancers15205043] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/20/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Ferroptosis is a programmed death mode that regulates redox homeostasis in cells, and recent studies suggest that it is a promising mode of tumor cell death. Ferroptosis is regulated by iron metabolism, lipid metabolism, and intracellular reducing substances, which is the mechanism basis of its combination with photodynamic therapy (PDT). PDT generates reactive oxygen species (ROS) and 1O2 through type I and type II photochemical reactions, and subsequently induces ferroptosis through the Fenton reaction and the peroxidation of cell membrane lipids. PDT kills tumor cells by generating excessive cytotoxic ROS. Due to the limited laser depth and photosensitizer enrichment, the systemic treatment effect of PDT is not good. Combining PDT with ferroptosis can compensate for these shortcomings. Nanoparticles constructed by photosensitizers and ferroptosis agonists are widely used in the field of combination therapy, and their targeting and biological safety can be improved through modification. These nanoparticles not only directly kill tumor cells but also further exert the synergistic effect of PDT and ferroptosis by activating antitumor immunity, improving the hypoxia microenvironment, and inhibiting the tumor angiogenesis. Ferroptosis-agonist-induced chemotherapy and PDT-induced ablation also have good clinical application prospects. In this review, we summarize the current research progress on PDT and ferroptosis and how PDT and ferroptosis promote each other.
Collapse
Affiliation(s)
- Yunpeng Huang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Xiaoyu Li
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital of Central South University, Changsha 410011, China;
| | - Zijian Zhang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Li Xiong
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yongxiang Wang
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| | - Yu Wen
- Department of General Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, China; (Y.H.); (Z.Z.); (L.X.)
| |
Collapse
|
395
|
Szczepanik K, Oczkowicz M, Dobrowolski P, Świątkiewicz M. The Protective Effects of Astaxanthin (AST) in the Liver of Weaned Piglets. Animals (Basel) 2023; 13:3268. [PMID: 37893992 PMCID: PMC10603637 DOI: 10.3390/ani13203268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023] Open
Abstract
During the weaning period, piglets are exposed to high levels of stress, which often causes problems with the digestive system. This stress also promotes the production of free radicals, resulting in oxidative stress. Astaxanthin (AST) stands out as one of the most potent antioxidants. Its resistance to light and heat makes it particularly valuable in compound feed production. This study was to determine the effect of AST impact on liver histology and gene expression in piglets. For our experiment, we used 16 weaned piglets of the PL breed, which we divided into two groups: Group I (control group with no AST supplementation) and Group II (supplemented with AST at 0.025 g/kg). Both feed mixtures were iso-proteins and iso-energetic, meeting the nutritional requirements of the piglets. The experiment lasted from day 35 to day 70 of the piglets' age, during which they had ad libitum access. The results indicate that the addition of AST prevents liver fibrosis due to reduced collagen deposition in the tissue. Analysis of gene expression supported these results. In the AST-supplemented group, we noted a decrease in NR1H3 expression, an increase in CYP7A1 expression, and reductions in the expression of NOTCH1 and CREB genes.
Collapse
Affiliation(s)
- Kinga Szczepanik
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| | - Maria Oczkowicz
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, Akademicka St. 19, 20-033 Lublin, Poland;
| | - Małgorzata Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (K.S.); (M.Ś.)
| |
Collapse
|
396
|
Xu C, Chen Y, Yu Q, Song J, Jin Y, Gao X. Compounds targeting ferroptosis in breast cancer: progress and their therapeutic potential. Front Pharmacol 2023; 14:1243286. [PMID: 37920209 PMCID: PMC10619677 DOI: 10.3389/fphar.2023.1243286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In recent years, there has been a significant increase in the incidence of Breast cancer (BC), making it the most common cancer among women and a major threat to women's health. Consequently, there is an urgent need to discover new and effective strategies for treating BC. Ferroptosis, a novel form of cell death characterized by the accumulation of iron-dependent lipid reactive oxygen species, has emerged as a distinct regulatory pathway separate from necrosis, apoptosis, and autophagy. It is widely recognized as a crucial factor in the development and progression of cancer, offering a promising avenue for BC treatment. While significant progress has been made in understanding the mechanisms of ferroptosis in BC, drug development is still in its early stages. Numerous compounds, including phytochemicals derived from dietary sources and medicinal plants, as well as synthetic drugs (both clinically approved medications and laboratory reagents), have shown the ability to induce ferroptosis in BC cells, effectively inhibiting tumor growth. This comprehensive review aims to examine in detail the compounds that target ferroptosis in BC and elucidate their potential mechanisms of action. Additionally, the challenges associated with the clinical application of ferroptosis-inducing drugs are discussed, offering valuable insights for the development of novel treatment strategies for BC.
Collapse
Affiliation(s)
- Chuchu Xu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Yian Chen
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Qinghong Yu
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Jiaqing Song
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Ying Jin
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| | - Xiufei Gao
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Department of Breast Surgery, The First Affiliated Hospital of Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
397
|
Chmielewska-Kassassir M, Sobierajska K, Ciszewski WM, Kryczka J, Zieleniak A, Wozniak LA. Evening Primrose Extract Modulates TYMS Expression via SP1 Transcription Factor in Malignant Pleural Mesothelioma. Cancers (Basel) 2023; 15:5003. [PMID: 37894370 PMCID: PMC10605291 DOI: 10.3390/cancers15205003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
PURPOSE To determine the mechanism of EPE in downregulating TYMS in MPM cancer. METHODS The TYMS mRNA expression with epithelial-to-mesenchymal transition biomarkers and nuclear factor SP1 was assessed using the GEO database in a data set of MPM patients (GSE51024). Invasive MPM cell lines were in vitro models for the investigation of TYMS expression after EPE treatment. The tyms promoter SP1 binding sequences were determined using Genomatix v 3.4 software Electrophoretic mobility shift and dual-luciferase reporter assays revealed specific SP1 motifs in the interaction of EPE and reference compounds. Chromatin immunoprecipitation and Re-ChIP were used for the co-occupancy study. RESULTS In MPM patients, a positive correlation of overexpressed TYMS with mesenchymal TWIST1, FN1 and N-cadherin was observed. EPE and its major components, gallic and ellagic acid (GA and EA, respectively), downregulated TYMS in invasive MPM cells by interacting with particular SP1 motifs on the tyms promoter. The luciferase constructs confirmed the occupation of two SP1 regulatory regions critical for the promotion of TYMS expression. Both EPE and reference standards influenced SP1 translocation into the nucleus. CONCLUSION EPE components reduced TYMS expression by occupation of SP1 motifs on the tyms promoter and reversed the EMT phenotype of invasive MPM cells. Further in-depth analysis of the molecular docking of polyphenol compounds with SP1 regulatory motifs is required.
Collapse
Affiliation(s)
| | - Katarzyna Sobierajska
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Wojciech M. Ciszewski
- Department of Molecular Cell Mechanisms, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.S.); (W.M.C.)
| | - Jakub Kryczka
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, 93-232 Lodz, Poland;
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| | - Lucyna A. Wozniak
- Department of Structural Biology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; (M.C.-K.); (A.Z.)
| |
Collapse
|
398
|
Wu HX, He PM, Jia R. Effects of µ-Conotoxin GIIIB on the cellular activity of mouse skeletal musculoblast: combined transcriptome and proteome analysis. Proteome Sci 2023; 21:17. [PMID: 37828502 PMCID: PMC10568904 DOI: 10.1186/s12953-023-00221-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023] Open
Abstract
µ-Conotoxin GIIIB (µ-CTX GIIIB) is a polypeptide containing three disulfide bridges, produced by the sea snail Conus geographus. This study was aimed to explored the cytotoxic effects of µ-CTX GIIIB on mouse skeletal musculoblast (Sol8). Sol8 cells were exposed to ouabain and veratridine to establish the cell injury model, and then treated with µ-CTX GIIIB. CCK-8 was adopted to evaluate the cytotoxicity of µ-CTX GIIIB. Then, proteomics and transcriptome were conducted, and the explore the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) affected by µ-CTX GIIIB were found. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was used to investigate the affected signaling pathways. µ-CTX GIIIB increased the cell survival rate of injured Sol8 cells. We found and identified 1,663 DEGs and 444 DEPs influenced by µ-CTX GIIIB. 106 pairs of correlated DEGs and DEPs were selected by combining transcriptome and proteome data. The results of KEGG and GO analysis showed that µ-CTX GIIB affected the cell cycle, apoptosis, DNA damage and repair, lipid metabolism and other biological processes of Sol8 cells. µ-CTX GIIIB could affected cell cycle regulation, DNA damage repair, and activation of tumor factors, with potential carcinogenic effects. Our results provide an important basis for the study of in vitro toxicity, the mechanism of toxicity and injury prevention by µ-CTX GIIIB.
Collapse
Affiliation(s)
- Han-Xi Wu
- College of Marine Ecology and Environment, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, 201306, P.R. China
| | - Pei-Min He
- College of Marine Ecology and Environment, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, 201306, P.R. China
| | - Rui Jia
- College of Marine Ecology and Environment, Shanghai Ocean University, No.999, Huchenghuan Rd, Nanhui New City, Shanghai, 201306, P.R. China.
| |
Collapse
|
399
|
Tang X, Luo B, Huang S, Jiang J, Chen Y, Ren W, Shi X, Zhang W, Shi L, Zhong X, Lü M. FANCD2 as a novel prognostic biomarker correlated with immune and drug therapy in Hepatitis B-related hepatocellular carcinoma. Eur J Med Res 2023; 28:419. [PMID: 37821996 PMCID: PMC10566141 DOI: 10.1186/s40001-023-01411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Ferroptosis is related to the immunosuppression of tumors and plays a critical role in cancer progression. Fanconi anemia complementation group D2 (FANCD2) is a vital gene that regulates ferroptosis. However, the mechanism of action of FANCD2 in Hepatitis B-related hepatocellular carcinoma (HCC) remains unknown. In this study, we investigated the prognostic significance and mechanism of action of FANCD2 in Hepatitis B-related HCC. METHODS The expression of FANCD2 in Hepatitis B-related HCC was explored using The Cancer Genome Atlas (TCGA) and validated using the Gene Expression Omnibus (GEO) database. Univariate and multivariate Cox regression analyses and Kaplan-Meier survival curves were used to analyze the relationship between FANCD2 expression and the overall survival of patients with Hepatitis B-related HCC. Protein-protein interaction networks for FANCD2 were built using the STRING website. In addition, correlations between FANCD2 expression and the dryness index, tumor mutational burden, microsatellite instability (MSI), immune pathways, genes involved in iron metabolism, and sorafenib chemotherapeutic response were analyzed. RESULTS Our results indicated that FANCD2 was significantly overexpressed in Hepatitis B-related HCC and demonstrated a strong predictive ability for diagnosis (Area Under Curve, 0.903) and prognosis of the disease. High FANCD2 expression was associated with poor prognosis, high-grade tumors, high expression of PDL-1, high MSI scores, and low sorafenib IC50 in Hepatitis B-related HCC. BRCA1, BRCA2, FAN1, and FANCC were vital proteins interacting with FANCD2. The expression level of FANCD2 significantly correlated with the infiltration levels of Treg cells, B cells, CD8 + T cells, CD4 + T cells, neutrophils, macrophages, myeloid dendritic cells, and NK cells in Hepatitis B-related HCC. FANCD2 was positively correlated with the tumor proliferation signature pathway, DNA repair, and cellular response to hypoxia. CONCLUSION Our study indicated that FANCD2 was a potential novel biomarker and immunotherapeutic target against Hepatitis B-related HCC, which might be related to the chemotherapeutic response to sorafenib.
Collapse
Affiliation(s)
- Xiaowei Tang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Bei Luo
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shu Huang
- Department of Gastroenterology, the People's Hospital of Lianshui, Huaian, China
| | - Jiao Jiang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuan Chen
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wensen Ren
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomin Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Zhang
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lei Shi
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaolin Zhong
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Muhan Lü
- Department of Gastroenterology, the Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
400
|
Chen D, Aierken A, Li H, Chen R, Ren L, Wang K. Identification of subclusters and prognostic genes based on glycolysis/gluconeogenesis in hepatocellular carcinoma. Front Immunol 2023; 14:1232390. [PMID: 37881434 PMCID: PMC10597634 DOI: 10.3389/fimmu.2023.1232390] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/27/2023] Open
Abstract
Background This study aimed to examine glycolysis/gluconeogenesis-related genes in hepatocellular carcinoma (HCC) and evaluate their potential roles in HCC progression and immunotherapy response. Methods Data analyzed in this study were collected from GSE14520, GSE76427, GSE174570, The Cancer Genome Atlas (TCGA), PXD006512, and GSE149614 datasets, metabolic pathways were collected from MSigDB database. Differentially expressed genes (DEGs) were identified between HCC and controls. Differentially expressed glycolysis/gluconeogenesis-related genes (candidate genes) were obtained and consensus clustering was performed based on the expression of candidate genes. Bioinformatics analysis was used to evaluate candidate genes and screen prognostic genes. Finally, the key results were tested in HCC patients. Results Thirteen differentially expressed glycolysis/gluconeogenesis-related genes were validated in additional datasets. Consensus clustering analysis identified two distinct patient clusters (C1 and C2) with different prognoses and immune microenvironments. Immune score and tumor purity were significantly higher in C1 than in C2, and CD4+ memory activated T cell, Tfh, Tregs, and macrophage M0 were higher infiltrated in HCC and C1 group. The study also identified five intersecting DEGs from candidate genes in TCGA, GSE14520, and GSE141198 as prognostic genes, which had a protective role in HCC patient prognosis. Compared with the control group, the prognostic genes all showed decreased expression in HCC patients in RT-qPCR and Western blot analyses. Flow cytometry verified the abnormal infiltration level of immune cells in HCC patients. Conclusion Results showed that glycolysis/gluconeogenesis-related genes were associated with patient prognosis, immune microenvironment, and response to immunotherapy in HCC. It suggests that the model based on five prognostic genes may valuable for predicting the prognosis and immunotherapy response of HCC patients.
Collapse
Affiliation(s)
- Dan Chen
- School of Public Health, Xinjiang Medical University, Urumqi, China
| | - Ayinuer Aierken
- Department of Hepatobiliary Hydatid Disease, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory, Xinjiang Medical University, Urumqi, China
| | - Ruihua Chen
- Center of Animal Experiments, Xinjiang Medical University, Urumqi, China
| | - Lei Ren
- Department of Burns, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| |
Collapse
|