351
|
Dostál V, Libusová L. Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. PROTOPLASMA 2014; 251:991-1005. [PMID: 24652407 DOI: 10.1007/s00709-014-0633-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 03/06/2014] [Indexed: 05/23/2023]
Abstract
Microtubule drugs such as paclitaxel, colchicine, vinblastine, trifluralin, or oryzalin form a chemically diverse group that has been reinforced by a large number of novel compounds over time. They all share the ability to change microtubule properties. The profound effects of disrupted microtubule systems on cell physiology can be used in research as well as anticancer treatment and agricultural weed control. The activity of microtubule drugs generally depends on their binding to α- and β-tubulin subunits. The microtubule drugs are often effective only in certain taxonomic groups, while other organisms remain resistant. Available information on the molecular basis of this selectivity is summarized. In addition to reviewing published data, we performed sequence data mining, searching for kingdom-specific signatures in plant, animal, fungal, and protozoan tubulin sequences. Our findings clearly correlate with known microtubule drug resistance determinants and add more amino acid positions with a putative effect on drug-tubulin interaction. The issue of microtubule network properties in plant cells producing microtubule drugs is also addressed.
Collapse
Affiliation(s)
- V Dostál
- Department of Cell Biology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43, Prague 2, Czech Republic
| | | |
Collapse
|
352
|
Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity. Biochem Pharmacol 2014; 92:192-205. [PMID: 25124704 DOI: 10.1016/j.bcp.2014.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 01/22/2023]
Abstract
Noscapine, an opium-derived 'kinder-gentler' microtubule-modulating drug is in Phase I/II clinical trials for cancer chemotherapy. However, its limited water solubility encumbers its development into an oral anticancer drug with clinical promise. Here we report the synthesis of 9 third-generation, water-soluble noscapine analogs with negatively charged sulfonato and positively charged quaternary ammonium groups using noscapine, 9-bromonoscapine and 9-aminonoscapine as scaffolds. The predictive free energy of solvation was found to be lower for sulfonates (6a-c; 8a-c) compared to the quaternary ammonium-substituted counterparts, explaining their higher water solubility. In addition, sulfonates showed higher charge dispersability, which may effectively shield the hydrophobicity of isoquinoline nucleus as indicated by hydrophobicity mapping methods. These in silico data underscore efficient net charge balancing, which may explain higher water solubility and thus enhanced antiproliferative efficacy and improved bioavailability. We observed that 6b, 8b and 8c strongly inhibited tubulin polymerization and demonstrated significant antiproliferative activity against four cancer cell lines compared to noscapine. Molecular simulation and docking studies of tubulin-drug complexes revealed that the brominated compound with a four-carbon chain (4b, 6b, and 8b) showed optimal binding with tubulin heterodimers. Interestingly, 6b, 8b and 8c treated PC-3 cells resulted in preponderance of mitotic cells with multipolar spindle morphology, suggesting that they stall the cell cycle. Furthermore, in vivo pharmacokinetic evaluation of 6b, 8b and 8c revealed at least 1-2-fold improvement in their bioavailability compared to noscapine. To our knowledge, this is the first report to demonstrate novel water-soluble noscapine analogs that may pave the way for future pre-clinical drug development.
Collapse
|
353
|
Comparative in vivo evaluation of polyalkoxy substituted 4H-chromenes and oxa-podophyllotoxins as microtubule destabilizing agents in the phenotypic sea urchin embryo assay. Bioorg Med Chem Lett 2014; 24:3914-8. [DOI: 10.1016/j.bmcl.2014.06.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 06/16/2014] [Accepted: 06/16/2014] [Indexed: 12/31/2022]
|
354
|
Zhu C, Zuo Y, Wang R, Liang B, Yue X, Wen G, Shang N, Huang L, Chen Y, Du J, Bu X. Discovery of Potent Cytotoxic Ortho-Aryl Chalcones as New Scaffold Targeting Tubulin and Mitosis with Affinity-Based Fluorescence. J Med Chem 2014; 57:6364-82. [DOI: 10.1021/jm500024v] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cuige Zhu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yinglin Zuo
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Ruimin Wang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Baoxia Liang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xin Yue
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Gesi Wen
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Nana Shang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Lei Huang
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yu Chen
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jun Du
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xianzhang Bu
- School of Pharmaceutical
Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
355
|
Smith SE, Dello Buono MC, Carper DJ, Coleman RS, Day BW. Structure elucidation of phase I metabolites of the microtubule perturbagens: ceratamines A and B. JOURNAL OF NATURAL PRODUCTS 2014; 77:1572-1578. [PMID: 24964362 DOI: 10.1021/np4010882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The heterocyclic alkaloids, ceratamines A and B, are isolates from a marine Pseudoceratina sp. sponge. They behave as antimitotic agents, with IC50 values in the low micromolar range. The mechanism of this activity involves the disruption of microtubule dynamics; therefore, the ceratamines are of great interest in cancer drug discovery. Studies of in vitro metabolism were performed using rat liver microsomes to begin to understand the pharmacokinetics of these unique natural products. A total of eight metabolites were identified using UV and LC-MS/MS techniques. The majority of metabolites were formed as a result of various demethylation reactions. The formation of two metabolites, M1 and M3, involved monooxygenation, most likely on the aromatic ring, however the exact structure has not been determined. UV absorbance revealed a hypsochromic shift as a result of monooxygenation, an observation that may suggest the loss of aromaticity; however, further investigation is required. The structures of two major metabolites of ceratamine B, M4 and M6, were confirmed by (1)H NMR spectroscopy. These metabolites formed as a result of demethylation at the methoxy and aminoimidazole, respectively.
Collapse
Affiliation(s)
- Sara E Smith
- Department of Chemistry, University of Pittsburgh , Pittsburgh, Pennsylvania 15260, United States
| | | | | | | | | |
Collapse
|
356
|
Smaglo BG, Pishvaian MJ. Profile and potential of ixabepilone in the treatment of pancreatic cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:923-30. [PMID: 25075175 PMCID: PMC4106923 DOI: 10.2147/dddt.s52964] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The management of metastatic pancreatic adenocarcinoma is a challenge for medical oncologists because of both the aggressive nature of the disease and the relative paucity of effective systemic treatments with activity against this type of tumor. In the effort to discover new agents and combinations that may augment the therapeutic arsenal available for the management of this cancer, early phase clinical trials have been performed using ixabepilone, an epothilone B analog, with promising results. Targeting the microtubule system with certain taxanes in the management of pancreatic adenocarcinoma has been validated; ixabepilone also targets the microtubule system, interfering with it in an alternate manner from the taxane mechanism. Ixabepilone has demonstrated activity in cancers that have become taxane-resistant as well as those that never had any demonstrable taxane susceptibility. The available data for the use of ixabepilone in the management of pancreatic adenocarcinoma are limited but promising. Single-arm studies have demonstrated both clinical efficacy and tolerable toxicity for the use of ixabepilone as monotherapy. The trial data available for ixabepilone used as a part of combination therapy are similar: it has been paired with chemotherapy (carboplatin, irinotecan) and biologic therapy (dasatinib, sunitinib) at the Phase I level to treat solid tumors in general, again with tolerable side effects and a suggestion of benefit. A single Phase II study has evaluated combination therapy with ixabepilone in the management of patients with pancreatic cancer, pairing it with cetuximab with clinical benefit. Although these trials are promising with regard to addition of ixabepilone to the slim armamentarium for management of pancreatic cancer, further work is still to be done. Importantly, this work bears the burden of not only validating the clinical benefit of ixabepilone, but also of determining whether this benefit is enhanced in any way by combination therapy, and where ixabepilone fits in the sequence of management for patients with metastatic pancreatic cancer.
Collapse
Affiliation(s)
- Brandon G Smaglo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Michael J Pishvaian
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
357
|
Molecular insight of isotypes specific β-tubulin interaction of tubulin heterodimer with noscapinoids. J Comput Aided Mol Des 2014; 28:751-63. [DOI: 10.1007/s10822-014-9756-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 05/23/2014] [Indexed: 10/25/2022]
|
358
|
Gherbovet O, Coderch C, García Alvarez MC, Bignon J, Thoret S, Guéritte F, Gago F, Roussi F. One-Pot Synthesis of Vinca Alkaloids–Phomopsin Hybrids. J Med Chem 2014; 57:5470-6. [DOI: 10.1021/jm500530v] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Olga Gherbovet
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Claire Coderch
- Área
de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, 28871 Alcalá de Henares,
Madrid, Spain
| | - María Concepción García Alvarez
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Jérôme Bignon
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Sylviane Thoret
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Françoise Guéritte
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| | - Federico Gago
- Área
de Farmacología, Departamento de Ciencias Biomédicas, Universidad de Alcalá, 28871 Alcalá de Henares,
Madrid, Spain
| | - Fanny Roussi
- Centre
de Recherche de Gif, Institut de Chimie des Substances
Naturelles, UPR 2301 du CNRS, Avenue
de la Terrasse, 91198, Gif-sur-Yvette Cedex, France
| |
Collapse
|
359
|
Plant-derived anti-inflammatory compounds: hopes and disappointments regarding the translation of preclinical knowledge into clinical progress. Mediators Inflamm 2014; 2014:146832. [PMID: 24987194 PMCID: PMC4060065 DOI: 10.1155/2014/146832] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/07/2014] [Indexed: 01/10/2023] Open
Abstract
Many diseases have been described to be associated with inflammatory processes. The currently available anti-inflammatory drug therapy is often not successful or causes intolerable side effects. Thus, new anti-inflammatory substances are still urgently needed. Plants were the first source of remedies in the history of mankind. Since their chemical characterization in the 19th century, herbal bioactive compounds have fueled drug development. Also, nowadays, new plant-derived agents continuously enrich our drug arsenal (e.g., vincristine, galantamine, and artemisinin). The number of new, pharmacologically active herbal ingredients, in particular that of anti-inflammatory compounds, rises continuously. The major obstacle in this field is the translation of preclinical knowledge into evidence-based clinical progress. Human trials of good quality are often missing or, when available, are frequently not suitable to really prove a therapeutical value. This minireview will summarize the current situation of 6 very prominent plant-derived anti-inflammatory compounds: curcumin, colchicine, resveratrol, capsaicin, epigallocatechin-3-gallate (EGCG), and quercetin. We will highlight their clinical potential and/or pinpoint an overestimation. Moreover, we will sum up the planned trials in order to provide insights into the inflammatory disorders that are hypothesized to be beneficially influenced by the compound.
Collapse
|
360
|
In search of the active metabolites of an anticancer piperazinedione, TW01003, in rats. BIOMED RESEARCH INTERNATIONAL 2014; 2014:793504. [PMID: 24864259 PMCID: PMC4016869 DOI: 10.1155/2014/793504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 03/02/2014] [Indexed: 11/25/2022]
Abstract
TW01003, a piperazinedione derivative designed as an antimitotic agent, exhibited potent anticancer and antiangiogenesis activities in mice. However, oral administration of this compound in rats led to poor systemic bioavailability which suggested that in vivo efficacy might come from its metabolites. This report describes the identification of TW01003 metabolites in pig and Wistar rats. Following intravenous administration of TW01003, pig urine samples were subjected to sulfatase and glucuronidase treatment to monitor the biotransformation products. Rats were given TW01003 both intravenously and orally, and blood samples were collected and then analyzed by HPLC to quantitatively determine the metabolic transformation of TW01003 to its metabolite. A sulfate conjugate, TW01003 sulfate, was identified as the major metabolite for TW01003 after intravenous injection in both pig and rats. However, in rats, the glucuronide conjugate became major metabolite 30 min after TW01003 oral dosing. Pharmacokinetic analysis after intravenous administration of TW01003 indicated that TW01003 sulfate had a systemic bioavailability 2.5 times higher, volume of distribution three times higher, residence time seven times longer, and clearance rate 2.3 times lower compared to TW01003. Our results indicate that the potent anticancer and antiangiogenesis activities of TW01003 might not come from TW01003 per se but from its metabolites TW01003 sulfate.
Collapse
|
361
|
Chougule MB, Patel AR, Patlolla R, Jackson T, Singh M. Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target 2014; 22:498-508. [PMID: 24731057 DOI: 10.3109/1061186x.2014.894046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate the permeation of Noscapine (Nos) across the Caco-2 and Madin-Darby canine kidney (MDCK) cell monolayers and to evaluate the influence of absorption enhancers on in vitro and in vivo absorption of Nos. The bidirectional transport of Nos was studied in Caco-2 and MDCK cell monolayers at pH 5.0-7.8. The effect of 0.5% w/v chitosan (CH) or Captisol (CP) on Nos permeability was investigated at pH 5.0 and 5.8. The effect of 1-5% w/v of CP on oral bioavailability of Nos (150 mg/kg) was evaluated in Sprague-Dawley rats. The effective permeability coefficients (Peff) of Nos across Caco-2 and MDCK cell monolayers was found to be in the order of pH 5.0 > 5.8 > 6.8 > 7.8. The efflux ratios of Peff < 2 demonstrated that active efflux does not limit the absorption of Nos. The use of CH or CP have shown significant (***, p < 0.001) enhancement in Peff of Nos across cell monolayer compared with the control group. The CP (1-5% w/v) based Nos formulations resulted in significant (***, p < 0.001) increase in the bioavailability of Nos compared with Nos solution. The use of CP represents viable approach for enhancing the oral bioavailability of Nos and reducing the required dose.
Collapse
Affiliation(s)
- Mahavir B Chougule
- Department of Pharmaceutical Sciences, the Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , Hilo, HI , USA and
| | | | | | | | | |
Collapse
|
362
|
Orally active microtubule-targeting agent, MPT0B271, for the treatment of human non-small cell lung cancer, alone and in combination with erlotinib. Cell Death Dis 2014; 5:e1162. [PMID: 24722287 PMCID: PMC5424107 DOI: 10.1038/cddis.2014.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/15/2014] [Accepted: 02/28/2014] [Indexed: 12/14/2022]
Abstract
Microtubule-binding agents, such as taxanes and vinca alkaloids, are used in the treatment of cancer. The limitations of these treatments, such as resistance to therapy and the need for intravenous administration, have encouraged the development of new agents. MPT0B271 (N-[1-(4-Methoxy-benzenesulfonyl)-2,3-dihydro-1H-indol-7-yl]-1-oxy-isonicotinamide), an orally active microtubule-targeting agent, is a completely synthetic compound that possesses potent anticancer effects in vitro and in vivo. Tubulin polymerization assay and immunofluorescence experiment showed that MPT0B271 caused depolymerization of tubulin at both molecular and cellular levels. MPT0B271 reduced cell growth and viability at nanomolar concentrations in numerous cancer cell lines, including a multidrug-resistant cancer cell line NCI/ADR-RES. Further studies indicated that MPT0B271 is not a substrate of P-glycoprotein (P-gp), as determined by flow cytometric analysis of rhodamine-123 (Rh-123) dye efflux and the calcein acetoxymethyl ester (calcein AM) assay. MPT0B271 also caused G2/M cell-cycle arrest, accompanied by the up-regulation of cyclin B1, p-Thr161 Cdc2/p34, serine/threonine kinases polo-like kinase 1, aurora kinase A and B and the downregulation of Cdc25C and p-Tyr15 Cdc2/p34 protein levels. The appearance of MPM2 and the nuclear translocation of cyclin B1 denoted M phase arrest in MPT0B271-treated cells. Moreover, MPT0B271 induced cell apoptosis in a concentration-dependent manner; it also reduced the expression of Bcl-2, Bcl-xL, and Mcl-1 and increased the cleavage of caspase-3 and -7 and poly (ADP-ribose) polymerase (PARP). Finally, this study demonstrated that MPT0B271 in combination with erlotinib significantly inhibits the growth of the human non-small cell lung cancer A549 cells as compared with erlotinib treatment alone, both in vitro and in vivo. These findings identify MPT0B271 as a promising new tubulin-binding compound for the treatment of various cancers.
Collapse
|
363
|
Watanabe T, Bochimoto H, Koga D, Hosaka M, Ushiki T. Functional implications of the Golgi and microtubular network in gonadotropes. Mol Cell Endocrinol 2014; 385:88-96. [PMID: 24121198 DOI: 10.1016/j.mce.2013.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 02/01/2023]
Abstract
In contrast to the widely accepted images of the Golgi apparatus as a cup-like shape, the Golgi in pituitary gonadotropes is organized as a spherical shape in which the outer and inner faces are cis- and trans-Golgi elements, respectively. At the center of the spherical Golgi, a pair of centrioles is situated as a microtubule-organizing center from which radiating microtubules isotropically extend toward the cell periphery. This review focuses on the significance of the characteristic organization of the Golgi and microtubule network in gonadotropes, considering the roles of microtubule-dependent membrane transport in the formation and maintenance of the Golgi structure. Because the highly symmetrical organization of the Golgi is possibly perturbed in response to experimental treatments of gonadotropes, monitoring of the Golgi structure in gonadotropes under various experimental conditions will be a novel in vivo approach to elucidate the biogenesis of the Golgi apparatus.
Collapse
Affiliation(s)
- Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan.
| | - Hiroki Bochimoto
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Japan
| | - Daisuke Koga
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Masahiro Hosaka
- Laboratory of Molecular Life Sciences, Department of Biotechnology, Akita Prefectural University, Akita, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy and Bio-imaging, Department of Cellular Function, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
364
|
Suraokar MB, Nunez MI, Diao L, Chow CW, Kim D, Behrens C, Lin H, Lee S, Raso G, Moran C, Rice D, Mehran R, Lee JJ, Pass HI, Wang J, Momin AA, James BP, Corvalan A, Coombes K, Tsao A, Wistuba II. Expression profiling stratifies mesothelioma tumors and signifies deregulation of spindle checkpoint pathway and microtubule network with therapeutic implications. Ann Oncol 2014; 25:1184-92. [PMID: 24669013 DOI: 10.1093/annonc/mdu127] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Malignant pleural mesothelioma (MPM) is a lethal neoplasm exhibiting resistance to most treatment regimens and requires effective therapeutic options. Though an effective strategy in many cancer, targeted therapy is relatively unexplored in MPM because the therapeutically important oncogenic pathways and networks in MPM are largely unknown. MATERIALS AND METHODS We carried out gene expression microarray profiling of 53 surgically resected MPMs tumors along with paired normal tissue. We also carried out whole transcriptomic sequence (RNA-seq) analysis on eight tumor specimens. Taqman-based quantitative Reverse-transcription polymerase chain reaction (qRT-PCR), western analysis and immunohistochemistry (IHC) analysis of mitotic arrest deficient-like 1 (MAD2L1) was carried out on tissue specimens. Cell viability assays of MPM cell lines were carried out to assess sensitivity to specific small molecule inhibitors. RESULTS Bioinformatics analysis of the microarray data followed by pathway analysis revealed that the mitotic spindle assembly checkpoint (MSAC) pathway was most significantly altered in MPM tumors with upregulation of 18 component genes, including MAD2L1 gene. We validated the microarray data for MAD2L1 expression using quantitative qRT-PCR and western blot analysis on tissue lysates. Additionally, we analyzed expression of the MAD2L1 protein by IHC using an independent tissue microarray set of 80 MPM tissue samples. Robust clustering of gene expression data revealed three novel subgroups of tumors, with unique expression profiles, and showed differential expression of MSAC pathway genes. Network analysis of the microarray data showed the cytoskeleton/spindle microtubules network was the second-most significantly affected network. We also demonstrate that a nontaxane small molecule inhibitor, epothilone B, targeting the microtubules have great efficacy in decreasing viability of 14 MPM cell lines. CONCLUSIONS Overall, our findings show that MPM tumors have significant deregulation of the MSAC pathway and the microtubule network, it can be classified into three novel molecular subgroups of potential therapeutic importance and epothilone B is a promising therapeutic agent for MPM.
Collapse
Affiliation(s)
| | | | - L Diao
- Department of Bioinformatics and Computational Biology
| | - C W Chow
- Department of Translational Molecular Pathology
| | | | - C Behrens
- Department of Thoracic/Head and Neck Medical Oncology
| | - H Lin
- Department of Biostatistics
| | | | | | | | - D Rice
- Department of Thoracic and Cardiovascular Surgery
| | - R Mehran
- Department of Thoracic and Cardiovascular Surgery
| | | | - H I Pass
- Department of Cardiothoracic Surgery, New York University School of Medicine, New York, USA
| | - J Wang
- Department of Bioinformatics and Computational Biology
| | - A A Momin
- Department of Bioinformatics and Computational Biology
| | - B P James
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, Houston
| | - A Corvalan
- Department of Pathology Department of Thoracic/Head and Neck Medical Oncology
| | - K Coombes
- Department of Bioinformatics and Computational Biology
| | - A Tsao
- Department of Thoracic/Head and Neck Medical Oncology
| | - I I Wistuba
- Department of Translational Molecular Pathology Department of Thoracic/Head and Neck Medical Oncology
| |
Collapse
|
365
|
Tsygankova IG, Zhenodarova SM. Activity of 4-arylchromene derivatives as apoptosis inductors and potential anticancer drugs. RUSS J GEN CHEM+ 2014. [DOI: 10.1134/s1070363214010149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
366
|
Synthesis of neolignans as microtubule stabilisers. Bioorg Med Chem 2014; 22:1342-54. [DOI: 10.1016/j.bmc.2013.12.067] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/27/2013] [Accepted: 12/30/2013] [Indexed: 01/19/2023]
|
367
|
Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. Nat Commun 2014; 5:3155. [PMID: 24434687 DOI: 10.1038/ncomms4155] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 12/18/2013] [Indexed: 02/02/2023] Open
Abstract
The synthesis of diverse three-dimensional libraries has become of paramount importance for obtaining better leads for drug discovery. Such libraries are predicted to fare better than traditional compound collections in phenotypic screens and against difficult targets. Herein we report the diversity-oriented synthesis of a compound library using rhodium carbenoid chemistry to access structurally diverse three-dimensional molecules and show that they access biologically relevant areas of chemical space using cheminformatic analysis. High-content screening of this library for antimitotic activity followed by chemical modification identified 'Dosabulin', which causes mitotic arrest and cancer cell death by apoptosis. Its mechanism of action is determined to be microtubule depolymerization, and the compound is shown to not significantly affect vinblastine binding to tubulin; however, experiments suggest binding to a site vicinal or allosteric to Colchicine. This work validates the combination of diversity-oriented synthesis and phenotypic screening as a strategy for the discovery of biologically relevant chemical entities.
Collapse
|
368
|
Ma M. Role of calpains in the injury-induced dysfunction and degeneration of the mammalian axon. Neurobiol Dis 2013; 60:61-79. [PMID: 23969238 PMCID: PMC3882011 DOI: 10.1016/j.nbd.2013.08.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/17/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Axonal injury and degeneration, whether primary or secondary, contribute to the morbidity and mortality seen in many acquired and inherited central nervous system (CNS) and peripheral nervous system (PNS) disorders, such as traumatic brain injury, spinal cord injury, cerebral ischemia, neurodegenerative diseases, and peripheral neuropathies. The calpain family of proteases has been mechanistically linked to the dysfunction and degeneration of axons. While the direct mechanisms by which transection, mechanical strain, ischemia, or complement activation trigger intra-axonal calpain activity are likely different, the downstream effects of unregulated calpain activity may be similar in seemingly disparate diseases. In this review, a brief examination of axonal structure is followed by a focused overview of the calpain family. Finally, the mechanisms by which calpains may disrupt the axonal cytoskeleton, transport, and specialized domains (axon initial segment, nodes, and terminals) are discussed.
Collapse
Affiliation(s)
- Marek Ma
- Department of Emergency Medicine, University of Pennsylvania, Philadelphia, PA, USA; Center for Resuscitation Science, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
369
|
Silvian L, Enyedy I, Kumaravel G. Inhibitors of protein-protein interactions: new methodologies to tackle this challenge. DRUG DISCOVERY TODAY. TECHNOLOGIES 2013; 10:e509-e515. [PMID: 24451642 DOI: 10.1016/j.ddtec.2012.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Several advances in the fields of crystallography, molecular modeling, biophysical assays and chemistry are converging to making protein-protein interaction targets more amenable to drug design. These include steps towards improving crystallization of protein-protein complexes, identifying the clusters of residues that constitute putative small molecule binding 'hot spots', generating new methods for detecting the binding of small molecules to target proteins, and generating custom libraries via diversity oriented synthesis to enable the identification of natural-product-like hits.
Collapse
|
370
|
Wong BS, Yoong SL, Jagusiak A, Panczyk T, Ho HK, Ang WH, Pastorin G. Carbon nanotubes for delivery of small molecule drugs. Adv Drug Deliv Rev 2013; 65:1964-2015. [PMID: 23954402 DOI: 10.1016/j.addr.2013.08.005] [Citation(s) in RCA: 349] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/01/2013] [Accepted: 08/05/2013] [Indexed: 11/30/2022]
Abstract
In the realm of drug delivery, carbon nanotubes (CNTs) have gained tremendous attention as promising nanocarriers, owing to their distinct characteristics, such as high surface area, enhanced cellular uptake and the possibility to be easily conjugated with many therapeutics, including both small molecules and biologics, displaying superior efficacy, enhanced specificity and diminished side effects. While most CNT-based drug delivery system (DDS) had been engineered to combat cancers, there are also emerging reports that employ CNTs as either the main carrier or adjunct material for the delivery of various non-anticancer drugs. In this review, the delivery of small molecule drugs is expounded, with special attention paid to the current progress of in vitro and in vivo research involving CNT-based DDSs, before finally concluding with some consideration on inevitable complications that hamper successful disease intervention with CNTs.
Collapse
Affiliation(s)
- Bin Sheng Wong
- Department of Pharmacy, National University of Singapore, S4 Science Drive 4, Singapore 117543, Singapore.
| | | | | | | | | | | | | |
Collapse
|
371
|
Méndez-Callejas GM, Leone S, Tanzarella C, Antoccia A. Combretastatin A-4 induces p53 mitochondrial-relocalisation independent-apoptosis in non-small lung cancer cells. Cell Biol Int 2013; 38:296-308. [DOI: 10.1002/cbin.10199] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 10/04/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Gina Marcela Méndez-Callejas
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
- Universidad de Ciencias Aplicadas y Ambientales; Calle 222 55-37 Bogotá Colombia
| | - Stefano Leone
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Caterina Tanzarella
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| | - Antonio Antoccia
- Departament of Science University ‘Roma Tre’; V.le G. Marconi 446 00146 Rome Italy
| |
Collapse
|
372
|
Chanthammachat P, Promwikorn W, Pruegsanusak K, Roytrakul S, Srisomsap C, Chokchaichamnankit D, Svasti J, Boonyaphiphat P, K S, Thongsuksai P. Comparative proteomic analysis of oral squamous cell carcinoma and adjacent non-tumour tissue from Thailand. Arch Oral Biol 2013; 58:1677-85. [DOI: 10.1016/j.archoralbio.2013.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 06/22/2013] [Accepted: 08/04/2013] [Indexed: 11/25/2022]
|
373
|
Manchukonda NK, Naik PK, Santoshi S, Lopus M, Joseph S, Sridhar B, Kantevari S. Rational design, synthesis, and biological evaluation of third generation α-noscapine analogues as potent tubulin binding anti-cancer agents. PLoS One 2013; 8:e77970. [PMID: 24205049 PMCID: PMC3804772 DOI: 10.1371/journal.pone.0077970] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Accepted: 09/06/2013] [Indexed: 11/26/2022] Open
Abstract
Systematic screening based on structural similarity of drugs such as colchicine and podophyllotoxin led to identification of noscapine, a microtubule-targeted agent that attenuates the dynamic instability of microtubules without affecting the total polymer mass of microtubules. We report a new generation of noscapine derivatives as potential tubulin binding anti-cancer agents. Molecular modeling experiments of these derivatives 5a, 6a-j yielded better docking score (-7.252 to -5.402 kCal/mol) than the parent compound, noscapine (-5.505 kCal/mol) and its existing derivatives (-5.563 to -6.412 kCal/mol). Free energy (ΔGbind) calculations based on the linear interaction energy (LIE) empirical equation utilizing Surface Generalized Born (SGB) continuum solvent model predicted the tubulin-binding affinities for the derivatives 5a, 6a-j (ranging from -4.923 to -6.189 kCal/mol). Compound 6f showed highest binding affinity to tubulin (-6.189 kCal/mol). The experimental evaluation of these compounds corroborated with theoretical studies. N-(3-brormobenzyl) noscapine (6f) binds tubulin with highest binding affinity (KD, 38 ± 4.0 µM), which is ~ 4.0 times higher than that of the parent compound, noscapine (KD, 144 ± 1.0 µM) and is also more potent than that of the first generation clinical candidate EM011, 9-bromonoscapine (KD, 54 ± 9.1 µM). All these compounds exhibited substantial cytotoxicity toward cancer cells, with IC50 values ranging from 6.7 µM to 72.9 µM; compound 6f showed prominent anti-cancer efficacy with IC50 values ranging from 6.7 µM to 26.9 µM in cancer cells of different tissues of origin. These compounds perturbed DNA synthesis, delayed the cell cycle progression at G2/M phase, and induced apoptotic cell death in cancer cells. Collectively, the study reported here identified potent, third generation noscapinoids as new anti-cancer agents.
Collapse
Affiliation(s)
- Naresh Kumar Manchukonda
- Organic Chemistry Division-II (Crop Protection Chemicals Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Pradeep Kumar Naik
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Distt, Solan, Himachal Pradesh, India
- * E-mail: (PKN); (SK)
| | - Seneha Santoshi
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Distt, Solan, Himachal Pradesh, India
| | - Manu Lopus
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai campus, Kalina, Santa Cruz (E), Mumbai, India
| | - Silja Joseph
- Department of Molecular, Cellular, and Developmental Biology, and the Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, United States of America
| | - Balasubramanian Sridhar
- X-Ray Crystallography Laboratory, CSIR-Indian Institute of Chemical Technology, Hyderabad-500007, India
| | - Srinivas Kantevari
- Organic Chemistry Division-II (Crop Protection Chemicals Division), CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
- * E-mail: (PKN); (SK)
| |
Collapse
|
374
|
Altshuler O, Abu-Abied M, Chaimovitsh D, Shechter A, Frucht H, Dudai N, Sadot E. Enantioselective effects of (+)- and (-)-citronellal on animal and plant microtubules. JOURNAL OF NATURAL PRODUCTS 2013; 76:1598-1604. [PMID: 23947826 DOI: 10.1021/np4002702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Citronellal is a major component of Corymbia citriodora and Cymbopogon nardus essential oils. Herein it is shown that whereas (+)-citronellal (1) is an effective microtubule (MT)-disrupting compound, (-)-citronellal (2) is not. Quantitative image analysis of fibroblast cells treated with 1 showed total fluorescence associated with fibers resembling that in cells treated with the MT-disrupting agents colchicine and vinblastine; in the presence of 2, the fluorescence more closely resembled that in control cells. The distribution of tubulin in soluble and insoluble fractions in the presence of 1 also resembled that in the presence of colchicine, whereas similar tubulin distribution was obtained in the presence of 2 and in control cells. In vitro polymerization of MTs was inhibited by 1 but not 2. Measurements of MT dynamics in plant cells showed similar MT elongation and shortening rates in control and 2-treated cells, whereas in the presence of 1, much fewer and shorter MTs were observed and no elongation or shrinkage was detected. Taken together, the MT system is suggested to be able to discriminate between different enantiomers of the same compound. In addition, the activity of essential oils rich in citronellal is affected by the relative content of the two enantiomers of this monoterpenoid.
Collapse
Affiliation(s)
- Osnat Altshuler
- The Institute of Plant Sciences, ARO , Volcani Center, PO Box 6, Bet-Dagan 50250, Israel
| | | | | | | | | | | | | |
Collapse
|
375
|
Da C, Mooberry SL, Gupton JT, Kellogg GE. How to deal with low-resolution target structures: using SAR, ensemble docking, hydropathic analysis, and 3D-QSAR to definitively map the αβ-tubulin colchicine site. J Med Chem 2013; 56:7382-95. [PMID: 23961916 DOI: 10.1021/jm400954h] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
αβ-Tubulin colchicine site inhibitors (CSIs) from four scaffolds that we previously tested for antiproliferative activity were modeled to better understand their effect on microtubules. Docking models, constructed by exploiting the SAR of a pyrrole subset and HINT scoring, guided ensemble docking of all 59 compounds. This conformation set and two variants having progressively less structure knowledge were subjected to CoMFA, CoMFA+HINT, and CoMSIA 3D-QSAR analyses. The CoMFA+HINT model (docked alignment) showed the best statistics: leave-one-out q(2) of 0.616, r(2) of 0.949, and r(2)pred (internal test set) of 0.755. An external (tested in other laboratories) collection of 24 CSIs from eight scaffolds were evaluated with the 3D-QSAR models, which correctly ranked their activity trends in 7/8 scaffolds for CoMFA+HINT (8/8 for CoMFA). The combination of SAR, ensemble docking, hydropathic analysis, and 3D-QSAR provides an atomic-scale colchicine site model more consistent with a target structure resolution much higher than the ~3.6 Å available for αβ-tubulin.
Collapse
Affiliation(s)
- Chenxiao Da
- Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University , Richmond, Virginia 23298-0540, United States
| | | | | | | |
Collapse
|
376
|
Jain V, Jain B, Tiwari P, Saini J, Jain UK, Pandey RS, Kumar M, Katare OP, Chandra R, Madan J. Nanosolvated microtubule-modulating chemotherapeutics: a case-to-case study. Anticancer Drugs 2013; 24:327-36. [PMID: 23411683 DOI: 10.1097/cad.0b013e32835ec414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
About 10% of the drugs in the preclinical stage are poorly soluble, 40% of the drugs in the pipeline have poor solubility, and even 60% of drugs coming directly from synthesis have aqueous solubility below 0.1 mg/ml. Out of the research around, 40% of lipophilic drug candidates fail to reach the market despite having potential pharmacodynamic activities. Microtubule-modulating chemotherapeutics is an important class of cancer chemotherapy. Most chemotherapeutics that belong to this category are plant-derived active constituents, such as vincristine, vinblastine, colchicine, docetaxel, paclitaxel, and noscapinoids. The pKa of a drug considerably affects its solubility in physiological fluids and consequently bioavailability. It usually ranges from 5 to 12 for microtubule-modulating drugs. Hence, the solubility of these drugs in physiological fluids is considerably affected by a change in pH. However, because of unpredictable parameters involved in poor solubility and the low oral bioavailability of these chemotherapeutics during the early phases of drug development, they often have an unusual pharmacokinetic profile. This makes the development process of novel chemotherapeutics slow, inefficient, patient-unfriendly, and very costly, emphasizing a need for more rational approaches on the basis of preclinical concepts. Nanosolvation is a process of increasing the polarity of a hydrophobic molecule either by solvation or cavitization in a hydrophilic macrocycle. The present review therefore focuses on the techniques applied in nanosolvation of microtubule-modulating chemotherapeutics to enhance solubility and bioavailability. The methodologies described will be highly beneficial for anticancer researchers to follow a trend of rational drug development.
Collapse
Affiliation(s)
- Vibhor Jain
- Department of Pharmaceutics, School of Pharmacy, Chouksey Engineering College, Bilaspur, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
377
|
Bajaj M, Srayko M. Laulimalide induces dose-dependent modulation of microtubule behaviour in the C. elegans embryo. PLoS One 2013; 8:e71889. [PMID: 23936530 PMCID: PMC3732258 DOI: 10.1371/journal.pone.0071889] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/03/2013] [Indexed: 12/16/2022] Open
Abstract
Laulimalide is a microtubule-binding drug that was originally isolated from marine sponges. High concentrations of laulimalide stabilize microtubules and inhibit cell division similarly to paclitaxel; however, there are important differences with respect to the nature of the specific cellular defects between these two drugs and their binding sites on the microtubule. In this study, we used Caenorhabditis elegans embryos to investigate the acute effects of laulimalide on microtubules in vivo, with a direct comparison to paclitaxel. We observed surprising dose-dependent effects for laulimalide, whereby microtubules were stabilized at concentrations above 100 nM, but destabilized at concentrations between 50 and 100 nM. Despite this behaviour at low concentrations, laulimalide acted synergistically with paclitaxel to stabilize microtubules when both drugs were used at sub-effective concentrations, consistent with observations of synergistic interactions between these two drugs in other systems. Our results indicate that laulimalide induces a concentration-dependent, biphasic change in microtubule polymer dynamics in the C. elegans embryo.
Collapse
Affiliation(s)
- Megha Bajaj
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Srayko
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
378
|
Voss M, Campbell K, Saranzewa N, Campbell DG, Hastie CJ, Peggie MW, Martin-Granados C, Prescott AR, Cohen PTW. Protein phosphatase 4 is phosphorylated and inactivated by Cdk in response to spindle toxins and interacts with γ-tubulin. Cell Cycle 2013; 12:2876-87. [PMID: 23966160 PMCID: PMC3899200 DOI: 10.4161/cc.25919] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many pharmaceuticals used to treat cancer target the cell cycle or mitotic spindle dynamics, such as the anti-tumor drug, paclitaxel, which stabilizes microtubules. Here we show that, in cells arrested in mitosis with the spindle toxins, nocodazole, or paclitaxel, the endogenous protein phosphatase 4 (Ppp4) complex Ppp4c-R2-R3A is phosphorylated on its regulatory (R) subunits, and its activity is inhibited. The phosphorylations are blocked by roscovitine, indicating that they may be mediated by Cdk1-cyclin B. Endogenous Ppp4c is enriched at the centrosomes in the absence and presence of paclitaxel, nocodazole, or roscovitine, and the activity of endogenous Ppp4c-R2-R3A is inhibited from G1/S to the G2/M phase of the cell cycle. Endogenous γ-tubulin and its associated protein, γ-tubulin complex protein 2, both of which are essential for nucleation of microtubules at centrosomes, interact with the Ppp4 complex. Recombinant γ-tubulin can be phosphorylated by Cdk1-cyclin B or Brsk1 and dephosphorylated by Ppp4c-R2-R3A in vitro. The data indicate that Ppp4c-R2-R3A regulates microtubule organization at centrosomes during cell division in response to stress signals such as spindle toxins, paclitaxel, and nocodazole, and that inhibition of the Ppp4 complex may be advantageous for treatment of some cancers.
Collapse
Affiliation(s)
- Martin Voss
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit; College of Life Sciences; University of Dundee; Dundee, Scotland, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
379
|
Li J, Peng J, Risinger AL, Mooberry SL. Hydrolysis reactions of the taccalonolides reveal structure-activity relationships. JOURNAL OF NATURAL PRODUCTS 2013; 76:1369-1375. [PMID: 23855953 PMCID: PMC3761391 DOI: 10.1021/np400435t] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The taccalonolides are microtubule stabilizers isolated from plants of the genus Tacca that show potent in vivo antitumor activity and the ability to overcome multiple mechanisms of drug resistance. The most potent taccalonolide identified to date, AJ, is a semisynthetic product generated from the major plant metabolite taccalonolide A in a two-step reaction. The first step involves hydrolysis of taccalonolide A to generate taccalonolide B, and then this product is oxidized to generate an epoxide group at C-22-C-23. To generate sufficient taccalonolide AJ for in vivo antitumor efficacy studies, the hydrolysis conditions for the conversion of taccalonolide A to B were optimized. During purification of the hydrolysis products, we identified the new taccalonolide AO (1) along with taccalonolide I. When the same hydrolysis reaction was performed on a taccalonolide E-enriched fraction, four new taccalonolides, assigned as AK, AL, AM, and AN (2-5), were obtained in addition to the expected product taccalonolide N. Biological assays were performed on each of the purified taccalonolides, which allowed for increased refinement of the structure-activity relationship of this class of compounds.
Collapse
Affiliation(s)
- Jing Li
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Jiangnan Peng
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - April L. Risinger
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
- Cancer Therapy & Research Center, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| |
Collapse
|
380
|
Lin ZY, Wu CC, Chuang YH, Chuang WL. Anti-cancer mechanisms of clinically acceptable colchicine concentrations on hepatocellular carcinoma. Life Sci 2013; 93:323-8. [PMID: 23871804 DOI: 10.1016/j.lfs.2013.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 12/01/2022]
Abstract
AIMS This study was to investigate whether the clinically acceptable colchicine concentrations had anti-cancer effects on hepatocellular carcinoma (HCC) and their anti-cancer mechanisms. MAIN METHODS Two human HCC cell lines (HCC24/KMUH, HCC38/KMUH) and two human cancer-associated fibroblast (CAF) cell lines (F28/KMUH, F59/KMUH) were investigated by proliferative assay, microarray, quantitative reverse transcriptase-polymerase chain reaction, and nude mouse study using clinically acceptable colchicine concentrations. KEY FINDINGS Both 2 and 6ng/mL colchicine significantly inhibited the cellular proliferation of all cell lines tested (P<0.05). The anti-proliferative effects of colchicine on F28/KMUH, HCC24/KMUH and HCC38/KMUH cells were dose-dependent. The anti-proliferative effects of 6ng/mL colchicine on both HCC cell lines were similar to the effects of 1μg/mL epirubicin. The anti-proliferative effects of colchicine on HCC cells could be partially explained by dose-dependent up-regulations of 2 anti-proliferative genes (AKAP12, TGFB2) in these cells. TGFB2 was also up-regulated in CAFs but was not dose-dependent. Up-regulation of MX1 which can accelerate cell death was a common effect of 6ng/mL colchicine on both CAF cell lines, but 2ng/mL colchicine down-regulated MX1 in F28/KMUH cells. Nude mouse (BALB/c-nu) experiment showed that colchicine-treated mice (0.07mgcolchicine/kg/day×14days) had lower increased tumor volume ratios, slower tumor growth rates and larger percentages of tumor necrotic areas than control mice (all P<0.05). SIGNIFICANCE Clinically acceptable colchicine concentrations have anti-cancer effects on HCC. This drug has potential for the palliative treatment of HCC.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Cancer Center and Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
381
|
Schnerch D, Schmidts A, Follo M, Udi J, Felthaus J, Pfeifer D, Engelhardt M, Wäsch R. BubR1 is frequently repressed in acute myeloid leukemia and its re-expression sensitizes cells to antimitotic therapy. Haematologica 2013; 98:1886-95. [PMID: 23812934 DOI: 10.3324/haematol.2013.087452] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spindle poison-based therapy is of only limited benefit in acute myeloid leukemia while lymphoblastic leukemia/lymphoma responds well. In this study, we demonstrated that the spindle assembly checkpoint protein BubR1 was down-regulated in the vast majority of cases of acute myeloid leukemia whereas its expression was high in lymphoblastic cells. Correct function of the spindle assembly checkpoint is pivotal in mediating mitotic delay in response to spindle poisons. Mitotic delay by the spindle assembly checkpoint is achieved by inhibition of anaphase-promoting complex-dependent proteolysis of cyclin B and securin. We demonstrated a link between the repression of the spindle assembly checkpoint protein BubR1 in acute myeloid leukemia and the limited response to spindle poison. In accordance with its established role as an anaphase-promoting complex-inhibitor, we found that repression of BubR1 was associated with enhanced anaphase-promoting complex activity and cyclin B and securin degradation, which leads to premature sister-chromatid separation and failure to sustain a mitotic arrest. This suggests that repression of BubR1 in acute myeloid leukemia renders the spindle assembly checkpoint-mediated inhibition of the anaphase-promoting complex insufficient, which facilitates completion of mitosis in the presence of spindle poison. As both direct and BubR1-mediated restoration of cyclin B expression enhanced response to spindle poison, we propose that the downstream axis of the spindle assembly checkpoint is a promising target for tailored therapies for acute myeloid leukemia.
Collapse
|
382
|
End-binding proteins sensitize microtubules to the action of microtubule-targeting agents. Proc Natl Acad Sci U S A 2013; 110:8900-5. [PMID: 23674690 DOI: 10.1073/pnas.1300395110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are widely used for treatment of cancer and other diseases, and a detailed understanding of the mechanism of their action is important for the development of improved microtubule-directed therapies. Although there is a large body of data on the interactions of different MTAs with purified tubulin and microtubules, much less is known about how the effects of MTAs are modulated by microtubule-associated proteins. Among the regulatory factors with a potential to have a strong impact on MTA activity are the microtubule plus end-tracking proteins, which control multiple aspects of microtubule dynamic instability. Here, we reconstituted microtubule dynamics in vitro to investigate the influence of end-binding proteins (EBs), the core components of the microtubule plus end-tracking protein machinery, on the effects that MTAs exert on microtubule plus-end growth. We found that EBs promote microtubule catastrophe induction in the presence of all MTAs tested. Analysis of microtubule growth times supported the view that catastrophes are microtubule age dependent. This analysis indicated that MTAs affect microtubule aging in multiple ways: destabilizing MTAs, such as colchicine and vinblastine, accelerate aging in an EB-dependent manner, whereas stabilizing MTAs, such as paclitaxel and peloruside A, induce not only catastrophes but also rescues and can reverse the aging process.
Collapse
|
383
|
Ouyang X, Ghani A, Mehal WZ. Inflammasome biology in fibrogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:979-88. [PMID: 23562491 DOI: 10.1016/j.bbadis.2013.03.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/20/2013] [Accepted: 03/23/2013] [Indexed: 12/20/2022]
Abstract
Pathogens and sterile insults both result in an inflammatory response. A significant part of this response is mediated by cytosolic machinery termed as the inflammasome which results in the activation and secretion of the cytokines interleukin-1β (IL-1β) and IL-18. Both of these are known to result in the activation of an acute inflammatory response, resulting in the production of downstream inflammatory cytokines such as tumor necrosis factor (TNF-α), interferon-gamma (IFN-γ), chemotaxis of immune cells, and induction of tissue injury. Surprisingly this very acute inflammatory pathway is also vital for the development of a full fibrogenic response in a number of organs including the lung, liver, and skin. There is evidence for the inflammasome having a direct role on tissue specific matrix producing cells such as the liver stellate cell, and also indirectly through the activation of resident tissue macrophage populations. The inflammasome requires stimulation of two pathways for full activation, and initiating stimuli include Toll-like receptor (TLR) agonists, adenosine triphosphate (ATP), particulates, and oxidative stress. Such a role for an acute inflammatory pathway in fibrosis runs counter to the prevailing association of TGF-β driven anti-inflammatory and pro-fibrotic pathways. This identifies new therapeutic targets which have the potential to simultaneously decrease inflammation, tissue injury and fibrosis. This article is part of a Special Issue entitled: Fibrosis: Translation of basic research to human disease.
Collapse
Affiliation(s)
- Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT, USA; West Haven Veterans Medical Center, New Haven, CT, USA
| | | | | |
Collapse
|
384
|
Álvarez R, Puebla P, Díaz JF, Bento AC, García-Navas R, de la Iglesia-Vicente J, Mollinedo F, Andreu JM, Medarde M, Peláez R. Endowing Indole-Based Tubulin Inhibitors with an Anchor for Derivatization: Highly Potent 3-Substituted Indolephenstatins and Indoleisocombretastatins. J Med Chem 2013; 56:2813-27. [DOI: 10.1021/jm3015603] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Raquel Álvarez
- Laboratorio de Química
Orgánica y Farmacéutica, CIETUS and IBSAL, Facultad
de Farmacia, Universidad de Salamanca,
Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Pilar Puebla
- Laboratorio de Química
Orgánica y Farmacéutica, CIETUS and IBSAL, Facultad
de Farmacia, Universidad de Salamanca,
Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | | | - Ana C. Bento
- Instituto de Biología Molecular
y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno,
E-37007 Salamanca, Spain
| | - Rósula García-Navas
- Instituto de Biología Molecular
y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno,
E-37007 Salamanca, Spain
| | - Janis de la Iglesia-Vicente
- Instituto de Biología Molecular
y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno,
E-37007 Salamanca, Spain
| | - Faustino Mollinedo
- Instituto de Biología Molecular
y Celular del Cáncer, Centro de Investigación del Cáncer, CSIC-Universidad de Salamanca, Campus Miguel de Unamuno,
E-37007 Salamanca, Spain
| | | | - Manuel Medarde
- Laboratorio de Química
Orgánica y Farmacéutica, CIETUS and IBSAL, Facultad
de Farmacia, Universidad de Salamanca,
Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química
Orgánica y Farmacéutica, CIETUS and IBSAL, Facultad
de Farmacia, Universidad de Salamanca,
Campus Miguel de Unamuno, E-37007 Salamanca, Spain
| |
Collapse
|
385
|
Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer. PLoS One 2013; 8:e58037. [PMID: 23460921 PMCID: PMC3584019 DOI: 10.1371/journal.pone.0058037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second common cause of cancer related death worldwide and lacks highly effective treatment for advanced disease. Nab-paclitaxel is a novel microtubule-inhibitory cytotoxic agent that has not been tested in gastric cancer as of yet. In this study, human gastric cancer cell lines AGS, NCI-N87 and SNU16 were studied. Nab-paclitaxel inhibited cell proliferation with an IC50 of 5 nM in SNU16, 23 nM in AGS and 49 nM in NCI-N87 cells after 72-hour treatment, which was lower than that of oxaliplatin (1.05 μM to 1.51 μM) and epirubicin (0.12 μM to 0.25 μM). Nab-paclitaxel treatment increased expression of the mitotic-spindle associated phospho-stathmin irrespective of the baseline total or phosphorylated stathmin level, and induced mitotic cell death as confirmed through increased expression of cleaved-PARP and caspase-3. After a two-week nab-paclitaxel, oxaliplatin or epirubicin treatment, the average in vivo local tumor growth inhibition rate was 77, 17.2 and 21.4 percent, respectively (p = 0.002). Effects of therapy on tumoral proliferative and apoptotic indices corresponded with tumor growth inhibition data, while expression of phospho-stathmin also increased in tissues. There was an increase in median animal survival after nab-paclitaxel treatment (93 days) compared to controls (31 days, p = 0.0007), oxaliplatin (40 days, p = 0.0007) or to docetaxel therapy (81 days, p = 0.0416). The strong antitumor activity of nab-paclitaxel in experimental gastric cancer supports such microtubule-inhibitory strategy for clinical application. Nab-paclitaxel benefits were observed independent from phosphorylated stathmin expression at baseline, putting into question the consideration of nab-paclitaxel use in gastric cancer based on this putative biomarker.
Collapse
|
386
|
Madan J, Pandey RS, Jain UK, Katare OP, Aneja R, Katyal A. Sterically stabilized gelatin microassemblies of noscapine enhance cytotoxicity, apoptosis and drug delivery in lung cancer cells. Colloids Surf B Biointerfaces 2013; 107:235-44. [PMID: 23502046 DOI: 10.1016/j.colsurfb.2013.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/06/2013] [Accepted: 02/18/2013] [Indexed: 12/22/2022]
Abstract
Noscapine, recently identified as anticancer due to its microtubule-modulating properties. It is presently in Phase I/II clinical trials. The therapeutic efficacy of noscapine has been established in several xenograft models. Its pharmacokinetic limitations such as low bioavailability and high ED50 impede development of clinically relevant treatment regimens. Here we present design, synthesis, in vitro and in vivo characterization of sterically stabilized gelatin microassemblies of noscapine (SSGMS) for targeting human non-small cell lung cancer A549 cells. The average size of the sterically stabilized gelatin microassemblies of noscapine, SSGMS was 10.0±5.1 μm in comparison to noscapine-loaded gelatin microassemblies, GMS that was 8.3±5.5 μm. The noscapine entrapment efficiency of SSGMS and GMS was 23.99±4.5% and 24.23±2.6%, respectively. Prepared microassemblies were spherical in shape and did not show any drug and polymer interaction as examined by FTIR, DSC and PXRD. In vitro release data indicated that SSGMS and GMS follow first-order release kinetics and exhibited an initial burst followed by slow release of the drug. In vitro cytotoxicity evaluated using A549 cells showed a low IC50 value of SSGMS (15.5 μM) compared to GMS (30.1 μM) and free noscapine (47.2 μM). The SSGMS can facilitate a sustained therapeutic effect in terms of prolonged release of noscapine as evident by caspase-3 activity in A549 cells. Concomitantly, pharmacokinetic and biodistribution analysis showed that SSGMS increased the plasma half-life of noscapine by ~9.57-fold with an accumulation of ~48% drug in the lungs. Our data provides evidence for the potential usefulness of SSGMS for noscapine delivery in lung cancer.
Collapse
Affiliation(s)
- Jitender Madan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA.
| | | | | | | | | | | |
Collapse
|
387
|
Verma AK, Jha RR, Chaudhary R, Tiwari RK, Danodia AK. 2-(1-Benzotriazolyl)pyridine: A Robust Bidentate Ligand for the Palladium-Catalyzed CC (Suzuki, Heck, Fujiwara-Moritani, Sonogashira), CN and CS Coupling Reactions. Adv Synth Catal 2013. [DOI: 10.1002/adsc.201200583] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
388
|
Da C, Telang N, Hall K, Kluball E, Barelli P, Finzel K, Jia X, Gupton JT, Mooberry SL, Kellogg GE. Developing novel C-4 analogues of pyrrole-based antitubulin agents: weak but critical hydrogen bonding in the colchicine site. MEDCHEMCOMM 2013; 4:417-421. [PMID: 23457660 DOI: 10.1039/c2md20320k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis, biological evaluation and molecular modeling of a series of pyrrole compounds related to 3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid that evaluates and optimizes C-4 substituents are reported. The key factor for microtubule depolymerization activity appears to be the presence of an appropriately positioned acceptor for Cys241β in the otherwise hydrophobic subpocket A.
Collapse
Affiliation(s)
- Chenxiao Da
- Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, USA 23298-0540
| | - Nakul Telang
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Kayleigh Hall
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Emily Kluball
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Peter Barelli
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Kara Finzel
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Xin Jia
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - John T Gupton
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia, USA 23173
| | - Susan L Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA 78229-3900
| | - Glen E Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia, USA 23298-0540
| |
Collapse
|
389
|
Stander BA, Joubert F, Tu C, Sippel KH, McKenna R, Joubert AM. In vitro evaluation of ESE-15-ol, an estradiol analogue with nanomolar antimitotic and carbonic anhydrase inhibitory activity. PLoS One 2012; 7:e52205. [PMID: 23300615 PMCID: PMC3531393 DOI: 10.1371/journal.pone.0052205] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Accepted: 11/14/2012] [Indexed: 01/07/2023] Open
Abstract
Antimitotic compounds are still one of the most widely used chemotherapeutic anticancer drugs in the clinic today. Given their effectiveness against cancer it is beneficial to continue enhancing these drugs. One way is to improve the bioavailability and efficacy by synthesizing derivatives that reversibly bind to carbonic anhydrase II (CAII) in red blood cells followed by a slow release into the blood circulation system. In the present study we describe the in vitro biological activity of a reduced derivative of 2-ethyl-3-O-sulphamoyl-estradiol (2EE), 2-ethyl-3-O-sulphamoyl-estra-1,3,5(10),15-tetraen-17-ol (ESE-15-ol). ESE-15-ol is capable of inhibiting carbonic anhydrase activity in the nanomolar range and is selective towards a mimic of carbonic anhydrase IX when compared to the CAII isoform. Docking studies using Autodock Vina suggest that the dehydration of the D-ring plays a role towards the selectivity of ESE-15-ol to CAIX and that the binding mode of ESE-15-ol is substantially different when compared to 2EE. ESE-15-ol is able to reduce cell growth to 50% after 48 h at 50–75 nM in MCF-7, MDA-MB-231, and MCF-12A cells. The compound is the least potent against the non-tumorigenic MCF-12A cells. In vitro mechanistic studies demonstrate that the newly synthesized compound induces mitochondrial membrane depolarization, abrogates the phosphorylation status of Bcl-2 and affects gene expression of genes associated with cell death and mitosis.
Collapse
Affiliation(s)
- Barend Andre Stander
- Department of Physiology, University of Pretoria, Pretoria, Gauteng, South Africa.
| | | | | | | | | | | |
Collapse
|
390
|
Gangjee A, Zaware N, Devambatla RKV, Raghavan S, Westbrook CD, Dybdal-Hargreaves NF, Hamel E, Mooberry SL. Synthesis of N(4)-(substituted phenyl)-N(4)-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines and identification of new microtubule disrupting compounds that are effective against multidrug resistant cells. Bioorg Med Chem 2012; 21:891-902. [PMID: 23332369 DOI: 10.1016/j.bmc.2012.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 11/30/2012] [Accepted: 12/08/2012] [Indexed: 01/24/2023]
Abstract
A series of fourteen N(4)-(substituted phenyl)-N(4)-alkyl/desalkyl-9H-pyrimido[4,5-b]indole-2,4-diamines was synthesized as potential microtubule targeting agents. The synthesis involved a Fisher indole cyclization of 2-amino-6-hydrazinylpyrimidin-4(3H)-one with cyclohexanone, followed by oxidation, chlorination and displacement with appropriate anilines. Compounds 6, 14 and 15 had low nanomolar potency against MDA-MB-435 tumor cells and depolymerized microtubules. Compound 6 additionally had nanomolar GI(50) values against 57 of the NCI 60-tumor panel cell lines. Mechanistic studies showed that 6 inhibited tubulin polymerization and [(3)H]colchicine binding to tubulin. The most potent compounds were all effective in cells expressing P-glycoprotein or the βIII isotype of tubulin, which have been associated with clinical drug resistance. Modeling studies provided the potential interactions of 6, 14 and 15 within the colchicine site.
Collapse
Affiliation(s)
- Aleem Gangjee
- Division of Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | | | | | | | | | | | | | | |
Collapse
|
391
|
Artlett CM. Inflammasomes in wound healing and fibrosis. J Pathol 2012; 229:157-67. [DOI: 10.1002/path.4116] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Carol M Artlett
- Department of Microbiology and Immunology; Drexel University College of Medicine; Philadelphia PA USA
| |
Collapse
|
392
|
Wang XF, Ohkoshi E, Wang SB, Hamel E, Bastow KF, Morris-Natschke SL, Lee KH, Xie L. Synthesis and biological evaluation of N-alkyl-N-(4-methoxyphenyl)pyridin-2-amines as a new class of tubulin polymerization inhibitors. Bioorg Med Chem 2012; 21:632-42. [PMID: 23274123 DOI: 10.1016/j.bmc.2012.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/21/2012] [Accepted: 11/29/2012] [Indexed: 11/29/2022]
Abstract
Based on our prior antitumor hits, 32 novel N-alkyl-N-substituted phenylpyridin-2-amine derivatives were designed, synthesized and evaluated for cytotoxic activity against A549, KB, KB(VIN), and DU145 human tumor cell lines (HTCL). Subsequently, three new leads (6a, 7g, and 8c) with submicromolar GI(50) values of 0.19-0.41 μM in the cellular assays were discovered, and these compounds also significantly inhibited tubulin assembly (IC(50) 1.4-1.7 μM) and competitively inhibited colchicine binding to tubulin with effects similar to those of the clinical candidate CA-4 in the same assays. These promising results indicate that these tertiary diarylamine derivatives represent a novel class of tubulin polymerization inhibitors targeting the colchicine binding site and showing significant anti-proliferative activity.
Collapse
Affiliation(s)
- Xiao-Feng Wang
- Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, PR China
| | | | | | | | | | | | | | | |
Collapse
|
393
|
Wink M. Medicinal plants: a source of anti-parasitic secondary metabolites. Molecules 2012; 17:12771-91. [PMID: 23114614 PMCID: PMC6268567 DOI: 10.3390/molecules171112771] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 10/19/2012] [Accepted: 10/26/2012] [Indexed: 02/07/2023] Open
Abstract
This review summarizes human infections caused by endoparasites, including protozoa, nematodes, trematodes, and cestodes, which affect more than 30% of the human population, and medicinal plants of potential use in their treatment. Because vaccinations do not work in most instances and the parasites have sometimes become resistant to the available synthetic therapeutics, it is important to search for alternative sources of anti-parasitic drugs. Plants produce a high diversity of secondary metabolites with interesting biological activities, such as cytotoxic, anti-parasitic and anti-microbial properties. These drugs often interfere with central targets in parasites, such as DNA (intercalation, alkylation), membrane integrity, microtubules and neuronal signal transduction. Plant extracts and isolated secondary metabolites which can inhibit protozoan parasites, such as Plasmodium, Trypanosoma, Leishmania, Trichomonas and intestinal worms are discussed. The identified plants and compounds offer a chance to develop new drugs against parasitic diseases. Most of them need to be tested in more detail, especially in animal models and if successful, in clinical trials.
Collapse
Affiliation(s)
- Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, INF 364, Heidelberg University, D-69120 Heidelberg, Germany.
| |
Collapse
|
394
|
Molecular simulations of drug–receptor complexes in anticancer research. Future Med Chem 2012; 4:1961-70. [DOI: 10.4155/fmc.12.149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Molecular modeling and computer simulation techniques have matured significantly in recent years and proved their value in the study of drug–DNA, drug–DNA–protein, drug–protein and protein–protein interactions. Evolution in this area has gone hand-in-hand with an increased availability of structural data on biological macromolecules, major advances in molecular mechanics force fields and considerable improvements in computer technologies, most significantly processing speeds, multiprocessor programming and data-storage capacity. The information derived from molecular simulations of drug–receptor complexes can be used to extract structural and energetic information that is usually beyond current experimental possibilities, provide independent accounts of experimentally observed behavior, help in the interpretation of biochemical or pharmacological results, and open new avenues for research by posing novel relevant questions that can guide the design of new experiments. As drug-screening tools, ligand- and fragment-docking platforms stand out as powerful techniques that can provide candidate molecules for hit and lead development. This review provides an overall perspective of the main methods and focuses on some selected applications to both classical and novel anticancer targets.
Collapse
|
395
|
TubStain: a universal peptide-tool to label microtubules. Histochem Cell Biol 2012; 138:531-40. [DOI: 10.1007/s00418-012-0992-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2012] [Indexed: 10/28/2022]
|
396
|
Peloruside, Laulimalide, and Noscapine Interactions with Beta-Tubulin. Pharm Res 2012; 29:2985-93. [DOI: 10.1007/s11095-012-0809-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/11/2012] [Indexed: 02/04/2023]
|
397
|
Lozynski M. Patupilone and Ixabepilone: The Effect of a Point Structural Change on the Exo–Endo Conformational Profile. J Phys Chem B 2012; 116:7605-17. [PMID: 22668078 DOI: 10.1021/jp212628v] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marek Lozynski
- Institute of Chemical
Technology and Engineering, Poznan University of Technology, Pl. M. Sklodowskiej-Curie
5, 60-965 Poznan, Poland
| |
Collapse
|
398
|
Zhao Y, Toselli P, Li W. Microtubules as a critical target for arsenic toxicity in lung cells in vitro and in vivo. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:474-95. [PMID: 22470304 PMCID: PMC3315258 DOI: 10.3390/ijerph9020474] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 01/29/2012] [Accepted: 01/30/2012] [Indexed: 12/14/2022]
Abstract
To understand mechanisms for arsenic toxicity in the lung, we examined effects of sodium m-arsenite (As³⁺) on microtubule (MT) assembly in vitro (0-40 µM), in cultured rat lung fibroblasts (RFL6, 0-20 µM for 24 h) and in the rat animal model (intratracheal instillation of 2.02 mg As/kg body weight, once a week for 5 weeks). As³⁺ induced a dose-dependent disassembly of cellular MTs and enhancement of the free tubulin pool, initiating an autoregulation of tubulin synthesis manifest as inhibition of steady-state mRNA levels of βI-tubulin in dosed lung cells and tissues. Spindle MT injuries by As³⁺ were concomitant with chromosomal disorientations. As³⁺ reduced the binding to tubulin of [³H]N-ethylmaleimide (NEM), an -SH group reagent, resulting in inhibition of MT polymerization in vitro with bovine brain tubulins which was abolished by addition of dithiothreitol (DTT) suggesting As³⁺ action upon tubulin through -SH groups. In response to As³⁺, cells elevated cellular thiols such as metallothionein. Taxol, a tubulin polymerization agent, antagonized both As³⁺ and NEM induced MT depolymerization. MT-associated proteins (MAPs) essential for the MT stability were markedly suppressed in As³⁺-treated cells. Thus, tubulin sulfhydryls and MAPs are major molecular targets for As³⁺ damage to the lung triggering MT disassembly cascades.
Collapse
Affiliation(s)
- Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | | | | |
Collapse
|
399
|
Da C, Telang N, Barelli P, Jia X, Gupton JT, Mooberry SL, Kellogg GE. Pyrrole-Based Antitubulin Agents: Two Distinct Binding Modalities are Predicted for C-2 Analogs in the Colchicine Site. ACS Med Chem Lett 2012; 3:53-57. [PMID: 22611477 DOI: 10.1021/ml200217u] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
3,5-dibromo-4-(3,4-dimethoxyphenyl)-1H-pyrrole-2-carboxylic acid ethyl ester is a promising antitubulin lead agent that targets the colchicine site of tubulin. C-2 analogs were synthesized and tested for microtubule depolymerizing and antiproliferative activity. Molecular modeling studies using both GOLD docking and HINT (Hydropathic INTeraction) scoring revealed two distinct binding modes that explain the structural-activity relationships and are in accord with the structural basis of colchicine binding to tubulin. The binding mode of higher activity compounds is buried deeper in the site and overlaps well with rings A and C of colchicine, while the lower activity binding mode shows fewer critical contacts with tubulin. The model distinguishes highly active compounds from those with weaker activities and provides novel insights into the colchicine site and compound design.
Collapse
Affiliation(s)
- Chenxiao Da
- Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| | - Nakul Telang
- Department of Chemistry, Gottwald
Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Peter Barelli
- Department of Chemistry, Gottwald
Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Xin Jia
- Department of Chemistry, Gottwald
Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - John T. Gupton
- Department of Chemistry, Gottwald
Center for the Sciences, University of Richmond, Richmond, Virginia 23173, United States
| | - Susan L. Mooberry
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio,
Texas 78229-3900, United States
| | - Glen E. Kellogg
- Department of Medicinal Chemistry & Institute for Structural Biology and Drug Discovery, Virginia Commonwealth University, Richmond, Virginia 23298-0540, United States
| |
Collapse
|
400
|
Synthesis, biological evaluation and molecular modeling of 1,2,3-triazole analogs of combretastatin A-1. Bioorg Med Chem 2012; 20:234-42. [DOI: 10.1016/j.bmc.2011.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 11/01/2011] [Accepted: 11/05/2011] [Indexed: 12/22/2022]
|